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Harmonic analysis was invented by Daniel Bernoulli for his solution of the sim-
plest hyperbolic equation, the equation of vibrating strings, though his achievement
was not understood and followed through at the time and the subject had to be
re-invented by Fourier as a tool to treat the heat equation. Meanwhile, the theory
of spherical harmonics was invented by Laplace for use in his study of the Laplace
equation. Thus the use of various types of harmonic analysis in the study of the
three main types of classical partial differential equations, in particular the use of
orthogonal expansions, goes back to the beginning of the subject. For more infor-
mation on this, see the beautiful book by Kline [22] on the history of mathematics.

More recent tools include singular integral operators (pseudodifferential opera-
tors) to treat elliptic equations, and also parametrices to study the heat equation,
and most recently Fourier integral operators, which apply to the study of hyperbolic
equations, amongst other things.

These tools in turn have found application to the study of eigenfunction expan-
sions. The use of parametrices for elliptic and parabolic equations in eigenvalue
asymptotics is well known; see Agmon [2] or McKean and Singer [26]. Stein in [38]
made nice use of the heat equation to develop a Littlewood-Paley theory on com-
pact Lie groups, and Hörmander [16] used pseudodifferential operators to study the
behavior of Riesz means of eigenfunction expansions. The theory of Fourier integral
operators was used as a tool in the study of eigenvalue asymptotics by Hörmander
in [17] in order to get a sharp estimate on the remainder term.

Here we discuss how Fourier integral operators can be used to get a systematic
generalization of many topics in harmonic analysis on the torus (or Rn) to arbitrary
compact manifolds, on which an elliptic self-adjoint operator (or perhaps a family
of commuting operators) is given. Our starting point is an analysis of functions of
such self-adjoint operators, as defined by the spectral theorem. We use the Fourier
inversion formula to define such operators, and Fourier integral operators enter quite
naturally, giving one an explicit hold on the symbols of the resulting operators. In
§2 we list some applications to problems in harmonic analysis. We refer to Chapter
12 of [41] for the details on most of these results. In §3 we apply the machinery to a
classical problem in hyperbolic PDE, the scattering of waves by a sphere. In doing
this, we turn the theory of hyperbolic equations upon itself, using the method of
saparation of variables in a standard fashion to reduce the scattering problem to
a problem in spherical harmonics, and applying results developed in §§1–2 to the
compact manifold S1 × S2, to solve this problem.

The basic class of pseudodifferential operators we deal with consists of operators
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defined by

p(x,D)u =
∫

p(x, ξ)eix·ξû(ξ) dξ,

where û(ξ) is the Fourier transform:

û(ξ) = (2π)−n

∫
u(y)e−iy·ξ dy,

and p(x, ξ) belongs to some symbol class. For example, Sm
ρ,δ, defined by Hörmander

[18], consists of functions p(x, ξ) such that

|Dβ
xDα

ξ p(x, ξ)| ≤ Cαβ(1 + |ξ|)m−ρ|α|+δ|β|.

We denote by Sm the set of symbols p(x, ξ) ∈ Sm
1,0 having the asymptotic behavior

p(x, ξ) ∼ pm(x, ξ) + pm−1(x, ξ) + · · · , |ξ| → ∞,

where pm−j(x, ξ) is homogeneous of degree m − j in ξ. If Σ is some symbol class,
we write OPΣ for the associated set of operators. Thus we have OPSm

ρ,δ, etc.
The Fourier integral operators we will use will be of the form

Ju(x) =
∫

p(x, ξ)eiϕ(x,ξ)û(ξ) dξ,

where p(x, ξ) belongs to a symbol class, as above, and ϕ(x, ξ) is a smooth real-valued
function, homogeneous of degree 1 in ξ, and ∇xϕ 6= 0 on the support of p(x, ξ). We
refer to the paper of Hörmander [18] for the theory of Fourier integral operators, or
to the exposition of Duistermaat [10], or of Nirenberg [32], or to Chapter 8 of [41].

Addendum. This is a revision of the paper [T]. Part of the purpose was to present
a version in TeX, which is more readable than the original, produced by an old
fashioned typewriter. In the process, we have updated some references, and added
some new references (appearing after the publication of [T]). We have also made
some minor mathematical improvements, some of which we comment on in the text.

1. Functions of an elliptic self-adjoint operator

Let A ∈ OPS1 be an elliptic self-adjoint operator on a compact Riemannian
manifold M , with principal symbol a1(x, ξ), real valued. The main example is√−∆, where ∆ is the Laplace operator on M . In this section we want to analyze
p(A) as a pseudodifferential operator, when p(λ) belongs to various symbol classes.
More generally, we are interested in p(A1, . . . , Ak) when Aj ∈ OPS1 are commuting
self-adjoint operators with the property that A2

1 + ·+A2
k is elliptic, a situation that
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involves no extra difficulty, so we mainly discuss the case k = 1. The operator p(A)
is defined by the spectral theorem.

Our point of departure is to use the Fourier inversion formula:

(1.1) p(A)u =
∫ ∞

−∞
p̂(s)eisAu ds.

