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Outline of Functional Analysis

Introduction

Problems in PDE have provided a major impetus for the development of
functional analysis. Here, we present some basic results, which are useful
for the development of such subjects as distribution theory and Sobolev
spaces, discussed in Chapters 3 and 4; the spectral theory of compact
and of unbounded operators, applied to elliptic PDE in Chapter 5; the
theory of Fredholm operators and their indices, needed for the study of the
Atiyah-Singer index theorem in Chapter 10; and the theory of semigroups,
of particular value in Chapter 9 on scattering theory, and also germane to
studies of evolution equations in Chapters 3 and 6. Indeed, what is thought
of as the subject of functional analysis naturally encompasses some of the
development of these chapters as well as the material presented in this
appendix. One particular case of this is the spectral theory of Chapter
8. In fact, it is there that we present a proof of the spectral theorem for
general self-adjoint operators. One reason for choosing to do it this way
is that my favorite approach to the spectral theorem uses Fourier analysis,
which is not applied in this appendix, though some of the exercises make
contact with it. Thus in this appendix the spectral theorem is proved only
for compact operators, an extremely simple special case. On the other
hand, it is hoped that by the time one gets through the Fourier analysis as
developed in Chapter 3, the presentation of the general spectral theorem
in Chapter 8 will appear to be very simple too.
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1. Banach spaces

A Banach space is a complete, normed, linear space. A norm on a linear
space V is a positive function ‖v‖ having the properties

(1.1)

‖av‖ = |a| · ‖v‖ for v ∈ V, a ∈ C (or R),

‖v + w‖ ≤ ‖v‖ + ‖w‖,

‖v‖ > 0 unless v = 0.

The second of these conditions is called the triangle inequality. Given a
norm on V , there is a distance function d(u, v) = ‖u − v‖, making V a
metric space.

A metric space is a set X, with distance function d : X × X → R
+,

satisfying

(1.2)

d(u, v) = d(v, u),

d(u, v) ≤ d(u,w) + d(w, v),

d(u, v) > 0 unless u = v.

A sequence (uj) is Cauchy provided d(vn, vm) → 0 as m,n → ∞; com-
pleteness is the property that any Cauchy sequence converges. Further
background on metric spaces is given in §1 of Appendix B.

We list some examples of Banach spaces. First, let X be any compact
metric space, that is, a metric space with the property that any sequence
(xn) has a convergent subsequence. Then C(X), the space of continuous
functions on X, is a Banach space, with norm

(1.3) ‖u‖sup = sup{|u(x)| : x ∈ X}.

Also, for any α ∈ [0, 1], we set

(1.4) Lipα(X) = {u ∈ C(X) : |u(x)−u(y)| ≤ C d(x, y)α for all x, y ∈ X}.

This is a Banach space, with norm

(1.5) ‖u‖α = ‖u‖sup + sup
x,y∈X

|u(x) − u(y)|

d(x, y)α
.

Lip0(X) = C(X); the space Lip1(X) is typically denoted Lip(X). For
α ∈ (0, 1), Lipα(X) is frequently denoted Cα(X). In all these cases, it is
straightforward to verify the conditions (1.1) on the proposed norms and
to establish completeness.

Related spaces arise when X is specialized to be a compact Riemannian
manifold. We have Ck(M), the space of functions whose derivatives of
order ≤ k are continuous on M . Norms on Ck(M) can be constructed as
follows. Pick Z1, . . . , ZN , smooth vector fields on M that span TpM at
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each p ∈ M . Then we can set

(1.6) ‖u‖Ck =
∑

ℓ≤k

‖Zj1 · · ·Zjℓ
u‖sup.

If one replaces the sup norm on the right by the Cα-norm (1.5), for some
α ∈ (0, 1), one has a norm for the Banach space Ck,α(M).

More subtle examples of Banach spaces are the Lp-spaces, defined as
follows. First take p = 1. Let (X,µ) be a measure space. We say a
measurable function f belongs to L1(X,µ) provided

(1.7)

∫

X

|f(x)| dµ(x) < ∞.

Elements of L1(X,µ) consist of equivalence classes of elements of L1(X,µ),
where we say

(1.8) f ∼ f̃ ⇔ f(x) = f̃(x), for µ-almost every x.

With a slight abuse of notation, we denote by f both a measurable function
in L1(X,µ) and its equivalence class in L1(X,µ). Also, we say that f ,
defined only almost everywhere on X, belongs to L1(X,µ) if there exists
f̃ ∈ L1(X,µ) such that f̃ = f a.e. The norm ‖f‖L1 is given by (1.7); it is
easy to see that this norm has the properties (1.1).

The proof of completeness of L1(X,µ) makes use of the following key
convergence results in measure theory.

Monotone convergence theorem. If fj ∈ L1(X,µ), 0 ≤ f1(x) ≤ f2(x) ≤
· · · , and ‖fj‖L1 ≤ C < ∞, then limj→∞ fj(x) = f(x), with f ∈ L1(X,µ)
and ‖fj − f‖L1 → 0 as j → ∞.

Dominated convergence theorem. If fj ∈ L1(X,µ), lim fj(x) = f(x),
µ-a.e., and there is an F ∈ L1(X,µ) such that |fj(x)| ≤ F (x) µ-a.e., for all
j, then f ∈ L1(X,µ) and ‖fj − f‖L1 → 0.

To show that L1(X,µ) is complete, suppose (fn) is Cauchy in L1. Passing
to a subsequence, we can assume ‖fn+1−fn‖L1 ≤ 2−n. Consider the infinite
series

(1.9) f1(x) +

∞∑

n=1

[
fn+1(x) − fn(x)

]
.

Now the partial sums are dominated by

Gm(x) =
m∑

n=1

|fn+1(x) − fn(x)|,

and since 0 ≤ G1 ≤ G2 ≤ · · · and ‖Gm‖L1 ≤
∑

2−n ≤ 1, we deduce from
the monotone convergence theorem that Gm ր G µ-a.e. and in L1-norm.
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Hence the infinite series (1.9) is convergent a.e., to a limit f(x), and via
the dominated convergence theorem we deduce that fn → f in L1-norm.
This proves completeness.

Continuing with a description of Lp-spaces, we define L∞(X,µ) to con-
sist of bounded, measurable functions, L∞(X,µ) to consist of equivalence
classes of such functions, via (1.8), and we define ‖f‖L∞ to be the smallest
sup of f̃ ∼ f . It is easy to show that L∞(X,µ) is a Banach space.

For p ∈ (1,∞), we define Lp(X,µ) to consist of measurable functions f
such that

(1.10)
[∫

X

|f(x)|p dµ(x)
]1/p

is finite. Lp(X,µ) consists of equivalence classes, via (1.8), and the Lp-
norm ‖f‖Lp is given by (1.10). This time it takes a little work to verify the
triangle inequality. That this holds is the content of Minkowski’s inequality:

(1.11) ‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp .

One neat way to establish this is by the following characterization of the
Lp-norm. Suppose p and q are related by

(1.12)
1

p
+

1

q
= 1.

We claim that if f ∈ Lp(X,µ),

(1.13) ‖f‖Lp = sup
{
‖fh‖L1 : h ∈ Lq(X,µ), ‖h‖Lq = 1

}
.

We can apply (1.13) to f + g, which belongs to Lp(X,µ) if f and g do,
since |f + g|p ≤ 2p(|f |p + |g|p). Given this, (1.11) follows easily from the
inequality ‖(f + g)h‖L1 ≤ ‖fh‖L1 + ‖gh‖L1 .

The identity (1.13) can be regarded as two inequalities. The “≤” part
can be proven by choosing h(x) to be an appropriate multiple C|f(x)|p−1.
We leave this as an exercise. The converse inequality, “≥,” is a consequence
of Hölder’s inequality:

(1.14)

∫
|f(x)g(x)| dµ(x) ≤ ‖f‖Lp‖g‖Lq ,

1

p
+

1

q
= 1.

Hölder’s inequality can be proved via the following inequality for positive
numbers:

(1.15) ab ≤
ap

p
+

bq

q
, a, b > 0,

assuming that p ∈ (1,∞) and (1.12) holds; (1.15) is equivalent to

(1.16) x1/py1/q ≤
x

p
+

y

q
, x, y > 0.
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Since both sides of this are homogeneous of degree 1 in (x, y), it suffices to
prove it for y = 1, that is, to prove that x1/p ≤ x/p + 1/q for x ∈ [0,∞).
Now ϕ(x) = x1/p−x/p can be maximized by elementary calculus; one finds
a unique maximum at x = 1, with ϕ(1) = 1 − 1/p = 1/q. This establishes
(1.16), hence (1.15). Applying this to the integrand in (1.14) gives

(1.17)

∫
|f(x)g(x)| dµ(x) ≤

1

p
‖f‖p

Lp +
1

q
‖g‖q

Lq .

This looks weaker than (1.14), but now replace f by tf and g by t−1g, so
that the left side of (1.17) is dominated by

tp

p
‖f‖p

Lp +
1

qtq
‖g‖q

Lq .

Minimizing over t ∈ (0,∞) then gives Hölder’s inequality. Consequently,
(1.10) defines a norm on Lp(X,µ). Completeness follows as in the p = 1
case discussed above.

We next give a discussion of one important method of manufacturing
new Banach spaces from old. Namely, suppose V is a Banach space, W a
closed linear subspace. Consider the linear space L = V/W , with norm

(1.18) ‖[v]‖ = inf
{
‖v − w‖ : w ∈ W

}
,

where v ∈ V , and [v] denotes its class in V/W . It is easy to see that (1.18)
defines a norm on V/W . We record a proof of the following.

Proposition 1.1. If V is a Banach space and W is a closed linear subspace,
then V/W , with norm (1.18), is a Banach space.

It suffices to prove that V/W is complete. We use the following; compare
the use of (1.9) in the proof of completeness of L1(X,µ).

Lemma 1.2. A normed linear space L is complete provided the hypothesis

xj ∈ L,

∞∑

j=1

‖xj‖ < ∞,

implies that
∑∞

j=1 xj converges in L.

Proof. If (yk) is Cauchy in L, take a subsequence so that ‖yk+1 − yk‖ ≤
2−k, and consider y1 +

∑∞
j=1(yj+1 − yj).

To prove Proposition 1.1 now, say [vj ] ∈ V/W ,
∑

‖[vj ]‖ < ∞. Then pick
wj ∈ W such that ‖vj − wj‖ ≤ ‖[vj ]‖ + 2−j , to get

∑∞
j=1 ‖vj − wj‖ < ∞.

Hence
∑

(vj − wj) converges in V , to a limit v, and it follows that
∑

[vj ]
converges to [v] in V/W .
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Note that if W is a proper closed, linear subspace of V , given v ∈ V \W ,
we can pick wn ∈ W such that ‖v−wn‖ → dist(v,W ). Normalizing v−wn

produces vn ∈ V such that the following holds.

Lemma 1.3. If W is a proper closed, linear subspace of a Banach space
V , there exist vn ∈ V such that

(1.19) ‖vn‖ = 1, dist(vn,W ) ր 1.

In Proposition 2.1 we will produce an important sharpening of this for
Hilbert spaces. For now we remark on the following application.

Proposition 1.4. If V is an infinite-dimensional Banach space, then the
closed unit ball B1 ⊂ V is not compact.

Proof. If Vj is an increasing sequence of spaces, of dimension j, by (1.19)
we can obtain vj ∈ Vj , ‖vj‖ = 1, each pair a distance ≥ 1/2; thus (vj) has
no convergent subsequence.

It is frequently useful to show that a certain linear subspace L of a
Banach space V is dense. We give a few important cases of this here.

Proposition 1.5. If µ is a Borel measure on a compact metric space X,
then C(X) is dense in Lp(X,µ) for each p ∈ [1,∞).

Proof. First, let K be any compact subset of X. The functions

(1.20) fK,n(x) =
[
1 + n dist(x,K)

]−1
∈ C(X)

are all ≤ 1 and decrease monotonically to the characteristic function χK

equal to 1 on K, 0 on X \ K. The monotone convergence theorem gives
fK,n → χK in Lp(X,µ) for 1 ≤ p < ∞. Now let A ⊂ X be any measurable
set. Any Borel measure on a compact metric space is regular, that is,

(1.21) µ(A) = sup{µ(K) : K ⊂ A, K compact}.

Thus there exists an increasing sequence Kj of compact subsets of A such
that µ(A \ ∪jKj) = 0. Again, the monotone convergence theorem implies
χKj

→ χA in Lp(X,µ) for 1 ≤ p < ∞. Thus all simple functions on X
are in the closure of C(X) in Lp(X,µ) for p ∈ [1,∞). The construction of
Lp(X,µ) directly shows that each f ∈ Lp(X,µ) is a norm limit of simple
functions, so the result is proved.

This result is easily extended to give the following:

Corollary 1.6. If X is a metric space that is locally compact and a count-
able union of compact Xj , and µ is a (locally finite) Borel measure on X,
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then the space C00(X) of compactly supported, continuous functions on X
is dense in Lp(X,µ) for each p ∈ [1,∞).

Further extensions, involving more general locally compact spaces, can
be found in [Lo].

The following is known as the Weierstrass approximation theorem.

Theorem 1.7. If I = [a, b] is an interval in R, the space P of polynomials
in one variable is dense in C(I).

There are many proofs of this. One close to Weierstrass’s original (and
my favorite) goes as follows. Given f ∈ C(I), extend it to be continuous and
compactly supported on R; convolve this with a highly peaked Gaussian;
and approximate the result by power series. For a more detailed sketch,
in the context of other useful applications of highly peaked Gaussians, see
Exercises 14 and 15 in §3 of Chapter 3.

The following generalization is known as the Stone-Weierstrass theorem.

Theorem 1.8. Let X be a compact Hausdorff space and A a subalgebra
of CR(X), the algebra of real-valued, continuous functions on X. Suppose
that 1 ∈ A and that A separates points of X, that is, for distinct p, q ∈ X,
there exists hpq ∈ A with hpq(p) 6= hpq(q). Then the closure A is equal to
CR(X).

We sketch a proof of Theorem 1.8, making use of Theorem 1.7, which
implies that if f ∈ A and ϕ : R → R is continuous, then ϕ ◦ f ∈ A.
Consequently, if fj ∈ A, then sup(f1, f2) = (1/2)|f1−f2|+(1/2)(f1 +f2) ∈
A.

The hypothesis of separating points implies that, for distinct p, q ∈ X,
there exists fpq ∈ A, equal to 1 at p, 0 at q. Applying appropriate ϕ, we can
arrange also that 0 ≤ fpq(x) ≤ 1 on X and that fpq is 1 near p and 0 near
q. Taking infima, we can obtain fpU ∈ A, equal to 1 on a neighborhood of
p and equal to 0 off a given neighborhood U of p. Applying sups to these,
we obtain, for each compact K ⊂ X and open U ⊃ K, a function gKU ∈ A
such that gKU is 1 on K, 0 off U , and 0 ≤ gKU (x) ≤ 1 on X. Once we
have gotten this far, it is easy to approximate any continuous u ≥ 0 on X
by a sup of (positive constants times) such gKU , and from there it is easy
to prove the theorem.

Theorem 1.8 has a complex analogue. In that case, we add the assump-
tion that f ∈ A ⇒ f ∈ A and conclude that A = C(X). This is easily
reduced to the real case.
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Exercises

1. Let L be the subspace of C(S1) consisting of finite linear combinations of the
exponentials einθ, n ∈ Z. Use the Stone-Weierstrass theorem to show that L
is dense in C(S1).

2. Show that the space of finite linear combinations of the functions

Eζ(t) = e−ζt,

as ζ ranges over (0,∞), is dense in C0(R
+), the space of continuous functions

on R
+ = [0,∞), vanishing at infinity. (Hint: Make a slight generalization of

the Stone-Weierstrass theorem.)
3. Given f ∈ L1(R+), the Laplace transform

(Lf)(ζ) =

Z ∞

0

e−ζtf(t) dt

is defined and holomorphic for Re ζ > 0. Suppose (Lf)(ζ) vanishes for ζ on
some open subset of (0,∞). Show that f = 0, using Exercise 2. (Hint: First
show that (Lf)(ζ) is identically zero.)

4. Let I be a compact interval, V a Banach space, and f : I → V a continuous
function. Show that the Riemann integral

R

I
f(x) dx is well-defined. Formu-

late and establish the fundamental theorem of calculus for V -valued functions.
Formulate and verify appropriate basic results on multidimensional integrals
of V -valued functions.

5. Let Ω ⊂ C be open, V a (complex) Banach space, and f : Ω → V . We say f is
holomorphic if it is a C1-map and, for each z ∈ Ω, Df(z) is C-linear. Establish
for such V -valued holomorphic functions the Cauchy integral theorem, the
Cauchy integral formula, power-series expansions, and the Liouville theorem.

A Banach space V is said to be uniformly convex provided that for each ε > 0,
these exists δ > 0 such that, for x, y ∈ V ,

‖x‖, ‖y‖ ≤ 1,

‚

‚

‚

‚

1

2
(x + y)

‚

‚

‚

‚

≥ 1 − δ =⇒ ‖x − y‖ < ε.

6. Show that Lp(X, µ) is uniformly convex provided 2 ≤ p < ∞.
(Hint Prove and use the fact that, for a, b ∈ C, p ∈ [2,∞),

|a + b|p + |a − b|p ≤ 2p−1(|a|p + |b|p),

so that

‖f + g‖p
Lp + ‖f − g‖p

Lp ≤ 2p−1(‖f‖p
Lp + ‖g‖p

Lp).)

Remark. Lp(X, µ) is also uniformly convex for p ∈ (1, 2), but the proof is
harder. See [Kot], pp. 358–359.

2. Hilbert spaces

A Hilbert space is a complete inner-product space. That is to say, first the
space H is a linear space provided with an inner product, denoted (u, v),
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for u and v in H, satisfying the following defining conditions:

(2.1)

(au1 + u2, v) = a(u1, v) + (u2, v),

(u, v) = (v, u),

(u, u) > 0 unless u = 0.

To such an inner product is assigned a norm, by

(2.2) ‖u‖ =
√

(u, u).

To establish that the triangle inequality holds for ‖u + v‖, we can expand

‖u + v‖2 = (u + v, u + v) and deduce that this is ≤
[
‖u‖ + ‖v‖

]2
, as a

consequence of Cauchy’s inequality:

(2.3) |(u, v)| ≤ ‖u‖ · ‖v‖,

a result that can be proved as follows. The fact that (u − v, u − v) ≥ 0
implies 2 Re (u, v) ≤ ‖u‖2 + ‖v‖2; replacing u by eiθu with eiθ chosen so
that eiθ(u, v) is real and positive, we get

(2.4) |(u, v)| ≤
1

2
‖u‖2 +

1

2
‖v‖2.

Now in (2.4) we can replace u by tu and v by t−1v, to get |(u, v)| ≤
(t/2)‖u‖2 + (1/2t)‖v‖2; minimizing over t gives (2.3). This establishes
Cauchy’s inequality, so we can deduce the triangle inequality. Thus (2.2)
defines a norm, as in §1, and the notion of completeness is as stated there.

