Remarks on Fractional Diffusion Equations

Michael Taylor

Contents

1. Introduction
2. Subordination identities
3. Fractional diffusion equations
4. The case $\beta \in(1,2]$
5. Diffusion semigroups with homogeneous generators
6. Fractional diffusion-reaction equations
7. Numerical experiments
8. Inhomogeneous fractional diffusion equations
9. Fractional diffusion-reaction equations - local existence
10. More local existence results
11. Further variants
A. Riemann-Liouville fractional integrals and Caputo fractional derivatives
B. Finite-dimensional linear fractional differential systems
C. Derivation of power series for $E_{\beta}(t)$

1. Introduction

Work on non-Gaussian probability distributions has led people to consider "fractional diffusion equations" of the following sort:

$$
\begin{equation*}
{ }^{c} \partial_{t}^{\beta} u=-(-\Delta)^{\alpha} u, \quad t \geq 0 ; \quad u(0, x)=f(x) \tag{1.1}
\end{equation*}
$$

with $\alpha, \beta \in(0,1]$, the case $\alpha=\beta=1$ being the standard diffusion equation. Here, Δ is the Laplace operator, the fractional power $(-\Delta)^{\alpha}$ is a positive selfadjoint operator, defined by the spectral theorem, and ${ }^{c} \partial_{t}^{\beta}$ is a Caputo fractional derivative (a variant of the Riemann-Liouville fractional derivative, better suited for initial-value problems):

$$
\begin{equation*}
{ }^{c} \partial_{t}^{\beta} v(t)=\frac{1}{\Gamma(1-\beta)} \int_{0}^{t}(t-s)^{-\beta} \partial_{s} v(s) d s \tag{1.2}
\end{equation*}
$$

if $\beta \in(0,1)$. There have been a number of recent papers on this topic, with emphasis on the case $\Delta=\partial_{x}^{2}$, acting on functions on the line \mathbb{R}. See, for example, [CCL], [CCL2], [MPG], and references therein.

Here we point out that in a more general context the solution operator $S_{\beta, \alpha}^{t}$ to (1.1) yields a family of probability distributions, by virtue of being positivitypreserving:

$$
\begin{equation*}
f \geq 0 \Longrightarrow S_{\beta, \alpha}^{t} f \geq 0 \tag{1.3}
\end{equation*}
$$

and having the property

$$
\begin{equation*}
\int S_{\beta, \alpha}^{t} f(x) d x=\int f(x) d x \tag{1.4}
\end{equation*}
$$

under appropriate hypotheses. This will hold, e.g., when Δ is the Laplace operator on \mathbb{R}^{n}, or on a bounded domain $\Omega \subset \mathbb{R}^{n}$, with the Neumann boundary condition. (With the Dirichlet boundary condition, (1.3) will hold, but not (1.4). In such a case one would have a diffusion with absorption.) The key behind this is the demonstration that

$$
\begin{equation*}
S_{\beta, \alpha}^{t}=\int_{0}^{\infty} \Psi_{\beta, \alpha}^{t}(s) e^{s \Delta} d s \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi_{\beta, \alpha}^{t}(s) \geq 0 \quad \text { for } \quad s, t>0, \quad \alpha, \beta \in(0,1] \tag{1.6}
\end{equation*}
$$

(and $(\alpha, \beta) \neq(1,1))$, and

$$
\begin{equation*}
\int_{0}^{\infty} \Psi_{\beta, \alpha}^{t}(s) d s=1 \tag{1.7}
\end{equation*}
$$

It will be convenient to work in the more general setting of symmetric diffusion semigroups. We also break up the analysis of positivity into two pieces. In $\S 2$ we analyze the case $\beta=1$ of (1.1), generalized to

$$
\begin{equation*}
\partial_{t} u=-L^{\alpha} u, \quad u(0)=f \tag{1.8}
\end{equation*}
$$

where L is a positive self-adjoint operator and $e^{-t L}$ a symmetric diffusion semigroup. This analysis is classical and we merely sketch the results, described in more detail in Chapter IX of $[\mathrm{Y}]$. The basic conclusion is that $e^{-t L^{\alpha}}$ is also a symmetric diffusion semigroup, for $\alpha \in(0,1)$. It will be useful to have this analysis for the next step, tackled in $\S 3$:

$$
\begin{equation*}
{ }^{c} \partial_{t}^{\beta} u=-A u, \quad u(0)=f, \tag{1.9}
\end{equation*}
$$

where $e^{-t A}$ is a symmetric diffusion semigroup and $\beta \in(0,1)$. A familiar Laplace transform analysis writes the solution operator S_{β}^{t} to (1.9) as

$$
\begin{equation*}
S_{\beta}^{t}=E_{\beta}\left(-t^{\beta} A\right), \tag{1.10}
\end{equation*}
$$

where $E_{\beta}(z)$ is a special function (the Mittag-Leffler function) and the right side of (1.10) is defined by the functional calculus for self-adjoint operators. Known Laplace transform identities involving $E_{\beta}(z)$ (cf. (3.6), (3.11)) serendipitously allow us to deduce (1.5)-(1.7) (in a more general context, with $-\Delta$ replaced by L) from the results of $\S 2$.

In $\S 4$ we consider an extension of (1.1) to $\beta \in(1,2]$. In such a case (1.5)-(1.7) fails. One still has (1.3) for $\alpha=1$ and $\Delta=\partial_{x}^{2}$ on functions on \mathbb{R} (as shown in [MPG]), but we note that such positivity fails in higher dimension.

In $\S 5$ we construct functions $\psi(\xi)$, homogeneous of degree $\alpha \in(0,2)$, such that $e^{-t \psi(D)}$, acting on functions on \mathbb{R}^{n}, satisfies (1.3), including as special cases (with $n=1$) various fractional derivatives. The probability distributions so obtained are known as α-stable distributions. We mention connections with material in [ST], and also our notes [T3].

In $\S 6$ we briefly discuss a class of fractional diffusion-reaction equations. In $\S 7$ we present the results of some numerical calculations of solutions to some linear diffusion and fractional diffusion equations and fractional diffusion-reaction equations of Fisher-Kolmogorov type, for functions $u(t, x)$ defined on $[0, \infty) \times S^{1}$.

In $\S 8$ we discuss formulas and estimates for the solution to inhomogeneous fractional diffusion equations, of the form

$$
\begin{equation*}
{ }^{c} \partial_{t}^{\beta} u=-A u+q(t), \quad u(0)=f \tag{1.11}
\end{equation*}
$$

In $\S 9$ we apply results of $\S 8$ to establish the short time existence to fractional diffusion-reaction equations of the form

$$
\begin{equation*}
{ }^{c} \partial_{t}^{\beta} u=-A u+F(u), \quad u(0)=f, \quad A=(-\Delta)^{m / 2}, \quad 0<m \leq 2 . \tag{1.12}
\end{equation*}
$$

when $\beta \in(0,1)$, the case $\beta=1$ having been discussed in $\S 6$. We consider the cases $f \in C(M)$ and $f \in L^{6}(M)$, when M is a compact n-dimensional Riemannian manifold. The latter case requires the restriction $n / 2<m \leq 2$. Also, for this result, and for the results of $\S \S 10-11$, we essentially require $F(u)$ to be a cubic polynomial in u, a situation that is popular in the study of reaction-diffusion equations.

In $\S 10$ we consider (1.12) for $f \in L^{3 q}(M)$, when

$$
\begin{equation*}
q>1 \text { and } \frac{3 n}{3 q}<m \leq 2 . \tag{1.13}
\end{equation*}
$$

In $\S 11$ we push this a bit, in the case $n=2, m=2$, and obtain local existence given $f \in L^{p}(M), p>2$.

In Appendix A we recall some basic material on Riemann-Liouville fractional integrals and the Caputo fractional derivative, used in the main body of this paper. In Appendix B we briefly discuss results on finite linear systems, of the form

$$
\begin{equation*}
{ }^{c} \partial_{t}^{\beta} u=L u, \quad u(0)=f, \tag{1.14}
\end{equation*}
$$

where

$$
\begin{equation*}
f \in V, \quad L \in \operatorname{End}(V), \quad \operatorname{dim} V<\infty . \tag{1.15}
\end{equation*}
$$

In Appendix C we provide several approaches to deriving the formula (1.10), with the power series (3.5) for $E_{\beta}(z)$.

2. Subordination identities

Let L be a positive self-adjoint operator. By the spectral theorem, one has

$$
\begin{equation*}
e^{-t L^{\alpha}}=\int_{0}^{\infty} \Phi_{t, \alpha}(s) e^{-s L} d s, \quad 0<\alpha<1, \tag{2.1}
\end{equation*}
$$

for $t>0$, where $\Phi_{t, \alpha}$ has the property

$$
\begin{equation*}
e^{-t \lambda^{\alpha}}=\int_{0}^{\infty} \Phi_{t, \alpha}(s) e^{-s \lambda} d s, \quad \lambda>0 . \tag{2.2}
\end{equation*}
$$

The fact that

$$
\begin{equation*}
(-1)^{k} \partial_{\lambda}^{k} e^{-t \lambda^{\alpha}} \geq 0 \quad \text { for } \quad \lambda, t>0, \quad k \in \mathbb{Z}^{+} \tag{2.3}
\end{equation*}
$$

implies

$$
\begin{equation*}
\Phi_{t, \alpha}(s) \geq 0, \quad \text { for } \quad s \in[0, \infty) \tag{2.4}
\end{equation*}
$$

given $t \in(0, \infty), \alpha \in(0,1)$. One also has

$$
\begin{equation*}
\int_{0}^{\infty} \Phi_{t, \alpha}(s) d s=1 \tag{2.5}
\end{equation*}
$$

This is discussed in a more general context in §IX. 11 of [Y].
We recall that the most familiar case is the case $\alpha=1 / 2$, where

$$
\begin{equation*}
\Phi_{t, 1 / 2}(s)=\frac{t}{2 \pi^{1 / 2}} e^{-t^{2} / 4 s} s^{-3 / 2} \tag{2.6}
\end{equation*}
$$

This particular subordination identity has numerous applications to analysis; cf. [T], Chapter 3, (5.22)-(5.31), and Chapter 11, (2.24), for some examples.

The positivity in (2.4) has the implication that if $e^{-s L}$ is a diffusion semigroup, so is $e^{-t L^{\alpha}}$, for each $\alpha \in(0,1)$.

We record some further useful properties of $\Phi_{t, \alpha}$. First, a change of variable gives

$$
\begin{equation*}
\Phi_{t, \alpha}(s)=t^{-1 / \alpha} \Phi_{1, \alpha}\left(t^{-1 / \alpha} s\right) . \tag{2.7}
\end{equation*}
$$

Next, up to a constant factor,

$$
\begin{equation*}
f_{\alpha}(\xi)=e^{-(i \xi)^{\alpha}} \tag{2.8}
\end{equation*}
$$

is the Fourier transform of $\Phi_{1, \alpha}$, extended by 0 on $(-\infty, 0]$. For $\alpha \in(0,1), f_{\alpha}$ is rapidly decreasing, with all derivatives, as $|\xi| \rightarrow \infty$. It follows that $\Phi_{1, \alpha}(s)$, so extended, is C^{∞} on \mathbb{R}, in particular, vanishing to all orders as $s \rightarrow 0$, as illustrated in case $\alpha=1 / 2$ by

$$
\begin{equation*}
\Phi_{1,1 / 2}(s)=\frac{1}{2 \pi^{1 / 2}} e^{-1 / 4 s} s^{-3 / 2}, \quad s>0 \tag{2.9}
\end{equation*}
$$

On the other hand, the nature of the singularity of f_{α} at $\xi=0$ implies that $\Phi_{1, \alpha}(s)$ has the following asymptotic behavior as $s \rightarrow+\infty$:

$$
\begin{equation*}
\Phi_{1, \alpha}(s) \sim \sum_{k \geq 1} \gamma_{\alpha k} s^{-k \alpha-1}, \quad s \rightarrow+\infty \tag{2.10}
\end{equation*}
$$

also illustrated by (2.9) in case $\alpha=1 / 2$.

3. Fractional diffusion equations

Let A be a positive self-adjoint operator. We analyze the solution to

$$
\begin{equation*}
{ }^{c} \partial_{t}^{\beta} u=-A u, \quad t>0 ; \quad u(0)=f \tag{3.1}
\end{equation*}
$$

given $\beta \in(0,1)$, and show that if $e^{-s A}$ is a diffusion semigroup the solution to (3.1) is also given by a diffusion, i.e., a family of positivity-preserving operators. As is standard, we use the fact that, with

$$
\begin{equation*}
\mathcal{L} u(s)=\int_{0}^{\infty} e^{-s t} u(t) d t \tag{3.2}
\end{equation*}
$$

the equation (3.1) becomes

$$
\begin{equation*}
\left(s^{\beta}+A\right) \mathcal{L} u(s)=s^{\beta-1} f . \tag{3.3}
\end{equation*}
$$

Application of Laplace inversion (cf. [MPG], Appendix A) gives

$$
\begin{equation*}
u(t)=E_{\beta}\left(-t^{\beta} A\right) f, \tag{3.4}
\end{equation*}
$$

where $E_{\beta}(z)$ is the Mittag-Leffler function

$$
\begin{equation*}
E_{\beta}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(\beta n+1)}, \tag{3.5}
\end{equation*}
$$

and the linear operator $E_{\beta}\left(-t^{\beta} A\right)$ in (3.4) is given by the standard operator calculus for self-adjoint operators. As derived in (A.37) of [MPG], one has

$$
\begin{equation*}
E_{\beta}(-s)=\int_{0}^{\infty} M_{\beta}(r) e^{-r s} d r, \quad s>0 \tag{3.6}
\end{equation*}
$$

given $\beta \in(0,1)$, where

$$
\begin{equation*}
M_{\beta}(r)=\frac{1}{2 \pi i} \int_{\gamma} e^{\zeta-r \zeta^{\beta}} \frac{d \zeta}{\zeta^{1-\beta}}, \tag{3.7}
\end{equation*}
$$

and γ can be taken as a vertical line $\{i \sigma+\varepsilon: \sigma \in \mathbb{R}\}$, with small $\varepsilon>0$. It follows that

$$
\begin{equation*}
E_{\beta}\left(-t^{\beta} A\right)=\int_{0}^{\infty} M_{\beta}(r) e^{-r t^{\beta} A} d r, \quad t>0, \quad \beta \in(0,1) . \tag{3.8}
\end{equation*}
$$

Some particular cases of $M_{\beta}(r)$, mentioned in (A.34)-(A.35) of [MPG], are

$$
\begin{equation*}
M_{1 / 2}(r)=\pi^{-1 / 2} e^{-r^{2} / 4}, \quad M_{1 / 3}(r)=3^{2 / 3} \operatorname{Ai}\left(3^{-1 / 3} r\right) \tag{3.9}
\end{equation*}
$$

These examples illustrate the following important result.