The unitary operator eisA is the solution operator to the hyperbolic equation

(1.2)
∂v

∂s
= iAv,

so Fourier integral operators arise naturally as a tool to analyze (1.1).
Suppose p(λ) ∈ Sm

ρ,0(R), for some ρ > 0. This implies that p̂(s) is C∞ except
at s = 0, and all its derivatives are rapidly decreasing as |s| → ∞. If ϕ1 ∈
C∞0 ((−ε, ε)), ϕ(s) = 1 for |s| ≤ ε/2, and ϕ2(s) = 1− ϕ1(s), we can write

(1.3) p(A)u =
∫ ∞

−∞
p̂(s)ϕ1(s)eisAu ds + (iA)−N

∫ ∞

−∞

∂N

∂sN
(ϕ2p̂)eisA ds.

Taking N large we see that the second term is smoothing, so it is only necessary
to study the operator eisA for |s| small. In particular, since eisA propagates singu-
larities only by an amount ≤ C|s|, we have:

Proposition 1.1. If p(λ) ∈ Sm
ρ,0(R), ρ > 0, then p(A) is a microlocal operator,

i.e., WF (p(A)u) ⊂ WF (u).

To study p(A) more precisely, we apply the method of geometrical optics to eisA.
Write (for |s| small)

(1.4) eisAu(x) =
∫

b(s, x, ξ)eiϕ(s,x,ξ)û(ξ) dξ,

where ϕ is homogeneous of degree 1 in ξ, ϕ(0, x, ξ) = x · ξ, b ∼ ∑
j≥0 bj , with each

bj homogeneous of degree −j in ξ. We want b(0, x, ξ) = 1, so that at s = 0 (1.4)
becomes the Fourier inversion formula. One is led to the eikonal equation

∂ϕ

∂s
= a1(x,∇xϕ),

and various transport equations for bj , by considering the asymptotic expansion of
(∂s− iA)(beiϕ). For details on this construction, see [10], [18], or Chapter 8 of [41].
Then (1.1) yields

(1.5)
p(A)u =

∫∫
p̂(s)b(s, x, ξ)eiϕ(s,x,ξ)û(ξ) dξ ds

=
∫

p(Ds)
(
b(s, x, ξ)eiϕ(s,x,ξ)

)∣∣∣
s=0

û(ξ) dξ.
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The fundamental asymptotic expansion lemma for pseudodifferential operators yields

(1.6) p(Ds)(beiϕ) = c(s, x, ξ)eiϕ, c(s, x, ξ) ∈ Sm
ρ,1−ρ,

provided ρ > 1/2. In such a case,

(1.7) c(s, x, ξ) = b(s, x, ξ)p(ϕs) mod S
m−(2ρ−1)
ρ,1−ρ .

Indeed, one can read off a complete asymptotic expansion of c(s, x, ξ) in this case.
This is often proven via the stationary phase principle. For another approach, see
[T3], Chapter 7, §7, Exercise 2. Recalling that b(0, x, ξ) = 1 and ϕs(0, x, ξ) =
a1(x,∇xϕ(0, x, ξ)) = a1(x, ξ), we see that

p(A)u(x) =
∫

c(0, x, ξ)eix·ξû(ξ) dξ(1.8)

c(0, x, ξ) = p(a1(x, ξ)) mod S
m−(2ρ−1)
ρ,1−ρ .(1.9)

We have proved the following result on functions of A:

Theorem 1.2. If p(λ) ∈ Sm
ρ,0, 1/2 < ρ ≤ 1, then p(A) ∈ OPSm

ρ,1−ρ and

(1.10) σp(A) = p(a1(x, ξ)) mod S
m−(2ρ−1)
ρ,1−ρ .

Special cases of this result include the following. Seeley [36] considered p(λ) =
λσ, which belongs to SRe σ

1,0 , and Strichartz [40] considered p(λ) ∈ Sm
1,0. Their

derivations were quite different from that given above.
We mention that when p(λ) ∈ Sm

1/2,0, (1.6) continues to hold, with c ∈ Sm
1/2,1/2,

but (1.7) becomes vacuous. Thus p(A) is a pseudodifferential operator in OPSm
1/2,1/2

in this case, but one loses the formula for its symbol.
For applications in §3, we are interested in understanding p(A) for certain sym-

bols p(λ) of more degenerate type than are handled in Theorem 1.2. Here functions
of several operators are of particular interest, so p(λ) = p(λ1, . . . , λk). One family
of symbols is that obtained by imposing the following Marcinkiewicz condition.

Definition 1.3. We say q(x, ξ) ∈Mm
ρ if and only if

ξαDα
ξ q(x, ξ) ∈ Sm

ρ,0,

for all α ≥ 0.

Typically ξ is related to λ by a linear change of coordinates. A consequence of
the Marcinkiewicz multiplier theorem (Theorem 6′ in chapter 4 of [39]) is that

q(x, ξ) ∈Mm
ρ =⇒ q(x,D) : Hs,p → Hs−m,p,

for p ∈ (1,∞), where Hs,p denote Lp-Sobolev spaces.
A notable subclass of Mm

ρ is described as follows. Let Σ be a linear subspace of
Rk given by {η = 0}, in (ξ, η) coordinates
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Definition 1.4. We say q(x, ξ, η) ∈ Nm
ρ (Σ) if and only if q ∈ Sm

1,0 off |η| < |ξ|,
and, for |η| < |ξ|,

|Dγ
ηDα

ξ Dβ
xq| ≤ Cαβγ |ξ|m−|α|(|ξ|ρ + |η|)−|γ|.