Prime examples of Hilbert spaces are the spaces L2(X,µ) for a measure
space (X,µ), that is, the case of Lp(X,µ) discussed in §1 with p = 2. In
this case, the inner product is

(2.5) (u, v) =

∫

X

u(x)v(x) dµ(x).

The nice properties of Hilbert spaces arise from their similarity with fa-
miliar Euclidean space, so a great deal of geometrical intuition is available.
For example, we say u and v are orthogonal, and write u ⊥ v, provided
(u, v) = 0. Note that the Pythagorean theorem holds on a general Hilbert
space:

(2.6) u ⊥ v =⇒ ‖u + v‖2 = ‖u‖2 + ‖v‖2.

This follows directly from expanding (u + v, u + v).
Another useful identity is the following, called the “parallelogram law,”

valid for all u, v ∈ H:

(2.7) ‖u + v‖2 + ‖u − v‖2 = 2‖u‖2 + 2‖v‖2.

This also follows directly by expanding (u+v, u+v)+(u−v, u−v), observing
some cancellations. One important application of this simple identity is to
the following existence result.
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Let K be any closed, convex subset of H. Convexity implies that x, y ∈
K ⇒ (x + y)/2 ∈ K. Given x ∈ H, we define the distance from x to K to
be

(2.8) d = inf{‖x − y‖ : y ∈ K}.

Proposition 2.1. If K ⊂ H is a closed, convex set, there is a unique
z ∈ K such that d = ‖x − z‖.

Proof. We can pick yn ∈ K such that ‖x − yn‖ → d. It will suffice to
show that (yn) must be a Cauchy sequence. Use (2.7) with u = ym − x,
v = x − yn, to get

‖ym − yn‖
2 = 2‖yn − x‖2 + 2‖ym − x‖2 − 4

∥∥x −
1

2
(yn + ym)

∥∥2
.

Since K is convex, (1/2)(yn + ym) ∈ K, so ‖x − (1/2)(yn + ym)‖ ≥ d.
Therefore,

lim sup
m,n→∞

‖yn − ym‖2 ≤ 2d2 + 2d2 − 4d2 ≤ 0,

which implies convergence.

In particular, this result applies when K is a closed, linear subspace of
H. In this case, for x ∈ H, denote by PKx the point in K closest to x. We
have

(2.9) x = PKx + (x − PKx).

We claim that x−PKx belongs to the linear space K⊥, called the orthogonal

complement of K, defined by

(2.10) K⊥ = {u ∈ H : (u, v) = 0 for all v ∈ K}.

Indeed, take any v ∈ K. Then

∆(t) = ‖x − PKx + tv‖2

= ‖x − PKx‖2 + 2t Re (x − PKx, v) + t2‖v‖2

is minimal at t = 0, so ∆′(0) = 0 (i.e., Re(x − PKx, v) = 0), for all v ∈ K.
Replacing v by iv shows that (x − PKx, v) also has vanishing imaginary
part for any v ∈ K, so our claim is established. The decomposition (2.9)
gives

(2.11) x = x1 + x2, x1 ∈ K, x2 ∈ K⊥,

with x1 = PKx, x2 = x − PKx. Clearly, such a decomposition is unique.
It implies that H is an orthogonal direct sum of K and K⊥; we write

(2.12) H = K ⊕ K⊥.
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From this it is clear that

(2.13)
(
K⊥

)⊥
= K,

that

(2.14) x − PKx = PK⊥x,

and that PK and PK⊥ are linear maps on H. We call PK the orthogonal

projection of H on K. Note that PKx is uniquely characterized by the
condition

(2.15) PKx ∈ K, (PKx, v) = (x, v), for all v ∈ K.

We remark that if K is a linear subspace of H which is not closed, then

K⊥ coincides with K
⊥

, and (2.13) becomes
(
K⊥

)⊥
= K.

Using the orthogonal projection discussed above, we can establish the
following result.

Proposition 2.2. If ϕ : H → C is a continuous, linear map, there exists
a unique f ∈ H such that

(2.16) ϕ(u) = (u, f), for all u ∈ H.

Proof. Consider K = Ker ϕ = {u ∈ H : ϕ(u) = 0}, a closed, linear
subspace of H. If K = H, then ϕ = 0 and we can take f = 0. Otherwise,
K⊥ 6= 0; select a nonzero x0 ∈ K⊥ such that ϕ(x0) = 1. We claim K⊥

is one-dimensional in this case. Indeed, given any y ∈ K⊥, y − ϕ(y)x0 is
annihilated by ϕ, so it belongs to K as well as to K⊥, so it is zero. The
result is now easily proved by setting f = ax0 with a ∈ C chosen so that
(2.16) works for u = x0, namely a(x0, x0) = 1.

We note that the correspondence ϕ 7→ f gives a conjugate linear isomor-
phism

(2.17) H ′ → H,

where H ′ denotes the space of all continuous linear maps ϕ : H → C.
We now discuss the existence of an orthonormal basis of a Hilbert space

H. A set {eα : α ∈ A} is called an orthonormal set if each ‖eα‖ = 1 and
eα ⊥ eβ for α 6= β. If B ⊂ A is any finite set, it is easy to see via (2.15)
that, for all x ∈ H,

(2.18) PV x =
∑

β∈B

(x, eβ)eβ , V = span {eβ : β ∈ B},

where PV is the orthogonal projection on V discussed above. Note that

(2.19)
∑

β∈B

|(x, eβ)|2 = ‖PV x‖2 ≤ ‖x‖2.
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In particular, we have (x, eα) 6= 0 for at most countably many α ∈ A, for
any given x. (Sometimes, A can be an uncountable set.) By (2.19) we
also deduce that, with cα = (x, eα),

∑
α∈A |cα|

2 < ∞, and
∑

α∈A cαeα is a
convergent series in the norm topology of H. We can apply (2.15) again to
show that

(2.20)
∑

α∈A

(x, eα)eα = PLx,

where PL is the orthogonal projection on

(2.21) L = closure of the linear span of {eα : α ∈ A}.

We call an orthonormal set {eα : α ∈ A} maximal if it is not contained
in any larger orthonormal set. Such a maximal orthonormal set is a basis
of H; the term “basis” is justified by the following result.

Proposition 2.3. An orthonormal set {eα : α ∈ A} is maximal if and
only if its linear span is dense in H, that is, if and only if L in (2.21) is all
of H. In such a case, we have, for all x ∈ H,

(2.22) x =
∑

α∈A

cαeα, cα = (x, eα).

The proof of the first assertion is obvious; the identity (2.22) then follows
from (2.20).

The existence of a maximal orthonormal set in any Hilbert space can
be inferred from Zorn’s lemma; cf. [DS] and [RS]. This existence can be
established on elementary logical principles in case H is separable (i.e., has
a countable dense set {yj : j = 1, 2, 3, . . . }). In this case, let Vn be the
linear span of {yj : j ≤ n}, throwing out any yn for which Vn is not strictly
larger than Vn−1. Then pick unit e1 ∈ V1, unit e2 ∈ V2, orthogonal to V1,
and so on, via the Gramm-Schmidt process, and consider the orthonormal
set {ej : j = 1, 2, 3, . . . }. The linear span of {ej} coincides with that of
{yj}, hence is dense in H.

As an example of an orthonormal basis, we mention

(2.23) einθ, n ∈ Z,

a basis of L2(S1) with square norm ‖u‖2 = (1/2π)
∫

S1 |u(θ)|2 dθ. See Chap-
ter 3, §3, or the exercises for this section.

Exercises

1. Let L be the finite, linear span of the functions einθ, n ∈ Z, of (2.23). Use
Exercise 1 of §1 to show that L is dense in L2(S1) and hence that these
exponentials form an orthonormal basis of L2(S1).
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2. Deduce that the Fourier coefficients

(2.24) Ff(n) = f̂(n) =
1

2π

Z π

−π

f(θ) e−inθ dθ

give a norm-preserving isomorphism

(2.25) F : L2(S1)
≈
−→ ℓ2(Z),

where ℓ2(Z) is the set of sequences (cn), indexed by Z, such that
P

|cn|
2 < ∞.

Compare the approach to Fourier series in Chapter 3, §1.

In the next set of exercises, let µ and ν be two finite, positive measures on a
space X, equipped with a σ-algebra B. Let α = µ + 2ν and ω = 2µ + ν.

3. On the Hilbert space H = L2(X, α), consider the linear functional ϕ : H → C

given by ϕ(f) =
R

X
f(x) dω(x). Show that there exists g ∈ L2(X, α) such

that 1/2 ≤ g(x) ≤ 2 and
Z

X

f(x) dω(x) =

Z

X

f(x)g(x) dα(x).

4. Suppose ν is absolutely continuous with respect to µ (i.e., µ(S) = 0 ⇒ ν(S) =
0). Show that {x ∈ X : g(x) = 1

2
} has µ-measure zero, that

h(x) =
2 − g(x)

2g(x) − 1
∈ L1(X, µ),

and that, for positive measurable F ,
Z

X

F (x) dν(x) =

Z

X

F (x)h(x) dµ(x).

5. The conclusion of Exercise 4 is a special case of the Radon-Nikodym theorem,
using an approach due to von Neumann. Deduce the more general case. Allow
ν to be a signed measure. (You then need the Hahn decomposition of ν.)
Cf. [T], Chapter 8.

6. Recall uniform convexity, defined in the exercise set for §1. Show that every
Hilbert space is uniformly convex.

3. Fréchet spaces; locally convex spaces

Fréchet spaces form a class more general than Banach spaces. For this
structure, we have a linear space V and a countable family of seminorms
pj : V → R

+, where a seminorm pj satisfies part of (1.1), namely

(3.1) pj(av) = |a|pj(v), pj(v + w) ≤ pj(v) + pj(w),

but not necessarily the last hypothesis of (1.1); that is, one is allowed to
have pj(v) = 0 but v 6= 0. However, we do assume that

(3.2) v 6= 0 =⇒ pj(v) 6= 0, for some pj .
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Then, if we set

(3.3) d(u, v) =
∞∑

j=0

2−j pj(u − v)

1 + pj(u − v)
,

we have a distance function. That d(u, v) satisfies the triangle inequality
follows from the next lemma, with ρ(a) = a/(1 + a).

Lemma 3.1. Let δ : X × X → R
+ satisfy

(3.4) δ(x, z) ≤ δ(x, y) + δ(y, z),

for all x, y, z ∈ X. Let ρ : R
+ → R

+ satisfy

ρ(0) = 0, ρ′ ≥ 0, ρ′′ ≤ 0,

so that ρ(a + b) ≤ ρ(a) + ρ(b). Then δρ(x, y) = ρ
(
δ(x, y)

)
also satisfies

(3.4).

Proof. We have

ρ
(
δ(x, z)

)
≤ ρ

(
δ(x, y) + δ(y, z)

)
≤ ρ

(
δ(x, y)

)
+ ρ

(
δ(y, z)

)
.

Thus V , with seminorms as above, gets the structure of a metric space.
If it is complete, we call V a Fréchet space. Note that one has convergence
un → u in the metric (3.3) if and only if

(3.5) pj(un − u) → 0 as n → ∞, for each pj .

A paradigm example of a Fréchet space is C∞(M), the space of C∞-
functions on a compact Riemannian manifold M . Then one can take
pk(u) = ‖u‖Ck , defined by (1.6). These seminorms are actually norms,
but one encounters real seminorms in the following situation. Suppose M
is a noncompact, smooth manifold, a union of an increasing sequence Mk

of compact manifolds with boundary. Then C∞(M) is a Fréchet space
with seminorms pk(u) = ‖u‖Ck(Mk). Also, for such M , and for 1 ≤ p ≤ ∞,
Lp

loc(M) is a Fréchet space, with seminorms pk(u) = ‖u‖Lp(Mk).
Another important Fréchet space is the Schwartz space of rapidly de-

creasing functions

(3.6) S(Rn) = {u ∈ C∞(Rn) : |Dαu(x)| ≤ CNα〈x〉
−N for all α,N},

with seminorms

(3.7) pk(u) = sup
x∈Rn,|α|≤k

〈x〉k|Dαu(x)|.

This space is particularly useful for Fourier analysis; see Chapter 3.
A still more general class is the class of locally convex spaces. Such a

space is a vector space V , equipped with a family of seminorms, satisfying
(3.1)–(3.2). But now we drop the requirement that the family of seminorms



4. Duality 15

be countable, that is, j ranges over some possibly uncountable set J , rather
than a countable set like Z

+. Thus the construction (3.3) of a metric is
not available. Such a space V has a natural topology, defined as follows.
A neighborhood basis of a point x ∈ V is given by

(3.8) O(x, ε, q) = {y ∈ V : q(x − y) < ε}, ε > 0,

where q runs over finite sums of seminorms pj . Then V is a topological
vector space, that is, with respect to this topology, the vector operations
are continuous. The term “locally convex” arises because the sets (3.8) are
all convex.

Examples of such more general, locally convex structures will arise in the
next section.

Exercises

1. Let E be a Fréchet space, with topology determined by seminorms pj , arranged
so that p1 ≤ p2 ≤ · · · . Let F be a closed linear subspace. Form the quotient
E/F . Show that E/F is a Fréchet space, with seminorms

qj(x) = inf {pj(y) : y ∈ E, π(y) = x},

where π : E → E/F is the natural quotient map. (Hint: Extend the proof
of Proposition 1.1. To begin, if qj(a) = 0 for all j, pick bj ∈ E such that
π(bj) = a and pj(bj) ≤ 2−j ; hence pj(bk) ≤ 2−k, for k ≥ j. Consider b1 +
(b2 − b1) + (b3 − b2) + · · · = b ∈ E. Show that π(b) = a and that pj(b) = 0 for
all j. Once this is done, proceed to establish completeness.)

2. If V is a Fréchet space, with topology given by seminorms {pj}, a set S ⊂ V
is called bounded if each pj is bounded on S. Show that every bounded subset
of the Schwartz space S(Rn) is relatively compact. Show that no infinite-
dimensional Banach space can have this property.

3. Let T : V → V be a continuous, linear map on a locally convex space. Suppose
K is a compact, convex subset of V and T (K) ⊂ K. Show that T has a fixed
point in K.
(Hint: Pick any v0 ∈ K and set

wn =
1

n + 1

n
X

j=0

T jv0 ∈ K.

Show that any limit point of {wn} is a fixed point of T . Note that Twn−wn =
(T n+1v0 − v0)/(n + 1).)

4. Duality

Let V be a linear space such as discussed in §§1–3, for example, a Banach
space, or more generally a Fréchet space, or even more generally a Hausdorff
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topological vector space. The dual of V , denoted V ′, consists of continuous,
linear maps

(4.1) ω : V −→ C

(ω : V → R if V is a real vector space). Elements ω ∈ V ′ are called linear

functionals on V . Sometimes one finds the following notation for the action
of ω ∈ V ′ on v ∈ V :

(4.2) 〈v, ω〉 = ω(v).

If V is a Banach space, with norm ‖ ‖, the condition for the map (4.1)
to be continuous is the following: The set of v ∈ V such that |ω(v)| ≤ 1
must be a neighborhood of 0 ∈ V . Thus this set must contain a ball
BR = {v ∈ V : ‖v‖ ≤ R}, for some R > 0. With C = 1/R, it follows that
ω must satisfy

(4.3) |ω(v)| ≤ C‖v‖,

for some C < ∞. The infimum of the C’s for which this holds is defined to
be ‖ω‖; equivalently,

(4.4) ‖ω‖ = sup {|ω(v)| : ‖v‖ ≤ 1}.

It is easy to verify that V ′, with this norm, is also a Banach space.
More generally, let ω be a continuous, linear functional on a Fréchet

space V , equipped with a family {pj : j ≥ 0} of seminorms and (complete)
metric given by (3.3). For any ε > 0, there exists δ > 0 such that d(u, 0) ≤ δ
implies |ω(u)| ≤ ε. Take ε = 1 and the associated δ; pick N so large that∑∞

N+1 2−j < δ/2. It follows that
∑N

1 pj(u) ≤ δ/2 implies |ω(u)| ≤ 1.
Consequently, we see that the continuity of ω : V → C is equivalent to the
validity of an estimate of the form

(4.5) |ω(u)| ≤ C

N∑

j=1

pj(u).

For general Fréchet spaces, there is no simple analogue of (4.4); V ′ is typ-
ically not a Fréchet space. We will give a further discussion of topologies
on V ′ later in this section.

Next we consider identification of the duals of some specific Banach
spaces mentioned before. First, if H is a Hilbert space, the inner prod-
uct produces a conjugate linear isomorphism of H ′ with H, as noted in
(2.17). We next identify the dual of Lp(X,µ).

Proposition 4.1. Let (X,µ) be a σ-finite measure space. Let 1 ≤ p < ∞.
Then the dual space Lp(X,µ)′, with norm given by (4.4), is naturally
isomorphic to Lq(X,µ), with 1/p + 1/q = 1.

Note that Hölder’s inequality and its refinement (1.13) show that there
is a natural inclusion ι : Lq(X,µ) → Lp(X,µ)′, which is an isometry.
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It remains to show that ι is surjective. We sketch a proof in the case
when µ(X) is finite, from which the general case is easily deduced. If
ω ∈ Lp(X,µ)′, define a set function ν on measurable sets E ⊂ X by ν(E) =
〈χE , ω〉, where χE is the characteristic function of E; ν is readily verified
to be countably additive, as long as p < ∞. Furthermore, ν annihilates
sets of µ-measure zero, so the Radon-Nikodym theorem implies

∫
f dν =

∫
fw dµ,

for some measurable function w. A variant of the proof of (1.13) gives
w ∈ Lq(X,µ), with ‖w‖Lq = ‖ω‖.

Note that the countable additivity of ν fails for p = ∞; in fact, L∞(X,µ)′

can be identified with the space of finitely additive set functions on the σ-
algebra of µ-measurable sets that annihilate sets of µ-measure zero.

Remark. In the argument above, you need the Radon-Nikodym theorem
for signed measures. The result of Exercise 4, §2 does not suffice; see
Exercise 5 of §2.

The following complement to Proposition 4.1 is one of the fundamental
results of measure theory. For a proof, we refer to [Ru] and [Yo].

Proposition 4.2. If X is a compact metric space, C(X)′ is isometrically
isomorphic to the space M(X) of (complex) Borel measures on X, with
the total variation norm.

In fact, the generalization of this to the case where X is a compact
Hausdorff space, not necessarily metrizable, is of interest. In that case,
there is a distinction between the Borel σ-algebra, generated by all compact
subsets of X, and the Baire σ-algebra, generated by the compact Gδ subsets
of X. For M(X) here one takes the space of Baire measures to give C(X)′.
It is then an important fact that each Baire measure has a unique extension
to a regular Borel measure. For details, see [Hal].

