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ABSTRACT. The presence of a noncommutative finite group G of symmetries of an
elliptic, self-adjoint differential operator L, with discrete spectrum, can force the
existence of an infinite number of multiple eigenvalues of L. In §1 we show that
such a phenomenon occurs rather generally, due to the fact that some irreducible
representation p of G of degree > 1 must be contained in infinitely many eigenspaces
of L. In §2 we show that, under mild assumptions, the relative frequency of oc-
currence of each irreducible representation p of G in the sum of all the eigenspaces
with eigenvalues < R tends as R — oo to a limit equal to the relative frequency
that p occurs in the regular representation of G. In §3 we study an example where
the multiplicities can get arbitrarily large.

1. Inevitability of multiple eigenvalues

Let G be a finite group of measure-preserving transformations of a non-atomic,
o-finite measure space (X,B,u). Thus G has a unitary representation on H =
L?(X,p), given by U(g)f(z) = f(g~'z). We make the hypothesis that

(1.1) U:G— U(H) is injective.

Our first result is the following.

Proposition 1.1. Let K be a compact self-adjoint operator on H = L*(X, ).
Assume also that K is injective. Assume G is noncommutative, and that (1.1)
holds. If K commutes with U(g) for all g € G, then K has infinitely many multiple
ergenvalues.

Proof. As a preliminary comment, we note that, if Hy is the closed linear span of
all the 1-dimensional eigenspaces of K, then G acts on Hy, and the restriction of
U, given by V(g) = U(g){HO, has the property that G/ker V' is commutative. Thus
Hj cannot equal H, since then (1.1) would imply G is commutative. The content of
the proposition is that the orthogonal complement H; of H has infinite dimension.

To see this, we first note that there is an irreducible representation p of GG, on a
space V, of dimension greater than 1, such that p is contained in U. This follows
by the same sort of argument as above; if every irreducible representation of GG
contained in U were one-dimensional, then G would act as a commutative group of

transformations of H, and this contradicts our hypotheses.
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Now, given such p, consider the orthogonal projection P, of H onto the subspace
on which G acts as a sum of copies of p; it is given by

(1.2) zz:%%}:EQv@»
geG

where x,(g) = Tr p(g) and d(p) = dim V. In other words,
(13) &ﬂw=§%;;26w@*m

We know that P, # 0. The proof will be complete when we show that the rank of
P, is infinite, since no eigenspace of K can contain infinitely many copies of p.

Now, if P, has finite rank, it would be a Hilbert-Schmidt operator, so there
would exist ¢ € L?(X x X) such that

(1.4) aﬂm=/¢uwﬁ@dmw
X

However, as long as P, # 0, (1.3) and (1.4) are incompatible if X has no atoms. In
fact, we see that, for any A € B, the set

A={ze X :not p(z,y) =0aec. ye A}
satisfies
(1.5) p(A) < o(G) p(A).

If X has no atoms, this implies ¢ = 0 a.e.

EXAMPLE 1. Let X be the circle S! with its standard arc-length measure. Let
V € O(S?') be real valued. Then the differential operator

(1.6) L=— —V(0)
has compact resolvent. Take K = (L — \)~! for some sufficiently large A € (0, c0).

We deduce that:

Corollary 1.2. IfV(0) is invariant under a rotation through 27 /¢, for some ¢ > 3,
and also invariant under a reflection, then L has infinitely many double eigenvalues.

Of course, each eigenspace of L has dimension 1 or 2. The argument just re-
counted arose in a conversation of the author and E. Trubowitz, in 1975.



EXAMPLE 2. Let X be an equilateral triangle in the plane. Consider the Laplace
operator A on X, with the Dirichlet (or Neumann) boundary condition. Then A is
invariant under the group of isometries of X, a group isomorphic to S3. It follows
that A has infinitely many multiple eigenvalues.

M. Pinsky [P] has shown that, in this case, A has eigenspaces of arbitrarily large
dimension. We have a similar situation when X is a square. The number theoretic
explanation that A has eigenspaces of arbitrarily high dimension is well known in
that case.

Note that Example 2 can be extended to every regular polygon in R?, and also
to every regular polyhedron in R3. I do not know if A has eigenspaces of arbitrarily
high dimension in all these cases.