It is easy to see that Nm
ρ (Σ) ⊂Mm

ρ . Also Nm
ρ (Σ) depends only on Σ, not upon

the linear coordinates chosen.
If p(λ) ∈ Nm

ρ (Σ), we can estimate the Sobolev Hσ,p-norm of p(Ds)(beikϕ) for
σ > 0 small, p < ∞ large, and deduce that

|p(Ds)(beikϕ)| = O(km+ε).

From this one can obtain the following replacement for (1.6), valid for 0 < ρ < 1/2.

(1.11) p(Ds)(beiϑ) = c eiϑ, c ∈ Sm+ε
ρ,1−ρ.

Details on this are given in [41], Chapter 11. Plugging this result into the analysis
leading to Theorem 1.2 yields the following.

Theorem 1.5. If p(λ) ∈ Nm
ρ (Σ), 0 < ρ < 1/2, then

p(A1, . . . , Ak) ∈ OPSm+ε
ρ,1−ρ.

There are other contexts in which it is desirable to go beyond the boundaries
of Theorem 1.2. Here is one. Pick σ ∈ (0, 1) and consider eiAσ

= fσ(A) where
fσ(λ) = eiλσ ∈ S0

1−σ,0(R). Theorem 1.2 implies that eiAσ ∈ OPS0
1−σ,σ for 0 < σ <

1/2. Now we can express eitAσ

, the solution operator to

∂u

∂t
= iAσu,

as a Fourier integral operator with inhomogeneous phase function

(1.12) eitAσ

v(x) =
∫

b(t, x, ξ)eiψ(t,x,ξ)+ix·ξ v̂(ξ) dξ,

where ψ solves the “eikonal equation”

(1.13)
∂ψ

∂t
= a1(x,∇xψ + ξ)σ, ψ(0, x, ξ) = 0,

and b ∈ S0
1,0 is asymptotic to a sum of terms obtained by solving a sequence of

transport equations. From (1.13) we see that ψ ∈ Sσ
1,0 and is real valued. It easily

follows that eiψ ∈ S0
1−σ,σ, for 0 < σ < 1. Consequently, we see that

eitAσ

= qσ(t, x,Dx) ∈ OPS0
1−σ,σ,
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for 0 < σ < 1, where q(t, x, ξ) = beiψ. However, if one wants to make use of this
operator, it would perhaps be most convenient to stick to its representation (1.12)
as a Fourier integral operator with inhomogeneous phase function.

A primary application of these results is to A =
√−∆. There are several ways

to show that √
−∆ ∈ OPS1.

One goes as follows. We can formally construct what should be the symbol of
√−∆

using a simple iterative procedure. For example if A2(x, ξ) is the principal symbol
of −∆, that of

√−∆ should be A(x, ξ)1/2. Having carried through the construction
of such a symbol, we claim that if B is the associated pseudodifferential operator
(arranged to be self-adjoint and positive), we have B2 + ∆ = R ∈ OPS−∞, and
then we can show that B −√−∆ is a smoothing operator, using

(
√
−∆)−1 =

1
2πi

∫

γ

λ−1/2(λ + ∆)−1 dλ

B−1 =
1

2πi

∫

γ

λ−1/2(λ + ∆−R)−1 dλ,

where λ is the obvious curve. There are other, arguably better ways to see that√−∆ ∈ OPS1. See Part V of §3 for another approach. For yet other approaches,
see [T3], Chapter 7, Exercises at the end of §11 and of §12.

We close this section by indicating a connection between Theorem 1.2 and
Egorov’s Theorem, one of the fundamental results in the theory of Fourier inte-
gral operators, which states that if P = p(x,D) ∈ OPSm

ρ,1−ρ, 1/2 < ρ ≤ 1, and if J
is an elliptic Fourier integral operator, then

JPJ−1 ∈ OPSm
ρ,1−ρ,

and, if J is the canonical transformation associated with J , then

q(x, ξ) = p(J (x, ξ)) mod S
m−(2ρ−1)
ρ,1−ρ .

In the case of functions of one operator A, pick a canonical transformation J such
that, at least on a small conic subset Γ of T ∗M \ 0, a1(J (x, ξ)) = ξ1. Find a
unitary FIOP J whose canonical transformation agrees with J on Γ. Thus JAJ−1

agrees with (1/i)∂/∂x1 = D1 modulo a smoothing operator, at least on distribu-
tions with wave front set in J (Γ). One is tempted to conclude that p(A) agrees
with J−1p(D1)J modulo a smoothing operator, on distributions with wave front
set in Γ. But p(D1) is manifestly a pseudodifferential operator, on J−1(Γ), and
Egorov’s theorem applies to J−1p(D1)J . All this is true, and perhaps the easiest
way to prove it is via (1.1), and one needs all the results on propagation of sin-
gularities for eisA used above, except for the specific geometric optics formulae,
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whose role gets replaced by Egorov’s theorem. In the case of functions of several
commuting operators A1, . . . , Ak, the same considerations hold, provided the sym-
bols a1(x, ξ), . . . , ak(x, ξ) have linearly independent gradients (also independent of
the form ξ · dx). This condition is not satisfied by all sets of operators of interest
(the Casimir operators, for example), but it is satisfied by the pair of operators we
consider in §3.

