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Abstract. Pseudodifferential operators on Rn in OPSmρ,0 are built out of smooth families
of convolution operators on Rn. Similarly important classes of operators can be built out
of smooth families of convolution operators on a noncommutative Lie group G. When the
representation theory and harmonic analysis on G are well understood, one can construct a
noncommutative symbol calculus. This paper develops some aspects of the resulting non-
commutative microlocal analysis. Chapter I treats operators on general Lie groups. The
details of the symbol calculus depend on the particular representation theory of the group
G, and such a theory is worked out for the Heisenberg group in Chapter II. In Chapter
III this theory is applied to a systematic study of operator classes on contact manifolds,
including parametrices for naturally occurring subelliptic operators, heat asymptotics, and
a study of the Szegö projectors.

AMS (MOS) subject classification (1970): 35H05
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Noncommutative Microlocal Analysis, Part I

Introduction

The theory of pseudodifferential operators has provided a very powerful and flexible tool
for treating problems in linear partial differential equations. For example, it provides a
framework for “pasting together” parametrices for “frozen” constant coefficient operators
(obtained by Fourier analysis on Rn) to produce parametrices for general variable coeffi-
cient elliptic equations. Using the theory of Fourier integral operators, one can impose a
translation symmetry on operators with simple characteristics and real principal symbol
and obtain rich information on such subjects as strictly hyperbolic equations.

In dealing with operators with multiple characteristics, in cases where the geometry
of the characteristics can be put in standard form via a homogeneous canonical trans-
formation, one is often led naturally to a problem in noncommutative harmonic analysis.
The connection between the Kohn Laplacian and analysis on the Heisenberg group was
exploited by Folland and Stein [F4]. More general hypoelliptic operators were studied via
analysis on more general nilpotent Lie groups by Rothschild and Stein [R5]. These papers
and numerous subsequent ones developed operator calculi for certain classes of pseudo-
differential operators. However, they do not exploit harmonic analysis on a nilpotent Lie
group in the same way that the most popular approach to pseudodifferential operators on
Rn does, by the group Fourier transform and associated symbol calculus. Some aspects of
such a symbol calculus were presented by Dynin in [D2] and [D3], which gave considerable
inspiration to this paper.

The sort of operators we deal with arise on a Lie group G from a smooth family of
convolution operators on G in the same fashion that classical pseudodifferential operators
on Rn arise from a smooth family of Fourier multipliers (convolution operators) on Rn.
In the first section of Chapter I, we develop a general study of such operators and the
calculus: adjoints, products, pseudo-locality, etc. This theory proceeds along the lines of
what is now a standard treatment of pseudodifferential operators on Rn with symbols in

Smρ,0 (δ = 0). The symbol of such an operator is defined on G × Ĝ, where Ĝ is the set of
equivalence classes of irreducible representations of G; the symbol takes values as operators
on the associated representation spaces. The first chapter presents much of its results in
a general framework, though it also focuses on some phenomena special to nilpotent Lie
groups with dilations, and occasionally specializes to two-step nilpotent Lie groups.

The second chapter develops the tools to implement symbol calculi on the Heisenberg
group Hn. Our goal here is to develop harmonic analysis on the Heisenberg group far
enough to construct suitably powerful classes of right invariant pseudodifferential operators
on Hn and understand them through their symbols. We describe the basic representations
of the Heisenberg group and analyze the image of a convolution operator under such a
representation as an operator in the Weyl functional calculus, which has reached a high
degree of development in [H10]. Other approaches to harmonic analysis on Hn have been
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pursued, particularly by Geller [G2], [G3], [G5], [C3], and others. A more elementary
treatment of harmonic analysis on Hn, having some overlap with the one here, is given in
the first chapter of the monograph [T5]. We develop a class of pseudodifferential operators
on Hn containing both the convolutors on Hn with the dilation properties stressed by
Folland and Stein and the algebra OPS0 of classical pseudodifferential operators. Thus
there is available classical microlocalization via elements of the algebra.