Proposition 3.1. Given $0<\beta<1, r \geq 0$, we have

$$
\begin{equation*}
M_{\beta}(r) \geq 0 . \tag{3.10}
\end{equation*}
$$

Proof. This can be deduced from the following identity, due to $[\mathrm{P}]$, and noted in (A.41) of [MPG]:

$$
\begin{equation*}
\beta \int_{0}^{\infty} r^{-\beta-1} M_{\beta}\left(r^{-\beta}\right) e^{-r s} d r=e^{-s^{\beta}}, \tag{3.11}
\end{equation*}
$$

given $\beta \in(0,1)$. Comparison with (2.2) gives

$$
\begin{equation*}
\beta r^{-\beta-1} M_{\beta}\left(r^{-\beta}\right)=\Phi_{1, \beta}(r) \tag{3.12}
\end{equation*}
$$

Thus the positivity (3.10) follows from (2.4)
We are now able to prove the positivity assertion made in the introduction. We merely plug (2.1) into (3.8) to obtain (1.5)-(1.7).

4. The case $\beta \in(1,2]$

Work in [MPG] also considered (1.1) for $\beta \in(1,2]$. Here the Caputo fractional derivative ${ }^{c} \partial_{t}^{\beta}$ is given by

$$
{ }^{c} \partial_{t}^{\beta} v(t)=\frac{1}{\Gamma(2-\beta)} \int_{0}^{t}(t-s)^{-\beta+1} \partial_{s}^{2} v(s) d s, \quad 1<\beta<2 .
$$

One continues to get (3.4), i.e.,

$$
\begin{equation*}
u(t)=S_{\beta, \alpha}^{t} f=E_{\beta}\left(-t^{\beta} A\right) f, \quad A=(-\Delta)^{\alpha} . \tag{4.1}
\end{equation*}
$$

One has in particular

$$
\begin{equation*}
E_{2}(-s)=\cos s^{1 / 2} \tag{4.2}
\end{equation*}
$$

and hence

$$
\begin{equation*}
S_{2, \alpha}^{t}=\cos t(-\Delta)^{\alpha / 2} \tag{4.3}
\end{equation*}
$$

the solution operator to the Cauchy problem

$$
\begin{equation*}
\left(\partial_{t}^{2}+(-\Delta)^{\alpha}\right) u=0, \quad u(0)=f, \partial_{t} u(0)=0 . \tag{4.4}
\end{equation*}
$$

For $\alpha=1$ one gets the wave equation:

$$
\begin{equation*}
\left(\partial_{t}^{2}-\Delta\right) u=0, \quad u(0)=f, \partial_{t} u(0)=0 \tag{4.5}
\end{equation*}
$$

If $A=-\partial_{x}^{2}$, acting on functions on the line, then, as shown in [MPG], one has a diffusion. In fact, by (4.6) of [MPG], for $\beta<2$,

$$
\begin{equation*}
E_{\beta}\left(t^{\beta} \partial_{x}^{2}\right) \delta(x)=\frac{1}{2 t^{1 / 2}} M_{\beta / 2}\left(t^{-\beta / 2}|x|\right), \quad x \in \mathbb{R} \tag{4.6}
\end{equation*}
$$

for $t>0$. For $\beta \in(1,2)$ we have $\beta / 2 \in(1 / 2,1)$, and Proposition 3.1 yields positivity of (4.6). As for the endpoint case, $\beta=2$, one has

$$
\begin{equation*}
\left(\cos t \sqrt{-\partial_{x}^{2}}\right) \delta(x)=\frac{1}{2}[\delta(x+t)+\delta(x-t)], \quad x \in \mathbb{R} \tag{4.7}
\end{equation*}
$$

Well known formulas for $\cos t \sqrt{-\Delta} \delta(x)$ with $x \in \mathbb{R}^{n}$ (cf. [T], Chapter 3, §5) involve distributions that are not positive measures. Hence positivity fails for $S_{2,1}^{t}$ on functions on \mathbb{R}^{n} with $n \geq 2$. It follows by continuity that positivity fails for $S_{\beta, 1}^{t}$ for β close to 2 . One might investigate in more detail just how $S_{\beta, \alpha}^{t}$ behaves on functions on \mathbb{R}^{n} for $n \geq 2, \beta \in(1,2)$.

5. Diffusion semigroups with homogeneous generators

Here we consider semigroups of the form $e^{-t \psi(D)}$, where $\psi(D)$ acts on functions on \mathbb{R}^{n} via Fourier multiplication by $\psi(\xi)$. We construct functions homogeneous of degree $\alpha \in(0,2)$ for which $e^{-t \psi(D)}$ is positivity preserving and furthermore satisfies

$$
\begin{equation*}
0 \leq f \leq 1 \Longrightarrow 0 \leq e^{-t \psi(D)} f \leq 1, \quad \forall t>0 \tag{5.1}
\end{equation*}
$$

Of course

$$
\begin{equation*}
\psi(\xi)=|\xi|^{\alpha}, \quad 0 \leq \alpha \leq 2 \tag{5.2}
\end{equation*}
$$

works, by the results of $\S 2$. We obtain further cases by specializing the LevyKhinchin formula (cf. [J], §3.7). In this way we obtain the following such homogeneous generators:

$$
\begin{array}{ll}
\Phi_{\alpha, g}(\xi)=-\int_{\mathbb{R}^{n}}\left(e^{i y \cdot \xi}-1\right) g(y)|y|^{-n-\alpha} d y, & 0<\alpha<1, \\
\Psi_{\alpha, g}(\xi)=-\int_{\mathbb{R}^{n}}\left(e^{i y \cdot \xi}-1-i y \cdot \xi\right) g(y)|y|^{-n-\alpha} d y, & 1<\alpha<2 . \tag{5.3}
\end{array}
$$

The function g is assumed to be positive, bounded, and homogeneous of degree 0 , i.e.,

$$
\begin{equation*}
g \geq 0, \quad g \in L^{\infty}\left(\mathbb{R}^{n}\right), \quad g(r y)=g(y), \quad \forall r>0 \tag{5.4}
\end{equation*}
$$

It is easy to verify that both integrals in (5.3) are absolutely convergent, and, for $r>0$,

$$
\begin{array}{ll}
\Phi_{\alpha, g}(r \xi)=r^{\alpha} \Phi_{\alpha, g}(\xi), & 0<\alpha<1, \\
\Psi_{\alpha, g}(r \xi)=r^{\alpha} \Psi_{\alpha, g}(\xi), & 1<\alpha<2 . \tag{5.5}
\end{array}
$$

When $g \equiv 1$ we obtain a positive multiple of (5.2).
We now specialize to $n=1$ and $g=\chi_{\mathbb{R}^{+}}$, so we look at

$$
\begin{array}{ll}
\varphi_{\alpha}(\xi)=-\int_{0}^{\infty}\left(e^{i y \xi}-1\right) y^{-1-\alpha} d y, & 0<\alpha<1 \\
\psi_{\alpha}(\xi)=-\int_{0}^{\infty}\left(e^{i y \xi}-1-i y \xi\right) y^{-1-\alpha} d y, & 1<\alpha<2 \tag{5.6}
\end{array}
$$

Clearly φ_{α} and ψ_{α} are holomorphic in $\{\xi \in \mathbb{C}: \operatorname{Im} \xi>0\}$, and homogeneous of degree α in ξ. Also, for $\eta>0$,

$$
\begin{array}{ll}
\varphi_{\alpha}(i \eta)=-\int_{0}^{\infty}\left(e^{-y \eta}-1\right) y^{-1-\alpha} d y>0, & 0<\alpha<1 \tag{5.7}\\
\psi_{\alpha}(i \eta)=-\int_{0}^{\infty}\left(e^{-y \eta}-1+y \eta\right) y^{-1-\alpha} d y<0, & 1<\alpha<2
\end{array}
$$

since, for $r>0,1-r<e^{-r}<1$. It follows that $\varphi_{\alpha}(\xi)$ and $\psi_{\alpha}(\xi)$ are positive multiples of

$$
\begin{array}{ll}
\varphi_{\alpha}^{\#}(\xi)=(-i \xi)^{\alpha}, & 0<\alpha<1 \\
\psi_{\alpha}^{\#}(\xi)=-(-i \xi)^{\alpha}, & 1<\alpha<2 \tag{5.8}
\end{array}
$$

restrictions to \mathbb{R} of functions holomorphic on $\{\xi \in \mathbb{C}: \operatorname{Im} \xi>0\}$. Taking instead $g=\chi_{\mathbb{R}^{-}}$, we obtain positive multiples of

$$
\begin{array}{cc}
\varphi_{\alpha}^{b}(\xi)=(i \xi)^{\alpha}, \quad 0<\alpha<1 \tag{5.9}\\
\psi_{\alpha}^{b}(\xi)=-(i \xi)^{\alpha}, \quad 1<\alpha<2
\end{array}
$$

restrictions to \mathbb{R} of functions holomorphic on $\{\xi \in \mathbb{C}: \operatorname{Im} \xi<0\}$, satisfying

$$
\begin{equation*}
\varphi_{\alpha}^{b}(-i \eta)>0, \quad \psi_{\alpha}^{b}(-i \eta)<0, \quad \forall \eta>0 \tag{5.10}
\end{equation*}
$$

The functions in (5.8) and (5.9) are well known examples of homogeneous functions $\psi(\xi)$ for which $e^{-t \psi(D)}$ satisfies (5.1). The associated operators $\psi(D)$ are fractional derivatives.

It is also useful to observe the explicit formulas

$$
\begin{equation*}
e^{-t \varphi_{\alpha}^{\#}(\xi)}=e^{-t(\cos \pi \alpha / 2)|\xi|^{\alpha}}\left[\cos \left(t\left(\sin \frac{\pi \alpha}{2}\right)|\xi|^{\alpha}\right)+i \sigma(\xi) \sin \left(t\left(\sin \frac{\pi \alpha}{2}\right)|\xi|^{\alpha}\right)\right] . \tag{5.11}
\end{equation*}
$$

for $t>0,0<\alpha<1$, where

$$
\begin{equation*}
\sigma(\xi)=\operatorname{sgn} \xi, \tag{5.12}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{-t \psi_{\alpha}^{\#}(\xi)}=e^{t(\cos \pi \alpha / 2)|\xi|^{\alpha}}\left[\cos \left(t\left(\sin \frac{\pi \alpha}{2}\right)|\xi|^{\alpha}\right)-i \sigma(\xi) \sin \left(t\left(\sin \frac{\pi \alpha}{2}\right)|\xi|^{\alpha}\right)\right] \tag{5.13}
\end{equation*}
$$

fior $t>0,1<\alpha<2$. Note that

$$
\begin{equation*}
0<\alpha<1 \Rightarrow \cos \frac{\pi \alpha}{2}>0, \quad 1<\alpha<2 \Rightarrow \cos \frac{\pi \alpha}{2}<0 \tag{5.14}
\end{equation*}
$$

so of course we have decaying exponentials in both (5.11) and (5.13). We get similar formulas with \# replaced by b, since in fact

$$
\begin{equation*}
\varphi_{\alpha}^{b}(\xi)=\varphi_{\alpha}^{\#}(-\xi), \quad \psi_{\alpha}^{b}(\xi)=\psi_{\alpha}^{\#}(-\xi) \tag{5.15}
\end{equation*}
$$

Returning to the general formulas (5.3), we can switch to polar coordinates and write

$$
\begin{align*}
& \Phi_{\alpha, g}(\xi)=-\int_{S^{n-1}} \int_{0}^{\infty}\left(e^{i s \omega \cdot \xi}-1\right) g(\omega) s^{-1-\alpha} d s d S(\omega) \tag{5.16}\\
& \Psi_{\alpha, g}(\xi)=-\int_{S^{n-1}} \int_{0}^{\infty}\left(e^{i s \omega \cdot \xi}-1-i s \omega \cdot \xi\right) g(\omega) s^{-1-\alpha} d s d S(\omega)
\end{align*}
$$

and hence

$$
\begin{align*}
& \Phi_{\alpha, g}(\xi)=\int_{S^{n-1}} \varphi_{\alpha}(\omega \cdot \xi) g(\omega) d S(\omega) \\
& \Psi_{\alpha, g}(\xi)=\int_{S^{n-1}} \psi_{\alpha}(\omega \cdot \xi) g(\omega) d S(\omega) \tag{5.17}
\end{align*}
$$

We can extend the scope, replacing $g(\omega) d S(\omega)$ by a general positive, finite Borel measure on S^{n-1}. Taking into account the calculations yielding (5.8)-(5.9), we obtain homogeneous generators satisfying (5.1), of the form

$$
\begin{array}{ll}
\Phi_{\alpha, \nu}^{b}(\xi)=\int_{S^{n-1}}(i \omega \cdot \xi)^{\alpha} d \nu(\omega), & 0<\alpha<1 \tag{5.18}\\
\Psi_{\alpha, \nu}^{b}(\xi)=-\int_{S^{n-1}}(i \omega \cdot \xi)^{\alpha} d \nu(\omega), & 1<\alpha<2
\end{array}
$$

where ν is a positive, finite Borel measure on S^{n-1}.
It remains to discuss the case $\alpha=1$. For $n=1$ it is seen that positive multiples of

$$
\begin{equation*}
|\xi|+i a \xi, \quad a \in \mathbb{R} \tag{5.19}
\end{equation*}
$$

work. Hence the following functions on \mathbb{R}^{n} work:

$$
|\omega \cdot \xi|+i a \omega \cdot \xi, \quad \omega \in S^{n-1}, a \in \mathbb{R}
$$

We can take positive superpositions of such functions and, in analogy with (5.18), obtain generators of diffusion semigroups whose negatives are Fourier multiplication by

$$
\begin{equation*}
i b \cdot \xi+\Xi_{\nu}(\xi) \tag{5.20}
\end{equation*}
$$

where $b \in \mathbb{R}^{n}$ and

$$
\begin{equation*}
\Xi_{\nu}(\xi)=\int_{S^{n-1}}|\omega \cdot \xi| d \nu(\omega) \tag{5.21}
\end{equation*}
$$

We now tie in results derived above with material given in Chapters $1-2$ of [ST]. For such functions $\psi(\xi)$, homogeneous of degree $\alpha \in(0,2]$, as constructed above, the probability distributions

$$
\begin{equation*}
p_{t}(x)=e^{-t \psi(D)} \delta(x) \tag{5.22}
\end{equation*}
$$

are known as α-stable distributions. In the notation (1.1.6) of [ST], consider

$$
\begin{equation*}
\psi(\xi)=\sigma^{\alpha}|\xi|^{\alpha}\left(1-i \beta(\operatorname{sgn} \xi) \tan \frac{\pi \alpha}{2}\right), \quad \xi \in \mathbb{R} \tag{5.23}
\end{equation*}
$$

Here

$$
\begin{equation*}
\sigma \in(0, \infty), \quad \beta \in[-1,1] \tag{5.24}
\end{equation*}
$$

and $\alpha \in(0,2)$ but $\alpha \neq 1$. Also, take $\mu \in \mathbb{R}$. Then $e^{-\psi(D)+i \mu D} \delta(x)$ is a probability distribution on the line called an α-stable distribution with scale parameter σ, skewness parameter β, and shift parameter μ. It is clear from (5.11)-(5.13) that each function of the form (5.23) is a positive linear combination of $\varphi_{\alpha}^{\#}(\xi)$ and $\varphi_{\alpha}^{b}(\xi)$ if $\alpha \in(0,1)$ and a positive linear combination of $\psi_{\alpha}^{\#}(\xi)$ and $\psi_{\alpha}^{b}(\xi)$ if $\alpha \in(1,2)$.