The analogue of (1.11) is

J OPMm
ρ J−1 ⊂ OPSm+ε

ρ,1−ρ, 0 < ρ <
1
2
.

2. Eigenfunction expansions and spectral theory

In this section we give a brief indication of how the results of §1 can be applied
in a very simple was to obtain information about eigenfunction expansions. The
asymptotic expansion for (1.6), truncated at some point and the error estimated
crudely, gives excellent information on p(A), and this can be applied to a bounded
family of symbols pt(λ), 0 < t ≤ 1. In particuler, if p(λ) ∈ Sm

1,0(R) if fixed, m ≤ 0,
and pt(λ) = p(tλ), then {pt : 0 < t ≤ 1} is bounded in S0

1,0(R). This simple class
will serve most of our needs. We will consider five types of applications. There will
be no room for proofs. Details can be found in Chapter 12 of [41].

I. Convergence of eigenfunction expansions

Suppose p(λ) ∈ S0
1,0(R), p(0) = 1. Then p(tA) is a bounded subset of OPS0

1,0,
and so is a bounded set of operators on Lp(M), 1 < p < ∞, and also on Ck+α(M), 0 <
α < 1, k = 0, 1, 2, . . . . Clearly p(tA)u → u in C∞(M) if u ∈ C∞(M). Thus
p(tA)u → u in Lp(M) is u ∈ Lp(M). Since C∞(M) is not dense in Ck+α(M), we
only get convergence in Ck+α−ε(M), which has an unsatisfactory flavor. A better
result is the following.

Theorem 2.1. Suppose p(λ) ∈ S−σ
1,0 (R), σ > 0, and p(0) = 1. Let u ∈ Ck+α(M)

and let v(t, x) = p(tA)u(x). Then v ∈ Ck+α([0, 1]×M).

This type of regularity is analogous to the Schauder estimates for solutions to
elliptic boundary problems (see [3]). One also has estimates on the maximal func-
tion

Mp(u) = sup
0<t≤1

|p(tA)u|.

Namely, if p(λ) ∈ S−σ
1,0 (R), σ > 0, then ‖Mp(u)‖Lq(M) ≤ Cq‖u‖Lq(M), 1 < q < ∞,

and one has the appropriate weak type (1, 1) estimates. Pointwise convergence of
p(tA)u to u almost everywhere follows, provided p(0) = 1.
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We remark that one can get by with conditions on only finitely many derivatives
on p(λ). In particular, results on Riesz means are obtained, but straightforward
tightening of the methods of §1 seems to yield weaker results on Riesz means than
those obtained by Hörmander [16].

Remark. Progress on such matters as Riesz means, made after the original version
of this paper appeared, is covered in [Sog].

II. Approximation properties

Consider p(λ) ∈ C∞0 (R), with p(λ) = 1 for |λ| ≤ 1. If u ∈ C∞(M) belongs to
Vη, the linear span of the eigenspaces of A with eigenvalue ≤ η in absolute value,
it follows that u = p(tA)u for t = 1/η. Analyzing

p(tA)u(x) =
∫

M

Kt(x, y)u(y) dV (y),

it is a simple matter to obtain

‖u‖Ck(M) ≤ Cηk‖u‖L∞ , ∀u ∈ Vη,

which generalizes Bernstein’s inequality. From there, one can imitate the usual
proof of Bernstein’s theorem, as given in [4], for example.

Conversely, one can generalize Jackon’s theorem, to obtian that if u ∈ Ck(M),
there exists v ∈ Vη such that

‖u− v‖L∞ ≤ Cη−k‖u‖Ck .

To do this, pick p(λ) ∈ C∞0 (R), supported in (−1, 1), with p)(λ) = 1 for |λ| ≤ 1/2,
and let v = v(η) = p(η−1A)u. Clearly v ∈ Vη. It remains to show that

‖u− p(η−1A)u‖L∞ ≤ Cη−k‖u‖Ck .

The proof of this is a little harder than the proof of Bernstein’s inequality, but not
much harder.

III. Compact Lie groups

If G is a compact Lie group of rank k, there is a natural basis of bi-invariant
differential operators C1, . . . , Ck (with C1 = −∆), of order m1, . . . , mk. Set Aj =
(−∆)1/2−mj/2Cj ∈ OPS1. Using a well known theorem of Chevelley (cf. Zelobenko
[47]) plus a theorem of Mather that allows one to write a smooth function invariant
under the action of a compact group (in this case, the Weyl group) in terms of a
smooth function of the invariant polynomials satisfying the conclusion of the Hilbert
basis theorem, one obtains the following.
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Theorem 2.2. Let p(λ) ∈ Sm
1,0(Rk) be invariant under the Weyl group, and let

P : D′(G) → D′(G) be defined by

Pπij
λ = p(λ + δ)πij

λ .

Then P ∈ OPSm
1,0(G).