The methods of Chapter I allow one to apply the theory of Chapter II to the study of
classes of pseudodifferential operators on a contact manifold M , including parametrices
for hypoelliptic pseudodifferential operators on M doubly characteristic on a certain sym-
plectic variety Λ ⊂ T ∗M \ 0 (defined by the contact structure), satisfying the condition
of subellipticity with loss of one derivative, given originally by Sjöstrand [S6], Boutet de
Monvel and Treves [B13], and Boutet de Monvel [B7]. The approach here is in straight-
forward analogy with the construction, via symbol calculus for OPSm, of parametrices
for elliptic operators. Our noncommutative symbols are operator valued, a property in
common with part of Sjöstrand’s construction in [S6]. In our case, it is apparent that
the parametrices obtained are pseudodifferential operators of type (1/2, 1/2); in fact they
are obtained in operator classes that are strict sub-classes of Boutet de Monvel’s operator
classes in [B7]. Next we construct a parametrix for the “heat” equation determined by
such a subelliptic operator, in the case when it is a self-adjoint, semibounded, second-
order differential operator, in direct analogy to the construction of a parametrix for the
heat equation on a Riemannian manifold. Parametrices have been constructed in greater
generality by Menikoff and Sjöstrand [M8], and subsequent papers, using harder work; the
approach here is simple enough to proceed from the principal term in the trace of the heat
kernel to a complete asymptotic expansion. Finally, we show that the symbol calculus
developed in Chapter III gives a very straightforward construction of the Szegö projector,
for the boundary of a strictly pseudoconvex domain in Cn. The constuction of Boutet
de Monvel and Sjöstrand [B12] lends itself to greater generality, but the treatment via
noncommutative symbol calculus seems very natural in this context. The fact that Fourier
integral operators are avoided has some advantages, e.g., for Lp estimates.

On the other hand, Fourier integral operators greatly add to the flexibility of pseudo-
differential operators as a tool, and will probably play a more crucial role in exploiting
harmonic analysis on other groups, in situations modeling other types of symplectic geom-
etry than just a contact line bundle in T ∗M . It was originally my intention to include more
chapters, discussing applications of harmonic analysis on certain other classes of groups,
but the present manuscript has grown to a point where a break is necessary. We will not
go into the contents of the projected second part, beyond a few references in the text to a
fourth chapter. Let us point out the works of Melin [M4] and of Beals and Greiner [B6],
which develop cetain operator calculi on spaces more general than contact manifolds. The
operator algebras treated there are not amalgamated with the classical pseudodifferential
operators, so further work would be required to microlocalize them.

This paper ends with two appendices. The first gives a brief discussion of some aspects
of the Weyl calculus. The second develops a more general sort of Weyl calculus and
applies it to a proof of a result of Howe [H11] on an isomorphism between a certain algebra
of pseudodifferential operators on Rn, which also arises naturally in Chapter II, and an
algebra of Toeplitz operators on the unit ball in Cn.
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Remarks on the revised version

The original version of this paper was published in 1984 as an AMS Memoir. Since
then I have given away all my free copies and most of the batch I purchased, so it seemed
to be a good idea to put out a version in TeX, replacing the product of an old-fashioned
typewriter.

I have made some minor changes in the course of retyping this paper in TeX. In par-
ticular, the introductions to the various chapters have been amplified, in hopes that the
reader can obtain a better outline of the results presented therein by perusing these intro-
ductions. To the original bibliography I have appended a handful of references to papers
that have appeared since 1984 and bear on the subject treated here. I have also taken the
opportunity to reorganize some of the material, splitting up several long, rambling sections
into shorter, more focused parts. The following table identifies how old sections were split:

Chapter I
§1 7→ §§1− 2

Chapter II
§2 7→ §§2− 3

§3 7→ §§4− 5

Chapter III
§1 7→ §§1− 2

§2 7→ §§3− 4

There have not been many mathematical changes. A little further material on the
Neumann operator �+ for the ∂-Neumann problem has been added in Chapter III, §4, but
not much else.

Further revision: July 2013

I have added a seventh section to Chapter III:

7. Further material on Szegö operators
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Chapter I. Noncommutative approach to pseudodifferential operators

Here we produce various classes of pseudodifferential operators on Lie groups in a fash-
ion parallel to the way pseudodifferential operators with symbols in Smρ,0 are produced

from convolution operators on Rn. To a group G and a Frechet space X̂ of distributions

singular only at the identity element of G, we associate a class of operators OP X̃. We

discuss products and adjoints of such operators, as operators in OP X̃, under appropriate
hypotheses. A great deal of the resulting operator calculus arises smoothly in close analogy
to the development of pseudodifferential operators on Rn, for very general classes of Lie
groups.

In §2 we specialize to groups with dilations, and consider some special classes of opera-
tors tied to these dilations. Operators that arise in Chapters II and III will be of this sort.
We consider in particular operator classes

(0.1) OPH(G,α,m) and OPHm,µα,δ ,

of convolution operators homogeneous with respect to the family of dilations α(t), and
partaking of homogeneity with respect to both α(t) and the Euclidean dilations δ(t),

respectively, and also the “variable coefficient” extensions, OP H̃(G,α,m) and OP H̃m,µα,δ .