In case $\alpha=1$, one goes beyond $\psi(\xi)$ homogeneous of degree 1 in ξ, to consider

$$
\begin{equation*}
\psi(\xi)=\sigma|\xi|\left(1+i \frac{2 \beta}{\pi}(\operatorname{sgn} \xi) \log |\xi|\right)+i \mu \xi, \quad \xi \in \mathbb{R} \tag{5.25}
\end{equation*}
$$

again with $\beta \in[-1,1], \mu \in \mathbb{R}$. Then $e^{-\psi(D)} \delta(x)$ is a probability distribution on \mathbb{R} called a 1 -stable distribution, with scale parameter σ, skewness β, and shift μ. The cases arising from (5.19) all have skewness $\beta=0$.

Similarly, functions $\psi(\xi)$ of the form (5.18) and (5.20)-(5.21) produce probability distributions $e^{-\psi(D)} \delta(x)$ on \mathbb{R}^{n} that are α-stable. These, plus analogues with a shift incorporated, comprise all of them except when $\alpha=1$, in which case one generalizes (5.21) to

$$
\begin{equation*}
\widetilde{\Xi}_{\nu}(\xi)=\int_{S^{n-1}}|\omega \cdot \xi|\left(1+\frac{2 i}{\pi}(\operatorname{sgn} \omega \cdot \xi) \log |\omega \cdot \xi|\right) d \nu(\omega) \tag{5.26}
\end{equation*}
$$

Compare (2.3.1)-(2.3.2) in [ST].
We return to the case $n=1$ and make some more comments on the probability distributions

$$
\begin{align*}
& p_{t}^{\alpha}(x)=e^{-t \varphi_{\alpha}^{\#}(D)} \delta(x), \quad 0<\alpha<1, \\
& p_{t}^{\alpha}(x)=e^{-t \psi_{\alpha}^{\#}(D)} \delta(x), \quad 1<\alpha<2, \tag{5.27}
\end{align*}
$$

and their variants with \# replaced by b, which are simply $p_{t}^{\alpha}(-x)$. Explicitly, we have

$$
\begin{equation*}
p_{t}^{\alpha}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i x \cdot \xi-t \varphi_{\alpha}^{\#}(\xi)} d \xi \tag{5.28}
\end{equation*}
$$

for $0<\alpha<1$, with $\varphi_{\alpha}^{\#}(\xi)$ replaced by $\psi_{\alpha}^{\#}(\xi)$ for $1<\alpha<2$. Recall that $\varphi_{\alpha}^{\#}$ and $\psi_{\alpha}^{\#}$ are holomorphic in $\{\xi \in \mathbb{C}: \operatorname{Im} \xi>0\}$. It follows from the Paley-Wiener theorem that, for each $t>0$,

$$
\begin{equation*}
p_{t}^{\alpha}(x)=0, \quad \text { for } \quad x \in[0, \infty), 0<\alpha<1 \tag{5.29}
\end{equation*}
$$

This theorem does not apply when $\alpha \in(1,2)$, but a shift in the contour of integration to $\{\xi+i b: \xi \in \mathbb{R}\}$, with arbitrary $b>0$ yields

$$
\begin{equation*}
p_{t}^{\alpha}(x)=e^{-b x} \times \text { bounded function of } x \tag{5.30}
\end{equation*}
$$

for $x \in \mathbb{R}$, whenever $1<\alpha<2$, hence

$$
\begin{equation*}
p_{t}^{\alpha}(x)=o\left(e^{-b x}\right), \quad \forall b>0, \quad \text { as } x \rightarrow+\infty, \quad \text { for } \quad 1<\alpha<2 . \tag{5.31}
\end{equation*}
$$

A more precise asymptotic behavior is stated in (1.2.11) of [ST].
We also note that, for $\alpha \in(1.2), p_{t}^{\alpha}(x)$ is real analytic in $x \in \mathbb{R}$, and in fact extends to an entire holomorphic function in $x \in \mathbb{C}$, for each $t>0$, due to rapidity with which $\operatorname{Re} \psi_{\alpha}^{\#}(\xi) \rightarrow+\infty$ as $|\xi| \rightarrow \infty$, which of course forbids (5.29) in this case.

6. Fractional diffusion-reaction equations

We consider $\ell \times \ell$ systems of equations

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-L u+X(u), \quad u(0)=f \tag{6.1}
\end{equation*}
$$

where $u=u(t, x)$ takes values in \mathbb{R}^{ℓ}, X is a real vector field on \mathbb{R}^{ℓ}, and L is a diagonal operator,

$$
L=\left(\begin{array}{lll}
A_{1} & & \tag{6.2}\\
& \ddots & \\
& & A_{\ell}
\end{array}\right)
$$

where each operator $-A_{j}$ generates a diffusion semigroup, satisfying

$$
\begin{equation*}
a \leq f \leq b \Longrightarrow a \leq e^{-t A_{j}} f \leq b, \quad \forall t>0 . \tag{6.3}
\end{equation*}
$$

In case the operators A_{j} are second order differential operators satisfying (6.3), the system (6.1) is a reaction-diffusion equation. Recent studies have considered A_{j} given by fractional derivatives. For example, [CCL3] considers the following scalar equation (a modification of the Fisher-Kolmogorov equation):

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-\psi_{\alpha}^{b}(D) u+u(1-u), \quad u(0)=f \tag{6.4}
\end{equation*}
$$

where $\alpha \in(1,2)$ and ψ_{α}^{b} is given by (5.9).
Our next goal is to present an extension of Proposition 4.4 in Chapter 15 of [T], giving a global existence result and some qualitative information on an important class of systems of the form (6.1). Here is the set-up. We assume there is a family $\left\{K_{s}: 0 \leq s<\infty\right\}$ of compact subsets of \mathbb{R}^{ℓ} such that each K_{s} has the invariance property

$$
\begin{equation*}
f(x) \in K_{s} \forall x \Longrightarrow e^{-t L} f(x) \in K_{s} \forall x . \tag{6.5}
\end{equation*}
$$

For example, K_{s} could be a Cartesian product of intervals, and then (6.3) implies (6.5). Furthermore, we assume that

$$
\begin{equation*}
\mathcal{F}_{X}^{t}\left(K_{s}\right) \subset K_{s+t}, \quad s, t \in \mathbb{R}^{+} \tag{6.6}
\end{equation*}
$$

where \mathcal{F}_{X}^{t} is the flow on \mathbb{R}^{ℓ} generated by X. Then we have the following result.

Proposition 6.1. Under the hypotheses (6.5)-(6.6), if $f(x) \in K_{0}$ for all x, then (6.1) has a solution for all $t \in[0, \infty)$, and, for each $t>0$,

$$
\begin{equation*}
u(t, x) \in K_{t}, \quad \forall x \tag{6.7}
\end{equation*}
$$

The proof is basically the same as the proof of Proposition 4.4 mentioned above. The key behind (6.7) is the nonlinear Trotter product formula:

$$
\begin{equation*}
u(t)=\lim _{n \rightarrow \infty}\left(e^{-(t / n) L} \mathcal{F}^{t / n}\right)^{n} f \tag{6.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{F}^{t} f(x)=\mathcal{F}_{X}^{t}(f(x)) . \tag{6.9}
\end{equation*}
$$

As one application, in case $\ell=1$, we see that if $0<a<b<\infty$, and if

$$
\begin{equation*}
a \leq f(x) \leq b, \quad \forall x \in \mathbb{R} \tag{6.10}
\end{equation*}
$$

then (6.4) has a solution for all $t \in[0, \infty)$, and

$$
\begin{equation*}
\lim _{t \rightarrow \infty} u(t, x) \equiv 1 \tag{6.11}
\end{equation*}
$$

With a little more work, we could allow $a=0$ and obtain (6.11) as long as f is not identially zero. In [CCL3] there is an intriguing discussion of finer qualitative behavior of moving front solutions to (a variant of) (6.4), based on numerical evidence. See $\S 7$ for some more on this.

One can consider various other reaction-diffusion equations, such as the FitzhughNagumo equations, and variants, with ∂_{x}^{2} replaced by fractional derivatives, to which Proposition 6.1 would be applicable. See Chapter $15, \S 4$ of $[\mathrm{T}]$ for other examples, which could be similarly generalized.

7. Numerical experiments

Here we discuss numerical results on five linear (fractional) diffusion equations:

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-L u, \quad u(0)=f \tag{7.1}
\end{equation*}
$$

and five (fractional) diffusion-reaction equations of Fisher-Kolmogorov type:

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-L u+X(u), \quad u(0)=f \tag{7.2}
\end{equation*}
$$

for $u=u(t, x)$ defined on $[0, \infty) \times S^{1}$, where $S^{1} \approx \mathbb{R} /(2 \pi \mathbb{Z})$ is the circle. In (7.2) we take

$$
\begin{equation*}
X(u)=6 u(1-u), \tag{7.3}
\end{equation*}
$$

and the five operators L we consider are, respectively,

$$
\begin{equation*}
-\frac{d^{2}}{d x^{2}}, \quad\left(-\frac{d^{2}}{d x^{2}}\right)^{1 / 2}, \quad\left(-\frac{d^{2}}{d x^{2}}\right)^{1 / 4}, \quad \psi_{3 / 2}^{b}(D), \quad \varphi_{1 / 2}^{\#}(D) \tag{7.4}
\end{equation*}
$$

where $\psi_{\alpha}^{b}(\xi)$ and $\varphi_{\alpha}^{\#}(\xi)$ are given by (5.8)-(5.9). In all cases we take

$$
\begin{align*}
f(x)=1 & \text { if }|x|<\frac{2 \pi}{10} \tag{7.5}\\
0 & \text { otherwise }
\end{align*}
$$

and we picture $S^{1}=[-\pi, \pi]$, with the endpoints identified.
To solve (7.1), we represent the solution as a Fourier multiplier, namely Fourier multiplication by $e^{-t L(\xi)}$, where $L(\xi)$ is given, respectively, by

$$
\begin{equation*}
\xi^{2}, \quad|\xi|, \quad|\xi|^{1 / 2}, \quad \psi_{3 / 2}^{b}(\xi), \quad \varphi_{1 / 2}^{\#}(\xi) \tag{7.6}
\end{equation*}
$$

In particular, by (5.11)-(5.15), we have

$$
\begin{equation*}
e^{-t \psi_{3 / 2}^{b}(\xi)}=e^{-(\sqrt{2} / 2) t|\xi|^{3 / 2}}\left[\cos \left(\frac{\sqrt{2}}{2} t|\xi|^{3 / 2}\right)+i \sigma(\xi) \sin \left(\frac{\sqrt{2}}{2} t|\xi|^{3 / 2}\right)\right] \tag{7.7}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{-t \varphi_{1 / 2}^{\#}(\xi)}=e^{-(\sqrt{2} / 2) t|\xi|^{1 / 2}}\left[\cos \left(\frac{\sqrt{2}}{2} t|\xi|^{1 / 2}\right)+i \sigma(\xi) \sin \left(\frac{\sqrt{2}}{2} t|\xi|^{1 / 2}\right)\right] \tag{7.8}
\end{equation*}
$$

Our numerical approximation uses a 1024 point discrete Fourier transform, implemented by an FFT.

To solve (7.2) numerically, we use Strang's splitting method, a variant of (6.8) given by

$$
\begin{equation*}
u(t)=\lim _{n \rightarrow \infty}\left(\mathcal{F}^{t / 2 n} e^{-(t / n) L} \mathcal{F}^{t / 2 n}\right)^{n} f \tag{7.9}
\end{equation*}
$$

which is formally second order accurate. More precisely, we fix a time step $h=0.001$ and take

$$
\begin{equation*}
u(n h) \approx\left(\mathcal{F}^{h / 2} e^{-h L} \mathcal{F}^{h / 2}\right)^{n} f \tag{7.10}
\end{equation*}
$$

for $0 \leq n \leq 500$, so $t=n h \in[0,0.5]$. We evaluate $e^{-h L}$ as above, via Fourier multiplication, and we use a difference scheme to approximate the action of $\mathcal{F}^{h / 2}$.

Figures 1A-1E illustrate solutions to the five linear equations of the form (7.1), with L given in (7.4). Each figure presents the graph of $u(t, x)$, for $x \in[-\pi, \pi]$, at times $t=n / 1000$, with $n=0,100,200,300,400,500$. In Figure 1A, the equation is the standard diffusion equation $u_{t}=u_{x x}$, and the graphs beyond $t=0$ certainly look quite Gaussian. Figures 1B and 1C illustrate some symmetric superdiffusions. Figures 1D and 1E illustrate some asymmetric diffusions. In Figure 1D a fat tail sprouts off to the right, while in Figure 1E the fat tail sprouts off to the left, and wraps completely around S^{1} by $t=0.3$.

