Multiple Eigenvalues of Operators with Noncommutative Symmetry Groups

MICHAEL E. TAYLOR

ABSTRACT. The presence of a noncommutative finite group G of symmetries of an elliptic, self-adjoint differential operator L, with discrete spectrum, can force the existence of an infinite number of multiple eigenvalues of L. In §1 we show that such a phenomenon occurs rather generally, due to the fact that some irreducible representation ρ of G of degree > 1 must be contained in infinitely many eigenspaces of L. In §2 we show that, under mild assumptions, the relative frequency of occurrence of each irreducible representation ρ of G in the sum of all the eigenspaces with eigenvalues $\leq R$ tends as $R \to \infty$ to a limit equal to the relative frequency that ρ occurs in the regular representation of G. In §3 we study an example where the multiplicities can get arbitrarily large.

1. Inevitability of multiple eigenvalues

Let G be a finite group of measure-preserving transformations of a non-atomic, σ -finite measure space (X, \mathcal{B}, μ) . Thus G has a unitary representation on $H = L^2(X, \mu)$, given by $U(g)f(x) = f(g^{-1}x)$. We make the hypothesis that

(1.1)
$$U: G \longrightarrow \mathcal{U}(H)$$
 is injective.

Our first result is the following.

Proposition 1.1. Let K be a compact self-adjoint operator on $H = L^2(X, \mu)$. Assume also that K is injective. Assume G is noncommutative, and that (1.1) holds. If K commutes with U(g) for all $g \in G$, then K has infinitely many multiple eigenvalues.

Proof. As a preliminary comment, we note that, if H_0 is the closed linear span of all the 1-dimensional eigenspaces of K, then G acts on H_0 , and the restriction of U, given by $V(g) = U(g)|_{H_0}$, has the property that $G/\ker V$ is commutative. Thus H_0 cannot equal H, since then (1.1) would imply G is commutative. The content of the proposition is that the orthogonal complement H_1 of H has infinite dimension.

To see this, we first note that there is an irreducible representation ρ of G, on a space V_{ρ} of dimension greater than 1, such that ρ is contained in U. This follows by the same sort of argument as above; if every irreducible representation of G contained in U were one-dimensional, then G would act as a commutative group of transformations of H, and this contradicts our hypotheses.

Now, given such ρ , consider the orthogonal projection P_{ρ} of H onto the subspace on which G acts as a sum of copies of ρ ; it is given by

(1.2)
$$P_{\rho} = \frac{d(\rho)}{o(G)} \sum_{g \in G} \overline{\chi_{\rho}(g)} U(g),$$

where $\chi_{\rho}(g) = \text{Tr } \rho(g)$ and $d(\rho) = \dim V_{\rho}$. In other words,

(1.3)
$$P_{\rho}f(x) = \frac{d(\rho)}{o(G)} \sum_{g \in G} \overline{\chi_{\rho}(g)} f(g^{-1}x).$$

We know that $P_{\rho} \neq 0$. The proof will be complete when we show that the rank of P_{ρ} is infinite, since no eigenspace of K can contain infinitely many copies of ρ .

Now, if P_{ρ} has finite rank, it would be a Hilbert-Schmidt operator, so there would exist $\varphi \in L^2(X \times X)$ such that

(1.4)
$$P_{\rho}f(x) = \int_{X} \varphi(x,y)f(y) \ d\mu(y).$$

However, as long as $P_{\rho} \neq 0$, (1.3) and (1.4) are incompatible if X has no atoms. In fact, we see that, for any $A \in \mathcal{B}$, the set

$$A = \{x \in X : \text{not } \varphi(x, y) = 0 \text{ a.e. } y \in A\}$$

satisfies

(1.5)
$$\mu(\widetilde{A}) \le o(G)\,\mu(A).$$

If X has no atoms, this implies $\varphi = 0$ a.e.

EXAMPLE 1. Let X be the circle S^1 with its standard arc-length measure. Let $V \in C(S^1)$ be real valued. Then the differential operator

(1.6)
$$L = \frac{d^2}{d\theta^2} - V(\theta)$$

has compact resolvent. Take $K = (L - \lambda)^{-1}$ for some sufficiently large $\lambda \in (0, \infty)$. We deduce that:

Corollary 1.2. If $V(\theta)$ is invariant under a rotation through $2\pi/\ell$, for some $\ell \geq 3$, and also invariant under a reflection, then L has infinitely many double eigenvalues.

Of course, each eigenspace of L has dimension 1 or 2. The argument just recounted arose in a conversation of the author and E. Trubowitz, in 1975. EXAMPLE 2. Let X be an equilateral triangle in the plane. Consider the Laplace operator Δ on X, with the Dirichlet (or Neumann) boundary condition. Then Δ is invariant under the group of isometries of X, a group isomorphic to S_3 . It follows that Δ has infinitely many multiple eigenvalues.

M. Pinsky [P] has shown that, in this case, Δ has eigenspaces of arbitrarily large dimension. We have a similar situation when X is a square. The number theoretic explanation that Δ has eigenspaces of arbitrarily high dimension is well known in that case.

Note that Example 2 can be extended to every regular polygon in \mathbb{R}^2 , and also to every regular polyhedron in \mathbb{R}^3 . I do not know if Δ has eigenspaces of arbitrarily high dimension in all these cases.

There are other variations of Example 2, to which Proposition 1.1 applies. For example, X cound be a wriggly perturbation of an equilateral triangle, still having S_3 as a symmetry group.