In §3 we associate a symbol to an element K ∈ OP X̃. This will be a function σK(x, π),
defined for x ∈ G and an irreducible unitary representation π of G, as an operator on
the representation space for π (or at least on a certain dense subspace). The discussion of
symbols in this chapter is brief, as this aspect of the study is strongly tied to the particular
representation theory of the group at hand.

We will use the following definition of the Euclidean Fourier transform on Rn:

(0.2) û(ξ) = (2π)−n/2
∫
u(x)e−ix·ξ dx.

Then the Fourier inversion formula is

(0.3) u(x) = (2π)−n/2
∫
û(ξ)eix·ξ dξ.

The author will be found guilty of lapses in the text regarding factors of powers of 2π,
which may be omitted from many formulas.

Another convenient symbolism we will use is

(0.4) ⟨ξ⟩ =
(
1 + |ξ|2

)1/2
,

for ξ ∈ Rn.
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1. Convolution operators and pseudodifferential operators on Lie groups

In this first chapter we show how to build operators out of convolution operators on
a Lie group, in a fashion analogous to constructing pseudodifferential operators out of
convolution operators (Fourier multipliers) on Euclidean space. For orientation, let us
recall the definition of certain classes of pseudodifferential operators on Rn. We set

(1.1) p(x,D) = (2π)−n/2
∫
p(x, ξ)û(ξ)eix·ξ dξ.

Suppose the amplitude p(x, ξ) belongs to Smρ,δ, which is to say

(1.2) |Dβ
xD

α
ξ p(x, ξ)| ≤ Cαβ⟨ξ⟩m−ρ|α|+δ|β|.

We say p(x,D) ∈ OPSmρ,δ. In the particular case δ = 0, we can characterize elements of
OPSmρ,δ as follows. The space of Fourier multipliers in Smρ,0:

(1.3) p(D)u = p̂ ∗ u = (2π)−n/2
∫
p(ξ)û(ξ)eix·ξ dξ

forms a Frechet space Smρ#, with seminorms

(1.4) [p]α,m,ρ = sup
ξ

⟨ξ⟩−m+ρ|α| |Dα
ξ p(ξ)|.

Now we can think of p(x, ξ) ∈ Smρ,0 as being a smooth family of elements of Smρ#:

(1.5) px(ξ) = p(x, ξ),

and if P (y) is the operator of Fourier multiplication by py(ξ), we have

(1.6) p(x,D)u(x) = P (x)u(x).

The operator calculus for such pseudodifferential operators is given as follows. If
p(x,D) ∈ OPSmρ,δ and q(x,D) ∈ OPSµρ,δ, then, as long as 0 ≤ δ < ρ ≤ 1,

(1.7) p(x,D)q(x,D) = r(x,D) ∈ OPSm+µ
ρ,δ ,

with

(1.8) r(x, ξ) ∼
∑
α≥0

i|α|

α!
Dα
ξ p(x, ξ)D

α
x q(x, ξ).
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Note that the general term in this asymptotic expansion belongs to S
m+µ−(ρ−δ)|α|
ρ,δ . This

result is given in Hörmander [H6]; see also the books [K10], [T2], and [T7] on pseudodif-
ferential operators. The result (1.7) is also valid in case ρ = δ < 1, but in this case (1.8)
does not give an asymptotic sum, so we do not have a convenient formula for the principal
symbol of a product in this case.

Now let G be a Lie group. Since we intend to work locally, we impose a local coordinate
system on a neighborhood of the identity element e ∈ G, such that e is the origin 0; we could
use exponential coordinates, identifying a neighborhood of e ∈ G with a neighborhood of
0 in g, the Lie algebra of G. The Fourier multipliers (1.3) are replaced by convolution
operators on G:

(1.9)

Ku(x) = k ∗ u(x) =
∫
G

k(y)u(y−1x) dm(y)

=

∫
G

k(xy)u(y−1) dm(y)

=

∫
G

k(xy−1)u(y)∆(y−1) dm(y),

where dm(y) stands for left-invariant Haar measure, ∆(y) the modular function. We

suppose k ∈ E ′(G) is in some Frechet space X̂ of distributions that are singular only at the

origin. Consequently the Fourier transform k̂(ξ) belongs to X, a Frechet space contained
in C∞(g′), where g′ denotes the linear dual of g. We will suppose that X ⊂ Smρ# for some

m ∈ R, ρ ∈ (0, 1]. We say K belongs to OPX.