Figures 2A-2E illustrate solutions to five Fisher-Kolmogorov type equations of the form (7.2), with L again given in (7.4). In all cases, the solution $u(t, x)$ takes values in the interval $[0,1]$, and the vector field X on this interval generates a flow that pushes points away from the critical point 0 and towards the critical point 1. In Figure 2A, the equation is a standard Fisher-Kolmogorov equation. Figures $2 \mathrm{~B}-2 \mathrm{C}$ illustrate variants, where the effects of the superdiffusions lead to $u(t, x)$ approaching 1 more rapidly (as t increases) for x far away from 0 than one sees in Figure 2A. In Figures 2D-2E one also sees how the fat tails for the fractional diffusions lead to an approach of $u(t, x)$ to 1 , somewhat more rapid in the right (resp., left) direction, in the two respective cases.

One can particularly compare the results illustrated in Figure 2D with numerical results discussed in [CCL3].

8. Inhomogeneous fractional diffusion equations

Here we consider equations of the form

$$
\begin{equation*}
{ }^{c} \partial_{t}^{\beta} u=-A u+q(t), \quad u(0)=f \tag{8.1}
\end{equation*}
$$

where A is a positive, self-adjoint operator on a Hilbert space $H, f \in H$, and $q \in C\left(\mathbb{R}^{+}, H\right)$. We assume $0<\beta \leq 1$. The operator ${ }^{c} \partial_{t}^{\beta}$ is as in (1.2) if $\beta \in(0,1)$. We have the Laplace transform identity

$$
\begin{equation*}
\mathcal{L}\left({ }^{c} \partial_{t}^{\beta} u\right)(s)=s^{\beta} \mathcal{L} u(s)-s^{\beta-1} u(0) . \tag{8.2}
\end{equation*}
$$

Hence (8.1) implies

$$
\begin{equation*}
\mathcal{L} u(s)=\left(s^{\beta}+A\right)^{-1} \mathcal{L} q(s)+s^{\beta-1}\left(s^{\beta}+A\right)^{-1} f . \tag{8.3}
\end{equation*}
$$

Recall that the Laplace transform of $E_{\beta}\left(-t^{\beta} A\right)$ is $s^{\beta-1}\left(s^{\beta}+A\right)^{-1}$, with E_{β} as in (3.5)-(3.8). In fact, if

$$
\begin{equation*}
e_{\beta}(t)=E_{\beta}\left(-t^{\beta}\right), \tag{8.4}
\end{equation*}
$$

we have

$$
\begin{equation*}
\int_{0}^{\infty} e_{\beta}(t) e^{-s t} d t=\frac{s^{\beta-1}}{s^{\beta}+1} \tag{8.5}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\int_{0}^{\infty} e_{\beta}(t \gamma) e^{-s t} d t=\frac{s^{\beta-1}}{s^{\beta}+\gamma^{\beta}} \tag{8.6}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\int_{0}^{\infty} E_{\beta}\left(-t^{\beta} A\right) e^{-s t} d t=s^{\beta-1}\left(s^{\beta}+A\right)^{-1} \tag{8.7}
\end{equation*}
$$

We also have

$$
\begin{align*}
A^{1 / \beta} \int_{0}^{\infty} & e_{\beta}^{\prime}\left(t A^{1 / \beta}\right) e^{-s t} d t \\
& =s \int_{0}^{t} e_{\beta}\left(t A^{1 / \beta}\right) e^{-s t} d t+\left.e_{\beta}\left(t A^{1 / \beta}\right) e^{-s t}\right|_{0} ^{\infty} \tag{8.8}\\
& =s^{\beta}\left(s^{\beta}+A\right)^{-1}-1 \\
& =-A\left(s^{\beta}+A\right)^{-1} .
\end{align*}
$$

With this we can apply Laplace inversion to (8.3) and obtain

$$
\begin{equation*}
u(t)=e_{\beta}\left(t A^{1 / \beta}\right) f-A^{-1+1 / \beta} \int_{0}^{t} e_{\beta}^{\prime}\left(\tau A^{1 / \beta}\right) q(t-\tau) d \tau \tag{8.9}
\end{equation*}
$$

using the fact that

$$
\begin{equation*}
g(t)=\int_{0}^{t} h(\tau) q(t-\tau) d \tau \Longrightarrow \mathcal{L} g(s)=\mathcal{L} h(s) \mathcal{L} q(s) \tag{8.10}
\end{equation*}
$$

A formula equivalent to (8.9) is

$$
\begin{equation*}
u(t)=E_{\beta}\left(-t^{\beta} A\right) f+\beta \int_{0}^{t} \tau^{\beta-1} E_{\beta}^{\prime}\left(-\tau^{\beta} A\right) q(t-\tau) d \tau \tag{8.11}
\end{equation*}
$$

Compare (A.30) of [MPG] for the case $A=1$, and (7.4) of [D] for the general formula.

Recalling (3.6), we have

$$
\begin{equation*}
E_{\beta}^{\prime}(-s)=\int_{0}^{\infty} M_{\beta}(r) r e^{-r s} d s, \quad s>0 \tag{8.12}
\end{equation*}
$$

with $M_{\beta}(r)$ given by (3.7), and also by (3.11)-(3.12). Hence (3.8), i.e.,

$$
\begin{equation*}
E_{\beta}\left(-t^{\beta} A\right)=\int_{0}^{\infty} M_{\beta}(r) e^{-r t^{\beta} A} d r \tag{8.13}
\end{equation*}
$$

is complemented by

$$
\begin{equation*}
E_{\beta}^{\prime}\left(-t^{\beta} A\right)=\int_{0}^{\infty} M_{\beta}(r) r e^{-r t^{\beta} A} d r \tag{8.14}
\end{equation*}
$$

for $t>0, \beta \in(0,1)$. Note that $M_{\beta}(r)$ and $M_{\beta}(r) r$ are positive and integrable on \mathbb{R}^{+}. Hence, if $\left\{e^{-s A}: s>0\right\}$ is positivity preserving, on $H=L^{2}(M)$, so are the operators (8.13) and (8.14).

We desire to obtain some estimates on $E_{\beta}(-s)$ for $s \in \mathbb{R}^{+}$, hence on the operators that appear in (8.11). Of course, the formula (3.5) implies this function is smooth on $[0, \infty)$. We want to examine its asymptotic behavior as $s \nearrow+\infty$. We first tackle the behavior of $e_{\beta}(t)$ as $t \nearrow \infty$. The key tool for is the identity (8.5), which is valid for $\operatorname{Re} s \geq 0$. The evaluation for $s=i \xi, \xi \in \mathbb{R}$ gives the Fourier transform of $e_{\beta}(t)$ (extended to vanish on \mathbb{R}^{-}):

$$
\begin{equation*}
\hat{e}_{\beta}(\xi)=\frac{(i \xi)^{\beta-1}}{(i \xi)^{\beta}+1}, \quad 0<\beta<1 \tag{8.15}
\end{equation*}
$$

This Fourier transform identity enables us to determine the behavior of $e_{\beta}(t)$ as $t \nearrow \infty$, due to the (almost) classical conormal singularity of \hat{e}_{β} at $\xi=0$. We get, as $t \nearrow+\infty$,

$$
\begin{align*}
e_{\beta}(t) & \sim \sum_{k \geq 1} a_{\beta k} t^{-k \beta} \tag{8.16}\\
e_{\beta}^{\prime}(t) & \sim-\sum_{k \geq 1} k \beta a_{\beta k} t^{-k \beta-1} . \tag{8.17}
\end{align*}
$$

Equivalently, as s $\nearrow+\infty$,

$$
\begin{align*}
& E_{\beta}(-s)=e_{\beta}\left(s^{1 / \beta}\right) \sim \sum_{k \geq 1} a_{\beta k} s^{-k} \tag{8.18}\\
& E_{\beta}^{\prime}(-s)=\frac{1}{\beta} s^{1 / \beta-1} e_{\beta}^{\prime}\left(s^{1 / \beta}\right) \sim-\sum_{k \geq 1} k a_{\beta k} s^{-k-1}, \tag{8.19}
\end{align*}
$$

assuming $\beta \in(0,1)$. We emphasize the leading terms:

$$
\begin{equation*}
E_{\beta}(-s) \sim a_{\beta 0} s^{-1}+\cdots, \quad E_{\beta}^{\prime}(-s) \sim-a_{\beta 0} s^{-2}+\cdots \tag{8.20}
\end{equation*}
$$

By contrast,

$$
\begin{equation*}
E_{1}(-s)=e^{-s} . \tag{8.21}
\end{equation*}
$$

We now collect some operator estimates on $E_{\beta}\left(-t^{\beta} A\right)$ and $E_{\beta}^{\prime}\left(-t^{\beta} A\right)$. First, suppose B is a Banach space on which $e^{-t A}$ acts as a contraction semigroup:

$$
\begin{equation*}
\left\|e^{-t A} f\right\|_{B} \leq\|f\|_{B}, \quad \forall t>0 . \tag{8.22}
\end{equation*}
$$

Then (8.13)-(8.14), plus the positivity of $M_{\beta}(r)$ and the fact that $M_{\beta}(r)$ and $M_{\beta}(r) r$ integrate to $E_{\beta}(0)$ and $E_{\beta}^{\prime}(0)$, respectively, give

$$
\begin{align*}
\left\|E_{\beta}\left(-t^{\beta} A\right) f\right\|_{B} & \leq\|f\|_{B} \\
\left\|E_{\beta}^{\prime}\left(-t^{\beta} A\right) f\right\|_{B} & \leq \frac{1}{\beta \Gamma(\beta)}\|f\|_{B} . \tag{8.23}
\end{align*}
$$

Next, assume H is a Hilbert space and A is a positive, self-adjoint operator on H. Then (8.20) plus the smoothness of $E_{\beta}(-s)$ on $[0, \infty)$ imply that $s E_{\beta}(-s), s E_{\beta}(-s)$, and $s^{2} E_{\beta}^{\prime}(-s)$ are bounded on $[0, \infty)$, hence

$$
\begin{equation*}
\left\|t^{\beta} A E_{\beta}\left(-t^{\beta} A\right) f\right\|_{H}, \quad\left\|t^{\beta} A E_{\beta}^{\prime}\left(-t^{\beta} A\right) f\right\|_{H}, \quad\left\|t^{2 \beta} A^{2} E_{\beta}^{\prime}\left(-t^{\beta} A\right) f\right\|_{H} \leq C\|f\|_{H} \tag{8.24}
\end{equation*}
$$

for $t \in[0, \infty)$. Interpolation with (8.23) (with $B=H$) yields further estimates, such as

$$
\begin{equation*}
\left\|\tau^{\sigma \beta} E_{\beta}^{\prime}\left(-\tau^{\beta} A\right)\right\|_{\mathcal{L}\left(H, \mathcal{D}\left(A^{\sigma}\right)\right)} \leq C, \quad \tau>0 \tag{8.25}
\end{equation*}
$$

given $\sigma \in(0,1)$, hence

$$
\begin{equation*}
\left\|\tau^{\beta-1} E_{\beta}^{\prime}\left(-\tau^{\beta} A\right)\right\|_{\mathcal{L}\left(H, \mathcal{D}\left(A^{\sigma}\right)\right)} \leq C \tau^{-1+(1-\sigma) \beta} . \tag{8.26}
\end{equation*}
$$

We begin to specialize. For the rest of this section, we assume M is a compact, smooth Riemannian manifold, without boundary, and

$$
\begin{equation*}
A=(-\Delta)^{m / 2}, \quad 0<m \leq 2, \tag{8.27}
\end{equation*}
$$

where Δ is the Laplace-Beltrami operator on M. Then (8.22)-(8.23) hold for

$$
\begin{equation*}
B=L^{p}(M), \quad 1 \leq p \leq \infty, \quad B=C(M), \tag{8.28}
\end{equation*}
$$

and (8.24)-(8.26) hold for

$$
\begin{equation*}
H=L^{2}(M), \quad \mathcal{D}\left(A^{\sigma}\right)=H^{\sigma m, 2}(M) . \tag{8.29}
\end{equation*}
$$

We can go further, noting that

$$
\begin{equation*}
E_{\beta}(-s) \in S_{1,0}^{-1}([0, \infty)), \quad E_{\beta}^{\prime}(-s) \in S_{1,0}^{-2}([0, \infty)), \tag{8.30}
\end{equation*}
$$

where to say $F \in S_{1,0}^{\mu}([0, \infty))$ is to say $F \in C^{\infty}([0, \infty))$ and

$$
\begin{equation*}
\left|\partial_{s}^{j} F(s)\right| \leq C_{j}\langle s\rangle^{\mu-j}, \quad \forall j \in \mathbb{Z}^{+}, s \in[0, \infty) \tag{8.31}
\end{equation*}
$$

Now (8.27) implies

$$
\begin{equation*}
A \in O P S^{m}(M) \tag{8.32}
\end{equation*}
$$

is elliptic, as well as positive and self-adjoint. Results in Chapter 12 of [T2] then imply that, given $T_{0} \in(0, \infty)$,

$$
\begin{align*}
& E_{\beta}\left(-t^{\beta} A\right), \quad t^{\beta} A E_{\beta}\left(-t^{\beta} A\right), \\
& E_{\beta}^{\prime}\left(-t^{\beta} A\right), \quad t^{\beta} A E_{\beta}^{\prime}\left(-t^{\beta} A\right), \quad t^{2 \beta} A^{2} E_{\beta}^{\prime}\left(-t^{\beta} A\right) \tag{8.33}\\
& \text { are bounded in } O P S_{1,0}^{0}(M), \quad \text { for } t \in\left(0, T_{0}\right] .
\end{align*}
$$

Boundedness of elements of $O P S_{1,0}^{0}(M)$ on $L^{p}(M)$ for $1<p<\infty$ yield the following estimates, for such p :

$$
\begin{equation*}
\left\|E_{\beta}\left(-t^{\beta} A\right) f\right\|_{L^{p}}, \quad t^{\beta}\left\|A E_{\beta}\left(-t^{\beta} A\right) f\right\|_{L^{p}} \leq C\|f\|_{L^{p}} \tag{8.34}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|E_{\beta}^{\prime}\left(-t^{\beta} A\right) f\right\|_{L^{p}}, \quad t^{\beta}\left\|A E_{\beta}^{\prime}\left(-t^{\beta} A\right) f\right\|_{L^{p}}, \quad t^{2 \beta}\left\|A^{2} E_{\beta}^{\prime}\left(-t^{\beta} A\right) f\right\|_{L^{p}} \leq C\|f\|_{L^{p}} \tag{8.35}
\end{equation*}
$$