If M is a smooth, compact manifold, the dual of the Fréchet space
C∞(M) is denoted D′(M) and is called the space of distributions on M .
It is discussed in Chapter 3; also discussed there is the space S ′(Rn) of
tempered distributions on R

n, the dual of S(Rn).
For a Banach space, since V ′ is a Banach space, one can construct its

dual, V ′′. Note that the action (4.2) produces a natural linear map

(4.6) κ : V −→ V ′′,

and it is obvious that ‖κ(v)‖ ≤ ‖v‖. In fact, ‖κ(v)‖ = ‖v‖, that is, κ is
an isometry. In other words, for any v ∈ V , there exists ω ∈ V ′, ‖ω‖ = 1,
such that ω(v) = ‖v‖. This is a special case of the Hahn-Banach theorem,
stated below in Proposition 4.3.
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Sometimes κ in (4.6) is surjective, so it gives an isometric isomorphism
of V with V ′′. In this case, we say V is reflexive. Clearly, any Hilbert
space is reflexive. Also, in view of Proposition 4.1, we see that Lp(X,µ)
is reflexive, provided 1 < p < ∞. On the other hand, L1(X,µ) is not
reflexive; L∞(X,µ)′ is strictly larger than L1(X,µ), except for the trivial
cases where L1(X,µ) is finite-dimensional.

We now state the Hahn-Banach theorem, referred to above. It has a
fairly general formulation, useful also for Fréchet spaces and more general,
locally convex spaces.

Proposition 4.3. Let V be a linear space (real or complex), W a linear
subspace. Let p be a seminorm on V . Suppose ω is a linear functional on
W satisfying |ω(v)| ≤ p(v), for v ∈ W . Then there exists an extension of
ω to a linear functional Ω on V (Ω = ω on W ), such that |Ω(v)| ≤ p(v) for
v ∈ V .

Note that in case V is a Hilbert space and p the associated norm, this re-
sult follows readily from the orthogonal decomposition established in (2.9)–
(2.10).

The key to the proof in general is to show that ω can be extended to V
when V is spanned by W and one element z ∈ V \ W . So one looks for a
constant c so that the prescription Ω(v + az) = ω(v) + ac works; c is to be
picked so that

(4.7) |ω(v) + ac| ≤ p(v + az), for v ∈ W, a ∈ R (or C).

First consider the case of a real vector space. Then (4.7) holds provided
ω(v) + ac ≤ p(v + az), for all v ∈ W , a ∈ R, or equivalently provided

(4.8)
c ≤ a−1

[
p(v + az) − ω(v)

]
,

−c ≤ a−1
[
p(v − az) − ω(v)

]
,

for v ∈ W , a > 0. Such a constant will exist provided

(4.9)

sup
v1∈W,a1>0

a−1
1

[
ω(v1) − p(v1 − a1z)

]

≤ inf
v2∈W,a2>0

a−1
2

[
p(v2 + a2z) − ω(v2)

]
.

Equivalently, for such vj and aj , one must have

(4.10) ω(a2v1 + a1v2) ≤ a1p(v2 + a2z) + a2p(v1 − a1z).

We know that the left side is dominated by

p(a2v1 + a1v2) = p(a2v1 − a2a1z + a1a2z + a1v2),

which is readily dominated by the right side of (4.10). Hence such a number
c exists to make (4.7) work.
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A Zorn’s lemma argument will then work to show that ω can be extended
to all of V in general (i.e., it has a “maximal” extension). In case V is a
separable Fréchet space and p a continuous seminorm on V , an elementary
inductive argument provides an extension from W to a space dense in V ,
and hence by continuity to V .

The complex case can be deduced from the real case as follows. Define
γ : W → R as γ(v) = Re ω(v). Then ω(v) = γ(v) − iγ(iv). If Γ : V → R

is a desired real, linear extension of γ to V , then one can set Ω(v) =
Γ(v) − iΓ(iv).

We now make note of some further topologies on the dual space V ′. The
first is called the weak∗-topology. It is the topology of pointwise convergence
and is specified by the family of seminorms

(4.11) pv(ω) = |ω(v)|,

as v varies over V . The following result, called Alaoglu’s theorem, is useful.

Proposition 4.4. If V is a Banach space, then the closed unit ball B ⊂ V ′

is compact in the weak∗-topology.

This result is readily deduced from the following fundamental result in
topology:

Tychonov’s Theorem. If {Xα : α ∈ A} is any family of compact Haus-
dorff spaces, then the Cartesian product

∏
α Xα, with the product topol-

ogy, is a compact Hausdorff space.

Indeed, the space B ⊂ V ′ above, with the weak∗-topology, is homeomor-
phic to a closed subset of the Cartesian product

∏
{Xv : v ∈ B1}, where

B1 ⊂ V is the unit ball in V , each Xv is a copy of the unit disk in C,
and κ : B →

∏
Xv is given by κ(ω) = {ω(v) : v ∈ B1}. For a proof of

Tychonov’s theorem, see [Dug] and [RS].
We remark that if V is separable, then B is a compact metric space. In

fact, if {vj : j ∈ Z
+} is a dense subset of B1 ⊂ V , the weak∗-topology on

B is given by the metric

(4.12) d(ω, σ) =
∑

j≥0

2−j |〈vj , ω − σ〉|.

Conversely, on V there is the weak topology, the topology of pointwise
convergence on V ′, with seminorms

(4.13) pω(v) = |ω(v)|, ω ∈ V ′.

When V is a reflexive Banach space, V = V ′′, then the weak topology of V
coincides with its weak∗-topology, as the dual of V ′; thus Proposition 4.4
applies to the unit ball in V in this case.
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More generally, we say two vector spaces V and W have a dual pairing
if there is a bilinear form 〈v, w〉, defined for v ∈ V , w ∈ W , such that for
each v 6= 0, 〈v, w〉 6= 0 for some w ∈ W , and for each w 6= 0, this form is
nonzero for some v ∈ V . Then the seminorms pw(v) = |〈v, w〉| on V define a
Hausdorff topology called the σ(V,W )-topology, and symmetrically we have
the σ(W,V ) topology on W . Thus the weak topology on V defined above
is the σ(V, V ′)-topology, and the weak∗-topology on V ′ is the σ(V ′, V )-
topology.

We define another topology on the dual space V ′ of a locally convex space
V , called the strong topology. This is the topology of uniform convergence
on bounded subsets of V . A set Y ⊂ V is bounded provided each seminorm
pj defining the topology of V is bounded on Y . The strong topology on V ′

is defined by the seminorms

(4.14) pY (ω) = sup{|ω(y)| : y ∈ Y }, Y ⊂ V bounded.

In case V is a Banach space, Y ⊂ V is bounded if and only if it is contained
in some ball of finite radius, and then each seminorm (4.14) is dominated
by some multiple of the norm on V ′, given by (4.3). Thus in this case the
strong topology and the norm topology on V ′ coincide. For more general
Fréchet spaces, such as V = C∞(M), the strong topology on V ′ does not
make V ′ a normed space, or even a Fréchet space.

There are many interesting results in the subject of duality, concerning
the topologies discussed above and other topologies, such as the Mackey
topology, which we will not describe here. For further material, see [S].

We return to the setting of the Hahn-Banach theorem, Proposition 4.3,
and produce some complementary results. First, instead of taking p : V →
R

+ to be a seminorm, we can more generally take p to be a gauge, which
is a map p : V → R

+ satisfying

(4.15) p(av) = ap(v), ∀ a > 0, p(v + w) ≤ p(v) + p(w),

instead of (3.1). A simple variant of the proof of Proposition 4.3 gives the
following.

Proposition 4.5. Let V be a real linear space, W a linear subspace.
Assume p is a gauge on V . If ω : W → R is a linear functional satisfying
ω(v) ≤ p(v), for v ∈ W , then there is an extension of ω to a linear functional
Ω on V , such that Ω(v) ≤ p(v) for all v ∈ V .

Note that the conclusion gives Ω(−v) ≤ p(−v), hence |Ω(v)| ≤ p̃(v) =
max(p(v), p(−v)), so Ω is continuous if p̃(v) is dominated by a seminorm
that helps define the topology of V .

Here is an example of a gauge. Let V be a locally convex space and O a
convex neighborhood of 0 ∈ V . Define pO : V → R

+ by

(4.16) pO(v) = inf {a > 0 : a−1v ∈ O}.
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This is called the Minkowski gauge of O. This object will take us from
Proposition 4.5 to the following result, known as the separating hyperplane
theorem.

Proposition 4.6. Let V be a locally convex space (over R), and let
K1,K2 ⊂ V be disjoint convex sets.

(i) If K1 is open, then K1 and K2 can be separated by a closed hyperplane.

(ii) If K1 and K2 are both open, they can be strictly separated by a closed
hyperplane.

(iii) If K1 is compact and K2 is closed, they can be strictly separated by a
closed hyperplane.

Here (i) means there exists a continuous linear functional Ω : V → R

and a number a ∈ R such that Ω(v1) ≤ a ≤ Ω(v2) for all vj ∈ Kj , and (ii)
means there exist such Ω and a with the property that Ω(v1) < a < Ω(v2)
for all vj ∈ Kj . The separating hyperplane is given by {v ∈ V : Ω(v) = a}.

Proof. For (i), pick w ∈ K2 − K1 = {v2 − v1 : vj ∈ Kj}, and let O =
K1 − K2 + w. Then O is an open, convex neighborhood of 0, and w /∈ O.
Let p = pO be the associated Minkowski gauge, and define ω on Span(w)
by ω(aw) = a. Since w /∈ O, p(w) ≥ 1, so ω(aw) ≤ p(aw) for all a ≥ 0,
hence for all a ∈ R. By Proposition 4.5, ω can be extended to a continuous
linear functional Ω on V such that Ω(v) ≤ p(v), for all v ∈ V . Hence
Ω(v) ≤ 1 for all v ∈ O. Thus, for each vj ∈ Kj ,

Ω(v1) ≤ Ω(v2) + (1 − ω(w)).

But ω(w) = 1, so

(4.17) Ω(v1) ≤ Ω(v1), ∀ vj ∈ Kj .

This proves (i).
For (ii), take Ω as in (i). If Kj is open {Ω(v) : v ∈ Kj} is readily verified

so be an open subset of R. So we have two open subsets of R, which by
(4.17) share at most one point. They must hence be disjoint.

In case (iii), consider C = K2 − K1. Disjointness implies 0 /∈ C. Since
K1 is compact, C is closed. Thus there is an open, convex neighborhood
U of 0, disjoint from C. Let K̃1 = K1 + (1/2)U and K̃2 = K2 − (1/2)U .
Then K̃1 and K̃2 are disjoint, open, convex sets, and (ii) applies. Any
closed hyperplane that strictly separates K̃1 and K̃2 also strictly separates
K1 and K2.
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Proposition 4.6 has the following important topological consequence.

Proposition 4.7. Let K be a closed, convex subset of the locally convex
space V (over R). Then K is weakly closed.

Proof. Suppose vα ∈ K and vα → v weakly, that is, Ω(vα) → Ω(v) for all
Ω ∈ V ′. If v /∈ K, this contradicts the conclusion of (iii) of Proposition 4.6
(with K1 = {v}, K2 = K), so v ∈ K.

Note. If V is a linear space over C with a locally convex topology, its
weak topology coincides with that produced by regarding V as a linear
space over R.

Proposition 4.7 interfaces as follows with Proposition 4.4.

Proposition 4.8. Let V be a reflexive Banach space and K ⊂ V a closed,
bounded, convex set. Then K is compact in the weak topology.

Proof. Proposition 4.4, with V and V ′ switched, implies that each closed
ball BR ⊂ V is compact in the weak topology (which coincides with the
weak∗ topology by reflexivity). The hypotheses imply K ⊂ BR for some R,
and, by Proposition 4.7, K is a closed subset of BR, in the weak topology.

Exercises

1. Suppose {uj : j ∈ Z
+} is an orthonormal set in a Hilbert space H. Show that

uj → 0 in the weak∗ topology as j → ∞.
2. In the setting of Exercise 1, suppose H = L2(X, µ), and the uj also satisfy

uniform bounds: |uj(x)| ≤ M . Show that uj → 0 in the weak∗ topology of
L∞(X, µ), as the dual to L1(X, µ).

3. Deduce that if f ∈ L1(S1), with Fourier coefficients f̂(n) given by (2.24), then
f̂(n) → 0 as n → ∞.

4. Prove the assertion made in the text that, when V is a separable Banach space,
then the unit ball B in V ′, with the weak∗ topology, is metrizable. (Hint: To
show that (4.12) defines a topology coinciding with the weak∗ topology, use
the fact that if ϕ : X → Y is continuous and bijective, with X compact and
Y Hausdorff, then ϕ is a homeomorphism.)

5. On a Hilbert space H, suppose fj → f weakly. Show that if

(4.18) ‖f‖ ≥ lim sup
j→∞

‖fj‖,

then fj → f in norm. (Hint: Expand (f − fj , f − fj).)
6. Extend Exercise 5 as follows. Let V be a uniformly convex Banach space

(cf. §1, Exercise 6). Suppose fj , f ∈ V and fj → f weakly. Show that if (4.18)
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holds, then fj → f in norm. (Hint. Assume ‖f‖ = 1. Take ω ∈ V ′ such that
‖ω‖ = 1 and 〈f, ω〉 = 1. Investigate implications of

fi

f + fj

2
, ω

fl

−→ 〈f, ω〉, as j → ∞,

in concert with (4.18).)
7. Suppose X is a closed, linear subspace of a reflexive Banach space V . Show

that X is reflexive. (Hint: Use the Hahn-Banach theorem. First show that
X ′ ≈ V ′/X⊥, where X⊥ = {ω ∈ V ′ : ω(v) = 0, ∀ v ∈ X}. Thus, a bounded
linear functional on X ′ gives rise to a bounded linear functional on V ′, anni-
hilating X⊥.)

8. Let V be a C-linear space, and let α : V → R be R-linear. Define β : V → C

by β(v) = α(v) − iα(iv). Show that β is C-linear.
9. Suppose V = H is a Hilbert space, K ⊂ H a closed, convex subset, and v /∈ K.

As an alternative to Proposition 4.6, use Proposition 2.1 to produce a closed
hyperplane strongly separating K and v. Apply this to Propositions 4.7 and
4.8, in case V is a Hilbert space.

5. Linear operators

If V and W are two Banach spaces, or more generally two locally convex
spaces, we denote by L(V,W ) the space of continuous, linear transforma-
tions from V to W . As in the derivation of (4.4), it is easy to see that,
when V and W are Banach spaces, a linear map T : V → W is continuous
if and only if there exists a constant C < ∞ such that

(5.1) ‖Tv‖ ≤ C‖v‖

for all v ∈ V . Thus we call T a bounded operator. The infimum of all the
C’s for which this holds is defined to be ‖T‖; equivalently,

(5.2) ‖T‖ = sup {‖Tv‖ : ‖v‖ ≤ 1}.

It is clear that L(V,W ) is a linear space. If V and W are Banach spaces
and Tj ∈ L(V,W ), then ‖T1 +T2‖ ≤ ‖T1‖+‖T2‖; completeness is also easy
to establish in this case, so L(V,W ) is also a Banach space. If X is a third
Banach space and S ∈ L(W,X), it is clear that ST ∈ L(V,X), and

(5.3) ‖ST‖ ≤ ‖S‖ · ‖T‖.

The space L(V ) = L(V, V ), with norm (5.2), is a Banach algebra for any
Banach space V . Generally, a Banach algebra is defined to be a Banach
space B with the structure of an algebra, so that, for any S, T ∈ B, the
inequality (5.3) holds. Another example of a Banach algebra is the space
C(X), for compact X, with norm (1.3), the product being given by the
pointwise product of functions.



24 A. Outline of Functional Analysis

If V and W are Banach spaces and T ∈ L(V,W ), then the adjoint
T ′ ∈ L(W ′, V ′) is uniquely defined to satisfy

(5.4) 〈Tv,w〉 = 〈v, T ′w〉, v ∈ V, w ∈ W ′.

Using the Hahn-Banach theorem, it is easy to see that

(5.5) ‖T‖ = ‖T ′‖,

both norms being the sup of the absolute value of (5.4) over ‖v‖ = 1,
‖w‖ = 1. When V and W are reflexive, it is clear that T ′′ = T . We remark
that (5.4) also defines T ′ for general locally convex V and W .

In case V and W are Hilbert spaces and T ∈ L(V,W ), then we also have
an adjoint T ∗ ∈ L(W,V ), given by

(5.6) (Tv,w) = (v, T ∗w), v ∈ V, w ∈ W,

using the inner products on W and V , respectively. As in (5.5) we have
‖T‖ = ‖T ∗‖. Also it is clear that T ∗∗ = T .

When H is a Hilbert space, the Banach algebra L(H) is a C∗-algebra.
Generally, a C∗-algebra B is a Banach algebra, equipped with a conjugate
linear involution T 7→ T ∗, satisfying ‖T ∗‖ = ‖T‖ and

(5.7) ‖T ∗T‖ = ‖T‖2.

To see that (5.7) holds for T ∈ L(H), note that both sides are equal to the
sup of the absolute value, over ‖v1‖ ≤ 1, ‖v2‖ ≤ 1, of

(5.8) (T ∗Tv1, v2) = (Tv1, T v2),

such a supremum necessarily being obtained over the set of pairs satisfying
v1 = v2. Note that C(X), considered above, is also a C∗-algebra. However,
for a general Banach space V , L(V ) will not have the structure of a C∗-
algebra.

We consider some simple examples of bounded linear operators. If (X,µ)
is a measure space, f ∈ L∞(X,µ), then the multiplication operator Mf ,
defined by Mfu = fu, is bounded on Lp(X,µ) for each p ∈ [1,∞], with
‖Mf‖ = ‖f‖L∞ . If X is a compact Hausdorff space and f ∈ C(X), then
Mf ∈ L(C(X)), with ‖Mf‖ = ‖f‖sup. In case X is a compact Riemannian
manifold and P is a differential operator of order k on X, with smooth
coefficients, then P does not give a bounded operator on C(X), but one
has P ∈ L(Ck(X), C(X)), and more generally P ∈ L(Ck+m(X), Cm(X)),
for m ≥ 0. For related results on Sobolev spaces, see Chapter 4.

Another class of examples, a little more elaborate than those just men-
tioned, is given by integral operators, of the form

(5.9) Ku(x) =

∫

X

k(x, y) u(y) dµ(y),

where (X,µ) is a measure space. We have the following result:
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Proposition 5.1. Suppose k is measurable on X × X and

(5.10)

∫

X

|k(x, y)| dµ(x) ≤ C1,

∫

X

|k(x, y)| dµ(y) ≤ C2,

for all y and for all x, respectively. Then (5.9) defines K as a bounded
operator on Lp(X,µ), for each p ∈ [1,∞], with

(5.11) ‖K‖ ≤ C
1/p
1 C

1/q
2 ,

1

p
+

1

q
= 1.

