Multiple Eigenvalues of Operators with Noncommutative Symmetry Groups

Michael E. Taylor

Abstract

The presence of a noncommutative finite group G of symmetries of an elliptic, self-adjoint differential operator L, with discrete spectrum, can force the existence of an infinite number of multiple eigenvalues of L. In $\S 1$ we show that such a phenomenon occurs rather generally, due to the fact that some irreducible representation ρ of G of degree >1 must be contained in infinitely many eigenspaces of L. In $\S 2$ we show that, under mild assumptions, the relative frequency of occurrence of each irreducible representation ρ of G in the sum of all the eigenspaces with eigenvalues $\leq R$ tends as $R \rightarrow \infty$ to a limit equal to the relative frequency that ρ occurs in the regular representation of G. In $\S 3$ we study an example where the multiplicities can get arbitrarily large.

1. Inevitability of multiple eigenvalues

Let G be a finite group of measure-preserving transformations of a non-atomic, σ-finite measure space (X, \mathcal{B}, μ). Thus G has a unitary representation on $H=$ $L^{2}(X, \mu)$, given by $U(g) f(x)=f\left(g^{-1} x\right)$. We make the hypothesis that

$$
\begin{equation*}
U: G \longrightarrow \mathcal{U}(H) \text { is injective. } \tag{1.1}
\end{equation*}
$$

Our first result is the following.
Proposition 1.1. Let K be a compact self-adjoint operator on $H=L^{2}(X, \mu)$. Assume also that K is injective. Assume G is noncommutative, and that (1.1) holds. If K commutes with $U(g)$ for all $g \in G$, then K has infinitely many multiple eigenvalues.

Proof. As a preliminary comment, we note that, if H_{0} is the closed linear span of all the 1-dimensional eigenspaces of K, then G acts on H_{0}, and the restriction of U, given by $V(g)=\left.U(g)\right|_{H_{0}}$, has the property that $G / \operatorname{ker} V$ is commutative. Thus H_{0} cannot equal H, since then (1.1) would imply G is commutative. The content of the proposition is that the orthogonal complement H_{1} of H has infinite dimension.

To see this, we first note that there is an irreducible representation ρ of G, on a space V_{ρ} of dimension greater than 1 , such that ρ is contained in U. This follows by the same sort of argument as above; if every irreducible representation of G contained in U were one-dimensional, then G would act as a commutative group of transformations of H, and this contradicts our hypotheses.

Now, given such ρ, consider the orthogonal projection P_{ρ} of H onto the subspace on which G acts as a sum of copies of ρ; it is given by

$$
\begin{equation*}
P_{\rho}=\frac{d(\rho)}{o(G)} \sum_{g \in G} \overline{\chi_{\rho}(g)} U(g), \tag{1.2}
\end{equation*}
$$

where $\chi_{\rho}(g)=\operatorname{Tr} \rho(g)$ and $d(\rho)=\operatorname{dim} V_{\rho}$. In other words,

$$
\begin{equation*}
P_{\rho} f(x)=\frac{d(\rho)}{o(G)} \sum_{g \in G} \overline{\chi_{\rho}(g)} f\left(g^{-1} x\right) \tag{1.3}
\end{equation*}
$$

We know that $P_{\rho} \neq 0$. The proof will be complete when we show that the rank of P_{ρ} is infinite, since no eigenspace of K can contain infinitely many copies of ρ.

Now, if P_{ρ} has finite rank, it would be a Hilbert-Schmidt operator, so there would exist $\varphi \in L^{2}(X \times X)$ such that

$$
\begin{equation*}
P_{\rho} f(x)=\int_{X} \varphi(x, y) f(y) d \mu(y) \tag{1.4}
\end{equation*}
$$

However, as long as $P_{\rho} \neq 0,(1.3)$ and (1.4) are incompatible if X has no atoms. In fact, we see that, for any $A \in \mathcal{B}$, the set

$$
\widetilde{A}=\{x \in X: \operatorname{not} \varphi(x, y)=0 \text { a.e. } y \in A\}
$$

satisfies

$$
\begin{equation*}
\mu(\widetilde{A}) \leq o(G) \mu(A) \tag{1.5}
\end{equation*}
$$

If X has no atoms, this implies $\varphi=0$ a.e.