Then elliptic regularity yields

$$
\begin{equation*}
\left\|E_{\beta}\left(-t^{\beta} A\right)\right\|_{\mathcal{L}\left(L^{p}, H^{m, p}\right)}, \quad\left\|E_{\beta}^{\prime}\left(-t^{\beta} A\right)\right\|_{\mathcal{L}\left(L^{p}, H^{m, p}\right)} \leq C t^{-\beta} \tag{8.36}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|E_{\beta}^{\prime}\left(t^{-\beta} A\right)\right\|_{\mathcal{L}\left(L^{p}, H^{2 m, p}\right)} \leq C t^{-2 \beta} \tag{8.37}
\end{equation*}
$$

uniformly for $t \in\left(0, T_{0}\right]$. As in (8.25), interpolation of (8.36) with some of the estimates in (8.35) gives, for $\sigma \in(0,1), p \in(1, \infty)$,

$$
\begin{equation*}
\left\|\tau^{\sigma \beta} E_{\beta}^{\prime}\left(-\tau^{\beta} A\right)\right\|_{\mathcal{L}\left(L^{p}, H^{\sigma m, p}\right)} \leq C \tag{8.38}
\end{equation*}
$$

hence

$$
\begin{equation*}
\left\|\tau^{\beta-1} E_{\beta}^{\prime}\left(-\tau^{\beta} A\right)\right\|_{\mathcal{L}\left(L^{p}, H^{\sigma m, p}\right)} \leq C \tau^{-1+(1-\sigma) \beta} \tag{8.39}
\end{equation*}
$$

uniformly for $\tau \in\left(0, T_{0}\right]$. We also get estimates on Zygmund spaces, such as

$$
\begin{equation*}
\left\|\tau^{\beta-1} E_{\beta}^{\prime}\left(-\tau^{\beta} A\right)\right\|_{\mathcal{L}\left(C_{*}^{0}, C_{*}^{\sigma m}\right)} \leq C \tau^{-1+(1-\sigma) \beta} \tag{8.40}
\end{equation*}
$$

and similar estimates on other familite of Besov spaces.
We can produce another demonstration of (8.34)-(8.35), and extend the scope of these estimates, using (8.13)-(8.14) in concert with the following result, which for $\beta=1 / 2$ and $\beta=1 / 3$ is illustrated by (3.9).

Proposition 8.1. For $\beta \in(0,1)$, the function $M_{\beta}(r)$ in (8.13)-(8.14) satisfies

$$
\begin{equation*}
M_{\beta} \in \mathcal{S}([0, \infty)) \tag{8.41}
\end{equation*}
$$

i.e., M_{β} is smooth on $[0, \infty)$ and rapidly decreasing, with all its derivatives, at infinity.

Proof. We make use of the identity (3.12),

$$
\beta r^{-\beta-1} M_{\beta}\left(r^{-\beta}\right)=\Phi_{1, \beta}(r),
$$

plus the results about $\Phi_{1, \beta}$ established at the end of $\S 2$. The fact that $\Phi_{1, \beta}(s)$ is smooth on $[0, \infty)$ and vanishes to all orders as $s \rightarrow 0$ implies M_{β} is smooth on $(0, \infty)$ and vanishes rapidly, with all derivatives, at ∞.

It remains to show that $M_{\beta}(r)$ is smooth up to $r=0$. For this, we use the asymptotic expansion (2.10), which implies

$$
M_{\beta}(r)=\frac{1}{\beta} r^{-1-1 / \beta} \Phi_{1, \beta}\left(r^{-1 / \beta}\right) \sim \frac{1}{\beta} \sum_{k \geq 1} \gamma_{\beta k} r^{k-1}
$$

as $r \searrow 0$.
We can exploit Proposition 8.1 as follows. Given (8.41), we can write

$$
\begin{align*}
s E_{\beta}(-s) & =-\int_{0}^{\infty} M_{\beta}(r) \frac{\partial}{\partial r} e^{-r s} d r \\
& =\int_{0}^{\infty} M_{\beta}^{\prime}(r) e^{-r s} d r+M_{\beta}(0) \tag{8.42}
\end{align*}
$$

and deduce that, whenever B is a Banach space such that (8.22) holds, or more generally

$$
\begin{equation*}
\left\|e^{-t A} f\right\|_{B} \leq C\|f\|_{B}, \quad \forall t>0, \tag{8.43}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\|t^{\beta} A E_{\beta}\left(-t^{\beta} A\right) f\right\|_{B} \leq C\|f\|_{B} \tag{8.44}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\left\|t^{\beta} A E_{\beta}^{\prime}\left(-t^{\beta} A\right) f\right\|_{B}, \quad\left\|t^{2 \beta} A^{2} E_{\beta}^{\prime}\left(-t^{\beta} A\right) f\right\|_{B} \leq C\|f\|_{B} . \tag{8.45}
\end{equation*}
$$

As advertised, this provides another demonstration of (8.34)-(8.35), and extends the scope of these estimates.

9. Fractional diffusion-reaction equations - local existence

Here we study the initial-value problem

$$
\begin{equation*}
{ }^{c} \partial_{t}^{\beta} u=-A u+F(u), \quad u(0)=f \tag{9.1}
\end{equation*}
$$

on $\left[0, T_{0}\right] \times M$, given a suitable f on M (perhaps with values in \mathbb{R}^{k}). We assume $\beta \in(0,1)$. As in the end of $\S 8$, we assume M is a compact Riemannian manifold, and

$$
\begin{equation*}
A=(-\Delta)^{m / 2}, \quad 0<m \leq 2 \tag{9.2}
\end{equation*}
$$

where Δ is the Laplace-Beltrami operator on M.
Using (8.11), we rewrite (9.1) as

$$
\begin{equation*}
u(t)=E_{\beta}\left(-t^{\beta} A\right) f+\beta \int_{0}^{t} \tau^{\beta-1} E_{\beta}^{\prime}\left(-\tau^{\beta} A\right) F(u(t-\tau)) d \tau \tag{9.3}
\end{equation*}
$$

Hence we desire to solve

$$
\begin{equation*}
\Phi u=u \tag{9.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi u(t)=E_{\beta}\left(-t^{\beta} A\right) f+\beta \int_{0}^{t} \tau^{\beta-1} E_{\beta}^{\prime}\left(-\tau^{\beta} A\right) F(u(t-\tau)) d \tau \tag{9.5}
\end{equation*}
$$

Thus we seek a fixed point of

$$
\begin{equation*}
\Phi: \mathfrak{X} \longrightarrow \mathfrak{X}, \tag{9.6}
\end{equation*}
$$

where \mathfrak{X} is a suitably chosen complete metric space.
To begin, we assume $f \in C(M)$. We pick $a \in(0, \infty)$ and set

$$
\begin{equation*}
\mathfrak{X}=\left\{u \in C(I, C(M)): u(0)=f, \sup _{t \in I}\|u(t)-f\|_{L^{\infty}} \leq a\right\}, \quad I=[0, \delta], \tag{9.7}
\end{equation*}
$$

where $\delta>0$ will be specified below. We assume u takes values in $\mathbb{R}^{k}, F: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$, and

$$
\begin{equation*}
u \in \mathbb{R}^{k},|u| \leq A \Longrightarrow|F(u)| \leq K,|D F(u)| \leq L \tag{9.8}
\end{equation*}
$$

Here $|\cdot|$ denotes some convenient norm on \mathbb{R}^{k} and also the associated operator norm on $\operatorname{End}\left(\mathbb{R}^{k}\right)$. Now $t \mapsto E_{\beta}\left(-t^{\beta} A\right)$ is strongly continuous on $C(M)$ (by (8.13)), and $E_{\beta}(0)=I$, so we can pick $\delta>0$ so small that

$$
\begin{equation*}
t \in(0, \delta] \Longrightarrow\left\|E_{\beta}\left(-t^{\beta} A\right) f-f\right\|_{L^{\infty}} \leq \frac{1}{2} a \tag{9.9}
\end{equation*}
$$

To get $\Phi: \mathfrak{X} \rightarrow \mathfrak{X}$, it suffices to ensure that

$$
\begin{equation*}
t \in I, u \in \mathfrak{X} \Rightarrow \beta \int_{0}^{t} \tau^{\beta-1}\left\|E_{\beta}^{\prime}\left(-\tau^{\beta} A\right) F(u(t-\tau))\right\|_{L^{\infty}} d \tau \leq \frac{1}{2} a \tag{9.10}
\end{equation*}
$$

By (9.8), $u \in \mathfrak{X} \Rightarrow\|F(u(t-\tau))\|_{L^{\infty}} \leq K$. Then (8.23), with $B=C(M)$, implies $\left\|E_{\beta}^{\prime}\left(-\tau^{\beta} A\right) F(u(t-\tau))\right\|_{L^{\infty}} \leq K / \beta \Gamma(\beta)$, so (9.10) holds provided

$$
\begin{equation*}
t \in I \Longrightarrow \frac{K}{\Gamma(\beta)} \int_{0}^{t} \tau^{\beta-1} d \tau \leq \frac{a}{2} \tag{9.11}
\end{equation*}
$$

i.e., provided

$$
\begin{equation*}
\delta^{\beta} \leq \frac{\beta \Gamma(\beta)}{2} \frac{a}{K} . \tag{9.12}
\end{equation*}
$$

Hence $\Phi: \mathfrak{X} \rightarrow \mathfrak{X}$ whenever (9.9) and (9.12) hold.
We next produce a condition that guarantees Φ is a contraction on \mathfrak{X}. Given $u, v \in \mathfrak{X}, t \in I$, we have
(9.13) $\|\Phi u(t)-\Phi v(t)\|_{L^{\infty}} \leq \beta \int_{0}^{t} \tau^{\beta-1} \| E_{\beta}^{\prime}\left(-\tau^{\beta} A\right)\left[F(u(t-\tau)-F(v(t-\tau))] \|_{L^{\infty}} d \tau\right.$.

Now

$$
\begin{equation*}
F(u)-F(v)=\int_{0}^{1} \frac{d}{d s} F(s u+(1-s) v) d s=G(u, v)(u-v) \tag{9.14}
\end{equation*}
$$

with

$$
\begin{equation*}
G(u, v)=\int_{0}^{1} D F(s u+(1-s) v) d s \tag{9.15}
\end{equation*}
$$

Hence $t \in I, \tau \in[0, t]$ imply, via (9.8),

$$
\begin{equation*}
\|F(u(t-\tau))-F(v(t-\tau))\|_{L^{\infty}} \leq L\|u(t-\tau)-v(t-\tau)\|_{L^{\infty}}, \tag{9.16}
\end{equation*}
$$

so, again by (8.23), the right side of (9.13) is bounded by

$$
\begin{align*}
& \frac{L}{\Gamma(\beta)} \int_{0}^{t} \tau^{\beta-1}\|u(t-\tau)-v(t-\tau)\|_{L^{\infty}} d \tau \\
& \quad \leq \frac{L}{\beta \Gamma(\beta)} \sup _{0 \leq \tau \leq t}\|u(\tau)-v(\tau)\|_{L^{\infty}} t^{\beta} \tag{9.17}
\end{align*}
$$

Thus we get

$$
\begin{equation*}
\sup _{t \in I}\|\Phi u(t)-\Phi v(t)\|_{L^{\infty}} \leq \theta \sup _{t \in I}\|u(t)-v(t)\|_{L^{\infty}}, \tag{9.18}
\end{equation*}
$$

provided

$$
\begin{equation*}
\delta^{\beta} \leq \beta \Gamma(\beta) \frac{\theta}{L} \tag{9.19}
\end{equation*}
$$

Hence, as long as δ satisfies (9.9), (9.12), and (9.18), with $\theta \in(0,1), \Phi$ is a contraction on \mathfrak{X}, given by (9.7). We record the local existence result.
Proposition 9.1. Assume M is a compact Riemannian manifold and A is given by (9.2). Assume $F: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ satisfies (9.8). Take $f \in C(M)$. Then (9.1) has a solution in $C([0, \delta], C(M))$ provided $\delta>0$ satisfies (9.9), (9.12), and (9.18), with $\theta<1$.

We look at situations with more singular initial data. Not to get too general, we assume

$$
\begin{equation*}
f \in L^{6}(M) \tag{9.20}
\end{equation*}
$$

The analysis will be dimension dependent; say

$$
\begin{equation*}
\operatorname{dim} M=n \tag{9.21}
\end{equation*}
$$

We again take $a \in(0, \infty)$ and set

$$
\begin{equation*}
\mathfrak{X}=\left\{u \in C\left(I, L^{6}(M)\right): u(0)=f, \sup _{t \in I}\|u(t)-f\|_{L^{6}} \leq a\right\}, \quad I=[0, \delta], \tag{9.22}
\end{equation*}
$$

with $\delta>0$ to be specified below. This time, we assume

$$
\begin{equation*}
|F(u)| \leq K\left(1+|u|^{3}\right), \quad|D F(u)| \leq L\left(1+|u|^{2}\right), \tag{9.23}
\end{equation*}
$$

which holds if $F(u)$ is a cubic polynomial in u. Again Φ is given by (9.5). We desire to show that if $\delta>0$ is small enough, $\Phi: \mathfrak{X} \rightarrow \mathfrak{X}$ and is a contraction. We will succeed in case

$$
\begin{equation*}
\frac{n}{3}<m \leq 2 \tag{9.24}
\end{equation*}
$$

with m as in (9.2). Note that this requires $n \leq 5$.
To start, $t \mapsto E_{\beta}\left(-t^{\beta} A\right)$ is strongly continuous on $L^{6}(M)$, again by (8.13), so we can pick $\delta>0$ so small that

$$
\begin{equation*}
t \in(0, \delta] \Longrightarrow\left\|E_{\beta}\left(-t^{\beta} A\right) f-f\right\|_{L^{6}} \leq \frac{a}{2} \tag{9.25}
\end{equation*}
$$

To get $\Phi: \mathfrak{X} \rightarrow \mathfrak{X}$, it suffices to show that

$$
\begin{equation*}
t \in I, u \in \mathfrak{X} \Rightarrow \beta \int_{0}^{t} \tau^{\beta-1}\left\|E_{\beta}^{\prime}\left(-\tau^{\beta} A\right) F(u(t-\tau))\right\|_{L^{6}} d \tau \leq \frac{a}{2} . \tag{9.26}
\end{equation*}
$$

