Variations on Gel’fand’s Inverse Boundary Problem

MICHAEL TAYLOR

We discuss the equivalence of two inverse problems. In both cases, one wants to
find a compact manifold with boundary M and a Riemannian metric tensor on M.
Here are two types of data:

(A) We are given OM and the trace on OM x OM of the solution operator to the
wave equation, with Neumann boundary condition. We may as well say that we
are given the Schwartz kernel of costy/—Apn on (t,z,y) € R x IM x OM.

(B) We are given the spectrum of Ay, with multiplicities, and the trace ¢;|gas for
an orthonormal basis of eigenfunctions of Ay on M.

Let us start with the first class of data. Given such data, for each even F' € S(R)
we have the trace on M x M of the integral kernel of

(1) F(\/-Ay) = \/%/_Oo E(t) costy/—Ay dt.

We next claim that this knowledge uniquely determines the spectrum of Ay. To
see this, fix A € [0,00), pick f € C§°(—1,1) such that f(0) = 1, set G(§) =
k(€ —VN), and Fy, (&) = Gi(€) + Gr(—¢€). (Divide by 2 if A = 0.) Note that the
orthogonal projection @ of L?(M) onto the M\-eigenspace V of —Ay is given by

Q = lim Fk(\/ —AN).

k—oo

In fact, Q = Fi(v/—Ap) for all sufficiently large k. Hence the data of type (A)
uniquely determine the trace on M x OM of the integral kernel ®(z,y) of @, say
U = ®|gnrxon- We claim that

(2) U=0= &=0,
which in turn yields
(3) U =0 <= \ ¢ Spec(—Ap).

To prove (2), say N = dim V), and note that if {¢1,...,on} is an orthonormal
basis of V), then

N
(4) O(z,y) = Y 0i(2)p;(y)-
j=1

Thus (2) is a consequence of the following:
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Lemma 1. If {1,...,¢on} is an orthonormal basis of Vs C L*(M), then

(5) Z crepr () oe(y) =0 on OM X OM = ¢ = 0.
k¢

Proof. For each fixed y, the left side of (5) is a function ¢(x) satisfying
(6) Ap=—-Xp on M, ¢,0,p=0 on OM.

By uniqueness in the Cauchy problem (UCP), ¢ = 0 on M, so under the hypotheses
of the lemma,

(7) > crepr(@)pe(y) =0
ol

for each z € M, y € OM. A repeat of this argument gives (7) for allz € M,y € M.
Since {@(x)pe(y) : 1 < k,¢ < N} is an orthonormal set in L?*(M x M), this implies
Cry = 0.

To continue, let A be an eigenvalue of —Ay. Define @, ¥, and N as above. So
we are given U = ®|gprxonr, and we know that

N
(8) U(z,y) = Zsoj(w)soj(y), x,y € OM,

though we do not yet have ¢;|gar, nor do we have N. (We will obtain N shortly.)
Note that V¥ is a real-valued, symmetric function on OM x OM, the integral kernel
of a finite-rank, self-adjoint operator P on L?(OM). Given such ¥, one can find an
orthonormal set {¢; : 1 < j < M} C L?*(OM) such that

(9) U(z,y) = > (@) (y)

We emphasize that {1;} is recoverable (not uniquely, perhaps) from W. It remains

to relate {1;} to {p;}.
First note that {¢;|oam : 1 < j < N} spans the range of P and that {¢; : 1 <

j < M} forms a basis of the range of P. Furthermore, by UCP, the map ¢ — ¢|am
is injective on the space V. Hence M = N and there is an N x N matrix A = (a;x)
such that

N
(10) Ui =Y akek|yy, J=1,...,N.
k=1

Consequently,

U(,y) =Y aeajepn()ec(y)
ke

(11)
= brepr(@)pe(y),
[



where by = Zj ajkaje, i.e., B = (bg) = A'A.
Comparing (8) and (11) gives, in light of Lemma 1,

(12) bkg = 5kg, i.e., AtA =1.
In other words, (10) holds with A € O(N). It follows that if we extend v, into M
by
N
(13) Yi(x) = Zajkcpk(w), xeM,
k=1

then {t1,...,9¥xN} is an orthonormal basis of V), as desired. Hence the data (A)
yield data of type (B), as asserted.

REMARK. The equivalence of (A) and (B) was stated in [AK2LT]. For a proof,
[KKL] was cited. It seems that [KKL] contains an argument similar to that given
above, though the treatment there does ramble on.
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