To take a variation of Example 1, consider the action of S_5 on \mathbb{R}^3 , as the group of isometries of the regular icosahedron. This also provides a group of isometries of the unit sphere S^2 . One can then consider

(1.7)
$$L = \Delta - V,$$

where $V \in C(S^2)$ is real valued and invariant under this action of S_5 .

2. Asymptotic density

Here we will specialize, as follows. We take X to be Ω , an open subset of some smooth Riemannian manifold M, such that $\overline{\Omega}$ is compact. We make the following geometrical hypothesis on the action of G on Ω , which implies (1.1):

(2.1)
$$g \neq e \Longrightarrow \operatorname{vol} \{x \in \Omega : gx = x\} = 0.$$

We suppose L is a strongly elliptic, second order, negative semidefinite, differential operator on Ω , and that the action of U on $L^2(\Omega)$ commutes with the semigroup e^{tL} . Assume either that L has the Dirichlet boundary condition, or that it has some other coercive boundary condition, such as the Neumann boundary condition, and $\partial\Omega$ is sufficiently regular, so that the standard asymptotic analysis of the integral kernel p(t, x, y) of e^{tL} is valid.

In such a case, e^{tL} is trace class for each t > 0. For each irreducible representation ρ of G, the operator P_{ρ} given by (1.2) commutes with e^{tL} , and we have the following two identities. On the one hand,

(2.2)
$$\operatorname{Tr} P_{\rho} e^{tL} = \sum (\dim E_{\rho,\lambda}) e^{-t\lambda},$$

where the sum is over $\lambda \in \operatorname{spec}(-L)$ and $E_{\rho,\lambda}$ is the subspace of the λ -eigenspace E_{λ} of -L on which U acts as a sum of copies of ρ . On the other hand, by (1.3),

(2.3)
$$\operatorname{Tr} P_{\rho} e^{tL} = \frac{d(\rho)}{o(G)} \sum_{g \in G} \overline{\chi_{\rho}(g)} \int_{\Omega} p(t, g^{-1}x, x) \, dV(x).$$

The asymptotic analysis of p(t, x, y) alluded to above implies

(2.4)
$$\int_{\Omega} p(t, x, x) \, dV(x) = (\text{vol } \Omega)(4\pi t)^{-n/2} + o(t^{-n/2}),$$

as $t \searrow 0$. On the other hand, the behavior of p(t, x, y) off the diagonal yields the following, in cases where (2.1) holds:

(2.5)
$$g \neq e \Longrightarrow \int_{\Omega} p(t, g^{-1}x, x) \, dV(x) = o(t^{-n/2}).$$

Hence, under these hypotheses, we have

We are ready to prove the following.

Proposition 2.1. For $R \in (0, \infty)$, set

(2.7)
$$F_R = \bigoplus_{\lambda \le R} E_\lambda, \quad F_{\rho,R} = \bigoplus_{\lambda \le R} E_{\rho,\lambda}.$$

Then, for each irreducible representation ρ of G,

(2.8)
$$\lim_{R \to \infty} \frac{\dim F_{\rho,R}}{\dim F_R} = \frac{d(\rho)^2}{o(G)}.$$

Proof. The asymptotic behavior

(2.9)
$$\dim F_R = \frac{\text{vol }\Omega}{\Gamma(\frac{n}{2}+1)(4\pi)^{n/2}} R^{n/2} + o(R^{n/2}), \quad R \to \infty,$$

follows from (2.4), via a well known Tauberian argument. The same argument applied to (2.6) yields

(2.10)
$$\dim F_{\rho,R} = \frac{d(\rho)^2}{o(G)} \frac{\operatorname{vol} \Omega}{\Gamma(\frac{n}{2}+1)(4\pi)^{n/2}} R^{n/2} + o(R^{n/2}), \quad R \to \infty,$$

and then (2.8) follows.

Note that Proposition 2.1 applies to all the examples mentioned in $\S1$.

Regarding the right side of (2.8), we note that the subspace of $\ell^2(G)$ on which the regular representation of G acts like copies of ρ is a space of dimension $d(\rho)^2$.

3. D_4 acting on \mathbb{T}^2 : high multiplicities

The dihedral group D_4 acts as a group of isometries of $\mathbb{T}^2 = \mathbb{R}^2/(2\pi\mathbb{Z}^2)$, hence as a unitary group on $L^2(\mathbb{T}^2)$, leaving invariant each eigenspace of the Laplace operator Δ .

Proposition 3.1. Each irreducible representation ρ of D_4 has the property that there are eigenspaces of Δ containing arbitrarily many copies of ρ .

To see this, first recall one way of showing that there are eigenspaces of Δ of arbitrarily high dimension. Namely,

(3.1)
$$\operatorname{Spec}(-\Delta) = \{j^2 + k^2 : j, k \in \mathbb{Z}\},\$$

and if $\nu = j^2 + k^2$, the dimension of the ν -eigenspace of $-\Delta$ is equal to the number of pairs $(j,k) \in \mathbb{Z} \times \mathbb{Z}$ such that $j^2 + k^2 = \nu$. Now, number theoretical constraints imply that the set of sums of two squares has mean density zero in \mathbb{Z}^+ . On the other hand, the sum of the dimensions of the ν -eigenspaces of $-\Delta$, for $\nu \leq R$, which is the number of integer lattice points within a disk of radius \sqrt{R} , behaves like πR as $R \to \infty$. It follows that some eigenspaces must have arbitrarily large dimension.

Now, by Proposition 2.1, the same argument extends to the parts of the eigenspaces of Δ on which D_4 acts like copies of ρ , so the proposition follows.