Here {πλ} is a complete set of irreducible unitary representations of G, indexed
by λ belonging to a lattice in Rk, intersected with a Weyl chamber. One can read
off the principal symbol of P . Applications of this to some questions in group
representation theory, such as the asymptotic behavior of multiplicities of weights
and Clebsch-Gordon coefficients, are given in Cahn and Taylor [5].

Theorem 2.2 yields some of the Lp continuity theorems for multipliers on compact
Lie groups obtained by Clerc [7], Weiss [46], and others, but not all of them. It
also yields Hölder continuity results, which these authors did not consider. Some
special cases of Theorem 2.2 were pointed out by Strichartz [40].

IV. Eigenvalue asymptotics

Obtaining information on the asymptotic behavior of the eigenvalues of A was
the reason Hörmander wrote his paper [17], so we need hardly go into this topic
here, except to say that, by analyzing the asymptotic behavior of p(tA), t ↘ 0, with
p(λ) = 1 for |λ| ≤ 1, p(λ) = 0 for |λ| ≥ 1+ε, and letting ε ↘ 0, one obtains quickly
information on the asymptotic behavior of the spectral function and eigenvalues
of A, without need of any Tauberian theorems. Constructing a family pη(λ) of
symbols that decrease from 1 to 0 as λ goes from η to with a bounded family in
S0

ρ,0(R), and the operators pη(A) analyzed as elements of OPS0
ρ,1−ρ, if 1/2 < ρ ≤ 1.

For 0 < ρ ≤ 1/2, the analysis of the operators is more difficult, but the trace can
still be evaluated, since one understands Tr eisA. One can even take ρ = 0, and if
C is sufficiently large Tr pη(A) can be obtained from a knowledge of Tr eisA for |s|
small. This leads to Hörmander’s estimate. If C is somewhat smaller, one needs
to know Tr eisA over a larger interval, and the closed orbits of Ha1 (the closed
geodesics of M if A =

√−∆) play a role. See Chazarain [6] and Duistermaat and
Guillemin [11] for treatments of this phenomenon.

It would be nice to be able to analyze pη(A) for ρ negative. For example, in the
lattice point problem, with M = T2, one gets good estimates with ρ = −1/3. If
we were to use formula (1.1) in this analysis, it would be necessary to understand
eisA uniformly as |s| → ∞. Thus, the wave equation seems to be the wrong tool
for the job here. If one had a good parametrix for the solution operator eitA2

to
the Schrödinger equation

∂v

∂t
= −A2v,

even for small |t|, one could write pη(A) = qη(A2) where qη(λ) dips from 1 to 0 as
λ goes from η2 to η2 + Cη1+ρ (i.e., from τ to τ + Cτ1/2+ρ/2, with τ = η2) and con-
sequently there would be some chance of analyzing Tr pη(A) = Tr qη(A2), knowing
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Tr eitA2
for |t| small. Since eitA2

blows singularities all over the place immediately,
constructing such a parametrix could not be reduced to a local problem, and it
looks very difficult. Developments along these lines pose interesting problems for
the future.

V. Non compact spaces

Although this topic falls outside the scope indicated by the title of this paper,
it is hard not to mention that an analysis via (1.1) yields results for non-compact
M , under certain circumstances, when A2 is a differential operator, e.g., A2 =
τ2 −∆, τ ≥ 0. Let us assume p(λ) is an even function on R. We then write

p(A)u =
∫ ∞

−∞
p̂(t) cos tAu dt.

The advantage of using this formula is that v(t, x) = cos tAu(x) solves the wave
equation

∂v

∂t2
− (∆− τ2)v = 0, v(0) = u, ∂tv(0) = 0,

and finite propagation speed holds, as well as a parametrix construction for solutions
to the wave equation.

Remark. The formula above is slightly different from that appearing in the original
version of this paper. The simple but useful change arose in work on [CGT].

In case M is a homogeneous space, the volume of balls of radius R is bounded
by CeKR. If p(λ) is holomorphic on the strip {λ ∈ C : |Imλ| ≤ γ} and |Dj

λp(λ)| ≤
Cj(1+ |λ|)−j on this strip, then p(

√
τ2 −∆) has a kernel K(x, y) that looks like the

kernel of a pseudodifferential operator near the diagonal x = y, and that decays like
e−σd(x,y) as d(x, y) → ∞, for each σ < γ. Hence, if γ > K, one gets p(

√
τ2 −∆) :

Lp(M) → Lp(M), for 1 < p < ∞. In the special case when M is a rank 1 symmetric
space, such a result was obtained by Stanton and Tomas [37], by a different method.
Also the case of symmetric spaces M = G/K where G is a complex semisimple Lie
group has been treated by Clerc and Stein [8]. These works can use a narrower
complex strip than indicated above.

Remark. Lp-boundedness results for manifolds with bounded geometry, using such
narrower complex strips, were obtained in [T2].

3. Scattering of waves by a sphere
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In this section we will examine a classical problem in scattering theory. Namely,
given a distribution f ∈ E ′(R × S2), we want to find the outgoing solution to the
wave equation, on R3 \ {x : |x| ≤ 1}, with boundary value f . Thus we look for u
such that

∂2u

∂t2
−∆u = 0, |x| > 1,(3.1)

u
∣∣
|x|=1

= f,(3.2)

u = 0 for t << 0.(3.3)

As is well known, there is a unique solution to (3.1)–(3.3). We search for an explicit
parametrix that will, for example, enable one to read off the singularities of u from
the singularities of f .