By (9.23),

$$
\begin{equation*}
u \in \mathfrak{X} \Longrightarrow\|F(u(t-\tau))\|_{L^{2}} \leq C(a, K) \tag{9.27}
\end{equation*}
$$

The estimate (8.26), with $H=L^{2}(M)$ (or (8.39), with $p=2$) gives

$$
\begin{equation*}
\tau^{\beta-1}\left\|E^{\prime}\left(-\tau^{\beta} A\right) F(u(t-\tau))\right\|_{H^{\sigma m, 2}} \leq C \tau^{-1+(1-\sigma) \beta} \tag{9.28}
\end{equation*}
$$

for $\sigma \in(0,1)$. Sobolev embedding theorems give

$$
\begin{equation*}
H^{\sigma m, 2}(M) \subset L^{6}(M), \quad \text { for some } \sigma<1 \tag{9.29}
\end{equation*}
$$

provided (9.24) holds. We mention parenthetically that $H^{\sigma m, 2}(M) \subset L^{\infty}(M)$ for some $\sigma<1$ provided $n / 2<m \leq 2$. Consequently, if (9.24) holds, we have the integral in (9.26) bounded by

$$
\begin{equation*}
C t^{(1-\sigma) \beta}, \tag{9.30}
\end{equation*}
$$

which is $\leq a / 2$ for all $t \in(0, \delta]$ if δ is small enough. This gives $\Phi: \mathfrak{X} \rightarrow \mathfrak{X}$.
We next want to show that Φ is a contraction on \mathfrak{X} if $\delta>0$ is small enough. This would follow if we could show that, for $u, v \in \mathfrak{X}$,

$$
\begin{align*}
\beta \int_{0}^{t} & \tau^{\beta-1}\left\|E_{\beta}^{\prime}\left(-\tau^{\beta} A\right)[F(u(t-\tau))-F(v(t-\tau))]\right\|_{L^{6}} d \tau \tag{9.31}\\
& \leq C t^{(1-\sigma) \beta} \sup _{0 \leq \tau \leq t}\|u(\tau)-v(\tau)\|_{L^{6}},
\end{align*}
$$

since this would yield

$$
\begin{equation*}
\sup _{t \in I}\|\Phi u(t)-\Phi v(t)\|_{L^{6}} \leq \theta \sup _{t \in I}\|u(t)-v(t)\|_{L^{6}} \tag{9.32}
\end{equation*}
$$

for $u, v \in \mathfrak{X}$, for some $\theta<1$, if $I=[0, \delta]$ and $\delta>0$ is small enough.
To proceed, with notation as in (9.14)-(9.15), we have, for $t, \tau \in I, u=u(t-$ $\tau), v=v(t-\tau)$, elements of \mathfrak{X},

$$
\begin{align*}
\|F(u)-F(v)\|_{L^{2}} & =\|G(u, v)(u-v)\|_{L^{2}} \\
& \leq\|G(u, v)\|_{L^{3}}\|u-v\|_{L^{6}} \tag{9.33}\\
& \leq C(a)\|u-v\|_{L^{6}}
\end{align*}
$$

the last inequality by the hypothesis (9.23) on $D F(u)$. Hence the left side of (9.31) is

$$
\begin{equation*}
\leq C(A) \beta \int_{0}^{t} \tau^{\beta-1}\left\|E_{\beta}^{\prime}\left(-\tau^{\beta} A\right)\right\|_{\mathcal{L}\left(L^{2}, L^{6}\right)}\|u(t-\tau)-v(t-\tau)\|_{L^{6}} d \tau \tag{9.34}
\end{equation*}
$$

Via (8.26) or (8.39), plus (9.29), we have

$$
\begin{equation*}
\tau^{\beta-1}\left\|E_{\beta}^{\prime}\left(-\tau^{\beta} A\right)\right\|_{\mathcal{L}\left(L^{2}, L^{6}\right)} \leq C \tau^{-1+(1-\sigma) \beta} \tag{9.35}
\end{equation*}
$$

provided (9.24) holds. Hence (9.34)-(9.35) yield the desired estimate (9.31), and we have the contraction property. We record the result.

Proposition 9.2. Assume M is a compact Riemannian manifold of dimension n, A is given by (9.2), and m satisfies (9.24). Let $F: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ satisfy (9.23). Take $f \in L^{6}(M)$. Then (9.1) has a solution $u \in C\left([0, \delta], L^{6}(M)\right)$ provided $\delta>0$ is sufficiently small.

10. More local existence results

Here we seek other complete metric spaces \mathfrak{X} for which $\Phi: \mathfrak{X} \rightarrow \mathfrak{X}$ is a contraction, given Φ as in (9.5), i.e.,

$$
\begin{equation*}
\Phi u(t)=E \beta\left(-t^{\beta} A\right) f+\beta \int_{0}^{t} \tau^{\beta-1} E_{\beta}^{\prime}\left(-\tau^{\beta} A\right) F(u(t-\tau)) d \tau \tag{10.1}
\end{equation*}
$$

We continue to assume $\beta \in(0,1), A=(-\Delta)^{m / 2}, m \in(0,2]$, and $F: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ satisfies (9.23), i.e.,

$$
\begin{equation*}
|F(u)| \leq K\left(1+|u|^{3}\right), \quad|D F(u)| \leq L\left(1+|u|^{2}\right) \tag{10.2}
\end{equation*}
$$

which holds if F is a cubic polnomial in u. We also continue to assume M is a compact Riemannian manifold of dimension n. Generalizing (9.20)-(9.22), we pick $q \in(1, \infty), a \in(0, \infty)$,

$$
\begin{equation*}
f \in L^{3 q}(M), \tag{10.3}
\end{equation*}
$$

and set
(10.4) $\mathfrak{X}=\left\{u \in C\left(I, L^{3 q}(M)\right): u(0)=f, \sup _{t \in I}\|u(t)-f\|_{L^{3 q}} \leq a\right\}, \quad I=[0, \delta]$,
with $\delta>0$ to be specified.
Parallel to (9.25), since $t \mapsto E_{\beta}\left(-t^{\beta} A\right)$ is strongly continuous on $L^{3 q}(M)$, we can pick $\delta>0$ so small that

$$
\begin{equation*}
t \in(0, \delta] \Longrightarrow\left\|E_{\beta}\left(-t^{\beta} A\right) f-f\right\|_{L^{3 q}} \leq \frac{a}{2} \tag{10.5}
\end{equation*}
$$

To get $\Phi: \mathfrak{X} \rightarrow \mathfrak{X}$, it suffices to show that

$$
\begin{equation*}
t \in I, u \in \mathfrak{X} \Rightarrow \beta \int_{0}^{t} \tau^{\beta-1}\left\|E_{\beta}^{\prime}\left(-\tau^{\beta} A\right) F(u(t-\tau))\right\|_{L^{3 q}} d \tau \leq \frac{a}{2} \tag{10.6}
\end{equation*}
$$

By (10.2),

$$
\begin{equation*}
u \in \mathfrak{X} \Longrightarrow\|F(u(t-\tau))\|_{L^{q}} \leq C(a, K) . \tag{10.7}
\end{equation*}
$$

The estimate (8.39) gives

$$
\begin{equation*}
\tau^{\beta-1}\left\|E_{\beta}^{\prime}\left(-\tau^{\beta} A\right) F(u(t-\tau))\right\|_{H^{\sigma m, q}} \leq C \tau^{-1+(1-\sigma) \beta} \tag{10.8}
\end{equation*}
$$

for $\sigma \in(0,1)$. We seek a condition implying

$$
\begin{equation*}
H^{\sigma m, q}(M) \subset L^{3 q}(M) \tag{10.9}
\end{equation*}
$$

for some $\sigma \in(0,1)$. If $n=\operatorname{dim} M$, Sobolev embedding results imply

$$
\begin{align*}
H^{\sigma m, q}(M) \subset & L^{\infty}(M), \quad \text { for some } \sigma<1, \text { if } m q>n, \\
& L^{n q /(n-\sigma m q)}(M), \text { if } m q \leq n \tag{10.10}
\end{align*}
$$

Thus (10.9) holds provided either $m q>n$ or $m q \leq n$ and $n q /(n-\sigma m q) \geq 3 q$ for some $\sigma \in(0,1)$. Hence (10.9) holds provided

$$
\begin{equation*}
3 q>\frac{2 n}{m} \tag{10.11}
\end{equation*}
$$

As for how this constrains m, recalling that $m \leq 2$, we require

$$
\begin{equation*}
\frac{2 n}{3 q}<m \leq 2 \tag{10.12}
\end{equation*}
$$

This requires $n<3 q$. For $q=2,3 q=6$, this is (9.24). If (10.9) holds, (10.8) yields

$$
\begin{equation*}
\tau^{\beta-1}\left\|E_{\beta}^{\prime}\left(-\tau^{\beta} A\right) F(u(t-\tau))\right\|_{L^{3 q}} \leq C \tau^{-1+(1-\sigma) \beta}, \tag{10.13}
\end{equation*}
$$ and we get (10.6), as long as $\delta>0$ is small enough. Hence $\Phi: \mathfrak{X} \rightarrow \mathfrak{X}$.

We next want to show that Φ is a contraction on \mathfrak{X} if $\delta>0$ is small enough. Parallel to (9.31), this would follow if we could show that, for $u, v \in \mathfrak{X}$,

$$
\begin{gather*}
\beta \int_{0}^{t} \tau^{\beta-1}\left\|E_{\beta}^{\prime}\left(-\tau^{\beta} A\right)[F(u(t-\tau))-F(v(t-\tau))]\right\|_{L^{3 q}} d \tau \tag{10.14}\\
\leq C t^{(1-\sigma) \beta} \sup _{0 \leq \tau \leq t}\|u(\tau)-v(\tau)\|_{L^{3 q}} .
\end{gather*}
$$

To proceed, with notation as in (9.14)-(9.15), and parallel to (9.33), we have, for $t, \tau \in I, u=u(t-\tau), v=v(t-\tau)$, elements of \mathfrak{X},

$$
\begin{align*}
\|F(u)-F(v)\|_{L^{q}} & =\|G(u, v)(u-v)\|_{L^{q}} \\
& \leq\|G(u, v)\|_{L^{3 q / 2}}\|u-v\|_{L^{3 q}} \tag{10.15}\\
& \leq C(a)\|u-v\|_{L^{3 q}}
\end{align*}
$$

the last inequality by the hypothesis (10.2) on $D F(u)$. Hence the left side of (10.14) is

$$
\begin{equation*}
\leq C(a) \beta \int_{0}^{t} \tau^{\beta-1}\left\|E_{\beta}^{\prime}\left(-\tau^{\beta} A\right)\right\|_{\mathcal{L}\left(L^{q}, L^{3 q}\right)}\|u(t-\tau)-v(t-\tau)\|_{L^{3 q}} d \tau \tag{10.16}
\end{equation*}
$$

Via (10.8)-(10.10), we have

$$
\begin{equation*}
\tau^{\beta-1}\left\|E_{\beta}^{\prime}\left(-\tau^{\beta} A\right)\right\|_{\mathcal{L}\left(L^{q}, L^{3 q}\right)} \leq C \tau^{-1+(1-\sigma) \beta}, \tag{10.17}
\end{equation*}
$$

provided (10.12) holds. Hence (10.16)-(10.17) yield the desired estimate (10.14), and we have the contraction property. We record the result.

Proposition 10.1. Assume M is a compact, n-dimensional, Riemannian manifold, $A=(-\Delta)^{m / 2}, f \in L^{3 q}(M)$, and m and q satisfy $q>1$ and (10.12). Let $F: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ satisfy (10.2). Then (9.1) has a solution $u \in C\left([0, \delta], L^{3 q}(M)\right)$ provided $\delta>0$ is small enough.

11. Further variants

Let us write the putative solution of (9.1) as

$$
\begin{equation*}
u(t)=u_{0}(t)+v(t), \quad u_{0}(t)=E_{\beta}\left(-t^{\beta} A\right) f \tag{11.1}
\end{equation*}
$$

Then the integral equation (9.3) is equivalent to

$$
\begin{equation*}
v(t)=\beta \int_{0}^{t} \tau^{\beta-1} E_{\beta}^{\prime}\left(-\tau^{\beta} A\right) F\left(u_{0}(t-\tau)+v(t-\tau)\right) d \tau \tag{11.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\Psi v=v \tag{11.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi v(t)=\beta \int_{0}^{t} \tau^{\beta-1} E_{\beta}^{\prime}\left(-\tau^{\beta} A\right) F\left(u_{0}(t-\tau)+v(t-\tau)\right) d \tau \tag{11.4}
\end{equation*}
$$

Thus we seek a complete metric space \mathfrak{Z} for which

$$
\begin{equation*}
\Psi: \mathfrak{Z} \longrightarrow \mathfrak{Z} \tag{11.5}
\end{equation*}
$$

is a contraction.
For example, picking $q \in(1, \infty), a \in(0, \infty)$, we can take

$$
\begin{equation*}
\mathfrak{Z}=\left\{v \in C\left(I, L^{3 q}(M)\right): v(0)=0, \sup _{t \in I}\|v(t)\|_{L^{3 q}} \leq a\right\}, \quad I=[0, \delta] . \tag{11.6}
\end{equation*}
$$

We assume F satisfies (10.2). We assume $f \in L^{3 q}(M)$, so $u_{0} \in C\left(I, L^{3 q}(M)\right)$. Estimates parallel to those given in $\S 10$ show that if (10.12) holds, then, for $\delta>0$ small enough, (11.5) holds and Ψ is a contraction.