There are other variations of Example 2, to which Proposition 1.1 applies. For
example, X cound be a wriggly perturbation of an equilateral triangle, still having
Ss as a symmetry group.

To take a variation of Example 1, consider the action of S5 on R3, as the group
of isometries of the regular icosahedron. This also provides a group of isometries
of the unit sphere S2. One can then consider

(1.7) L=A-V,

where V' € C(S?) is real valued and invariant under this action of Ss.

2. Asymptotic density

Here we will specialize, as follows. We take X to be {2, an open subset of some
smooth Riemannian manifold M, such that €2 is compact. We make the following
geometrical hypothesis on the action of G on €2, which implies (1.1):

(2.1) g#e=vol{reQ:gx=2xa}=0.

We suppose L is a strongly elliptic, second order, negative semidefinite, differential
operator on €2, and that the action of U on L?(2) commutes with the semigroup
ett'. Assume either that L has the Dirichlet boundary condition, or that it has some
other coercive boundary condition, such as the Neumann boundary condition, and
01} is sufficiently regular, so that the standard asymptotic analysis of the integral
kernel p(t,x,y) of etF is valid.

In such a case, e'! is trace class for each ¢ > 0. For each irreducible representation
p of G, the operator P, given by (1.2) commutes with e'X, and we have the following
two identities. On the one hand,

(2.2) Tr Pyt = Z(dim E, e ™,
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where the sum is over A € spec(—L) and E,  is the subspace of the A\-eigenspace
E)\ of —L on which U acts as a sum of copies of p. On the other hand, by (1.3),

d -
(23) T Pt = B S 30) [pltng ) v (o)
o(G)
e Q
The asymptotic analysis of p(t, x,y) alluded to above implies
(2.4) / p(t, 2, ) dV () = (vol Q)(4rt) "2 + o(t=/),
Q

as t \, 0. On the other hand, the behavior of p(¢,x,y) off the diagonal yields the
following, in cases where (2.1) holds:

(2.5) gFe—= /p(t,g_lx,x) dV (z) = o(t™/?).
Q

Hence, under these hypotheses, we have

N

(2.6) Tr Pyl = dlp)

VO )2 4 o(t/? .
o(G)( 1 Q)(4nt) +o(t ), t\.0

We are ready to prove the following.

Proposition 2.1. For R € (0,00), set

(2.7) Fr=EDEx, For=@EP Eon

A<R A<R
Then, for each irreducible representation p of G,

. dim F,r  d(p)?

Proof. The asymptotic behavior

vol

L(5 +1)(4m)»/2

(2.9) dim Fp = R"? 4+ o(R"?), R — oo,

follows from (2.4), via a well known Tauberian argument. The same argument
applied to (2.6) yields

d(p)? vol

o(G) T'(% + 1) (4m)n/?

(2.10) dim F, p = R"? 4+ 0(RV?), R — o,



and then (2.8) follows.

Note that Proposition 2.1 applies to all the examples mentioned in §1.
Regarding the right side of (2.8), we note that the subspace of ¢2(G) on which
the regular reprresentation of G acts like copies of p is a space of dimension d(p)?.

3. D, acting on T?: high multiplicities

The dihedral group Dy acts as a group of isometries of T? = R?/(27Z?), hence
as a unitary group on L?(T?), leaving invariant each eigenspace of the Laplace
operator A.

Proposition 3.1. Fach irreducible representation p of D4 has the property that
there are eigenspaces of A containing arbitrarily many copies of p.

To see this, first recall one way of showing that there are eigenspaces of A of
arbitrarily high dimension. Namely,

(3.1) Spec(—A) = {j? +k?: j,k € Z},

and if v = j2 4+ k2, the dimension of the v-eigenspace of —A is equal to the number
of pairs (j, k) € Z x Z such that j2 + k? = v. Now, number theoretical constraints
imply that the set of sums of two squares has mean density zero in Z*. On the
other hand, the sum of the dimensions of the v-eigenspaces of —A, for v < R, which
is the number of integer lattice points within a disk of radius v/R, behaves like 7R
as R — oo. It follows that some eigenspaces must have arbitrarily large dimension.
Now, by Proposition 2.1, the same argument extends to the parts of the eigenspaces
of A on which Dy acts like copies of p, so the proposition follows.