If k̂(y, ξ) =
∫
k(y, x)e−ix·ξ dx is a smooth function of y with values in X, for y in a

neighborhood of e ∈ G, then K(y), defined by

(1.10) K(y)u(x) =

∫
G

k(y, xz−1)u(z)∆(z−1) dm(z),

is a smooth function of y, taking values in the Frechet space OPX. We then associate the
operator

(1.11) Ku(x) = K(x)u(x),

and we say K ∈ OP X̃.
Oe thing we can say about these operators is that they are pseudodifferential operators

in the usual sense. Indeed, we have the following simple result.

Proposition 1.1. If K ∈ OP X̃ with X ⊂ Smρ#, then, modulo a smoothing operator,

(1.12) Ku(x) =

∫∫
a(x, y, ξ)ei(x−y)·ξu(y) dy dξ,
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for an amplitude a ∈ Smρ,1−ρ, i.e., such that

(1.13) |Dγ
yD

β
xD

α
ξ a(x, y, ξ)| ≤ Cαβγ⟨ξ⟩m−ρ|α|+(1−ρ)(|β|+|γ|).

Proof. We can write the group law as

(1.14) xy−1 = Φ(x, x− y), Φ(x, 0) = 0 (e = 0).

If Haar measure is given by dm(y) = H(y) dy and H1(y) = ∆(y−1)H(y), then

(1.15)

Ku(x) =

∫
k(x, xy−1)u(y)H1(y) dy

=

∫
u(y)k

(
x,Φ(x, x− y)

)
H1(y) dy

=

∫ ∫
Rn

u(y)eiΦ(x,x−y)·ζ k̂(x, ζ)H1(y) dζ dy.

Now by (1.14) we can find a smooth invertible matrix function Ψ(x, y) such that, near the
diagonal,

(1.16) Φ(x, x− y) · ζ = (x− y) ·Ψ(x, y)tζ.

Hence, modulo a smoothing operator,

(1.17) Ku(x) =

∫∫
ei(x−y)·Ψ(x,y)tζ k̂(x, ζ)H1(y)D(x, y) dy dζ,

where D(x, y) is supported near x = y and equal to 1 on a small neighborhood of x = y.
If we make the change of variable

ξ = Ψ(x, y)tζ,

then we can write
ζ = ψ(x, y)ξ,

with ψ smooth, and

D(x, y) dζ = D̃(x, y) dξ,

so

(1.18) Ku(x) =

∫∫
ei(x−y)·ξ k̂(x, ψ(x, y)ξ)H1(y)D̃(x, y)u(y) dy dξ,

so we have the form (1.12) with

(1.19) a(x, y, ξ) = k̂(x, ψ(x, y)ξ)H1(y)D̃(x, y).
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It is routine to verify that the hypothesis X ⊂ Smρ# yields (1.13).

In the special case of convolution operators, this result was noted by Strichartz [S10].
If ρ > 1/2, then the multiple symbol a(x, y, ξ) can be reduced to a simple symbol, and we
have

(1.20) Ku(x) =

∫
p(x, ξ)eix·ξû(ξ) dξ,

with

(1.21) p(x, ξ) ∼
∑
α≥0

i|α|

α!
Dα
ξD

α
xa(x, y, ξ)

∣∣
y=x

.

See, e.g., [T2], Chapter 2. In the case ρ = 1/2, one can still write K in the form (1.20), as
shown in Beals [B2], but (1.21) is no longer asymptotic, and one does not obtain a neat
formula for the principal symbol.

In the case when G is a step 2 ninpotent Lie group, we can obtain the form (1.20) in the
general case, rather directly, as follows. In exponential coordinates, Haar measure coincides
with Lebesgue measure, and ∆(y) ≡ 1. Also, by the Campbell-Hausdorff formula, we can
express the group law as

(1.22) xy−1 = Lx(x− y),

where Lx = I − (1/2)adx is a smooth family of invertible linear maps on g. Thus, in this
case,

(1.23)

Ku(x) =

∫
u(y)k

(
x, Lx(x− y)

)
dy

=

∫∫
u(y)eiLx(x−y)·ξk̂(x, ξ) dy dξ

=

∫
k̂(x, L̃xξ)e

ix·ξû(ξ) dξ,

where L̃x = (Ltx)
−1. Thus we directly obtain (1.20), with

(1.24) p(x, ξ) = k̂(x, L̃xξ),

which gives K ∈ OPSmρ,1−ρ. This argument is given in Nagel and Stein [N3] for the case of
convolution operators on the Heisenberg group.

