Variations on Gel'fand's Inverse Boundary Problem

MICHAEL TAYLOR

We discuss the equivalence of two inverse problems. In both cases, one wants to find a compact manifold with boundary \overline{M} and a Riemannian metric tensor on \overline{M} . Here are two types of data:

(A) We are given ∂M and the trace on $\partial M \times \partial M$ of the solution operator to the wave equation, with Neumann boundary condition. We may as well say that we are given the Schwartz kernel of $\cos t \sqrt{-\Delta_N}$ on $(t, x, y) \in \mathbb{R} \times \partial M \times \partial M$.

(B) We are given the spectrum of Δ_N , with multiplicities, and the trace $\varphi_j|_{\partial M}$ for an orthonormal basis of eigenfunctions of Δ_N on \overline{M} .

Let us start with the first class of data. Given such data, for each even $F \in \mathcal{S}(\mathbb{R})$ we have the trace on $\partial M \times \partial M$ of the integral kernel of

(1)
$$F(\sqrt{-\Delta_N}) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \widehat{F}(t) \cos t \sqrt{-\Delta_N} \, dt.$$

We next claim that this knowledge uniquely determines the spectrum of Δ_N . To see this, fix $\lambda \in [0, \infty)$, pick $f \in C_0^{\infty}(-1, 1)$ such that f(0) = 1, set $G_k(\xi) = f(k(\xi - \sqrt{\lambda}))$, and $F_k(\xi) = G_k(\xi) + G_k(-\xi)$. (Divide by 2 if $\lambda = 0$.) Note that the orthogonal projection Q of $L^2(M)$ onto the λ -eigenspace V_{λ} of $-\Delta_N$ is given by

$$Q = \lim_{k \to \infty} F_k(\sqrt{-\Delta_N}).$$

In fact, $Q = F_k(\sqrt{-\Delta_N})$ for all sufficiently large k. Hence the data of type (A) uniquely determine the trace on $\partial M \times \partial M$ of the integral kernel $\Phi(x, y)$ of Q, say $\Psi = \Phi|_{\partial M \times \partial M}$. We claim that

(2)
$$\Psi = 0 \Longrightarrow \Phi = 0,$$

which in turn yields

(3)
$$\Psi = 0 \Longleftrightarrow \lambda \notin \operatorname{Spec}(-\Delta_N).$$

To prove (2), say $N = \dim V_{\lambda}$, and note that if $\{\varphi_1, \ldots, \varphi_N\}$ is an orthonormal basis of V_{λ} , then

(4)
$$\Phi(x,y) = \sum_{j=1}^{N} \varphi_j(x) \varphi_j(y).$$

Thus (2) is a consequence of the following:

Lemma 1. If $\{\varphi_1, \ldots, \varphi_N\}$ is an orthonormal basis of $V_{\lambda} \subset L^2(\overline{M})$, then

(5)
$$\sum_{k,\ell} c_{k\ell} \varphi_k(x) \varphi_\ell(y) = 0 \quad on \quad \partial M \times \partial M \Longrightarrow c_{k\ell} \equiv 0.$$

Proof. For each fixed y, the left side of (5) is a function $\varphi(x)$ satisfying

(6)
$$\Delta \varphi = -\lambda \varphi \text{ on } M, \quad \varphi, \partial_{\nu} \varphi = 0 \text{ on } \partial M.$$

By uniqueness in the Cauchy problem (UCP), $\varphi \equiv 0$ on M, so under the hypotheses of the lemma,

(7)
$$\sum_{k,\ell} c_{k\ell} \varphi_k(x) \varphi_\ell(y) = 0$$

for each $x \in \overline{M}$, $y \in \partial M$. A repeat of this argument gives (7) for all $x \in \overline{M}$, $y \in \overline{M}$. Since $\{\varphi_k(x)\varphi_\ell(y): 1 \le k, \ell \le N\}$ is an orthonormal set in $L^2(M \times M)$, this implies $c_{k\ell} \equiv 0$.

To continue, let λ be an eigenvalue of $-\Delta_N$. Define Φ, Ψ , and N as above. So we are given $\Psi = \Phi|_{\partial M \times \partial M}$, and we know that

(8)
$$\Psi(x,y) = \sum_{j=1}^{N} \varphi_j(x)\varphi_j(y), \quad x,y \in \partial M,$$

though we do not yet have $\varphi_j|_{\partial M}$, nor do we have N. (We will obtain N shortly.) Note that Ψ is a real-valued, symmetric function on $\partial M \times \partial M$, the integral kernel of a finite-rank, self-adjoint operator P on $L^2(\partial M)$. Given such Ψ , one can find an orthonormal set $\{\psi_j : 1 \leq j \leq M\} \subset L^2(\partial M)$ such that

(9)
$$\Psi(x,y) = \sum_{j=1}^{M} \psi_j(x)\psi_j(y)$$

We emphasize that $\{\psi_j\}$ is recoverable (not uniquely, perhaps) from Ψ . It remains to relate $\{\psi_j\}$ to $\{\varphi_j\}$.

First note that $\{\varphi_j|_{\partial M} : 1 \leq j \leq N\}$ spans the range of P and that $\{\psi_j : 1 \leq j \leq M\}$ forms a basis of the range of P. Furthermore, by UCP, the map $\varphi \mapsto \varphi|_{\partial M}$ is injective on the space V_{λ} . Hence M = N and there is an $N \times N$ matrix $A = (a_{jk})$ such that

(10)
$$\psi_j = \sum_{k=1}^N a_{jk} \varphi_k \big|_{\partial M}, \quad j = 1, \dots, N.$$

Consequently,

(11)

$$\Psi(x,y) = \sum_{j,k,\ell} a_{jk} a_{j\ell} \varphi_k(x) \varphi_\ell(y)$$

$$= \sum_{k,\ell} b_{k\ell} \varphi_k(x) \varphi_\ell(y),$$

where $b_{k\ell} = \sum_j a_{jk} a_{j\ell}$, i.e., $B = (b_{k\ell}) = A^t A$.

Comparing (8) and (11) gives, in light of Lemma 1,

(12)
$$b_{k\ell} = \delta_{k\ell}, \quad \text{i.e., } A^t A = I.$$

In other words, (10) holds with $A \in O(N)$. It follows that if we extend ψ_j into \overline{M} by

(13)
$$\psi_j(x) = \sum_{k=1}^N a_{jk} \varphi_k(x), \quad x \in \overline{M},$$

then $\{\psi_1, \ldots, \psi_N\}$ is an orthonormal basis of V_{λ} , as desired. Hence the data (A) yield data of type (B), as asserted.

REMARK. The equivalence of (A) and (B) was stated in [AK2LT]. For a proof, [KKL] was cited. It seems that [KKL] contains an argument similar to that given above, though the treatment there does ramble on.

References

[AK2LT] M. Anderson, A. Katsuda, Y. Kurylev, M. Lassas, and M. Taylor, Boundary regularity for the Ricci equation, geometric convergence, and Gel'fand's inverse boundary problem, Invent. Math. 158 (2004), 261–321.

[KKL] A. Katchalov, Y. Kurylev, and M. Lassas, Inverse Boundary Spectral Problems, Chapman Hall/CRC Press, Boca Raton, 2001.