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Abstract. The presence of a noncommutative finite group G of symmetries of an
elliptic, self-adjoint differential operator L, with discrete spectrum, can force the
existence of an infinite number of multiple eigenvalues of L. In §1 we show that
such a phenomenon occurs rather generally, due to the fact that some irreducible
representation ρ of G of degree > 1 must be contained in infinitely many eigenspaces
of L. In §2 we show that, under mild assumptions, the relative frequency of oc-
currence of each irreducible representation ρ of G in the sum of all the eigenspaces
with eigenvalues ≤ R tends as R → ∞ to a limit equal to the relative frequency
that ρ occurs in the regular representation of G. In §3 we study an example where
the multiplicities can get arbitrarily large.

1. Inevitability of multiple eigenvalues

Let G be a finite group of measure-preserving transformations of a non-atomic,
σ-finite measure space (X,B, µ). Thus G has a unitary representation on H =
L2(X, µ), given by U(g)f(x) = f(g−1x). We make the hypothesis that

(1.1) U : G −→ U(H) is injective.

Our first result is the following.

Proposition 1.1. Let K be a compact self-adjoint operator on H = L2(X, µ).
Assume also that K is injective. Assume G is noncommutative, and that (1.1)
holds. If K commutes with U(g) for all g ∈ G, then K has infinitely many multiple
eigenvalues.

Proof. As a preliminary comment, we note that, if H0 is the closed linear span of
all the 1-dimensional eigenspaces of K, then G acts on H0, and the restriction of
U, given by V (g) = U(g)

∣∣
H0

, has the property that G/ker V is commutative. Thus
H0 cannot equal H, since then (1.1) would imply G is commutative. The content of
the proposition is that the orthogonal complement H1 of H has infinite dimension.

To see this, we first note that there is an irreducible representation ρ of G, on a
space Vρ of dimension greater than 1, such that ρ is contained in U. This follows
by the same sort of argument as above; if every irreducible representation of G
contained in U were one-dimensional, then G would act as a commutative group of
transformations of H, and this contradicts our hypotheses.
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Now, given such ρ, consider the orthogonal projection Pρ of H onto the subspace
on which G acts as a sum of copies of ρ; it is given by

(1.2) Pρ =
d(ρ)
o(G)

∑

g∈G

χρ(g)U(g),

where χρ(g) = Tr ρ(g) and d(ρ) = dim Vρ. In other words,

(1.3) Pρf(x) =
d(ρ)
o(G)

∑

g∈G

χρ(g) f(g−1x).

We know that Pρ 6= 0. The proof will be complete when we show that the rank of
Pρ is infinite, since no eigenspace of K can contain infinitely many copies of ρ.

Now, if Pρ has finite rank, it would be a Hilbert-Schmidt operator, so there
would exist ϕ ∈ L2(X ×X) such that

(1.4) Pρf(x) =
∫

X

ϕ(x, y)f(y) dµ(y).

However, as long as Pρ 6= 0, (1.3) and (1.4) are incompatible if X has no atoms. In
fact, we see that, for any A ∈ B, the set

Ã = {x ∈ X : not ϕ(x, y) = 0 a.e. y ∈ A}

satisfies

(1.5) µ(Ã) ≤ o(G) µ(A).

If X has no atoms, this implies ϕ = 0 a.e.

Example 1. Let X be the circle S1 with its standard arc-length measure. Let
V ∈ C(S1) be real valued. Then the differential operator

(1.6) L =
d2

dθ2
− V (θ)

has compact resolvent. Take K = (L− λ)−1 for some sufficiently large λ ∈ (0,∞).
We deduce that:

Corollary 1.2. If V (θ) is invariant under a rotation through 2π/`, for some ` ≥ 3,
and also invariant under a reflection, then L has infinitely many double eigenvalues.

Of course, each eigenspace of L has dimension 1 or 2. The argument just re-
counted arose in a conversation of the author and E. Trubowitz, in 1975.
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Example 2. Let X be an equilateral triangle in the plane. Consider the Laplace
operator ∆ on X, with the Dirichlet (or Neumann) boundary condition. Then ∆ is
invariant under the group of isometries of X, a group isomorphic to S3. It follows
that ∆ has infinitely many multiple eigenvalues.

M. Pinsky [P] has shown that, in this case, ∆ has eigenspaces of arbitrarily large
dimension. We have a similar situation when X is a square. The number theoretic
explanation that ∆ has eigenspaces of arbitrarily high dimension is well known in
that case.

Note that Example 2 can be extended to every regular polygon in R2, and also
to every regular polyhedron in R3. I do not know if ∆ has eigenspaces of arbitrarily
high dimension in all these cases.

There are other variations of Example 2, to which Proposition 1.1 applies. For
example, X cound be a wriggly perturbation of an equilateral triangle, still having
S3 as a symmetry group.