In a search for other candidates for the space \mathfrak{Z}, we investigate the behavior of $v_{1}=\Psi 0$, i.e., of

$$
\begin{equation*}
v_{1}(t)=\beta \int_{0}^{t} \tau^{\beta-1} E_{\beta}^{\prime}\left(-\tau^{\beta} A\right) F\left(u_{0}(t-\tau)\right) d \tau \tag{11.7}
\end{equation*}
$$

To start, let us take

$$
\begin{equation*}
n=\operatorname{dim} M=2, \quad f \in L^{2}(M) . \tag{11.8}
\end{equation*}
$$

Then, for $\sigma \in(0,1]$,

$$
\begin{equation*}
\left\|u_{0}(t-\tau)\right\|_{H^{\sigma m, 2}} \leq C(t-\tau)^{-\sigma \beta} . \tag{11.9}
\end{equation*}
$$

We have

$$
\begin{align*}
H^{\sigma m, 2}(M) \subset & L^{\infty}(M), \text { if } \sigma m>1, \\
& L^{4 /(2-2 \sigma m)}, \text { if } \sigma m<1 . \tag{11.10}
\end{align*}
$$

In particular, $4 /(2-2 \sigma m)=6$ if $\sigma m=2 / 3$, so

$$
\begin{equation*}
\left\|u_{0}(t-\tau)\right\|_{L^{6}} \leq C(t-\tau)^{-\sigma \beta} \text { if } \sigma m \geq \frac{2}{3} \tag{11.11}
\end{equation*}
$$

hence

$$
\begin{equation*}
\left\|F\left(u_{0}(t-\tau)\right)\right\|_{L^{2}} \leq C(t-\tau)^{-3 \sigma \beta} \tag{11.12}
\end{equation*}
$$

for $0<\tau<t \leq T_{0}$, if $\sigma m \geq 2 / 3$, while also $\sigma \leq 1$, i.e., if

$$
\begin{equation*}
\frac{2}{3 m} \leq \sigma \leq 1, \tag{11.13}
\end{equation*}
$$

which is possible provided

$$
\begin{equation*}
\frac{2}{3} \leq m \leq 2 \tag{11.14}
\end{equation*}
$$

In such a case,

$$
\begin{equation*}
\left\|v_{1}(t)\right\|_{L^{2}} \leq C \int_{0}^{t} \tau^{\beta-1}(t-\tau)^{-3 \sigma \beta} d \tau \tag{11.15}
\end{equation*}
$$

which is finite provided

$$
\begin{equation*}
3 \sigma \beta<1 . \tag{11.16}
\end{equation*}
$$

This is consistent with (11.13) if

$$
\begin{equation*}
\frac{2}{m} \beta<1, \quad \text { i.e., } 2 \beta<m, \quad \text { or } \beta<\frac{m}{2} . \tag{11.17}
\end{equation*}
$$

In such a case we can take

$$
\begin{equation*}
\sigma=\frac{2}{3 m}, \quad \text { so } \quad 3 \sigma \beta=\frac{2 \beta}{m}, \tag{11.18}
\end{equation*}
$$

and (11.15) yields

$$
\begin{align*}
\left\|v_{1}(t)\right\|_{L^{2}} & \leq C \int_{0}^{t} \tau^{\beta-1}(t-\tau)^{-2 \beta / m} d \tau \tag{11.19}\\
& =\widetilde{C} t^{-(2-m) \beta / m} .
\end{align*}
$$

In particular,

$$
\begin{equation*}
\left\|v_{1}(t)\right\|_{L^{2}} \leq \widetilde{C} \text { if } m=2 \tag{11.20}
\end{equation*}
$$

So let's assume

$$
\begin{equation*}
n=2, \quad f \in L^{2}(M), \quad m=2, \quad \sigma=\frac{1}{3}, \quad \beta \in(0,1) . \tag{11.21}
\end{equation*}
$$

In such a case, we have the conclusion (11.20). Under the hypotheses of (11.21), let us pick $a, b \in(0, \infty)$ and set

$$
\begin{align*}
\mathfrak{Z}=\left\{v \in C\left(I, L^{2}(M)\right):\right. & v(0)=0,\|v(t)\|_{L^{2}} \leq a \\
& \left.\|v(t)\|_{L^{6}} \leq b t^{-\sigma \beta}, \forall t \in I\right\} \tag{11.22}
\end{align*}
$$

with $I=[0, \delta]$. Then

$$
\begin{align*}
v \in \mathfrak{Z} & \Rightarrow\left\|u_{0}(t-\tau)+v(t-\tau)\right\|_{L^{6}} \leq C(t-\tau)^{-\sigma \beta} \\
& \Rightarrow\left\|F\left(u_{0}(t-\tau)+v(t-\tau)\right)\right\|_{L^{2}} \leq C(t-\tau)^{-3 \sigma \beta} \tag{11.23}\\
& \Rightarrow\|\Psi v(t)\|_{L^{2}} \leq C \int_{0}^{t} \tau^{\beta-1}(t-\tau)^{-3 \sigma \beta} d \tau=\widetilde{C} .
\end{align*}
$$

However, we cannot guarantee that $\widetilde{C} \leq a$, even if we shrink I.
Nevertheless, we proceed to estimate $\|\Psi v(t)\|_{L^{6}}$. We have

$$
\begin{equation*}
\left\|\tau^{\beta-1} E_{\beta}^{\prime}\left(-\tau^{\beta} A\right) F\right\|_{H^{\sigma m, 2}} \leq C \tau^{-1+(1-\sigma) \beta}\|F\|_{L^{2}} \tag{11.24}
\end{equation*}
$$

Hence, from the L^{2} estimate of F in (11.23), if $v \in \mathfrak{Z}$,

$$
\begin{align*}
\tau^{\beta-1} \| E_{\beta}^{\prime}\left(-\tau^{\beta} A\right) & F\left(u_{0}(t-\tau)+v(t-\tau)\right) \|_{H^{\sigma m, 2}} \\
\leq & C \tau^{-1+(1-\sigma) \beta}(t-\tau)^{-3 \sigma \beta} \tag{11.25}
\end{align*}
$$

under hypothesis (11.21), hence

$$
\begin{align*}
\|\Psi v(t)\|_{L^{6}} & \leq C\|\Psi v(t)\|_{H^{\sigma m, 2}} \\
& \leq C \int_{0}^{t} \tau^{-1+(1-\sigma) \beta}(t-\tau)^{-3 \sigma \beta} d \tau \tag{11.26}\\
& =\widetilde{C} t^{-\beta / 3}
\end{align*}
$$

Again we get an estimate of $\widetilde{C} t^{-\sigma \beta}$, since $\sigma=1 / 3$, but we cannot establish that $\widetilde{C} \leq b$. In other words, the hypothesis (11.21) seems to be of "critical" type.

We will try again, with the hypothesis $f \in L^{2}(M)$ replaced by

$$
\begin{equation*}
f \in L^{p}(M), \text { for some } p>2 \tag{11.27}
\end{equation*}
$$

We already know that things work out if
(11.27A) $p=3 q>\frac{2 n}{m}=2$, when $n=m=2$, provided also $q>1$, i.e., $p>3$.

Now we want to take p closer to 2 , when $n=m=2$. We need further estimates on $v_{1}(t)$, in order to set up a replacement for the space (11.22).

To start, we need an estimate on

$$
\begin{equation*}
\left\|u_{0}(t-\tau)\right\|_{L^{3 p}} \tag{11.28}
\end{equation*}
$$

parallel to that in (11.11). Parallel to (11.9), we have

$$
\begin{equation*}
\left\|u_{0}(t-\tau)\right\|_{H^{\sigma m, p}} \leq C(t-\tau)^{-\sigma \beta}, \tag{11.29}
\end{equation*}
$$

and, parallel to (11.10), we have (when $n=2$)

$$
\begin{align*}
H^{\sigma m, p}(M) \subset & L^{\infty}(M), \quad \text { if } \sigma m>\frac{2}{p}, \tag{11.30}\\
& L^{2 p /(2-\sigma m p)}, \text { if } \sigma m<\frac{2}{p} .
\end{align*}
$$

In particular, $2 p /(2-\sigma m p)=3 p$ if $\sigma m=4 / 3 p$, so

$$
\begin{equation*}
\left\|u_{0}(t-\tau)\right\|_{L^{3 p}} \leq C(t-\tau)^{-\sigma \beta} \quad \text { if } \quad \sigma m \geq \frac{4}{3 p} \tag{11.31}
\end{equation*}
$$

hence

$$
\begin{equation*}
\left\|F\left(u_{0}(t-\tau)\right)\right\|_{L^{p}} \leq C(t-\tau)^{-3 \sigma \beta} \tag{11.32}
\end{equation*}
$$

for $0<\tau<t \leq T_{0}$, if $\sigma m \geq 4 / 3 p$, while also $\sigma \leq 1$, i.e., if

$$
\begin{equation*}
\frac{4}{3 p m} \leq \sigma \leq 1 \tag{11.33}
\end{equation*}
$$

or, assuming $m=2$, if

$$
\begin{equation*}
\frac{2}{3 p} \leq \sigma \leq 1 \tag{11.34}
\end{equation*}
$$

which of course is true if $p>2$, so we can take

$$
\begin{equation*}
\sigma=\frac{2}{3 p}, \quad \text { so } \quad 3 \sigma \beta=\frac{2 \beta}{p} \tag{11.35}
\end{equation*}
$$

and we have

$$
\begin{align*}
\left\|v_{1}(t)\right\|_{L^{p}} & \leq C \int_{0}^{t} \tau^{\beta-1}(t-\tau)^{-2 \beta / p} d \tau \tag{11.36}\\
& =\widetilde{C} t^{\beta(1-2 / p)}
\end{align*}
$$

Also (11.32) and the analogue of (11.25) with $H^{\sigma m, 2}$ replaced by $H^{\sigma m, p}$, give

$$
\begin{align*}
\left\|v_{1}(t)\right\|_{H^{\sigma m, p}} & \leq C \int_{0}^{t} \tau^{-1+(1-\sigma) \beta}(t-\tau)^{-2 \beta / p} d \tau \\
& =\widetilde{C} t^{-\beta(8 / 3 p-1)} \tag{11.37}\\
& =\widetilde{C} t^{-\beta(4 \sigma-1)}
\end{align*}
$$

Compare (11.29). Note that $4 \sigma-1<\sigma \Leftrightarrow \sigma<1 / 3$, which by (11.35) holds if $p>2$. Hence $\left\|v_{1}(t)\right\|_{H^{\sigma m, p}}$ has a gentler blow-up as $t \searrow 0$ than $\left\|u_{0}(t)\right\|_{H^{\sigma m, p}}$ does (given $m=2$).

In light of these observations, under hypothesis (11.27), plus

$$
\begin{equation*}
n=m=2, \tag{11.38}
\end{equation*}
$$

and with σ as in (11.35), it is natural to take $a, b \in(0, \infty)$, and set

$$
\begin{align*}
\mathfrak{Z}=\left\{v \in C\left(I, L^{p}(M)\right):\right. & v(0)=0,\|v(t)\|_{L^{p}} \leq a \\
& \left.\|v(t)\|_{L^{3 p}} \leq b t^{-\sigma \beta}, \forall t \in I\right\} \tag{11.39}
\end{align*}
$$

with $I=[0, \delta]$. We desire to show that, for $\delta>0$ small enough, Ψ, given by (11.4), maps \mathfrak{Z} to itself, as a contraction.

To start, under the hypotheses (11.27) and (11.38), and taking σ as in (11.35), we have

$$
\begin{align*}
v \in \mathfrak{Z} & \Rightarrow\left\|u_{0}(t-\tau)+v(t-\tau)\right\|_{L^{3 p}} \leq C(t-\tau)^{-\sigma \beta} \\
& \Rightarrow\left\|F\left(u_{0}(t-\tau)+v(t-\tau)\right)\right\|_{L^{p}} \leq C(t-\tau)^{-3 \sigma \beta} \tag{11.40}\\
& \Rightarrow\|\Psi v(t)\|_{L^{p}} \leq C \int_{0}^{t} \tau^{\beta-1}(t-\tau)^{-2 \beta / p} d \tau=\widetilde{C} t^{\beta(1-2 / p)} .
\end{align*}
$$

We require of δ that

$$
\begin{equation*}
\widetilde{C} \delta^{\beta(1-2 / p)} \leq a, \tag{11.41}
\end{equation*}
$$

which is possible since $p>2$.
Next we estimate $\|\Psi v(t)\|_{H^{\sigma m, p}}$, which leads to an estimate of $\|\Psi v(t)\|_{L^{3 p}}$. We have

$$
\begin{equation*}
\tau^{\beta-1}\left\|E_{\beta}^{\prime}\left(-\tau^{\beta} A\right) F\right\|_{H^{\sigma m, p}} \leq C \tau^{-1+(1-\sigma) \beta}\|F\|_{L^{p}} \tag{11.42}
\end{equation*}
$$

hence, from the L^{p} estimates of F in (11.40), if $v \in \mathfrak{Z}$,

$$
\begin{align*}
\tau^{\beta-1} \| E_{\beta}^{\prime}\left(-\tau^{\beta} A\right) & F\left(u_{0}(t-\tau)+v(t-\tau)\right) \|_{H^{\sigma m, p}} \\
\leq & C \tau^{-1+(1-\sigma) \beta}(t-\tau)^{-3 \sigma \beta} \tag{11.43}
\end{align*}
$$

under hypotheses (11.27) and (11.38). Hence, bringing in (11.35),

$$
\begin{align*}
\|\Psi v(t)\|_{L^{3 p}} & \leq C\|\Psi v(t)\|_{H^{\sigma m, p}} \\
& \leq C \int_{0}^{t} \tau^{-1+(1-\sigma) \beta}(t-\tau)^{-2 \beta / p} d \tau \tag{11.44}\\
& =\widetilde{C} t^{-\beta(4 \sigma-1)}
\end{align*}
$$

parallel to (11.37). We require of δ that

$$
\begin{equation*}
\widetilde{C} \delta^{-\beta(4 \sigma-1)} \leq b \delta^{-\beta \sigma} \tag{11.45}
\end{equation*}
$$

which is possible since $4 \sigma-1<\sigma$. Then $\Psi: \mathfrak{Z} \rightarrow \mathfrak{Z}$.
Similar estimates show that, with δ perhaps further shrunk, Ψ is a contraction on \mathfrak{Z}. We omit the details. We record the resulting existence theorem.
Proposition 11.1. Let M be a compact, 2-dimensional Riemannian manifold, $A=-\Delta$, and $\beta \in(0,1)$. Assume F satisfies (10.2). Assume $f \in L^{p}(M)$ for some $p>2$. Then, for some $\delta>0$, the initial value problem (9.1) has a unique solution $u \in C\left(I, L^{p}(M)\right)$ of the form $u=u_{0}+v$, as in (11.1), such that v belongs to \mathfrak{Z}, given by (11.39), with $\sigma=2 / 3 p$. Furthermore,

$$
\begin{equation*}
\|v(t)\|_{H^{2 \sigma, p}} \leq C t^{-\beta(4 \sigma-1)} . \tag{11.46}
\end{equation*}
$$

Note. For $n=2, m=2$, Proposition 10.1 requires $p=3 q>3$, so Proposition 11.1 is an improvement.