Proof. For p ∈ (1,∞), we estimate

(5.12)
∣∣∣
∫

X

∫

X

k(x, y)f(y)g(x) dµ(x) dµ(y)
∣∣∣

via the estimate ab ≤ ap/p+ bq/q of (1.15), used to prove Hölder’s inequal-
ity. Apply this to |f(y)g(x)|. Then (5.12) is dominated by

(5.13)
C1

p
‖f‖p

Lp +
C2

q
‖g‖q

Lq

provided (5.10) holds. Replacing f, g by tf, t−1g, we see that (5.12) is
dominated by (C1t

p/p)‖f‖p
Lp +(C2/qtq)‖g‖q

Lq ; minimizing over t ∈ (0,∞),
via elementary calculus, we see that (5.12) is dominated by

(5.14) C
1/p
1 C

1/q
2 ‖f‖Lp‖g‖Lq ,

proving the result. The exceptional cases p = 1 and p = ∞ are easily
handled.

We call k(x, y) the integral kernel of K. Note that K ′ is an integral
operator, with kernel k′(x, y) = k(y, x). In the case of the Hilbert space
L2(X,µ), K∗ is an integral operator, with kernel k∗(x, y) = k(y, x).

Chapter 7 includes a study of a much more subtle class of operators
called singular integral operators, or pseudodifferential operators of order

zero; Lp-estimates for this class are made in Chapter 13.
We next consider some results about linear transformations on Banach

spaces which use the following general result about complete metric spaces,
known as the Baire category theorem.

Proposition 5.2. Let X be a complete metric space, and Xj , j ∈ Z
+,

nowhere-dense subsets; that is, the closure Xj contains no nonempty open
set. Then

⋃
j Xj 6= X.

Proof. The hypothesis on X1 implies there is a closed ball Br1
(p1) ⊂

X \ X1, for some p1 ∈ X, r1 > 0. Then the hypothesis on X2 gives a ball
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Br2
(p2) ⊂ Br1

(p1) \ X2, 0 < r2 ≤ r1/2. Continue, getting balls

(5.15) Brj
(pj) ⊂ Brj−1

(pj−1) \ Xj , 0 < rj ≤ 2−j+1r1.

Then (pj) is Cauchy; it must converge to a point p /∈ ∪j Xj , as p belongs
to each Brj

(pj).

Our first application is to a result called the uniform boundedness prin-

ciple.

Proposition 5.3. Let V,W be Banach spaces, Tj ∈ L(V,W ), j ∈ Z
+.

Assume that for each v ∈ V , {Tjv} is bounded in W . Then {‖Tj‖} is
bounded.

Proof. Let X = V . Let Xn = {v ∈ X : ‖Tjv‖ ≤ n for all j}. The
hypothesis implies ∪n Xn = X. Clearly, each Xn is closed. The Baire
category theorem implies that some XN has nonempty interior, so there
exists v0, r > 0 such that ‖v‖ ≤ r ⇒ ‖Tj(v0 + v)‖ ≤ N , for all j. Hence

(5.16) ‖v‖ ≤ r ⇒ ‖Tjv‖ ≤ N + ‖Tjv0‖ ≤ R ∀ j,

using the boundedness of {Tjv0}. This implies ‖Tj‖ ≤ R/r, completing the
proof.

The next result is known as the open mapping theorem.

Proposition 5.4. If V and W are Banach spaces and T ∈ L(V,W ) is
onto, then any neighborhood of 0 in V is mapped onto a neighborhood of
0 in W .

Proof. Let B1denote the unit ball in V , Xn = T (nB1) = nT (B1). The hy-
pothesis implies

⋃
n≥1 Xn = W . The Baire category theorem implies that

some XN has nonempty interior, hence contains a ball Br(w0); symmetry
under sign change implies XN also contains Br(−w0). Hence X2N = 2XN

contains B2r(0). By scaling, X1 contains a ball Bε(0). Our goal now is to
show that X1 itself contains a ball. This will follow if we can show that
X1 ⊂ X2.

So let y ∈ X1 = T (B1). Thus there is an x1 ∈ B1 such that y − Tx1 ∈
Bε/2(0) ⊂ X1/2. For the same reason, there is an x2 ∈ B1/2 such that
(y − Tx1) − Tx2 ∈ Bε/4(0) ⊂ X1/4. Continue, getting xn ∈ B21−n such
that

y −
n∑

j=1

Txj ∈ Bε/2n(0).

Then x =
∑∞

j=1 xj is in B2 and Tx = y. This completes the proof.
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Corollary 5.5. If V and W are Banach spaces and T : V → W is contin-
uous and bijective, then T−1 : W → V is continuous.

In such a situation, we say that T is a topological isomorphism.
The third basic application of the Baire category theorem is called the

closed-graph theorem. For a given linear map T : V → W , its graph is
defined to be

(5.17) GT = {(v, Tv) ∈ V ⊕ W : v ∈ V }.

It is easy to see that, whenever V and W are topological vector spaces,
then if T is continuous, GT is closed. The following is a converse.

Proposition 5.6. Let V and W be Banach spaces, T : V → W a linear
map. If GT is closed in V ⊕ W , then T is continuous.

Proof. The hypothesis implies that GT is a Banach space, with norm
‖(v, Tv)‖ = ‖v‖ + ‖Tv‖. Now the maps J : GT → V , K : GT → W , given
by J(v, Tv) = v, K(v, Tv) = Tv, are clearly continuous, and J is bijective.
Hence J−1 is continuous, and so T = KJ−1 is also continuous.

Propositions 5.3–5.6 have extensions to Fréchet spaces, since they are
also complete metric spaces. For example, let V be a Fréchet space in
Proposition 5.3 (keep W a Banach space). In this case, the hypothesis
that {Tjv} is bounded in W for each v ∈ V implies that there exists a
neighborhood O of the origin in V , of the form (3.8), such that v ∈ O ⇒
‖Tjv‖ ≤ 1 for all j, that is, for some finite sum q of seminorms defining the
Fréchet space structure of V ,

(5.18) ‖Tjv‖ ≤ K q(v), for all j,

with K independent of j.
Propositions 5.4–5.6 extend directly to the case where V and W are

Fréchet spaces, with only slight extra complications in the proofs.
We now give an important application of the open mapping theorem, to

a result known as the closed-range theorem. If W is a Banach space and
L ⊂ W is a linear subspace, we denote by L⊥ the subspace of W ′ consisting
of linear functionals on W that annihilate L.

Proposition 5.7. If V and W are Banach spaces and T ∈ L(V,W ), then

(5.19) Ker T ′ = T (V )⊥.

If, in addition, T (V ) is closed in W , then T ′(W ′) is closed in V ′ and

(5.20) T ′(W ′) = (Ker T )⊥.

Proof. For the first identity, by 〈Tv,w〉 = 〈v, T ′w〉, it is obvious that
T (V )⊥ = Ker T ′. If T (V ) is closed, it follows from Corollary 5.5 that T̃ :
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V/Ker T → T (V ) is a topological isomorphism. Thus we have a topological
isomorphism

(5.21) T̃ ′ : T (V )′
≈
−→ (V/Ker T )′.

Meanwhile, there is a natural isomorphism of Banach spaces

(5.22) (V/Ker T )′ ≈ (Ker T )⊥,

and, by the Hahn-Banach theorem, there is a natural surjection W ′ →
T (V )′. (See Exercise 4 below.) Composing these operators yields T ′. Thus
we have (5.20).

In the Hilbert space case, we have the same result for T ∗.
Since one frequently looks at equations Tu = v, it is important to con-

sider the notion of invertibility. An operator T ∈ L(V,W ) is invertible if
there is an S ∈ L(W,V ) such that ST and TS are identity operators. One
useful fact is that all operators close to the identity in L(V ) are invertible.

Proposition 5.8. Let V be a Banach space, T ∈ L(V ), with ‖T‖ < 1.
Then I − T is invertible.

Proof. The power series
∑∞

n=0 Tn converges to (I − T )−1.

When V is a Banach space, we say ζ ∈ C belongs to the resolvent set of
an operator T ∈ L(V ) (denoted ρ(T )) provided ζI − T is invertible; then
the resolvent of T is

(5.23) Rζ = (ζI − T )−1.

It easily follows from the method of proof of Proposition 5.8 that the re-
solvent set of any T ∈ L(V ) is open in C. Furthermore, Rζ is a holo-
morphic function of ζ ∈ ρ(T ). In fact, if ζ0 ∈ ρ(T ), then we can write
ζ − T = (ζ0 − T )

(
I − (ζ0 − ζ)Rζ0

)
, and hence, for ζ close to ζ0,

Rζ = Rζ0

∞∑

n=0

Rn
ζ0

(ζ0 − ζ)n.

It is also clear that ζ belongs to the resolvent set whenever |ζ| > ‖T‖, since

(5.24) (ζ − T )−1 = ζ−1(I − ζ−1T )−1.

The complement of the resolvent set is called the spectrum of T . Thus,
for any T ∈ L(V ), the spectrum of T (denoted σ(T )) is a compact set in
C. By (5.24), ‖Rζ‖ → 0 as |ζ| → ∞. Since Rζ is holomorphic on ρ(T ), it
follows by Liouville’s theorem that, for any T ∈ L(V ), ρ(T ) cannot be all
of C, so σ(T ) is nonempty.

Using the resolvent as a tool, we now discuss a holomorphic functional
calculus for an operator T ∈ L(V ), and applications to spectral theory.
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Let Ω be a bounded region in C, with smooth boundary, containing the
spectrum σ(T ) in its interior. If f is holomorphic on a neighborhood of Ω,
we set

(5.25) f(T ) =
1

2πi

∫

γ

f(ζ) (ζ − T )−1 dζ,

where γ = ∂Ω. Note that if T were a complex number in Ω, this would be
Cauchy’s formula. Here are a couple of very basic facts.

Lemma 5.9. If f(z) = 1, then f(T ) = I, and if f(z) = z, then f(T ) = T .

Proof. Deform γ to be a large circle and use (5.24), plus

(5.26) (I − ζ−1T )−1 = I +

∞∑

n=1

(ζ−1T )n.

We next derive a multiplicative property of this functional calculus, mak-
ing use of the following result, known as the resolvent identity.

Lemma 5.10. If z, ζ ∈ ρ(T ), then

(5.27) Rz − Rζ = (ζ − z)RzRζ .

Proof. For any ζ ∈ ρ(T ), Rζ commutes with ζ − T , hence with T , hence
with any z − T . If, in addition, z ∈ ρ(T ), we have both RζRz(z − T ) = Rζ

and RzRζ(z − T ) = Rz(z − T )Rζ = Rζ , hence

(5.28) RzRζ = RζRz.

Thus

Rz − Rζ = (ζ − T )RζRz − (z − T )RzRζ

= (ζ − z)RζRz,

proving (5.27).

Now for our multiplicative property:

Proposition 5.11. If f and g are holomorphic on a neighborhood of Ω,
then

(5.29) f(T )g(T ) = (fg)(T ).

Proof. Let γ = ∂Ω, as above, and let γ1 be the boundary of a slightly
larger region, on which f and g are holomorphic. Write

g(T ) =
1

2πi

∫

γ1

g(z)(z − T )−1 dz,
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and hence, using (5.25), write f(T )g(T ) as a double integral. The product
RζRz of resolvents of T appears in the new integrand. Using the resolvent
identity (5.27), we obtain

(5.30) f(T )g(T ) = −
1

4π2

∫

γ1

∫

γ

(ζ − z)−1f(ζ)g(z)(Rz − Rζ) dζ dz.

The term involving Rz as a factor has dζ-integral equal to zero, by Cauchy’s
theorem. Doing the dz-integral for the other term, using Cauchy’s identity

g(ζ) =
1

2πi

∫

γ1

(z − ζ)−1g(z) dz,

we obtain from (5.30)

(5.31) f(T )g(T ) =
1

2πi

∫

γ

f(ζ)g(ζ)Rζ dζ,

which gives (5.29).

One interesting situation that frequently arises is the following. Ω can
have several connected components, Ω = Ω1∪· · ·∪ΩM , each Ωj containing
different pieces of σ(T ). Taking a function equal to 1 on Ωj and 0 on the
other components produces operators

(5.32) Pj =
1

2πi

∫

γj

(ζ − T )−1 dζ, γj = ∂Ωj .

By (5.29) we see that

(5.33) P 2
j = Pj , PjPk = 0, for j 6= k,

so P1, . . . , PM are mutually disjoint projections. By Lemma 5.9, P1 + · · ·+
PM = I. It follows easily that if Tj denotes the restriction of T to the
range of Pj , then

(5.34) σ(Tj) = σ(T ) ∩ Ωj .

Exercises

1. Extend the p = 2 case of Proposition 5.1 to the following result of Schur.
Let (X, µ) and (Y, ν) be measure spaces, and let k(x, y) be measurable on
(X×Y, µ×ν). Assume that there are measurable functions p(x), q(y), positive
a.e. on X and Y , respectively, such that

(5.35)

Z

X

|k(x, y)|p(x) dµ(x) ≤ C1q(y),

Z

Y

|k(x, y)|q(y) dν(y) ≤ C2p(x).
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Show that Ku(x) =
R

Y
k(x, y)u(y) dν(y) defines a bounded operator

K : L2(Y, ν) −→ L2(X, µ), ‖K‖2 ≤ C1C2.

Give an appropriate modification of the hypothesis (5.35) in order to obtain
an operator bound K : Lp(Y, ν) → Lp(X, µ).

2. Show that k(x, y) is the integral kernel of a bounded map K : L2(Rn) →
L2(Rn

+) provided it has support in {x1, y1 ∈ [0, 1]} and satisfies the estimate

(5.36) |k(x, y)| ≤ C

„

|x′ − y′|2 + x2
1 + y2

1

«−n/2

, x = (x1, x
′), y = (y1, y

′).

(Hint: Construct p(x) and q(y) so that (5.35) holds. Here, R
n
+ = {x ∈ R

n :
x1 ≥ 0}.)

3. Show that k(x, y) is the integral kernel of a bounded map K : Lp(Rn
+) →

Lp(Rn
+), for 1 ≤ p ≤ ∞, provided it has support in {x1, y1 ∈ [0, 1]} and

satisfies the estimates

|k(x, y)| ≤ Cx1

„

|x1 + y1| + |x′ − y′|

«−(n+1)

and

|k(x, y)| ≤ Cy1

„

|x1 + y1| + |x′ − y′|

«−(n+1)

.

4. Let K be a closed, linear subspace of a Banach space V ; consider the natural
maps j : K →֒ V and π : V → V/K. Show that j′ : V ′ → K′ is surjective and
that π′ : (V/K)′ → V ′ has range K⊥.

5. Show that the set of invertible, bounded, linear maps on a Banach space V is
open in L(V ). (Hint: If T−1 exists, write T + R = T (I + T−1R).)

6. Let X be a compact metric space and F : X → X a continuous map. Define
T : C(X) → C(X) by Tu(x) = u(F (x)). Show that T ′ : M(X) → M(X) is
given by (T ′µ)(E) = µ(F−1(E)), for any Borel set E ⊂ X. Using Exercise 3
of §3, show that there is a probability measure µ on X such that T ′µ = µ.

6. Compact operators

Throughout this section we will restrict attention to operators on Banach
spaces. An operator T ∈ L(V,W ) is said to be compact provided T takes
any bounded subset of V to a relatively compact subset of W , that is, a
set with compact closure. It suffices to assume that T (B1) is relatively
compact in W , where B1 is the closed unit ball in V . We denote the space
of compact operators by K(V,W ). The following proposition summarizes
some elementary facts about K(V,W ).

Proposition 6.1. K(V,W ) is a closed, linear subspace of L(V,W ). Any T
in L(V,W ) with finite-dimensional range is compact. Furthermore, if T ∈
K(V,W ), S1 ∈ L(V1, V ), and S2 ∈ L(W,W2), then S2TS1 ∈ K(V1,W2).
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Most of these assertions are obvious. We show that if Tj ∈ K(V,W ) is
norm convergent to T , then T is compact. Given any sequence (xn) in B1,
one can pick successive subsequences on which T1xn converges, then T2xn

converges, and so on, and by a diagonal argument produce a single subse-
quence (which we’ll still denote (xn)) such that for each j, Tjxn converges
as n → ∞. It is then easy to show that Txn converges, giving compactness
of T .

A particular case of Proposition 6.1 is that K(V ) = K(V, V ) is a closed,
two-sided ideal of L(V ).

The following gives a useful class of compact operators.

Proposition 6.2. If X is a compact metric space, then the natural inclu-
sion

(6.1) ι : Lip(X) −→ C(X)

is compact.

Proof. It is easy to show that any compact metric space has a count-
able, dense subset; let {xj : j = 1, 2, 3, . . . } be dense in X. Say (fn) is a
bounded sequence in Lip(X). We want to prove that a subsequence con-
verges in C(X). Since bounded subsets of C are relatively compact, we
can pick a subsequence of (fn) converging at x1; then we can pick a fur-
ther subsequence of this subsequence, converging at x2, and so forth. The
standard diagonal argument then produces a subsequence (which we con-
tinue to denote (fn)) converging at each xj . We claim that (fn) converges
uniformly on X, as a consequence of the uniform estimate

(6.2) |fn(x) − fn(y)| ≤ K d(x, y),

with K independent of n. Indeed, pick ε > 0. Then pick δ > 0 such that
Kδ < ε/3. Since X is compact, we can select from {xj} finitely many
points, say {x1, . . . , xN}, such that any x ∈ X is of distance ≤ δ from one
of these. Then pick M so large that fn(xj) is within ε/3 of its limit for
1 ≤ j ≤ N , for all n ≥ M . Now, for any x ∈ X, picking ℓ ∈ {1, . . . , N}
such that d(x, xℓ) ≤ δ, we have, for k ≥ 0, n ≥ M ,

(6.3)

|fn+k(x) − fn(x)| ≤ |fn+k(x) − fn+k(xℓ)|

+ |fn+k(xℓ) − fn(xℓ)| + |fn(xℓ) − fn(x)|

≤ Kδ +
ε

3
+ Kδ < ε,

proving the proposition.

The argument given above is easily modified to show that ι : Lipα(X) →
C(X) is compact, for any α > 0. Indeed, there is the following more general
result. Let ω : X × X → [0,∞) be any continuous function, vanishing on
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the diagonal ∆ = {(x, x) : x ∈ X}. Fix K ∈ R
+. Let F be any subset of

C(X) satisfying

(6.4) |u(x)| ≤ K, |u(x) − u(y)| ≤ K ω(x, y).

The latter condition is called equicontinuity. Ascoli’s theorem states that
such a set F is relatively compact in C(X) whenever X is a compact
Hausdorff space. The proof is a further extension of the argument given
above.

We note another refinement of Proposition 6.2, namely that the inclusion
ι : Lipα(X) → Lipβ(X) is compact whenever 0 ≤ β < α ≤ 1, X a compact
metric space. Compare results on inclusions of Sobolev spaces given in
Chapter 4.