To take a variation of Example 1, consider the action of S5 on R3, as the group
of isometries of the regular icosahedron. This also provides a group of isometries
of the unit sphere S2. One can then consider

(1.7) L = ∆− V,

where V ∈ C(S2) is real valued and invariant under this action of S5.

2. Asymptotic density

Here we will specialize, as follows. We take X to be Ω, an open subset of some
smooth Riemannian manifold M , such that Ω is compact. We make the following
geometrical hypothesis on the action of G on Ω, which implies (1.1):

(2.1) g 6= e =⇒ vol {x ∈ Ω : gx = x} = 0.

We suppose L is a strongly elliptic, second order, negative semidefinite, differential
operator on Ω, and that the action of U on L2(Ω) commutes with the semigroup
etL. Assume either that L has the Dirichlet boundary condition, or that it has some
other coercive boundary condition, such as the Neumann boundary condition, and
∂Ω is sufficiently regular, so that the standard asymptotic analysis of the integral
kernel p(t, x, y) of etL is valid.

In such a case, etL is trace class for each t > 0. For each irreducible representation
ρ of G, the operator Pρ given by (1.2) commutes with etL, and we have the following
two identities. On the one hand,

(2.2) Tr Pρe
tL =

∑
(dim Eρ,λ)e−tλ,
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where the sum is over λ ∈ spec(−L) and Eρ,λ is the subspace of the λ-eigenspace
Eλ of −L on which U acts as a sum of copies of ρ. On the other hand, by (1.3),

(2.3) Tr Pρe
tL =

d(ρ)
o(G)

∑

g∈G

χρ(g)
∫

Ω

p(t, g−1x, x) dV (x).

The asymptotic analysis of p(t, x, y) alluded to above implies

(2.4)
∫

Ω

p(t, x, x) dV (x) = (vol Ω)(4πt)−n/2 + o(t−n/2),

as t ↘ 0. On the other hand, the behavior of p(t, x, y) off the diagonal yields the
following, in cases where (2.1) holds:

(2.5) g 6= e =⇒
∫

Ω

p(t, g−1x, x) dV (x) = o(t−n/2).

Hence, under these hypotheses, we have

(2.6) Tr Pρe
tL =

d(ρ)2

o(G)
(vol Ω)(4πt)−n/2 + o(t−n/2), t ↘ 0.

We are ready to prove the following.

Proposition 2.1. For R ∈ (0,∞), set

(2.7) FR =
⊕

λ≤R

Eλ, Fρ,R =
⊕

λ≤R

Eρ,λ.

Then, for each irreducible representation ρ of G,

(2.8) lim
R→∞

dim Fρ,R

dim FR
=

d(ρ)2

o(G)
.

Proof. The asymptotic behavior

(2.9) dim FR =
vol Ω

Γ(n
2 + 1)(4π)n/2

Rn/2 + o(Rn/2), R →∞,

follows from (2.4), via a well known Tauberian argument. The same argument
applied to (2.6) yields

(2.10) dim Fρ,R =
d(ρ)2

o(G)
vol Ω

Γ(n
2 + 1)(4π)n/2

Rn/2 + o(Rn/2), R →∞,
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and then (2.8) follows.

Note that Proposition 2.1 applies to all the examples mentioned in §1.
Regarding the right side of (2.8), we note that the subspace of `2(G) on which

the regular reprresentation of G acts like copies of ρ is a space of dimension d(ρ)2.

3. D4 acting on T2: high multiplicities

The dihedral group D4 acts as a group of isometries of T2 = R2/(2πZ2), hence
as a unitary group on L2(T2), leaving invariant each eigenspace of the Laplace
operator ∆.

Proposition 3.1. Each irreducible representation ρ of D4 has the property that
there are eigenspaces of ∆ containing arbitrarily many copies of ρ.

To see this, first recall one way of showing that there are eigenspaces of ∆ of
arbitrarily high dimension. Namely,

(3.1) Spec(−∆) = {j2 + k2 : j, k ∈ Z},

and if ν = j2 + k2, the dimension of the ν-eigenspace of −∆ is equal to the number
of pairs (j, k) ∈ Z× Z such that j2 + k2 = ν. Now, number theoretical constraints
imply that the set of sums of two squares has mean density zero in Z+. On the
other hand, the sum of the dimensions of the ν-eigenspaces of −∆, for ν ≤ R, which
is the number of integer lattice points within a disk of radius

√
R, behaves like πR

as R →∞. It follows that some eigenspaces must have arbitrarily large dimension.
Now, by Proposition 2.1, the same argument extends to the parts of the eigenspaces

of ∆ on which D4 acts like copies of ρ, so the proposition follows.