This problem was actively tackled in the early 1900s and led to some develop-
ments in special function theory. In particular Watson [45] introduced a variant
of the Poisson summation formula, known as the Watson transform, in a effort ot
solve the problem, but he had difficulty handling the remainder terms, and perhaps
the first successful treatment was given by Nussensweig [33]. His treatment uses
a great deal of special function theory, and is fairly long. Here we shall treat the
problem within the framework of harmonic analysis on a compact manifold. The
general problem of constructing a parametrix for solutions to the wave equation on
the exterior of any smooth strictly convex obstacle, or more general equations in
regions whose boundaries are convex with respect to the null bichacteristics, has
been solved by Melrose [30] and Taylor [42], the latter author using work of Lud-
wig [25]. This construction is fairly complicated and we refer to [30], [41], [42] for
further discussion.

If we take the partial Fourier transform with respect to t:

(3.4)
v(x, λ) =

∫ ∞

−∞
u(t, x)eiλt dt,

g(x, λ) =
∫ ∞

−∞
f(t, x)eiλt dt,

the system (3.1)–(3.3) becomes the reduced wave equation

(∆ + λ2)v = 0 for |x| > 1,(3.5)

v
∣∣
|x|=1

= g(λ),(3.6)

and (3.3) translates into the “Sommerfeld radiation condition”

(3.7) v = o(r−1),
∂v

∂r
− i|λ|v = o(r−1), as r →∞.

We will use the method of separation of variables, so we write

∆v =
1
r2

(
r2 ∂2

∂r2
+ 2r

∂

∂r
+ ∆S

)
v,
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where ∆S is the Laplace operator on S2 and r = |x|. Then (3.5) becomes

(3.8) r2 ∂2v

∂r2
+ 2r

∂v

∂r
+ (λ2r2 + ∆S)v = 0.

This is easily converted into Bessel’s equation, and the outgoing radiation condition
(3.7) requires that we use the Hankel function H(1). We get

(3.9) v(x, λ) = r−1/2H
(1)

(−∆S+1/4)1/2(|λ|r)h(λ),

where h(λ) is specified by the boundary condition. In fact, setting r = 1 in (3.9)
yields v||x|=1 = H

(1)
A (|λ|)h(λ), and so to obtain (3.6), we set

(3.10) v(x, λ) = r−1/2H
(1)
A (r|λ|)H(1)

A (|λ|)−1g(λ).

Here we have set

(3.11) A =
(
−∆S +

1
4

)1/2

.

Note that H
(1)
ν (µ) 6= 0 for ν, µ > 0.

We want to avoid the task of analyzing (3.10) directly, uniformly in λ, so we use
a few basic facts about the solution to the wave equation to simplify the analysis.
First, we recall that the solution to (3.1)–(3.3) is represented by the Green formula

(3.12) u(t, x) =
∫∫

R×S2

(
u(s, y)

∂G

∂n
(t− s, x− y)− ∂

∂n
u(s, y)G(t− s, x− y)

)
ds dS(y),

where

G(t, x) =
δ(|x| − t)

4πt
for t > 0, 0 for t < 0,

is the fundamental solution to the wave equation. We are given that u|R×S2 = f .
If we can find (∂u/∂n)|R×S2 , or a parametrix for this expression, the behavior of u
can be read off from (3.12). Thus we need only analyze the Neumann operator

(3.13) Nf =
∂u

∂n

∣∣
|x|=1

.

From (3.10) we have

(3.14)
∂

∂r
v(x, λ)

∣∣
|x|=1

= |λ|H(1)
A

′(|λ|)H(1)
A (|λ|)−1g(λ)− 1

2
g(λ).

Thus, passing to the inverse Fourier transform with respect to λ, we obtain a
formula for (∂u/∂n)||x|=1, i.e., for the Neumann operator:

(3.15) Nf = F (A, |Dt|)f − 1
2
f,
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where

(3.16) F (ν, µ) = µ
H

(1)
ν

′(µ)

H
(1)
ν (µ)

.

Before we consider to what symbol class F belongs, we need to overcome two
minor problems in order to put (3.15) into the framework of §1.

(i) N is defined on distributions on R× S2, which is not compact.
(ii) A and |Dt| are not pseudodifferential operators on the Cartesian product space.

To get around (i), we employ the following device. Suppose the support of f is
contained in a t-interval of length T0. Add together all translates of u(t, x) by
integral multiples of 2T0:

(3.17) u1(t, x) =
∞∑

k=−∞
u(t + 2kT0, x).

This sum converges weakly because of local energy decay, which for f ∈ E ′∩H1(R×
S2), says

(3.18)
∫

B

(|u(t, x)|2 + |∇xu(t, x)|2 + |ut(t, x)|2) dx ≤ ce−αt, t ↗∞.