We next look at persistence of compactness upon taking adjoints.

Proposition 6.3. If T ∈ K(V,W ), then T ′ is also compact.

Proof. Let (ωn) be sequence in B′
1, the closed unit ball in W ′. Consider

(ωn) as a sequence of continuous functions on the compact space X =
T (B1), B1 being the unit ball in V . Ascoli’s theorem, indeed its special
case, Proposition 6.2, applies; there exists a subsequence (ωnk

) converging
uniformly on X. Thus (T ′ωnk

) is a sequence in V ′ converging uniformly
on B1, hence in the V ′-norm. This completes the proof.

The following provides a useful improvement over the a priori statement
that, for T ∈ K(V,W ), the image T (B1) of the closed unit ball B1 ⊂ V is
relatively compact in W .

Proposition 6.4. Assume V is separable and reflexive. If T : V → W
is compact, then the image of the closed unit ball B1 ⊂ V under T is
compact.

Proof. From Proposition 4.4 and the remark following its proof, B1, with
the weak∗-topology (the σ(V, V ′)-topology, since V = V ′′), is a compact
metric space, granted that V ′ is also separable, which we now demon-
strate. Indeed, for any Banach space Y , it is a simple consequence of the
Hahn-Banach theorem that Y is separable provided Y ′ is separable; if Y is
reflexive, this implication can be reversed.

Consequently, given a sequence vn ∈ B1, possessing a subsequence v
(1)
n

such that Tv
(1)
n converges in W , say to w, you can pass to a further sub-

sequence v
(2)
n , which is weak∗-convergent in V , with limit v ∈ B1. It

follows that Tv
(2)
n is weakly convergent to Tv; for any ω ∈ W ′, Tv

(2)
n (ω) =

v
(2)
n (T ′ω) → v(T ′ω) = (Tv)(ω). Hence Tv = w. This shows that T (B1) is

closed in W , and hence completes the proof.
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Remark : It is possible to drop the assumption that V is separable, via an
argument replacing sequences by nets in order to construct the weak∗ limit
point v.

We next derive some results on the spectral theory of a compact operator
A on a Hilbert space H that is self-adjoint, so A = A∗. For simplicity,
we will assume that H is separable, though that hypothesis can easily be
dropped.

Proposition 6.5. If A ∈ L(H) is compact and self-adjoint, then either
‖A‖ or −‖A‖ is an eigenvalue of A, that is, there exists u 6= 0 in H such
that

(6.5) Au = λu,

with λ = ±‖A‖.

Proof. By Proposition 6.4, we know that the image under A of the closed
unit ball in H is compact, so the norm assumes a maximum on this image.
Thus there exists u ∈ H such that

(6.6) ‖u‖ = 1, ‖Au‖ = ‖A‖.

Pick any unit w ⊥ u. Self-adjointness implies ‖Ax‖2 = (A2x, x), so we
have, for all real s,

(6.7)
(
A2(u + sw), u + sw

)
≤ ‖A‖2(1 + s2),

equality holding at s = 0. Since the left side is equal to

‖A‖2 + 2s Re (A2u,w) + s2‖Aw‖2,

this inequality for s → 0 implies Re(A2u,w) = 0; replacing w by iw gives
(A2u,w) = 0 whenever w ⊥ u. Thus A2u is parallel to u, that is, A2u = cu
for some scalar c; (6.6) implies c = ‖A‖2. Now, assuming A 6= 0, set
v = ‖A‖u + Au. If v = 0, then u satisfies (6.5) with λ = −‖A‖. If v 6= 0,
then v is an eigenvector of A with eigenvalue λ = ‖A‖.

The space of u ∈ H satisfying (6.5) is called the λ-eigenspace of A.
Clearly, if A is compact and λ 6= 0, such a λ-eigenspace must be finite-
dimensional. If Auj = λjuj , A = A∗, then

(6.8) λ1(u1, u2) = (Au1, u2) = (u1, Au2) = λ2(u1, u2).

With λ1 = λ2 and u1 = u2, this implies that each eigenvalue of A = A∗ is
real. With λ1 6= λ2, it then yields (u1, u2) = 0, so any distinct eigenspaces
of A = A∗ are orthogonal. We also note that if Au1 = λ1u1 and v ⊥ u1,
then (u1, Av) = (Au1, v) = λ1(u1, v) = 0, so A = A∗ leaves invariant the
orthogonal complement of any of its eigenspaces.

Now if A is compact and self-adjoint on H, we can apply Proposition 6.5,
restrict A to the orthogonal complement of its ±‖A‖-eigenspaces (where its
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norm must be strictly smaller, as a consequence of Proposition 6.5), apply
the proposition again, to this restriction, and continue. In this fashion we
arrive at the following result, known as the spectral theorem for compact,
self-adjoint operators.

Proposition 6.6. If A ∈ L(H) is a compact, self-adjoint operator on a
Hilbert space H, then H has an orthonormal basis uj of eigenvectors of A.
With Auj = λjuj , (λj) is a sequence of real numbers with only 0 as an
accumulation point.

The spectral theorem has a more elaborate formulation for general self-
adjoint operators. It is proved in Chapter 8.

We next give a result that will be useful in the study of spectral theory
of compact operators that are not self-adjoint. It will also be useful in §7.
Let V,W and Y be Banach spaces.

Proposition 6.7. Let T ∈ L(V,W ). Suppose K ∈ K(V, Y ) and

(6.9) ‖u‖V ≤ C‖Tu‖W + C‖Ku‖Y ,

for all u ∈ V . Then T has closed range.

Proof. Let Tun → f in W . We need v ∈ V with Tv = f . Let L = Ker T .
We divide the argument into two cases.

If dist(un, L) ≤ a < ∞, take vn = un mod L, ‖vn‖ ≤ 2a; then Tvn =
Tun → f . Passing to a subsequence, we have Kvn → g in Y . Then (6.9),
applied to u = vn−vm, implies that (vn) is Cauchy, so vn → v and Tv = f .

If dist(un, L) → ∞, we can assume that dist(un, L) ≥ 2 for all n. Pick
vn = un mod L such that dist(un, L) ≤ ‖vn‖ ≤ dist(un, L) + 1, and set
wn = vn/‖vn‖. Note that dist(wn, L) ≥ 1/2. Since ‖wn‖ = 1, we can take
a subsequence and assume Kwn → g in Y . Since Twn → 0, (6.9) applied
to wn − wm implies (wn) is Cauchy. Thus wn → w in V , and we see that
simultaneously dist(w,L) ≥ 1/2 and Tw = 0, a contradiction. Hence this
latter case is impossible, and the proposition is proved.

Note that Proposition 6.7 applies to the case V = W = Y and T =
ζI − K, for K ∈ K(V ) and ζ a nonzero scalar. Such an operator therefore
has closed range. The next result is called the Fredholm alternative.

Proposition 6.8. For ζ 6= 0, K ∈ K(V ), the operator T = ζI − K is
surjective if and only if it is injective.

Proof. Assume T is injective. Then T : V → R(T ) is bijective. By
Proposition 6.7, R(T ) is a Banach space, so the open mapping theorem
implies that T : V → R(T ) is a topological isomorphism. If R(T ) = V1

is not all of V , then V2 = T (V1), V3 = T (V2), and so on, form a strictly
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decreasing family of closed subspaces. By Lemma 1.3, we can pick vv ∈ Vn

with ‖vn‖ = 1, dist(vn, Vn+1) ≥ 1/2. Thus, for n > m,

(6.10)
Kvm − Kvn = ζvm + [−ζvn − (Tvm − Tvn)]

= ζvm + wmn,

with wmn ∈ Vm+1. Hence ‖Kvn − Kvm‖ ≥ |ζ|/2, contradicting compact-
ness of K. Consequently, T is surjective if it is injective.

For the converse, we use Proposition 5.7. If T is surjective, (5.19) implies
T ′ = ζI − K ′ is injective on V ′. Since K ′ is compact, the argument above
implies T ′ is surjective, and hence, by (5.20), T is injective.

A substantial generalization of this last result will be contained in Propo-
sition 7.4 and Corollary 7.5.

It follows that every ζ 6= 0 in the spectrum of a compact K is an eigen-
value of K. We hence derive the following result on σ(K).

Proposition 6.9. If K ∈ K(V ), the spectrum σ(K) has only 0 as an
accumulation point.

Proof. Suppose we have linearly independent vn ∈ V , ‖vn‖ = 1, with
Kvn = λnvn, λn → λ 6= 0. Let Vn be the linear span of {v1, . . . , vn}. By
Lemma 1.3, there exist yn ∈ Vn, ‖yn‖ = 1, such that dist(yn, Vn−1) ≥ 1/2.
With Tλ = λI − K, we have, for n > m,

(6.11)
λ−1

n Kyn − λ−1
m Kym = yn +

[
−ym + λ−1

n Tλn
yn + λ−1

m Tλm
ym

]

= yn + znm,

where znm ∈ Vn−1 since Tλn
yn ∈ Vn−1. Hence ‖λ−1

n Kyn−λ−1
m Kym‖ ≥ 1/2,

which contradicts compactness of K.

Note that if λj 6= 0 is such an isolated point in the spectrum σ(K) of a
compact operator K, and we take γj to be a small circle enclosing λj but
no other points of σ(K), then, as in (5.32), the operator

Pj =
1

2πi

∫

γj

(ζ − K)−1 dζ

is a projection onto a closed subspace Vj of V with the property that the
restriction of K to Vj (equal to PjKPj) has spectrum consisting of the one
point {λj}. Thus Vj must be finite-dimensional. K|Vj

may perhaps not be
scalar; it might have a Jordan normal form with λj down the diagonal and
some ones directly above the diagonal.

Having established a number of general facts about compact operators,
we take a look at an important class of compact operators on Hilbert spaces:
the Hilbert-Schmidt operators, defined as follows. Let H be a separable
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Hilbert space and A ∈ L(H). Let {uj} be an orthonormal basis of H. We
say A is a Hilbert-Schmidt operator, or an HS operator for short, provided

(6.12)
∑

j

‖Auj‖
2 < ∞,

or equivalently, if

(6.13)
∑

j,k

|ajk|
2 < ∞, ajk = (Auk, uj).

The class of HS operators on H will be denoted HS(H). The first charac-
terization makes it clear that if A is HS and B is bounded, then BA is HS.
The second makes it clear that A∗ is HS if A is; hence AB = (B∗A∗)∗ is
HS if A is HS and B is bounded. Thus (6.12) is independent of the choice
of orthonormal basis {uj}. We also define the Hilbert-Schmidt norm of an
HS operator:

(6.14) ‖A‖2
HS =

∑

j

‖Auj‖
2 =

∑

j,k

|ajk|
2.

The first identity makes it clear that ‖BA‖HS ≤ ‖B‖ · ‖A‖HS if A is HS
and B is bounded, and in particular

‖UA‖HS = ‖A‖HS

when U is unitary. The second identity in (6.14) shows that

‖A∗‖HS = ‖A‖HS.

Using AU = (U∗A∗)∗, we deduce that

‖AU‖HS = ‖A‖HS

when U is unitary. Thus, for U unitary, ‖UAU−1‖HS = ‖A‖HS, so the
HS-norm in (6.14) is independent of the choice of orthonormal basis for H.

From (6.12) it follows that an HS operator A is a norm limit of finite-
rank operators, hence compact. If A = A∗, and we choose an orthonormal
basis of eigenvectors of A, with eigenvalues µj , then

(6.15)
∑

j

|µj |
2 = ‖A‖2

HS.

A compact, self-adjoint operator A is HS if and only if the left side of (6.15)
is finite.

If A : H1 → H2 is a bounded operator, we can say it is HS provided AV
is HS for some unitary map V : H2 → H1, with obvious adjustments when
either H1 or H2 is finite-dimensional.

The following classical result might be called the Hilbert-Schmidt kernel
theorem. In Chapter 4 it is used as an ingredient in the proof of the
celebrated Schwartz kernel theorem.



38 A. Outline of Functional Analysis

Proposition 6.10. If T : L2(X1, µ1) → L2(X2, µ2) is HS, then there exists
a function K ∈ L2(X1 × X2, µ1 × µ2) such that

(6.16) (Tu, v)L2 =

∫∫
K(x1, x2)u(x1)v(x2) dµ1(x1) dµ2(x2).

Proof. Pick orthonormal bases {fj} for L2(X1) and {gk} for L2(X2), and
set

K(x1, x2) =
∑

j,k

ajkfj(x1)gk(x2),

where ajk = (Tfj , gk). The hypothesis that T is HS is precisely what is
necessary to guarantee that K ∈ L2(X1 ×X2), and then (6.16) is obvious.
It is also clear that

(6.17) ‖T‖2
HS = ‖K‖2

L2 .

Also of interest is the converse, proved simply by reversing the argument:

Proposition 6.11. If K ∈ L2(X1 × X2, µ1 × µ2), then (6.16) defines an
HS operator T , satisfying (6.17).

We note that the HS-square norm polarizes to a Hilbert space inner
product on HS(H):

(6.18) (A,B)HS =
∑

j,k

ajkbjk

if, parallel to (6.13), bjk = (Buk, uj), given an orthonormal basis {uj}.
Since the norm uniquely determines the inner product, we have without
further calculation the independence of (A,B)HS under change of orthonor-
mal basis; more generally, (A,B)HS = (UAV,UBV )HS for unitary U and
V on H.

Note that
∑

k ajkbℓk = cjℓ form the matrix coefficients of C = AB∗, and
(6.18) is the sum of the diagonal elements of C; we write

(6.19) (A,B)HS = Tr AB∗.

Generally, we say an operator C ∈ L(H) is trace class if it can be written
as a product of two HS operators; call them A and B∗, and then Tr C is
defined to be given by (6.19). It is not clear at first glance that TR, the set
of trace class operators, is a linear space, but this can be seen as follows.
If Cj = AjB

∗
j , then

(6.20) C1 + C2 = (A1 A2 )

(
B∗

1

B∗
2

)
.

Note that a given C ∈ TR may be written as a product of two HS op-
erators in many different ways, but the computation of Tr C is unaffected,
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since as we have already seen, the definition (6.19) leads to the computation

(6.21) Tr C =
∑

j

cjj , cjj = (Cuj , uj).

This formula shows that Tr:TR → C is a linear map. Furthermore, by our
previous remarks on ( , )HS, the trace formula (6.21) is independent of the
choice of orthonormal basis of H.

There is an intrinsic characterization of trace class operators:

Proposition 6.12. An operator C ∈ L(H) is trace class if and only if
C is compact and the operator (C∗C)1/2 has the property that its set of
eigenvalues {λj} is summable;

∑
λj < ∞.

Proof. Given C compact, let {uj} be an orthonormal basis of H consisting
of eigenvectors of C∗C, which is compact and self-adjoint. Say C∗Cuj =
λ2

juj , λj ≥ 0. Then the identity (C∗C)1/2uj = λjuj defines (C∗C)1/2.
Note that, for all v ∈ H,

(6.22) ‖(C∗C)1/2v‖2 = (C∗Cv, v) = ‖Cv‖2.

Thus Cv 7→ (C∗C)1/2v extends to an isometric isomorphism between the
ranges of C and of (C∗C)1/2, yielding in turn operators V and W of norm
1 such that

(6.23) C = V (C∗C)1/2, (C∗C)1/2 = WC.

Now, if
∑

λj < ∞, define A ∈ L(H) by Auj = λ
1/2
j uj . Hence A is

Hilbert-Schmidt, and C = V A · A, so C is trace class. Conversely, if
C = AB∗ with A,B ∈ HS, then (C∗C)1/2 = WA · B∗ is a product of HS
operators, hence of trace class. The computation (6.21), using the basis of
eigenvectors of C∗C, then yields

∑
λj = Tr(C∗C)1/2 < ∞, and the proof

is complete.

It is desirable to establish some results about TR as a linear space. Given
C ∈ TR, we define

(6.24) ‖C‖TR = inf {‖A‖HS‖B‖HS : C = AB∗}.

This is a norm; in particular,

(6.25) ‖C1 + C2‖TR ≤ ‖C1‖TR + ‖C2‖TR.

This can be seen by using (6.20), with A2 replaced by tA2 and B∗
2 by

t−1B∗
2 , and minimizing over t ∈ (0,∞) the quantity

‖(A1, tA2)‖
2
HS · ‖(B1, t

−1B2)
t‖2

HS

=
(
‖A1‖

2
HS + t2‖A2‖

2
HS

)
·
(
‖B1‖

2
HS + t−2‖B2‖

2
HS

)
.

Next, we note that (6.24) easily yields

(6.26) ‖C∗‖TR = ‖C‖TR
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and, for bounded Sj ,

(6.27) ‖S1CS2‖TR ≤ ‖S1‖ · ‖C‖TR · ‖S2‖,

with equality if S1 and S2 are unitary. Also, using (6.23), we have

(6.28) ‖C‖TR = ‖(C∗C)1/2‖TR.

Using (6.24) with C replaced by D = (C∗C)1/2, the choice A = B = D1/2

yields

(6.29) ‖(C∗C)1/2‖TR ≤ ‖(C∗C)1/4‖2
HS = Tr (C∗C)1/2.

On the other hand, we have, by (6.19) and Cauchy’s inequality,

(6.30) |Tr(AB∗)| ≤ ‖A‖HS‖B‖HS,

and hence, for C ∈ TR,

(6.31) |Tr C| ≤ ‖C‖TR.

If we apply this, with C replaced by (C∗C)1/2, and compare with (6.28)–
(6.29), we have

(6.32) ‖C‖TR = Tr (C∗C)1/2.

Either directly or as a simple consequence of this, we have

(6.33) ‖C‖TR ≥ ‖C‖HS ≥ ‖C‖.

We can now establish:

Proposition 6.13. Given a Hilbert space H, the space TR of trace class
operators on H is a Banach space, with norm (6.24).

Proof. It suffices to prove completeness. Thus let (Cj) be Cauchy in TR.
Passing to a subsequence, we can assume ‖Cj+1 − Cj‖TR ≤ 8−j . Then
write C =

∑
C̃j , where C̃1 = C1 and, for j ≥ 2, C̃j = Cj − Cj−1. By

(6.33), C is a bounded operator on H. Write

C̃j = ÃjB̃
∗
j , ‖Ã‖HS, ‖B̃‖HS ≤ 2−j .

Then we can form

A = Ã1 ⊕ Ã2 ⊕ · · · , B = B̃1 ⊕ B̃2 ⊕ · · · ∈ L(H,H),

where H = H ⊕ H ⊕ · · · , check that A and B are Hilbert-Schmidt, and
note that C = AB∗. Hence C ∈ TR and Cj → C in TR-norm.