Example 1. Let X be the circle S^{1} with its standard arc-length measure. Let $V \in C\left(S^{1}\right)$ be real valued. Then the differential operator

$$
\begin{equation*}
L=\frac{d^{2}}{d \theta^{2}}-V(\theta) \tag{1.6}
\end{equation*}
$$

has compact resolvent. Take $K=(L-\lambda)^{-1}$ for some sufficiently large $\lambda \in(0, \infty)$. We deduce that:

Corollary 1.2. If $V(\theta)$ is invariant under a rotation through $2 \pi / \ell$, for some $\ell \geq 3$, and also invariant under a reflection, then L has infinitely many double eigenvalues.

Of course, each eigenspace of L has dimension 1 or 2 . The argument just recounted arose in a conversation of the author and E. Trubowitz, in 1975.

Example 2. Let X be an equilateral triangle in the plane. Consider the Laplace operator Δ on X, with the Dirichlet (or Neumann) boundary condition. Then Δ is invariant under the group of isometries of X, a group isomorphic to S_{3}. It follows that Δ has infinitely many multiple eigenvalues.
M. Pinsky $[\mathrm{P}]$ has shown that, in this case, Δ has eigenspaces of arbitrarily large dimension. We have a similar situation when X is a square. The number theoretic explanation that Δ has eigenspaces of arbitrarily high dimension is well known in that case.

Note that Example 2 can be extended to every regular polygon in \mathbb{R}^{2}, and also to every regular polyhedron in \mathbb{R}^{3}. I do not know if Δ has eigenspaces of arbitrarily high dimension in all these cases.

There are other variations of Example 2, to which Proposition 1.1 applies. For example, X cound be a wriggly perturbation of an equilateral triangle, still having S_{3} as a symmetry group.

To take a variation of Example 1, consider the action of S_{5} on \mathbb{R}^{3}, as the group of isometries of the regular icosahedron. This also provides a group of isometries of the unit sphere S^{2}. One can then consider

$$
\begin{equation*}
L=\Delta-V \tag{1.7}
\end{equation*}
$$

where $V \in C\left(S^{2}\right)$ is real valued and invariant under this action of S_{5}.

2. Asymptotic density

Here we will specialize, as follows. We take X to be Ω, an open subset of some smooth Riemannian manifold M, such that $\bar{\Omega}$ is compact. We make the following geometrical hypothesis on the action of G on Ω, which implies (1.1):

$$
\begin{equation*}
g \neq e \Longrightarrow \operatorname{vol}\{x \in \Omega: g x=x\}=0 . \tag{2.1}
\end{equation*}
$$

We suppose L is a strongly elliptic, second order, negative semidefinite, differential operator on Ω, and that the action of U on $L^{2}(\Omega)$ commutes with the semigroup $e^{t L}$. Assume either that L has the Dirichlet boundary condition, or that it has some other coercive boundary condition, such as the Neumann boundary condition, and $\partial \Omega$ is sufficiently regular, so that the standard asymptotic analysis of the integral kernel $p(t, x, y)$ of $e^{t L}$ is valid.

In such a case, $e^{t L}$ is trace class for each $t>0$. For each irreducible representation ρ of G, the operator P_{ρ} given by (1.2) commutes with $e^{t L}$, and we have the following two identities. On the one hand,

$$
\begin{equation*}
\operatorname{Tr} P_{\rho} e^{t L}=\sum\left(\operatorname{dim} E_{\rho, \lambda}\right) e^{-t \lambda} \tag{2.2}
\end{equation*}
$$

where the sum is over $\lambda \in \operatorname{spec}(-L)$ and $E_{\rho, \lambda}$ is the subspace of the λ-eigenspace E_{λ} of $-L$ on which U acts as a sum of copies of ρ. On the other hand, by (1.3),

$$
\begin{equation*}
\operatorname{Tr} P_{\rho} e^{t L}=\frac{d(\rho)}{o(G)} \sum_{g \in G} \overline{\chi_{\rho}(g)} \int_{\Omega} p\left(t, g^{-1} x, x\right) d V(x) . \tag{2.3}
\end{equation*}
$$