For more singular f one can deduce an exponential decay rate in a weaker topology.
The estimate (3.18) is a nontrivial result; it was first proved by Morawetz (cf. [24]),
with the obstacle {x : |x| ≤ 1} replaced by a more general class of “star shaped”
obstacles. However, the proof of such exponential decay is simpler than the solution
to the diffraction problem (from which such energy decay can easily be deduced;
see [28]). Now u1 solves the wave equation, with boundary data f1 =

∑∞
−∞ f(t +

2kT0, x), and the representation (3.12) holds. We can regard u1 as a distribution
on (R/2T0Z) × (R2 \ {x : |x| ≤ 1}). We can also regard f1 and ∂u1/∂n = Nf1

as distributions on R/2T0Z) × S2, where the last identity defines N . Then N is
given by the same formula as (3.15), except now N operates on distributions on
M = S1 × S2, with S1 = R/2T0Z.

Problem (ii) arises because the symbol of A is singular on N1, the union of the
normal bundles to {t = const.}, while the symbol of |Dt| is singular onN2, the union
of the normal bundles to {x = const.}. However, if WF (f) ∩ Nj = ∅, j = 1, 2,
than A and |Dt| act on f like pseudodifferential operators, and the analysis of
§1 for F (A, |Dt|)f goes through. For general f ∈ D′(M), write f = f1 + f2

with WF (f1) ∩ Nj = ∅, and WF (f2) contained in a small conic neighborhood of
N1 ∪ N2. Now N1 ∪ N2 is bounded away from the variety ΣG ⊂ T ∗M \ 0 over
which the tangential bicharacteristics of ∂2

t −∆ pass, so the simplest constructions
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of geometrical optics yield a parametrix for the solution to the wave equation with
boundary data f2, and one easily analyzes Nf2 as a classical pseudodifferential
operator of order 1. Thus we restrict our attention to distributions f1 with wave
front set contained in a small conic neighborhood of ΣG.

We return to the task of analyzing F (ν, µ), and we see that it suffices to analyze
this function, as a symbol, on a small conic neighborhood of {ν = µ, µ, ν > 0}.
The key to this analysis is the uniform asymptotic expansion of Bessel functions,
for large order and argument, derived by Langer [23] and Olver [34]; see also [1],
pp. 368-9. For our purposes, the relevant formulae are (as ν →∞):

(3.19)

H(1)(νz) ∼ 2e−πi/3
( 4ζ

1− z2

)1/4(
ν−1/3A(ν2/3ζ)

∑

k≥0

ak(ζ)ν−2k

+ ν−5/3A′(ν2/3ζ)
∑

k≥0

bk(ζ)ν−2k
)
,

and

(3.20)

H(1)
ν

′(νz) ∼ 4
z
e2πi/3

(1− z2

4ζ

)1/4(
ν−2/3A′(ν2/3ζ)

∑

k≥0

dk(ζ)ν−2k

+ ν−4/3A(ν2/3ζ)
∑

k≥0

ck(ζ)ν−2k
)
.

Here A(s) = Ai(e2πi/3s), where Ai(s) is the Airy function, defined by

Ai(s) =
1
π

∫ ∞

−∞
ei(st−t3/3) dt.

The function ζ = ζ(z) is defined by

2
3
ζ3/2 =

∫ 1

z

√
1− t2

t
dt = log

1 +
√

1− z2

z
−

√
1− z2.

We note that ζ is analytic in z, even at z = 1, and ζ ′(1) < 0. Also, at z =
1, (1 − z2)−1ζ = 2−2/3. The expansions (3.19) and (3.20) are uniformly valid on
compact subsets of the region−π+δ < arg z < π−δ, and in particular for real z close
to 1. Furthermore, formal differentiation leads to correct asymptotic expansions in
these cases. As for the Airy function A(s), it has the following asymptotic behavior
(cf. [13], or Appendix A of [MT2]):

(3.21)
A(s) ∼ s−1/4(α0 + α1s

−3/2 + · · · )e−(2/3)is3/2
, s → +∞,

s−1/4(β0 + β1s
−3/2 + · · · )e(2/3)(−s)3/2

, s → −∞.
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A′(s) has the asymptotic behavior obtained by formally differentiating (3.21), as
do higher derivatives. In consequence, one easily verifies that

(3.22)
A′

A
(λ) ∈ S1/2(R),

A

A′
(λ) ∈ S

−1/2
1,0 (R),

granted that the denominators are nonvanishing for real λ. In fact, the only zeros
of Ai(s) or Ai′(s) are real and negative. As for the coefficients in (3.19)–(3.20),
suffice it to say that they are smooth as functions of z and a0(0) and d0(0) are
nonvanishing. From these facts, we deduce that

(3.23)
H

(1)
ν

′(νz)

H
(1)
ν (νz)

∼ α(z)ν−1/3 A′

A
(ν2/3ζ)

d(z, ν) + ν−2/3(A/A′)(ν2/3ζ)c(z, ν)
a(z, ν) + ν−4/3(A′/A)(ν2/3ζ)b(z, ν)

,

where α(z) is smooth, α(1) 6= 0, a(z, ν) ∼ ∑
k≥0 ak(ζ)ν−k, etc. Taking µ = zν in

(3.22), one verifies that, in a conic neighborhood of µ = ν,

A′

A
(ν2/3ζ(µ, ν)) ∈ S

1/3
1/3,0,

A

A′
(ν2/3ζ(µ, ν)) ∈ S0

1/3,0.