The classes HS and TR are the most important cases of a continuum of
ideals Ip ⊂ L(H), 1 ≤ p < ∞. One says C ∈ K(H) belongs to Ip if and
only if (C∗C)p/2 is trace class. Then TR = I1 and HS = I2. For more on
this topic, see [Si].
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We next discuss the trace of an integral operator. Let A and B be two HS
operators on L2(X,µ), with integral kernels KA,KB ∈ L2(X × X,µ × µ).
Then C = AB is given by

(6.34) Cu(x) =

∫∫
KA(x, z)KB(z, y)u(y) dµ(y) dµ(z),

and we have, by (6.17) and (6.19),

(6.35) Tr C =

∫∫
KA(x, z)KB(z, x) dµ(z) dµ(x).

Now C has an integral kernel KC ∈ L2(X × X,µ × µ):

(6.36) KC(x, y) =

∫
KA(x, z)KB(z, y) dµ(z),

which strongly suggests the trace formula

(6.37) Tr C =

∫
KC(x, x) dµ(x).

The only sticky point is that the diagonal {(x, x) : x ∈ X} may have
measure 0 in X×X, so one needs to define KC(x, y) carefully. The formula
(6.35) implies, via Fubini’s theorem, that

KC(x, x) =

∫
KA(x, z)KB(z, x) dµ(z)

exists for µ-almost every x ∈ X, and for this function, the identity (6.37)
holds. In many cases of interest, X is a locally compact space and KC(x, y)
is continuous, and then passing from (6.35) to (6.37) is straightforward.

We next give a treatment of the determinant of I + A, for trace class A.
This is particularly useful for results on trace formulas and the scattering
phase, in Chapter 9. Our treatment largely follows [Si]; another approach
can be found in Chapter 11 of [DS].

With ΛjC the operator induced by C on ΛjH, we define

(6.38) det (I + C) = 1 +
∑

j≥1

Tr ΛjC.

It is not hard to show that if Cj = ΛjC and Dj = (C∗
j Cj)

1/2, then Dj =
Λj(C∗C)1/2, so

(6.39) ‖Cj‖TR = Tr Dj =
∑

i1<···<ij

µi1 · · ·µij
,

where µi, i ≥ 1, are the positive eigenvalues of the compact, positive oper-
ator (C∗C)1/2, counted with multiplicity. In particular,

(6.40) ‖Cj‖TR ≤
1

j!
‖C‖j

TR,
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so (6.38) is absolutely convergent for any C ∈ TR. Note that in the finite-
dimensional case, (6.38) is simply the well-known expansion of the char-
acteristic polynomial. Replacing C by zC, z ∈ C, we obtain an entire
holomorphic function of z:

(6.41) det (I + zC) = 1 +
∑

j≥1

zj Tr ΛjC.

This replacement causes Dj to be replaced by |z|jDj , and (6.39) implies

(6.42) |det (I + zC)| ≤ det (I + |z|D) =
∏

i≥1

(1 + µi|z|),

the latter identity following by diagonalization of the compact, self-adjoint
operator D. Note that since 1 + r ≤ er, for r ≥ 0,

(6.43)
∏

i≥ℓ

(1 + µi|z|) ≤ eκℓ|z|, κℓ =
∑

i≥ℓ

µi.

Taking ℓ = 1, we have

(6.44) |det (I + zC)| ≤ e|z|‖C‖TR .

Also,

(6.45) |det (I + zC)| ≤
{ℓ−1∏

i=1

(1 + µi|z|)
}

eκℓ|z|, ∀ ℓ.

Hence, for any C ∈ TR,

(6.46) |det (I + zC)| ≤ Cεe
ε|z|, ∀ ε > 0.

We next establish the continuous dependence of the determinant.

Proposition 6.14. We have a continuous map F :TR → C, given by

F (A) = det (I + A).

Proof. For fixed C,D ∈ TR, g(z) = F (C + zD) is holomorphic, as one
sees from (6.40) and (6.41). Now consider

(6.47) h(z) = F
(1

2
(A + B) + z(A − B)

)
.

Then

(6.48)

|F (A) − F (B)| =
∣∣∣h

(1

2

)
− h

(
−

1

2

)∣∣∣ ≤ sup
{
|h′(t)| : −

1

2
≤ t ≤

1

2

}

≤ R−1 sup
|z|≤R+1/2

|h(z)|.

In turn, we can estimate |h(z)| using (6.45). If we take R = ‖A − B‖−1
TR,

we get

(6.49) |F (A) − F (B)| ≤ ‖A − B‖TR exp
{
‖A‖TR + ‖B‖TR + 1

}
,
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which proves the proposition.

One use of Proposition 6.14 is as a tool to prove the following.

Proposition 6.15. For any A,B ∈ TR,

(6.50) det
(
(I + A)(I + B)

)
= det (I + A) · det (I + B).

Proof. By Proposition 6.14, it suffices to prove (6.50) when A and B are
finite rank operators, in which case it is elementary.

The following is an important consequence of (6.50).

Proposition 6.16. Given A ∈ TR, we have

(6.51) I + A invertible ⇐⇒ det (I + A) 6= 0.

Proof. If I + A is invertible, the inverse has the form

(6.52) (I + A)−1 = I + B, B = −A(I + A)−1 ∈ TR.

Hence (6.50) implies det(I + A) det(I + B) = 1, so det(I + A) 6= 0.
For the converse, assume I +A is not invertible, so −1 ∈ Spec (A). Since

A is compact, we can consider the associated spectral projection P of H
onto the generalized (−1)-eigenspace of A. Since (PA)(I − P )A = 0, we
have

(6.53) det (I + A) = det (I + AP ) · det (I + A(I − P )).

It is elementary that det(I + AP ) = 0, so the proposition is proved.

As another application of (6.50), we can use the identity

(6.54) I + A + sB = (I + A)
(
I + s(I + A)−1B

)

to show that

(6.55)
d

ds
det

(
I + A(s)

)
= det

(
I + A(s)

)
· Tr

(
(I + A(s))−1A′(s)

)
,

when A(s) is a differentiable function of s with values in TR.

Exercises

1. If A is a Hilbert-Schmidt operator, show that

‖A‖ ≤ ‖A‖HS,

where the left side denotes the operator norm. (Hint: Pick unit u1 such that
‖Au1‖ ≥ ‖A‖ − ε, and make that part of an orthonormal basis.)
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2. Suppose K ∈ L2(X × X, µ × µ) satisfies K(x, y) = K(y, x). Show that

K(x, y) =
X

cj uj(x) uj(y)

with {uj} an orthonormal set in L2(X, µ), cj ∈ R, and
P

c2
j < ∞.

(Hint: Apply the spectral theorem for compact, self-adjoint operators.)
3. Define T : L2(I) → L2(I), I = [0, 1], by

Tf(x) =

Z x

0

f(y) dy.

Show that T has range R(T ) ⊂ {u ∈ C(I) : u(0) = 0}. Show that T is
compact, that T has no eigenvectors, and that σ(T ) = {0}. Also, show that
T is HS, but not trace class.

4. Let K be a closed bounded subset of a Banach space B. Suppose Tj are
compact operators on B and Tjx → x for each x ∈ B. Show that K is
compact if and only if Tj → I uniformly on K.

5. Prove the following result, also known as part of Ascoli’s theorem. If X is a
compact metric space, Bj are Banach spaces, and K : B1 → B2 is a compact
operator, then κf(x) = K(f(x)) defines a compact map κ : Cα(X, B1) →
C(X, B2), for any α > 0.

6. Let B be a bounded operator on a Hilbert space H, and let A be trace class.
Show that

Tr(AB) = Tr(BA).

(Hint: Write A = A1A2 with Aj ∈ HS.)
7. Given a Hilbert space H, define ΛjH as a Hilbert space and justify (6.39).

Also, check the finite rank case of (6.50).
8. Assume {uj : j ≥ 1} is an orthonormal basis of the Hilbert space H, and let

Pn denote the orthogonal projection of H onto the span of {u1, . . . , un}. Show
that if A ∈ TR, then PnAPn → A in TR-norm. (This is used implicitly in the
proof of Proposition 6.15.)

7. Fredholm operators

Again in this section we restrict attention to operators on Banach spaces.
An operator T ∈ L(V,W ) is said to be Fredholm provided

(7.1) Ker T is finite-dimensional

and

(7.2) T (V ) is closed in W, of finite codimension,

that is, W/T (V ) is finite-dimensional. We say T belongs to Fred(V,W ).
We define the index of T to be

(7.3) Ind T = dim Ker T − dim W/T (V ),
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the last term also denoted Codim T (V ). Note the isomorphism
(
W/T (V )

)′
≈ T (V )⊥. By (5.19), T (V )⊥ = Ker T ′. Consequently,

(7.4) Ind T = dim Ker T − dim Ker T ′.

Furthermore, using Proposition 5.7, and noting that

(Ker T )′ ≈ V ′/(Ker T )⊥ = V ′/T ′(W ′),

we deduce that if T is Fredholm, T ′ ∈ L(W ′, V ′) is also Fredholm, and

(7.5) Ind T ′ = − Ind T.

The following is a useful characterization of Fredholm operators.

Proposition 7.1. Let T ∈ L(V,W ). Then T is Fredholm if and only if
there exist Sj ∈ L(W,V ) such that

(7.6) S1T = I + K1

and

(7.7) TS2 = I + K2,

with K1 and K2 compact.

Proof. The identity (7.6) implies Ker T ⊂ Ker(I + K1), which is finite-
dimensional. Also, by Proposition 6.7, (7.6) implies T has closed range.
On the other hand, (7.7) implies T (V ) contains the range of I +K2, which
has finite codimension in light of the spectral theory of K2 derived in the
last section. The converse result, that T ∈ Fred(V,W ) has such “Fredholm
inverses” Sj , is easy.

Note that, by virtue of the identity

(7.8) S1(I + K2) = S1TS2 = (I + K1)S2,

we see that whenever (7.6) and (7.7) hold, S1 and S2 must differ by a
compact operator. Thus we could take S1 = S2.

The following result is an immediate consequence of the characterization
of the space Fred(V,W ) by (7.6)–(7.7).

Corollary 7.2. If T ∈ Fred(V,W ) and K : V → W is compact, then
T + K ∈ Fred(V,W ). If also T2 ∈ Fred(W,X), then T2T ∈ Fred(V,X).

Proposition 7.1 also makes it natural to consider the quotient space
Q(V ) = L(V )/K(V ). Recall that K(V ) is a closed, two-sided ideal of
L(V ). Thus the quotient is a Banach space, and in fact a Banach algebra.
It is called the Calkin algebra. One has the natural algebra homomorphism
π : L(V ) → Q(V ), and a consequence of Proposition 7.1 is that T ∈ L(V )
is Fredholm if and only if π(T ) is invertible in Q(V ). For general T ∈
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Fred(V,W ), the operators S1T and TS2 in (7.6) and (7.7) project to the
identity in Q(V ) and Q(W ), respectively. Now the argument made in §5
that the set of invertible elements of L(V ) is open, via Proposition 5.8,
applies equally well when L(V ) is replaced by any Banach algebra with
unit. Applying it to the Calkin algebra, we have the following:

Proposition 7.3. Fred(V,W ) is open in L(V,W ).

We now establish a fundamental result about the index of Fredholm
operators.

Proposition 7.4. The index map

(7.9) Ind : Fred(V,W ) −→ Z

defined by (7.3) is constant on each connected component of Fred(V,W ).

Proof. Let T ∈ Fred(V,W ). It suffices to show that if S ∈ L(V,W ) and
if ‖T − S‖ is small enough, then Ind S = Ind T . We can pick a closed
subspace V1 ⊂ V , complementary to Ker T and a (finite-dimensional)
W0 ⊂ W , complementary to T (V ), so that

(7.10) V = V1 ⊕ Ker T, W = T (V ) ⊕ W0.

Given S ∈ L(V,W ), define

(7.11) τS : V1 ⊕ W0 → W, τS(v, w) = Sv + w.

The map τT is an isomorphism of Banach spaces. Thus ‖T − S‖ small
implies τS is an isomorphism of V1 ⊕W0 onto W . We restrict attention to
such S, lying in the same component of Fred(V,W ) as T .

Note that τS(V1) is closed in W , of codimension equal to dim W0; now
τS(V1) = S(V1), so we have the semicontinuity property

(7.12) Codim S(V ) ≤ Codim T (V ).

We also see that Ker S ∩ V1 = 0. Thus we can write

V = Ker S ⊕ Z ⊕ V1,

for a finite-dimensional Z ⊂ V. S is injective on Z ⊕ V1, taking it to
S(V ) = S(Z) ⊕ S(V1), closed in W , of finite codimension. It follows that

(7.13) Codim S(V ) = Codim T (V ) − dim S(Z),

while

(7.14) dim Ker S + dim Z = dim Ker T.

Since S(Z) and Z have the same dimension, this gives the desired identity,
namely Ind S = Ind T .
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Corollary 7.5. If T ∈ Fred(V,W ) and K ∈ K(V,W ), then T + K and T
have the same index.

Proof. For s ∈ [0, 1], T + sK ∈ Fred(V,W ).

The next result rounds out a useful collection of tools in the study of
index theory.

Proposition 7.6. If T ∈ Fred(V,W ) and S ∈ Fred(W,X), then

(7.15) Ind ST = Ind S + Ind T.

Proof. Consider the following family of operators in L(V ⊕ W,W ⊕ X):

(7.16)

(
I 0
0 S

)(
cos t sin t
− sin t cos t

) (
T 0
0 I

)
,

the middle factor belonging to L(W⊕W ). For each t ∈ R, this is Fredholm.
For t = 0, it is

(
T 0
0 S

)
,

of index Ind T+ Ind S, while for t = −π/2, it is
(

0 −I
ST 0

)
,

of index Ind ST . The identity of these two quantities now follows from
Proposition 7.4.

Exercises

Exercises 1–4 may be compared to Exercises 3–7 in Chapter 4, §3. Let H
denote the subspace of L2(S1) that is the range of the projection P :

Pf(θ) =
∞

X

n=0

f̂(n)einθ.

Given ϕ ∈ C(S1), define the “Toeplitz operator” Tϕ : H → H by Tϕu =
P (ϕu). Clearly, ‖Tϕ‖ ≤ ‖ϕ‖sup.

1. By explicit calculation, for ϕ(θ) = Ek(θ) = eikθ, show that

TEk
TEℓ

− TEkEℓ
is compact on H.

2. Show that, for any ϕ, ψ ∈ C(S1), TϕTψ − Tϕψ is compact on H. (Hint:
Approximate ϕ and ψ by linear combinations of exponentials.)

3. Show that if ϕ ∈ C(S1) is nowhere vanishing, then Tϕ : H → H is Fredholm.
(Hint: Show that a Fredholm inverse is given by Tψ, ψ(θ) = ϕ(θ)−1.)
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4. A nowhere-vanishing ϕ ∈ C(S1) is said to have degree k ∈ Z if ϕ is homotopic
to Ek(θ) = eikθ, through continuous maps of S1 to C \ 0. Show that this
implies

Index Tϕ = Index TEk
.

Compute this index by explicitly describing Ker TEk
and Ker T ∗

Ek
. Show that

the calculation can be reduced to the case k = 1.

8. Unbounded operators

Here we consider unbounded linear operators on Banach spaces. Such an
operator T between Banach spaces V and W will not be defined on all of
V , though for simplicity we write T : V → W . The domain of T , denoted
D(T ), will be some linear subspace of T . Generalizing (5.17), we consider
the graph of T :

(8.1) GT = {(v, Tv) ∈ V ⊕ W : v ∈ D(T )}.

Then GT is a linear subspace of V ⊕ W ; if GT is closed in V ⊕ W , we say
T is a closed operator. By the closed-graph theorem, if T is closed and
D(T ) = V , then T is bounded. If T is a linear operator, the closure of its
graph GT may or may not be the graph of an operator. If it is, we write
GT = GT and call T the closure of T .

For a linear operator T : V → W with dense domain D(T ), we define
the adjoint T ′ : W ′ → V ′ as follows. There is the identity

(8.2) 〈Tv,w′〉 = 〈v, T ′w′〉,

for v ∈ D(T ), w′ ∈ D(T ′) ⊂ W ′. We define D(T ′) to be the set of w′ ∈ W ′

such that the map v 7→ 〈Tv,w′〉 extends from D(T ) → C to a continu-
ous, linear functional V → C. For such w′, the identity (8.2) uniquely
determines T ′w′ ∈ V ′.

It is useful to note the following relation between the graphs of T and
T ′. The graph GT has annihilator G⊥

T ⊂ V ′ ⊕ W ′ given by

(8.3) G⊥
T = {(v′, w′) ∈ V ′ ⊕ W ′ : 〈Tv,w′〉 = −〈v, v′〉 for all v ∈ D(T )}.

Comparing the definition of T ′, we see that, with

J : V ′ ⊕ W ′ → W ′ ⊕ V ′, J (v′, w′) = (w′,−v′),

we have

(8.4) GT ′ = J G⊥
T .

We remark that D(T ) is dense if and only if the right side of (8.4) is the
graph of a (single-valued) transformation. Using X⊥⊥ = X for a linear
subspace of a reflexive Banach space, we have the following.
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Proposition 8.1. A densely defined linear operator T : V → W between
reflexive Banach spaces has a closure T if and only if T ′ is densely defined.
T ′ is always closed, and T ′′ = T .

If H0 and H1 are Hilbert spaces and T : H0 → H1, with dense domain
D(T ), we define the adjoint T ∗ : H1 → H0 by replacing the dual pairings
in (8.2) by the Hilbert space inner products. Parallel to (8.4), we have

(8.5) GT∗ = J G⊥
T ,

where J : H0 ⊕ H1 → H1 ⊕ H0, J (v, w) = (w,−v), and one takes Hilbert
space orthogonal complements. Again, T has a closure if and only if T ∗ is
densely defined, T ∗ is always closed, and T ∗∗ = T . Note that, generally,
the range R(T ) of T satisfies

(8.6) R(T )⊥ = Ker T ∗.

A densely defined operator T : H → H on a Hilbert space is said to
be symmetric provided T ∗ is an extension of T (i.e., D(T ∗) ⊃ D(T ) and
T = T ∗ on D(T )). An equivalent condition is that D(T ) is dense and

(8.7) (Tu, v) = (u, Tv), for u, v ∈ D(T ).

If T ∗ = T (so D(T ∗) = D(T )), we say T is self-adjoint. In light of (8.5), T
is self-adjoint if and only if D(T ) is dense and

(8.8) G⊥
T = J GT .

Note that if T is symmetric and D(T ) = H, then T ∗ cannot be a proper
extension of T , so we must have T ∗ = T ; hence T is closed. By the closed
graph theorem, T must be bounded in this case; this result is called the
Hellinger-Toeplitz theorem.

For a bounded operator defined on all of H, being symmetric is equivalent
to being self-adjoint; in the case of unbounded operators, self-adjointness
is a stronger and much more useful property. We discuss some results
on self-adjointness. In preparation for this, it will be useful to note that
if T : H0 → H1 has range R(T ), and if T is injective on D(T ), then
T−1 : H1 → H0 is defined, with domain D(T−1) = R(T ), and we have

(8.9) GT−1 = J G−T .