A. Riemann-Liouville fractional integrals and Caputo fractional derivatives

For $\beta>0$, the Riemann-Liouville fractional integral J^{β} is defined by

$$
\begin{equation*}
J^{\beta} f(t)=\frac{1}{\Gamma(\beta)} \int_{0}^{t}(t-\tau)^{\beta-1} f(\tau) d \tau \tag{A.1}
\end{equation*}
$$

for $t \geq 0$, where f is a suitable function on $[0, \infty)$, say continuous on $[0, \infty)$ and polynomially bounded. We mention that

$$
\begin{equation*}
J^{\beta} 1(t)=\frac{1}{\Gamma(\beta+1)} t_{+}^{\beta} \tag{A.2}
\end{equation*}
$$

With the Laplace transform given by

$$
\begin{equation*}
\mathcal{L} f(s)=\int_{0}^{\infty} f(t) e^{-s t} d t, \quad \operatorname{Re} s>0 \tag{A.3}
\end{equation*}
$$

we have

$$
\begin{equation*}
u(s)=\int_{0}^{t} g(t-\tau) f(\tau) d \tau \Longrightarrow \mathcal{L} u(s)=\mathcal{L} g(s) \mathcal{L} f(s) \tag{A.4}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{\beta}(t)=t_{+}^{\beta-1}, \beta>0 \Longrightarrow \mathcal{L} g_{\beta}(s)=\Gamma(\beta) s^{-\beta} . \tag{A.5}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\mathcal{L} J^{\beta} f(s)=s^{-\beta} \mathcal{L} f(s) . \tag{A.6}
\end{equation*}
$$

For $\beta \in(0,1)$, the Riemann-Liouville fractional derivative is given by

$$
\begin{equation*}
{ }^{r} \partial_{t}^{\beta} f=\partial_{t} J^{1-\beta} f \tag{A.7}
\end{equation*}
$$

and the Caputo fractional derivative is given by

$$
\begin{equation*}
{ }^{c} \partial_{t}^{\beta} f=J^{1-\beta} \partial_{t} f \tag{A.8}
\end{equation*}
$$

One has

$$
\begin{equation*}
{ }^{r} \partial_{t}^{\beta} J^{\beta} f=f \text { and }{ }^{c} \partial_{t}^{\beta} J^{\beta} f=f . \tag{A.9}
\end{equation*}
$$

However, ${ }^{r} \partial_{t}^{\beta}$ and ${ }^{c} \partial_{t}^{\beta}$ are not identical. For example, given $\beta \in(0,1)$,

$$
\begin{equation*}
{ }^{c} \partial_{t}^{\beta} 1 \equiv 0, \quad{ }^{r} \partial_{t}^{\beta} 1=\frac{1}{\Gamma(\beta)} t_{+}^{\beta-1} \tag{A.10}
\end{equation*}
$$

We next consider how the Laplace transform interacts with these two fractional derivatives. Note that

$$
\begin{align*}
\mathcal{L} \partial_{t} f(s) & =\int_{0}^{\infty} f^{\prime}(t) e^{-s} d t \tag{A.11}\\
& =s \mathcal{L} f(s)-f(0),
\end{align*}
$$

the last identity by integration by parts. It follows that, for $\beta \subset(0,1)$,

$$
\begin{equation*}
\mathcal{L}^{r} \partial_{t}^{\beta} f(s)=s^{\beta} \mathcal{L} f(s)-J^{1-\beta} f(0) \tag{A.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{L}^{c} \partial_{t}^{\beta} f(s)=s^{\beta} \mathcal{L} f(s)-s^{\beta-1} f(0) \tag{A.13}
\end{equation*}
$$

Consequently, one can apply Laplace transform techniques conveniently to initial value problems for fractional differential equations involving the Caputo fractional derivative ${ }^{c} \partial_{t}^{\beta}$, but not so well for those involving the Riemann-Liouville fractional derivative ${ }^{r} \partial_{t}^{\beta}$.

For application in Appendix C, we compute ${ }^{c} \partial_{t}^{\beta} t^{\gamma}$, for $\beta \in(0,1), \gamma \geq \beta$. We have

$$
\begin{align*}
{ }^{c} \partial_{t}^{\beta} t^{\gamma} & =J^{1-\beta} \partial_{t} t^{\gamma} \\
& =\gamma J^{1-\beta} t^{\gamma-1} \tag{A.14}\\
& =\gamma \Gamma(\gamma) J^{1-\beta} J^{\gamma-1} 1(t),
\end{align*}
$$

the last identity by (A.2). Now (A.6) implies $J^{1-\beta} J^{\gamma-1}=J^{\gamma-\beta}$, so

$$
\begin{align*}
{ }^{c} \partial_{t}^{\beta} t^{\gamma} & =\gamma \Gamma(\gamma) J^{\gamma-\beta} 1(t) \\
& =\frac{\Gamma(\gamma+1)}{\Gamma(\gamma-\beta+1)} t^{\gamma-\beta}, \tag{A.15}
\end{align*}
$$

invoking (A.2) again. In particular, for $k \in \mathbb{N}$,

$$
\begin{equation*}
{ }^{c} \partial_{t}^{\beta} t^{k \beta}=\frac{\Gamma(k \beta+1)}{\Gamma(k \beta-\beta+1)} t^{(k-1) \beta} . \tag{A.16}
\end{equation*}
$$

(Recall (A.10) for the case $k=0$.)
Remark. One can extend the conclusion of (A.15) to $\gamma>0$ by a direct computation of $J^{1-\beta} t^{\gamma-1}$, using (A.1).

B. Finite-dimensional linear fractional differential systems

Here we briefly discuss linear systems

$$
\begin{equation*}
{ }^{c} \partial_{t}^{\beta} u=L u, \quad u(0)=f, \tag{B.1}
\end{equation*}
$$

when L is not necessarily a negative self adjoint operator on a Hilbert space, but rather

$$
\begin{equation*}
f \in V, \quad L \in \operatorname{End}(V) \tag{B.2}
\end{equation*}
$$

and V is a complex vector space of dimension $k<\infty$. For more details, see [D].
Parallel to (3.4), the solution to (B.1) is given by

$$
\begin{equation*}
u(t)=E_{\beta}\left(t^{\beta} L\right) f \tag{B.3}
\end{equation*}
$$

Now we can write

$$
\begin{equation*}
V=\bigoplus_{j} V_{j} \tag{B.4}
\end{equation*}
$$

where, for λ_{j} in the spectrum of L,

$$
\begin{equation*}
\left.L\right|_{V_{j}}=\lambda_{j} I+N_{j} \tag{B.5}
\end{equation*}
$$

with N_{j} nilpotent on V_{j}. Then, in the obvious sense,

$$
\begin{equation*}
E_{\beta}\left(t^{\beta} L\right)=\bigoplus_{j} E_{\beta}\left(t^{\beta}\left(\lambda_{j} I+N_{j}\right)\right) \tag{B.6}
\end{equation*}
$$

Furthermore, standard holomorphic functional calculus gives, for nilpotent N and $\lambda \in \mathbb{C}$,

$$
\begin{equation*}
E_{\beta}(\lambda I+N)=\sum_{k \geq 0} \frac{1}{k!} E_{\beta}^{(k)}(\lambda) N^{k}, \tag{B.7}
\end{equation*}
$$

the sum being finite if N is nilpotent. Hence

$$
\begin{equation*}
E_{\beta}\left(t^{\beta}\left(\lambda_{j} I+N_{j}\right)\right)=\sum_{k \geq 0} \frac{1}{k!} E_{\beta}^{(k)}\left(t^{\beta} \lambda_{j}\right) t^{k \beta} N_{j}^{k} . \tag{B.8}
\end{equation*}
$$

Note that (8.20) extends to

$$
\begin{equation*}
E_{\beta}^{(k)}(-s) \sim a_{\beta}^{k} s^{-k-1}+\cdots, \quad s \nearrow+\infty . \tag{B.9}
\end{equation*}
$$

This implies decay of (B.8) as $t \rightarrow+\infty$, when $\lambda_{j}<0$, though only at a rate $O\left(t^{-\beta}\right)$, when $\beta \in(0,1)$, not at an exponential rate, as for $\beta=1$.

To go further, one can extend the scope of (B.9), by extending that of (8.15)(8.19). With

$$
\begin{equation*}
\eta_{\beta}(\xi)=\frac{(i \xi)^{\beta-1}}{(i \xi)^{\beta}+1}, \tag{B.10}
\end{equation*}
$$

as in (8.15), we have, up to a constant factor,

$$
\begin{equation*}
\hat{\eta}_{\beta}(t)=e_{\beta}(t) . \tag{B.11}
\end{equation*}
$$

Analytic continuation arguments give

$$
\begin{equation*}
E_{\beta}^{(k)}(z) \sim a_{\beta}^{k}(-z)^{-k-1}+\cdots, \quad \text { as }|z| \rightarrow \infty, \quad \text { for }|\operatorname{Arg} z|>\frac{\pi \beta}{2} \tag{B.12}
\end{equation*}
$$

See [D]. Hence

$$
\begin{equation*}
E_{\beta}\left(t^{\beta}\left(\lambda_{j} I+N_{j}\right)\right) \longrightarrow 0 \text { as } t \nearrow+\infty, \tag{B.13}
\end{equation*}
$$

provided

$$
\begin{equation*}
\left|\operatorname{Arg} \lambda_{j}\right|>\frac{\pi \beta}{2} \tag{B.14}
\end{equation*}
$$

C. Derivation of power series for $E_{\beta}(t)$

We approach the solution to

$$
\begin{equation*}
{ }^{c} \partial_{t}^{\beta} u=a u, \quad u(0)=1, \tag{C.1}
\end{equation*}
$$

given $\beta \in(0,1), a \in \mathbb{C}$, taking a cue from (A.16), which suggests trying

$$
\begin{equation*}
u(t)=\sum_{k \geq 0} c_{k} t^{k \beta} \tag{C.2}
\end{equation*}
$$

In fact, granted appropriate convergence, applying (A.16) to (C.2) yields

$$
\begin{align*}
{ }^{c} \partial_{t}^{\beta} u & =\sum_{k \geq 1} \frac{\Gamma(k \beta+1)}{\Gamma(k \beta-\beta+1)} c_{k} t^{(k-1) \beta} \\
& =\sum_{\ell \geq 0} \frac{\Gamma(\ell \beta+\beta+1)}{\Gamma(\ell \beta+1)} c_{\ell+1} t^{\ell \beta} . \tag{C.3}
\end{align*}
$$

Comparison with the series for $a u$, given by multiplying (C.2) by a, yields

$$
\begin{equation*}
c_{\ell+1}=a \frac{\Gamma(\ell \beta+1)}{\Gamma(\ell \beta+\beta+1)} c_{\ell} . \tag{C.4}
\end{equation*}
$$

Given $c_{0}=1$, we have

$$
\begin{equation*}
c_{1}=\frac{a}{\Gamma(\beta+1)}, \quad c_{2}=\frac{a^{2}}{\Gamma(\beta+1)} \frac{\Gamma(\beta+1)}{\Gamma(2 \beta+1)}, \ldots \tag{C.5}
\end{equation*}
$$

and inductively,

$$
\begin{equation*}
c_{k}=\frac{a^{k}}{\Gamma(k \beta+1)} . \tag{C.6}
\end{equation*}
$$

Hence we arrive at

$$
\begin{equation*}
u(t)=E_{\beta}\left(t^{\beta} a\right) \tag{C.7}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{\beta}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(k \beta+1)}, \tag{C.8}
\end{equation*}
$$

as the solution to (C.1).
To go backwards, note that, for $\beta \in(0,1)$,

$$
\begin{align*}
J^{\beta c} \partial_{t}^{\beta} u(t) & =J \partial_{t} u(t) \tag{C.9}\\
& =u(t)-u(0),
\end{align*}
$$

so (C.1) implies
(C.10)

$$
u(t)=1+a J^{\beta} u(t),
$$

and in fact, by (A.9)-(A.10), (C.1) and (C.10) are equivalent. This suggests another approach. Write (C.10) as

$$
\begin{equation*}
\left(I-a J^{\beta}\right) u(t)=1, \tag{C.11}
\end{equation*}
$$

and then

$$
\begin{equation*}
u(t)=\sum_{k \geq 0} a^{k} J^{k \beta} 1(t) \tag{C.12}
\end{equation*}
$$

which via (A.2) again leads to (C.7)-(C.8).

References

[CCL] D. del-Castillo-Negrete, B. Carreras, and V. Lynch, Non-diffusive transport in plasma turbulence: a fractional diffusion approach, Preprint, 2004.
[CCL2] D. del-Castillo-Negrete, B. Carreras, and V. Lynch, Fractional diffusion in plasma turbulence, Physics of Plasmas, to appear.
[CCL3] D. del-Castillo-Negrete, B. Carreras, and V. Lynch, Front dynamics in reaction-diffusion equations with Levy flights: a fractional diffusion approach, Phys. Rev. Lett. 91 (2003).
[D] K. Diethelm, The Analysis of Fractional Differential Equations, LNM \#2004, Springer-Verlag, New York, 2010.
[J] N. Jacob, Pseudodifferential Operators and Markov Processes, Vol. 1, Imperial College Press, London, 2001.
[LCCFH] V. Lynch, B. Carreras, D. del-Castillo-Negrete, K. Ferreira-Mejias, and H. Hicks, Numerical methods for the solution of partial differential equations of fractional order, J. Comp. Phys. 192 (2003), 406-421.
[MPG] F. Mainardi, P. Paradisi, and R. Gorenflo, Probability distributions generated by fractional diffusion equations, http://arxiv.org/abs/0704.0320.
[P] H. Pollard, The representation of $\exp \left(-x^{\lambda}\right)$ as a Laplace integral, Bull. AMS 52 (1946), 908-910.
[ST] G. Samorodnitsky and M. Taqqu, Stable Non-Gaussian Random Processes, Chapman and Hall, New York, 1994.
[T] M. Taylor, Partial Differential Equations, Vols. 1-3, Springer-Verlag, New York, 1996.
[T2] M. Taylor, Pseudodifferential Operators, Princeton Univ. Press, Princeton NJ, 1981.
[T3] M. Taylor, Levy Processes, http://www.math.unc.edu/Faculty/met/levy.pdf.
[Y] K. Yosida, Functional Analysis, Springer-Verlag, Berlin, 1965.