From (3.23) it follows that

(3.24) F (ν, µ) ∈ S1
1/3,0

on a conic neighborhood of µ = ν > 0.
This result is sufficient to guarantee that the Neumann operator is microlo-

cal, i.e., WF (Nf) ⊂ WF (f). Combined with (3.12) this solves the problem of
specifying the singularities of u in terms of the singularities of f . But for many
applications to scattering theory it is useful to have a more detailed description,
which fortunately can be provided by the symbol class Nm

ρ defined in §1. In fact,
(3.23) yields

F (ν, µ) ∈ N 1
1/3(Σ), Σ = {µ = ν > 0},

in a conic neighborhood of µ = ν. Furthermore, using a cutoff ϕ1(ν, µ) = ϕ(ν−a(µ−
ν)), with 1/2 < a < 1, ϕ ∈ C∞0 (R), ϕ(λ) = 1 for |λ| ≤ 1, we can write

F (ν, µ) = ϕ1(ν, µ)F (ν, µ) + (1− ϕ1(ν, µ)F (ν, µ)

= F1(ν, µ) + F0(ν, µ),

with
F0 ∈ S1

a,0, F1 ∈ N 1/2+a/2
1/3 (Σ).

Consequently, writing

N = F0(A, |Dt|) + F1(A, |Dt|)− 1
2

= N0 + N1,



16

we have
N0 ∈ OPS1

a,1−a, N1 ∈ OPS
1/2+a/2+ε
1/3,2/3 ,

and consequently

(3.25) N ∈ OPS1
1/3,2/3,

and we have some control over its symbol.
For another interpretation of N , choose a canonical transformation of T ∗(S1 ×

S2) \ 0, near some point p0 ∈ ΣG, to a conic open subset of T ∗R3 \ 0, taking p0

to (0; 1, 1, 0) and taking the symbol of A to ξ1 and the symbol of |Dt| to ξ2, and
implement this by en elliptic Fourier integral operator J in such a fashion that,
modulo a smoothing operator, we have

(3.26) N = JF (D1, D2)J−1 − 1
2
.

Then (3.25) can be obtained from (3.26) by a variant of Egorov’s theorem mentioned
in §1. Here (F (D1, D2)u)̂ (ξ) = F (ξ1, ξ2)û(ξ), so F (D1, D2) acts as an element of
OPN 1

1/3 on distributions with wave front set near {ξ1 = ξ2 > 0, ξ3 = 0} = S. If
one examines the behavior of F (D1, D2) on analytic wave front sets, one discovers
the operator is not analytically microlocal near S; the analytic wave front set gets
smeared out in x-space, though not in ξ-space. Since the canonical transformation
can be taken analytic and J can be taken to be a quantized contact transformation,
in the sense of Sato et al. [35], one can read off the analytic wave front set of Nf
from (3.26) and thus describe the “creeping waves” in the shadow region, so named
by Keller [20]. Analyzing F (D1, D2) in this context involves calculations similar
to those done in [15], describing the propagation of the analytic wave front set in
another example.

Remark. See [Sj] for general results on progation of analytic wave front sets.

If the obstacle {|x| ≤ 1} is replaced by a more general smooth convex obstacle
K, with positive curvature, the results of Melrose [30] and Taylor [42] imply that
the Neumann operator is of the form

N = J(AQ + B)J−1,

where J is an elliptic Fourier integral operator, A,B ∈ OPS1
1,0, with A elliptic, and

Q ∈ OPN 0
1/3 has symbol

q(x, ξ) = |ξ|−1/3 A′

A
(|ξ|−1/3η)

on |ξ| < |η|. Also the symbol of B vanishes on {η = 0}. The canonical transfor-
mation associated with J takes ΣG to {η = 0}. From this we can verify (3.25)
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and get some control over the symbol of N . This analysis has enabled the au-
thor to obtain a uniform bound on the error in the Kirchhoff approximation, given
by G. R. Kirchhoff in [21], which specifies that the solution to the reduced wave
equation

(∆ + λ2)u = 0 on R3 \K, u
∣∣
∂K

= eiλx·ω,

has normal derivative given approximately by

∂u

∂n

∣∣
∂K

≈ iλ|n · ω|eiλx·ω.

This is a useful rule for computations in scattering theory, whose justification had
to await the solution to the grazing ray problem. In Chapter 10 of [41] it is shown
that

∂u

∂n

∣∣
∂K

= K(x, λ)eiλx·ω,

with
|K(x, λ)− iλ|n · ω|| ≤ Cλ3/4+ε(1 + λ1/6|n · ω|)−9/2.

We mention that if one wants to treat the Neumann boundary condition, where
(3.2) is replaced by

∂u

∂n

∣∣
|x|=1

= f,

one studies N−1, which by (3.15) reduces to a study of

F (ν, µ)−1 ∈ N−2/3
1/3 (Σ).

Remark. Both for more details on the analysis described here on (3.1)–(3.3), and
for a treatment of considerable advances of the study of more general obstacles, see
[MT1] and [MT2].
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