Since generally R(T )⊥ = Ker T ∗, the following is an immediate conse-
quence.

Proposition 8.2. If T is self-adjoint on H and injective, then T−1, with
dense domain R(T ), is self-adjoint.

From this easy result we obtain the following more substantial conclusion.

Proposition 8.3. If T : H → H is symmetric and R(T ) = H, then T is
self-adjoint.
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Proof. The identity (8.6) implies Ker T = 0 if R(T ) = H, so T−1 is
defined. Writing f, g ∈ H as f = Tu, g = Tv, and using

(T−1f, g) = (T−1Tu, Tv) = (u, Tv) = (Tu, v) = (f, T−1g),

we see that T−1 is symmetric. Since D(T−1) = H, the Hellinger-Toeplitz
theorem implies that T−1 is bounded and self-adjoint, so Proposition 8.2
applies to T−1.

Whenever T : H0 → H1 is a closed, densely defined operator between
Hilbert spaces, the spaces GT and JGT∗ provide an orthogonal decompo-
sition of H0 ⊕ H1; that is,

(8.10) H0 ⊕ H1 = {(v, Tv) + (−T ∗u, u) : v ∈ D(T ), u ∈ D(T ∗)},

where the terms in the sum are mutually orthogonal. Using this observa-
tion, we will be able to prove the following important result, due to J. von
Neumann.

Proposition 8.4. If T : H0 → H1 is closed and densely defined, then T ∗T
is self-adjoint, and I + T ∗T has a bounded inverse.

Proof. Pick f ∈ H0. Applying the decomposition (8.10) to (f, 0) ∈ H0 ⊕
H1, we obtain unique v ∈ D(T ), u ∈ D(T ∗), such that

(8.11) f = v − T ∗u, u = −Tv.

Hence

(8.12) v ∈ D(T ∗T ) and (I + T ∗T )v = f.

Consequently, I + T ∗T : D(T ∗T ) → H0 is bijective, with inverse (I +
T ∗T )−1 : H0 → H0 having range D(T ∗T ). Now, with u = (I + T ∗T )−1f
and v = (I + T ∗T )−1g, we easily compute

(8.13)

(
f, (I + T ∗T )−1g

)
=

(
(I + T ∗T )u, v

)

= (u, v) + (Tu, Tv) =
(
(I + T ∗T )−1f, g

)
,

so (I + T ∗T )−1 is a symmetric operator on H. Since its domain is H,
we have (I + T ∗T )−1 bounded and self-adjoint, and thus Proposition 8.2
finishes the proof.

If T is symmetric, note that

(8.14) ‖(T ± i)u‖2 = ‖Tu‖2 + ‖u‖2, for u ∈ D(T ).

If T is closed, it follows that the ranges R(T ± i) are closed. The following
result provides an important criterion for self-adjointness.
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Proposition 8.5. Let T : H → H be symmetric. The following three
conditions are equivalent:

T is self-adjoint,(8.15)

T is closed and Ker (T ∗ ± i) = 0,(8.16)

R(T ± i) = H.(8.17)

Proof. Assume (8.17) holds, that is, both ranges are all of H. Let u ∈
D(T ∗); we want to show that u ∈ D(T ). R(T − i) = H implies there exists
v ∈ D(T ) such that (T − i)v = (T ∗− i)u. Since D(T ) ⊂ D(T ∗), this implies
u − v ∈ D(T ∗) and (T ∗ − i)(u − v) = 0. Now the implication (8.17) ⇒
Ker(T ∗ ∓ i) = 0 is clear from (8.6), so we have u = v; hence u ∈ D(T ), as
desired. The other implications of the proposition are straightforward.

In particular, if T is self-adjoint on H, T ± i : D(T ) → H bijectively.
Hence

(8.18) U = (T − i)(T + i)−1 : H −→ H,

bijectively. By (8.14) this map preserves norms; we say U is unitary. The
association of such a unitary operator (necessarily bounded) with any self-
adjoint operator (perhaps unbounded) is J. von Neumann’s unitary trick.
Note that I − U = 2i(T + i)−1, with range equal to D(T ). We can hence
recover T from U as

(8.19) T = i(I + U)(I − U)−1,

both sides having domain D(T ).
We next give a construction of a self-adjoint operator due to K. O. Friedrichs,

which is particularly useful in PDE. One begins with the following set-up.
There are two Hilbert spaces H0 and H1, with inner products ( , )0 and
( , )1, respectively, and a continuous injection

(8.20) J : H1 −→ H0,

with dense range. We think of J as identifying H1 with a dense linear
subspace of H0; given v ∈ H1, we will often write v for Jv ∈ H0. A linear
operator A : H0 → H0 is defined by the identity

(8.21) (Au, v)0 = (u, v)1,

for all v ∈ H1, with domain

(8.22)
D(A) = {u ∈H1 ⊂ H0 : v 7→ (u, v)1 extends from H1 → C to a

continuous, conjugate-linear functional H0 → C}.

Thus the graph of A is described as

(8.23)
GA = {(u,w) ∈ H0 ⊕ H0 : u ∈ H1 and

(u, v)1 = (w, v)0 for all v ∈ H1}.
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We claim that GA is closed in H0 ⊕ H0; this comes down to establishing
the following.

Lemma 8.6. If (un, wn) ∈ GA, un → u, wn → w in H0, then u ∈ H1 and
un → u in H1.

Proof. Let umn = um − un, wmn = wm − wn. We know that (umn, v)1 =
(wmn, v)0, for each v ∈ H1. Taking v = umn gives ‖umn‖2

1 = (wmn, umn)0 →
0 as m,n → ∞. This implies that (un) is Cauchy in H1, and the rest fol-
lows.

Actually, we could have avoided writing down this last short proof, as it
will not be needed to establish our main result:

Proposition 8.7. The operator A defined above is a self-adjoint operator
on H0.

Proof. Consider the adjoint of J , J∗ : H0 → H1. This is also injective
with dense range, and the operator JJ∗ is a bounded, self-adjoint operator
on H0, that is injective with dense range. To restate (8.22), D(A) consists
of elements u = Jũ such that v 7→ (ũ, v)1 is continuous in Jv, in the H0-
norm, that is, there exists w ∈ H0 such that (ũ, v)1 = (w, Jv)0, hence
ũ = J∗w. We conclude that

(8.24) D(A) = R(JJ∗)

and, for u ∈ H0, v ∈ H1,

(8.25) (AJJ∗u, Jv)0 = (J∗u, v)1 = (u, Jv)0.

It follows that

(8.26) A = (JJ∗)−1,

and Proposition 8.2 finishes the proof.

We remark that, given a closed, densely defined operator T on H0,
one can make D(T ) = H1 a Hilbert space with inner product (u, v)1 =
(Tu, Tv)0 + (u, v)0. Thus Friedrichs’ result, Proposition 8.7, contains von
Neumann’s result, Proposition 8.4. This construction of Friedrichs is used
to good effect in Chapter 5.

We next discuss the resolvent and spectrum of a general closed, densely
defined operator T : V → V . By definition, ζ ∈ C belongs to the resolvent
set ρ(T ) if and only if ζ − T : D(T ) → V , bijectively. Then the inverse

(8.27) Rζ = (ζ − T )−1 : V −→ D(T ) ⊂ V

is called the resolvent of T ; clearly, Rζ ∈ L(V ). As in §5, the complement
of ρ(T ) is called the spectrum of T and denoted σ(T ).
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Such an operator may have an empty resolvent set. For example, the
unbounded operator on L2(R2) defined by multiplication by x1 + ix2, with
domain consisting of all u ∈ L2(R2) such that (x1 + ix2)u ∈ L2(R2), has
this property. There are also examples of unbounded operators with empty
spectrum. Note that Proposition 8.5 implies that ±i ∈ ρ(T ) whenever T
is self-adjoint. The same argument shows that any ζ ∈ C \ R belongs to
ρ(T ), hence σ(T ) is contained in R, when T is self-adjoint.

We note some relations between σ(T ) and σ(Rζ), given that ζ ∈ ρ(T ).
Clearly, 0 belongs to ρ(Rζ) if and only if D(T ) = V . Since Rζ is bounded,
we know that its spectrum is a nonempty, compact subset of C. If λ ∈
ρ(Rζ), write Sλ = (λ − Rζ)

−1. It follows easily that Sλ and Rζ commute,
and both preserve D(T ). A computation gives

(8.28)
I = (λ − Rζ)Sλ = λ(ζ − T )Sλ(ζ − T )−1 − Sλ(ζ − T )−1

= λ(ζ − λ−1 − T )Sλ(ζ − T )−1 on V,

and similarly,

(8.29)
I = λ(ζ − T )−1Sλ(ζ − T ) − (ζ − T )−1Sλ

= λSλ(ζ − T )−1(ζ − λ−1 − T ) on D(T ).

This establishes the following:

Proposition 8.8. Given ζ ∈ ρ(T ), if λ ∈ ρ(Rζ) and λ 6= 0, then ζ−λ−1 ∈
ρ(T ). Hence ρ(T ) is open in C. We have, for such λ,

(8.30) (ζ − λ−1 − T )−1 = λ(λ − Rζ)
−1(ζ − T )−1.

The second assertion follows from the fact that λ ∈ ρ(Rζ) provided
|λ| > ‖Rζ‖.

If there exists ζ ∈ ρ(T ) such that Rζ is compact, we say T has compact
resolvent. By Proposition 8.8 it follows that when T has compact resolvent,
then σ(T ) is a discrete subset of C. Every resolvent in (8.30) is compact
in this case. If T is self-adjoint on H with compact resolvent, there exists
z ∈ ρ(T ) ∩ R, and (z − T )−1 is a compact, self-adjoint operator, to which
Proposition 6.6 applies. Thus H has an orthonormal basis of eigenvectors
of T :

(8.31) vj ∈ D(T ), T vj = λjvj ,

where {λj} is a sequence of real numbers with no finite accumulation point.
Important examples of unbounded operators with compact resolvent arise
amongst differential operators; cf. Chapter 5.
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Exercises

1. Consider the following operator, which is densely defined on L2(R):

Tf(x) = f(0)e−x2

, D = C∞
0 (R).

Show that T is unbounded and also that T has no closure.

9. Semigroups

If V is a Banach space, a one-parameter semigroup of operators on V is a
set of bounded operators

(9.1) P (t) : V −→ V, t ∈ [0,∞),

satisfying

(9.2) P (s + t) = P (s)P (t),

for all s, t ∈ R
+, and

(9.3) P (0) = I.

We also require strong continuity, that is,

(9.4) tj → t =⇒ P (tj)v → P (t)v,

for each v ∈ V , the convergence being in the V -norm. A semigroup of
operators will by definition satisfy (9.1)–(9.4). If P (t) is defined for all
t ∈ R and satisfies these conditions, we say it is a one-parameter group of
operators.

A simple example is the translation group

(9.5) Tp(t) : Lp(R) −→ Lp(R), 1 ≤ p < ∞,

defined by

(9.6) Tp(t)f(x) = f(x − t).

The properties (9.1)–(9.3) are clear in this case. Note that ‖Tp(t)‖ = 1 for
each t. Also, ‖Tp(t) − Tp(t

′)‖ = 2 if t 6= t′; to see this, apply the difference
to a function f with support in an interval of length |t − t′|/2. To verify
the strong continuity (9.4), we make the following observation. As noted
in §1, the space C00(R) of compactly supported, continuous functions on
R is dense in Lp(R) for p ∈ [1,∞). Now, if f ∈ C00(R), tj → t, then
Tp(tj)f(x) = f(x − tj) have support in a fixed compact set and converge
uniformly to f(x − t), so clearly we have convergence in (9.4) in Lp-norm
for each f ∈ C00(R). The following simple but useful lemma completes the
proof of (9.4) for Tp.
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Lemma 9.1. Let Tj ∈ L(V,W ) be uniformly bounded. Let L be a dense,
linear subspace of V , and suppose

(9.7) Tjv → T0v, as j → ∞,

in the W -norm, for each v ∈ L. Then (9.7) holds for all v ∈ V .

Proof. Given v ∈ V and ε > 0, pick w ∈ L such that ‖v−w‖ < ε. Suppose
‖Tj‖ ≤ M for all j. Then

‖Tjv − T0v‖ ≤ ‖Tjv − Tjw‖ + ‖Tjw − T0w‖ + ‖T0w − T0v‖

≤ ‖Tjw − T0w‖ + 2M‖v − w‖.

Thus

lim sup
j→∞

‖Tjv − T0v‖ ≤ 2Mε,

which proves the lemma.

Many examples of semigroups appear in the main text, particularly in
Chapters 3, 6, and 9, so we will not present further examples here.

We note that a uniform bound on the norm

(9.8) ‖P (t)‖ ≤ M, for |t| ≤ 1

for some M ∈ [1,∞), holds for any strongly continuous semigroup, as a
consequence of the uniform boundedness principle. From (9.8) we deduce
that, for all t ∈ R

+,

(9.9) ‖P (t)‖ ≤ M eKt,

for some K; for a group, one would use M eK|t|, t ∈ R.
Of particular interest are unitary groups—strongly continuous groups of

operators U(t) on a Hilbert space H such that

(9.10) U(t)∗ = U(t)−1 = U(−t).

Clearly, in this case ‖U(t)‖ = 1. The translation group T2 on L2(R) is a
simple example of a unitary group.

A one-parameter semigroup P (t) of operators on V has an infinitesimal

generator A, which is an operator on V , often unbounded, defined by

(9.11) Av = lim
h→0

h−1
(
P (h)v − v

)
,

on the domain

(9.12) D(A) = {v ∈ V : lim
h→0

h−1
(
P (h)v − v

)
exists in V }.

The following provides some basic information on the generator.
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Proposition 9.2. The infinitesimal generator A of P (t) is a closed, densely
defined operator. We have

(9.13) P (t)D(A) ⊂ D(A),

for all t ∈ R
+, and

(9.14) AP (t)v = P (t)Av =
d

dt
P (t)v, for v ∈ D(A).

If (9.9) holds and Re ζ > K, then ζ belongs to the resolvent set of A, and

(9.15) (ζ − A)−1v =

∫ ∞

0

e−ζt P (t)v dt, v ∈ V.

Proof. First, if v ∈ D(A), then for t ∈ R
+,

(9.16) h−1
(
P (h)P (t)v − P (t)v

)
= P (t) h−1

(
P (h)v − v

)
,

which gives (9.13), and also (9.14), if we replace P (h)P (t) by P (t + h) in
(9.16). To show that D(A) is dense in V , let v ∈ V , and consider

vε = ε−1

∫ ε

0

P (t)v dt.

Then

h−1
(
P (h)vε − vε

)
= ε−1

[
h−1

∫ ε+h

ε

P (t)v dt − h−1

∫ h

0

P (t)v dt
]

→ ε−1
(
P (ε)v − v

)
, as h → 0,

so vε ∈ D(A) for each ε > 0. But vε → v in V as ε → 0, by (9.4), so D(A)
is dense in V .

Next we prove (9.15). Denote the right side of (9.15) by Rζ , clearly a
bounded operator on V . First we show that

(9.17) Rζ(ζ − A)v = v, for v ∈ D(A).

In fact, by (9.14) we have

Rζ(ζ − A)v =

∫ ∞

0

e−ζtP (t)(ζv − Av) dt

=

∫ ∞

0

ζe−ζtP (t)v dt −

∫ ∞

0

e−ζt d

dt
P (t)v dt,

and integrating the last term by parts gives (9.17). The same sort of
argument shows that Rζ : V → D(A), that (ζ − A)Rζ is bounded on V ,
and that

(9.18) (ζ − A)Rζv = v,

for v ∈ D(A). Since (ζ − A)Rζ is bounded on V and D(A) is dense in V ,
(9.18) holds for all v ∈ V . This proves (9.15). Finally, since the resolvent
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set of A is nonempty, and (ζ − A)−1, being continuous and everywhere
defined, is closed, so is A. The proof of the proposition is complete.

We write, symbolically,

(9.19) P (t) = etA.

In view of the following proposition, the infinitesimal generator deter-
mines the one-parameter semigroup with which it is associated uniquely.
Hence we are justified in saying “A generates P (t).”

Proposition 9.3. If P (t) and Q(t) are one-parameter semigroups with
the same infinitesimal generator, then P (t) = Q(t) for all t ∈ R

+.

Proof. Let v ∈ V and w ∈ V ′. Then, for Re ζ large enough,

(9.20)

∫ ∞

0

e−ζt〈P (t)v, w〉 dt = 〈(ζ − A)−1v, w〉

=

∫ ∞

0

e−ζt〈Q(t)v, w〉 dt.

Uniqueness for the Laplace transform of a scalar function implies 〈P (t)v, w〉
= 〈Q(t)v, w〉 for all t ∈ R

+ and for any v ∈ V and w ∈ V ′. Then the Hahn-
Banach theorem implies P (t)v = Q(t)v, as desired.

We note that if P (t) is a semigroup satisfying (9.9) and if we have a
function ϕ ∈ L1(R+, eKtdt), we can define P (ϕ) ∈ L(V ) by

(9.21) P (ϕ)v =

∫ ∞

0

ϕ(t) P (t)v dt.

In particular, this works if ϕ ∈ C∞
0 (0,∞). In such a case, it is easy to

verify that, for all v ∈ V , P (ϕ)v belongs to the domain of all powers of A
and

(9.22) AkP (ϕ)v = (−1)k

∫ ∞

0

ϕ(k)(t)P (t)v dt.

This shows that all the domains D(Ak) are dense in V , refining the proof
of denseness of D(A) in V given in Proposition 9.2.

A general characterization of generators of semigroups, due to Hille and
Yosida, is briefly discussed in the exercises. Here we mention two impor-
tant special cases, which follow from the spectral theorem, established in
Chapter 8.

Proposition 9.4. If A is self-adjoint and positive (i.e., (Au, u) ≥ 0 for
u ∈ D(A)), then −A generates a semigroup P (t) = e−tA consisting of
positive, self-adjoint operators of norm ≤ 1.
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Proposition 9.5. If A is self-adjoint, then iA generates a unitary group,
U(t) = eitA.

In both cases it is easy to show that the generator of such (semi)groups
must be of the form hypothesized. For example, if U(t) is a unitary group
and we denote by iA the generator, the identity

(9.23) h−1
(
[U(h) − I]u, v

)
= h−1

(
u, [U(−h) − I]v

)

shows that A must be symmetric. By Proposition 9.2, all ζ ∈ C \R belong
to the resolvent set of A, so by Proposition 8.5, A is self-adjoint. If A is
self-adjoint, iA is said to be skew-adjoint.

We now give a criterion for a symmetric operator to be essentially self-
adjoint, that is, to have self-adjoint closure. This is quite useful in PDE;
see Chapter 8 for some applications.

Proposition 9.6. Let A0 be a linear operator on a Hilbert space H, with
domain D, assumed dense in H. Let U(t) be a unitary group, with infini-
tesimal generator iA, so A is self-adjoint, U(t) = eitA. Suppose D ⊂ D(A)
and A0u = Au for u ∈ D, or equivalently

(9.24) lim
h→0

h−1
(
U(h)u − u

)
= A0u, for all u ∈ D.