The asymptotic analysis of $p(t, x, y)$ alluded to above implies

$$
\begin{equation*}
\int_{\Omega} p(t, x, x) d V(x)=(\operatorname{vol} \Omega)(4 \pi t)^{-n / 2}+o\left(t^{-n / 2}\right) \tag{2.4}
\end{equation*}
$$

as $t \searrow 0$. On the other hand, the behavior of $p(t, x, y)$ off the diagonal yields the following, in cases where (2.1) holds:

$$
\begin{equation*}
g \neq e \Longrightarrow \int_{\Omega} p\left(t, g^{-1} x, x\right) d V(x)=o\left(t^{-n / 2}\right) \tag{2.5}
\end{equation*}
$$

Hence, under these hypotheses, we have

$$
\begin{equation*}
\operatorname{Tr} P_{\rho} e^{t L}=\frac{d(\rho)^{2}}{o(G)}(\operatorname{vol} \Omega)(4 \pi t)^{-n / 2}+o\left(t^{-n / 2}\right), \quad t \searrow 0 \tag{2.6}
\end{equation*}
$$

We are ready to prove the following.
Proposition 2.1. For $R \in(0, \infty)$, set

$$
\begin{equation*}
F_{R}=\bigoplus_{\lambda \leq R} E_{\lambda}, \quad F_{\rho, R}=\bigoplus_{\lambda \leq R} E_{\rho, \lambda} . \tag{2.7}
\end{equation*}
$$

Then, for each irreducible representation ρ of G,

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \frac{\operatorname{dim} F_{\rho, R}}{\operatorname{dim} F_{R}}=\frac{d(\rho)^{2}}{o(G)} . \tag{2.8}
\end{equation*}
$$

Proof. The asymptotic behavior

$$
\begin{equation*}
\operatorname{dim} F_{R}=\frac{\operatorname{vol} \Omega}{\Gamma\left(\frac{n}{2}+1\right)(4 \pi)^{n / 2}} R^{n / 2}+o\left(R^{n / 2}\right), \quad R \rightarrow \infty \tag{2.9}
\end{equation*}
$$

follows from (2.4), via a well known Tauberian argument. The same argument applied to (2.6) yields

$$
\begin{equation*}
\operatorname{dim} F_{\rho, R}=\frac{d(\rho)^{2}}{o(G)} \frac{\operatorname{vol} \Omega}{\Gamma\left(\frac{n}{2}+1\right)(4 \pi)^{n / 2}} R^{n / 2}+o\left(R^{n / 2}\right), \quad R \rightarrow \infty \tag{2.10}
\end{equation*}
$$

and then (2.8) follows.
Note that Proposition 2.1 applies to all the examples mentioned in $\S 1$.
Regarding the right side of (2.8), we note that the subspace of $\ell^{2}(G)$ on which the regular reprresentation of G acts like copies of ρ is a space of dimension $d(\rho)^{2}$.

3. D_{4} acting on \mathbb{T}^{2} : high multiplicities

The dihedral group D_{4} acts as a group of isometries of $\mathbb{T}^{2}=\mathbb{R}^{2} /\left(2 \pi \mathbb{Z}^{2}\right)$, hence as a unitary group on $L^{2}\left(\mathbb{T}^{2}\right)$, leaving invariant each eigenspace of the Laplace operator Δ.

Proposition 3.1. Each irreducible representation ρ of D_{4} has the property that there are eigenspaces of Δ containing arbitrarily many copies of ρ.

To see this, first recall one way of showing that there are eigenspaces of Δ of arbitrarily high dimension. Namely,

$$
\begin{equation*}
\operatorname{Spec}(-\Delta)=\left\{j^{2}+k^{2}: j, k \in \mathbb{Z}\right\} \tag{3.1}
\end{equation*}
$$

and if $\nu=j^{2}+k^{2}$, the dimension of the ν-eigenspace of $-\Delta$ is equal to the number of pairs $(j, k) \in \mathbb{Z} \times \mathbb{Z}$ such that $j^{2}+k^{2}=\nu$. Now, number theoretical constraints imply that the set of sums of two squares has mean density zero in \mathbb{Z}^{+}. On the other hand, the sum of the dimensions of the ν-eigenspaces of $-\Delta$, for $\nu \leq R$, which is the number of integer lattice points within a disk of radius \sqrt{R}, behaves like πR as $R \rightarrow \infty$. It follows that some eigenspaces must have arbitrarily large dimension.

Now, by Proposition 2.1, the same argument extends to the parts of the eigenspaces of Δ on which D_{4} acts like copies of ρ, so the proposition follows.