Also suppose D is invariant under U(t):

(9.25) U(t)D ⊂ D.

Then A0 is essentially self-adjoint, with closure A. Suppose, furthermore,
that

(9.26) A0 : D −→ D.

Then Ak
0 , with domain D, is essentially self-adjoint for each positive integer

k.

Proof. It follows from Proposition 8.5 that A0 is essentially self-adjoint if
and only if the range of i + A0 and the range of i−A0 are dense in H. So
suppose v ∈ H and (for one choice of sign)

(9.27)
(
(i ± A0)u, v

)
= 0, for all u ∈ D.

Using (9.25) together with the fact that A0 = A on D, we have

(9.28)
(
(i ± A0)u,U(t)v

)
= 0, for all t ∈ R, u ∈ D.

Consequently,
∫

ρ(t)U(t)v dt is orthogonal to the range of i ± A0, for any
ρ ∈ L1(R+). Choosing ρ ∈ C∞

0 (0,∞) an approximate identity, we can
approximate v by elements of D(A), indeed of D(Ak) for all k. Thus we
can suppose in (9.27) that v ∈ D(A). Hence, taking adjoints, we have

(9.29)
(
u, (−i ± A)v

)
= 0, for all u ∈ D.
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Since D is dense in H and Ker(−i±A) = 0, this implies v = 0. This yields
the first part of the proposition. Granted (9.26), the same proof works with
A0 replaced by Ak

0 (but U(t) unaltered), so the proposition is proved.

This result has an extension to general semigroups which is of interest.

Proposition 9.7. Let P (t) be a semigroup of operators on a Banach space
B, with generator A. Let L ⊂ D(A) be a dense, linear subspace of B, and
suppose P (t)L ⊂ L for all t ≥ 0. Then A is the closure of its restriction to
L.

Proof. By Proposition 9.2, it suffices to show that (λ−A)(L) is dense in B
provided Re λ is sufficiently large, namely, Re λ > K with ‖P (t)‖ ≤ MeKt.
If w ∈ B′ annihilates this range and w 6= 0, pick u ∈ L such that 〈u,w〉 6= 0.
Now

d

dt
〈P (t)u,w〉 = 〈AP (t)u,w〉 = 〈λP (t)u,w〉

since P (t)u ∈ L. Thus 〈P (t)u,w〉 = eλt〈u,w〉. But if Re λ > K as above,
this is impossible unless 〈u,w〉 = 0. This completes the proof.

We illustrate some of the preceding results by looking at the infinitesimal
generator Ap of the group Tp given by (9.5)–(9.6). By definition, f ∈ Lp(R)
belongs to D(Ap) if and only if

(9.30) h−1
(
f(x − h) − f(x)

)

converges in Lp-norm as h → 0, to some limit. Now the limit of (9.30)
always exists in the space of distributions D′(R) and is equal to −(d/dx)u,
where d/dx is applied in the sense of distributions. In fact, we have the
following.

Proposition 9.8. For p ∈ [1,∞), the group Tp given by (9.5)–(9.8) has
infinitesimal generator Ap given by

(9.31) Apf = −
df

dx
,

for f ∈ D(Ap), with

(9.32) D(Ap) = {f ∈ Lp(R) : f ′ ∈ Lp(R)},

where f ′ = df/dx is considered a priori as a distribution.

Proof. The argument above shows that (9.31) holds, with D(Ap) con-
tained in the right side of (9.32). The reverse containment can be derived
as a consequence of the following simple result, taking L = C∞

0 (R).
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Lemma 9.9. Let P (t) be a one-parameter semigroup on B, with infinites-
imal generator A. Let L be a weak∗-dense, linear subspace of B′. Suppose
that u, v ∈ B and that

(9.33) lim
h→0

h−1〈P (h)u − u,w〉 = 〈v, w〉, ∀ w ∈ L.

Then u ∈ D(A) and Au = v.

Proof. The hypothesis (9.33) implies that 〈P (t)u,w〉 is differentiable and
that

d

dt
〈P (t)u,w〉 = 〈P (t)v, w〉, ∀ w ∈ L.

Hence 〈P (t)u−u,w〉 =
∫ t

0
〈P (s)v, w〉 ds, for all w ∈ L. The weak∗ denseness

of L implies P (t)u − u =
∫ t

0
P (s)v ds, and the convergence in the B-norm

of h−1
(
P (h)u − u

)
= h−1

∫ h

0
P (s)v ds to v as h → 0 follows.

The space (9.32) is the Sobolev space H1,p(R) studied in Chapter 13; in
case p = 2, it is the Sobolev space H1(R) introduced in Chapter 4.

Note that if we define

(9.34) A0 : C∞
0 (R) −→ C∞

0 (R), A0f = −
df

dx
,

then Proposition 9.7 applies to Tp, p ∈ [1,∞), with B = Lp(R), L =
C∞

0 (R), to show that, as a closed operator on Lp(R),

(9.35) Ap is the closure of A0, for p ∈ [1,∞).

This amounts to saying that C∞
0 (R) is dense in H1,p(R) for p ∈ [1,∞),

which can easily be verified directly.
The fact that a semigroup P (t) satisfies the operator differential equation

(9.14) is central. We now establish the following converse.

Proposition 9.10. Let A be the infinitesimal generator of a semigroup.
If a function u ∈ C

(
[0, T ),D(A)

)
∩ C1

(
[0, T ), V

)
satisfies

(9.36)
du

dt
= Au, u(0) = f,

then u(t) = etAf , for t ∈ [0, T ).

Proof. Set v(s, t) = esAu(t) ∈ C1(Q,V ), Q = [0,∞)× [0, T ). Then (9.36)
implies that (∂s − ∂t)v = esAAu(t) − esAAu(t) = 0, so u(t) = v(0, t) =
v(t, 0) = etAf .

We can thus deduce that, given g ∈ C
(
[0, T ),D(A)

)
, f ∈ D(A), the

solution u(t) to

(9.37)
∂u

∂t
= Au + g(t), u(0) = f,
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is unique and is given by

(9.38) u(t) = etAf +

∫ t

0

e(t−s)Ag(s) ds.

This is a variant of Duhamel’s principle.
We can also define a notion of a “weak solution” of (9.37) as follows.

If A generates a semigroup, then D(A′) is a dense, linear subspace of V ′.
Suppose that, for every ψ ∈ D(A′), 〈u(t), ψ〉 ∈ C1([0, T )); if f ∈ V , g ∈
C([0, T ), V ), and

(9.39)
d

dt
〈u(t), ψ〉 = 〈u(t), A′ψ〉 + 〈g(t), ψ〉, u(0) = f,

we say u(t) is a weak solution to (9.37).

Proposition 9.11. Given f ∈ V and g ∈ C
(
[0, T ), V

)
, (9.37) has a unique

weak solution, given by (9.38).

Proof. First, consider (9.38), with f ∈ V , g ∈ C(J, V ), and J = [0, T ).
Let fj → f in V and gj → g in C(J, V ), where fj ∈ D(A) and gj ∈
C1(J, V ) ∩ C(J,D(A)). Then, by Proposition 9.10,

(9.40) uj(t) = etAfj +

∫ t

0

e(t−s)Agj(s) ds

is the unique solution in C1(J, V ) ∩ C(J,D(A)) to

∂uj

∂t
= Auj + gj , uj(0) = fj .

Thus, for any ψ ∈ D(A′), uj solves (9.39), with g and f replaced by gj and
fj , respectively, and hence

(9.41) 〈uj(t), ψ〉 = 〈fj , ψ〉 +

∫ t

0

〈uj(s), A
′ψ〉 ds +

∫ t

0

〈gj(s), ψ〉 ds.

Passing to the limit, we have

(9.42) 〈u(t), ψ〉 = 〈f, ψ〉 +

∫ t

0

〈u(s), A′ψ〉 ds +

∫ t

0

〈g(s), ψ〉 ds,

which implies (9.39).
For the converse, suppose that u ∈ C(J, V ) is a weak solution, sat-

isfying (9.39), or equivalently, that (9.42) holds. Set ϕ(t) = j for 0 ≤
t ≤ 1/j, 0 elsewhere, and consider P (ϕj), defined by (9.21). We see
that 〈Av, P (ϕj)

′ψ〉 = 〈AP (ϕj)v, ψ〉. Hence P (ϕj)
′ : V ′ → D(A′), and

also 〈v,A′P (ϕj)
′ψ〉 = 〈AP (ϕj)v, ψ〉 for v ∈ D(A), ψ ∈ V ′. If you re-

place ψ by P (ϕj)
′ψ in (9.41), then uj(t) = P (ϕj)u(t) satisfies (9.41), with

fj = P (ϕj)f , gj(t) = P (ϕj)g(t); hence uj ∈ C1(J, V )∩C(J,D(A)) is given
by (9.40), and passing to the limit gives (9.38) for u.
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We close this section with a brief discussion of when we can deduce that,
given a generator A of a semigroup and another operator B, then A + B
also generates a semigroup. There are a number of results on this, to the
effect that A+B works if B is “small” in some sense, compared to A. These
results are part of the “perturbation theory” of semigroups. The following
simple case is useful.

Proposition 9.12. If A generates a semigroup etA on V and B is bounded
on V , then A + B also generates a semigroup.

Proof. The idea is to solve the equation

(9.43)
∂u

∂t
= Au + Bu, u(0) = f,

by solving the integral equation

(9.44) u(t) = etAf +

∫ t

0

e(t−s)ABu(s) ds.

In other words, we want to solve

(9.45) (I −N )u(t) = etAf ∈ C
(
[0,∞), V

)
,

where

(9.46) Nu(t) =

∫ t

0

e(t−s)ABu(s) ds, N : C(R+, V ) → C(R+, V ).

Note that

(9.47)

N ku(t) =

∫ t

0

∫ tk−1

0

· · ·

∫ t1

0

e(t−tk−1)ABe(tk−1−tk−2)A · · ·

· · ·Be(t1−t0)ABu(t0) dt0 · · · dtk−1.

Hence, if etA satisfies the estimate (9.9),

(9.48) sup
0≤t≤T

‖N ku(t)‖ ≤
(
M‖B‖

)k
etK ·

(
vol ST

k

)
· sup
0≤t≤T

‖u(t)‖,

where vol ST
k is the volume of the k-simplex

ST
k = {(t0, . . . , tk−1) : 0 ≤ t0 ≤ · · · ≤ tk−1 ≤ T}.

Looking at the case A = 0, B = b (scalar) of (9.43), with solution u(t) =
etbf , we see that

(9.49) vol ST
k =

T k

k!
.
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It follows that

(9.50) Sg(t) = g(t) +

∞∑

k=1

N kg(t)

is convergent in C(R+, V ), given g(t) ∈ C(R+, V ). Now consider

(9.51) Q(t)f = etAf +

∞∑

k=1

N k
(
etAf

)
.

It is straightforward to verify that Q(t) is a strongly continuous semigroup
on V , with generator A + B.

An extension of Proposition 9.12—part of the perturbation theory of
R. Phillips—is given in the exercises. We mention another perturbation
result, due to T. Kato. A semigroup P (t) is called a contraction semigroup

on V if ‖P (t)‖ ≤ 1 for all t ≥ 0.

Proposition 9.13. If A generates a contraction semigroup on V , then
A + B generates a contraction semigroup, provided D(B) ⊃ D(A), B is
“dissipative,” and

(9.52) ‖Bf‖ ≤ ϑ‖Af‖ + C1‖f‖,

for some C1 < ∞ and ϑ < 1/2. If V is a Hilbert space, we can allow any
ϑ < 1.

To say that B is dissipative means that if u ∈ D(B) ⊂ V and u# ∈ V ′

satisfies 〈u, u#〉 = ‖u‖2, then

(9.53) Re 〈Bu, u#〉 ≤ 0.

If V is a Hilbert space with inner product ( , ), this is equivalent to

(9.54) Re (Bu, u) ≤ 0, for u ∈ D(B).

Proofs of Proposition 9.13 typically use the Hille-Yosida characterization
of which A generate a contraction semigroup. See the exercises for further
discussion.

Exercises

In Exercises 1–3, define, for I = (0, 1),

(9.55) A0 : C∞
0 (I) −→ C∞

0 (I), A0f = −
df

dx
.

1. Given f ∈ L2(I), define Ef on R to be equal to f on I and to be periodic of
period 1, and define U(t) : L2(I) → L2(I) by

(9.56) U(t)f(x) = (Ef)(x − t)|I .
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Show that U(t) is a unitary group whose generator D is a skew-adjoint ex-
tension of A0. Describe the domain of D.

2. More generally, for eiθ ∈ S1, define Ef on R to equal f on I and to satisfy

(Ef)(x + 1) = eiθf(x).

Then define Uθ(t) : L2(I) → L2(I) by (9.56), with this E. Show that Uθ(t)
is a unitary group whose generator Dθ is a skew-adjoint extension of A0.
Describe the domain of Dθ.

3. This time, define Ef on R to equal f on I and zero elsewhere. For t ≥ 0,
define P (t) : L2(I) → L2(I) by (9.56) with this E. Show that P (t) is a
strongly continuous semigroup. Show that P (t) = 0 for t ≥ 1. Show that
the infinitesimal generator B of P (t) is a closed extension of A0 which has
empty spectrum. Describe the domain of B.

4. Let P t be a strongly continuous semigroup on the Banach space X, with
infinitesimal generator A. Suppose A has compact resolvent. If K is a closed
bounded subset of X, show that K is compact if and only if P t → I uniformly
on K. (Hint: Let Tj = h−1

R h

0
P t dt, h = 1/j, and use Exercise 4 of §6.)

Exercises 5–8 deal with the case where P (t) satisfies (9.1)–(9.3) but the strong
continuity of P (t) is replaced by weak continuity, that is, convergence in (9.4)
holds in the σ(V, V ′)-topology on V . We restrict attention to the case where
V is reflexive.

5. If ϕ ∈ C∞
0 (R+), show that P (ϕ)v is well defined in V , satisfying

〈P (ϕ)v, ω〉 =

Z ∞

0

ϕ(t)〈P (ϕ)v, ω〉 dt, v ∈ V, ω ∈ V ′.

6. Show that V0 = span{P (ϕ)v : v ∈ V, ϕ ∈ C∞
0 (R+)} is dense in V . (Hint:

Suppose ω ∈ V ′ annihilates V0.)
7. Show that P (tj)P (ϕ)v = P (ϕj)v, where ϕj(τ) = ϕ(τ − tj) for τ ≥ tj , 0 for

τ < tj . Deduce that as tj → t,

P (tj)P (ϕ)v → P (t)P (ϕ)v, in V -norm,

for v ∈ V , ϕ ∈ C∞
0 (R+). (Hint: Estimate ‖P (ϕj − ϕ0)v‖, with ϕ0(τ) =

ϕ(τ − t). To do this, show that (9.9) continues to hold.)
8. Deduce that the hypotheses on P (t) in Exercises 5–7 imply the strong con-

tinuity (9.4).
(Hint: Use Lemma 9.1.)

9. If P (t) is a strongly continuous semigroup on V , then Q(t) = P (t)′, acting
on V ′, satisfies (9.1)–(9.3), with weak∗ continuity in place of (9.4). Deduce
that if V is reflexive, Q(t) is a strongly continuous semigroup on V ′. Give an
example of P (t) on a (nonreflexive) Banach space V for which P (t)′ is not

strongly continuous in t ∈ [0,∞).
10. Extend Proposition 9.12 to show that if A generates a semigroup etA on V

and if D(B) ⊃ D(A) is such that BetA is bounded for t > 0, satisfying

‖BetA‖L(V ) ≤ C0t
−α, t ∈ (0, 1],
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for some α < 1, then A + B also generates a semigroup.
(Hint: Show that (9.51) still works. Note that the integrand in the formula
(9.57) for N k(etAf) is of the form · · ·Be(t1−t0)ABet0Af.)

11. Recall that P (t) is a contraction semigroup if it satisfies (9.1)–(9.4) and
‖P (t)‖ ≤ 1 for all t ≥ 0. Show that the infinitesimal generator A of a
contraction semigroup has the following property:

(9.57) λ > 0 =⇒ λ ∈ ρ(A), and ‖(λ − A)−1‖ ≤
1

λ
.

12. The Hille-Yosida theorem states that whenever D(A) is dense in V and there
exist λj > 0 such that

(9.58) λj ր +∞, λj ∈ ρ(A), ‖(λj − A)−1‖ ≤
1

λj
,

then A generates a contraction semigroup. Try to prove this. (Hint: With
λ = λj , set Aλ = λA(λ − A)−1, which is in L(V ). Define Pλ(t) = etAλ by
the power-series expansion. Show that

(9.59) ‖Pλ(t)‖ ≤ 1,
‚

‚

‚

“

Pλ(t) − Pµ(t)
”

f
‚

‚

‚

≤ t
‚

‚

‚

(Aλ − Aµ)f
‚

‚

‚

,

and construct P (t) as the limit of Pλj
(t).)

13. If P (t) satisfies (9.9), set Q(t) = e−KtP (t), so ‖Q(t)‖ ≤ M for t ≥ 0. Show
that |‖f‖| = supt≥0 ‖Q(t)f‖ defines an equivalent norm on V , for which Q(t)
is a contraction semigroup. Then, using Exercisess 11 and 12, produce a
characterization of generators of semigroups.

14. Show that if P (t) is a contraction semigroup, its generator A is dissipative,
in the sense of (9.53).

15. Show that if D(A) is dense, if λ0 ∈ ρ(A) for some λ0 such that Re λ0 > 0,
and if A is dissipative, then A generates a contraction semigroup. (Hint:
First show that the hypotheses imply λ ∈ ρ(A) whenever Re λ > 0. Then
apply the Hille-Yosida theorem.)
Deduce Propositions 9.4 and 9.5 from this result.

16. Prove Proposition 9.13. (Hint: Show that λ ∈ ρ(A + B) for some λ > 0, and
apply Exercise 15. To get this, show that when A is dissipative and λ > 0,
λ ∈ ρ(A), then

‖A(λ − A)−1‖ ≤ κ,

where κ = 2 for a general Banach space V , while κ = 1 if V is a Hilbert
space.)

References

[Ad] R. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[Do] W. Donoghue, Distributions and Fourier Transforms, Academic Press,

New York, 1969.
[Dug] J. Dugundji, Topology, Allyn and Bacon, New York, 1966.
[DS] N. Dunford and J. Schwartz, Linear Operators, Wiley, New York, 1958.
[Hal] P. Halmos, Measure Theory, van Nostrand, New York, 1950.



66 A. Outline of Functional Analysis

[HP] E. Hille and R. Phillips, Functional Analysis and Semi-groups, Colloq.
Publ. AMS, 1957.

[K] T. Kato, Perturbation theory for Linear Operators, Springer-Verlag, New
York, 1966.
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