From Proposition 1.1 we can conclude, by the Calderon-Vaillancourt theorem, that if
X ⊂ S0

1/2#, then K ∈ OPX is continuous on L2, and on any Sobolev space Hs. For

K ⊂ S0
ρ# with 0 < ρ < 1/2, application of Proposition 1.1 yields only weak continuity

results. In fact, it is apparent from first principles that, given any M , if N > 0 is large

enough and X ⊂ S−N
ρ# , 0 < ρ < 1/2, then any K ∈ OP X̃ maps Hs to Hs+M . Sharper

continuity results will be considered in the next two sections.
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A point we wish to emphasize is that, even though Proposition 1.1 has some uses
(it shows K is microlocal, for example), if ρ ≤ 1/2 it is not an incisive analysis of K. In
particular, formulas for compositions of such operators are not obtained in a usable fashion
from Proposition 1.1, even in case ρ = 1/2. We now give an account of compositions of
operators of the form (1.11).

Suppose that for m ∈ R (or one might restrict attention to m ∈ Z), Xm is a nested
family of Frechet spaces (Xm ⊃ Xµ if m > µ) with the following properties:

Xm ⊂ Smρ# for some ρ ∈ (0, 1], m ≥ 0,(1.25)

Xm ⊂ Smσρ# if m < 0, for some σ ∈ (0, 1].(1.26)

A ∈ OPXm, B ∈ OPXµ ⇒ AB ∈ OPXm+µ,(1.27)

the product in (1.27) being continuous. The hypothesis (1.27) is an hypothesis on the
composition of two convolution operators. Verifying it for particular classes Xm is often a
problem in harmonic analysis on G. Some cases of particular importance are considered
in §2. Let us note that all these hypotheses are satisfied in the case Xm = Sm1/2# (even

easier, in case Xm = Smρ# with ρ ∈ (1/2, 1]); in all these cases we can take σ = 1 in (1.26).
Now suppose

(1.28) A ∈ OP X̃m, B ∈ OP X̃µ.

Say

(1.29) Au(x) = A(x)u(x) =

∫
a(x, xy−1)u(y)H1(y) dy,

and

(1.30) Bu(x) = B(x)u(x) =

∫
b(x, xy−1)u(y)H1(y) dy.

For the composition, we have

(1.31)

ABu(x) = A
(∫

b(x, xy−1
1 )u(y1)H1(y1) dy1

)
=

∫∫
a(x, xy−1

2 )b(y2, y2y
−1
1 )u(y1)H1(y1)H1(y2) dy1 dy2.

Let us compare this with the operator C, defined by

(1.32) Cu(x) = A(x)B(x)u(x).

By hypothesis (1.27), C(y) = A(y)B(y) is a smooth function of y with values in OPXm+µ,

so C ∈ OP X̃m+µ. We have the formula

(1.33) Cu(x) =

∫∫
a(x, xy−1

2 )b(x, y2y
−1
1 )u(y1)H1(y1)H1(y2) dy1 dy2.
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Note that the only difference between (1.31) and (1.33) is in the first argument of b. This
suggests making the expansion

(1.34) b(y2, z) =
∑

|γ|<N

φγ(xy
−1
2 )bγ(x, z) +

∑
|γ|=N

φγ(xy
−1
2 )rγ(x, y2, z).

Here, using exponential coordinates, we take

(1.35) φγ(y) = yγ .

Thus b0(x, z) = b(x, z), and each bγ(x, z) is a smooth function of x with values in X̂µ.
Furthermore, by Taylor’s formula with remainder, rγ(x, y2, ·) is a smooth function of x

and y2 with values in X̂µ. Thus we have

(1.36) ABu(x) =
∑

|γ|<N

A[γ](x)B[γ](x)u(x) +RNu(x),

where

A[γ](y)u(x) =

∫
a(y, xy−1

2 )φγ(xy
−1
2 )u(y2)H1(y2) dy2,(1.37)

B[γ](y)u(x) =

∫
bγ(y, xy

−1
1 )u(y1)H1(y1) dy1,(1.38)

and RN is given by

(1.39)
RNu(x) =

∑
|γ|=N

∫∫
a(x, xy−1

2 )φγ(xy
−1
2 )rγ(x, y2, y2y

−1
1 )

u(y1)H1(y1)H1(y2) dy1 dy2.

Suppose u ∈ Hs is compactly supported. Then crude considerations give M = M(µ),
independent of γ, such that∫

rγ(x, y2, y2y
−1
1 )u(y1)H1(y1) dy1 = v(x, y2)

is a smooth function of x taking values in the Sobolev space Hs−M , as a function of y2. It
will be convenient to switch the order here; pick K large and regard v as an Hs−M function
of y2, taking values in the Sobolev space HK (functions of x). Thus RNu(x) = wN (x, x),
where

(1.40)

wN (x) =
∑

|γ|=N

∫
a(x, xy−1

2 )φγ(xy
−1
2 )v(y, y2)H1(y2) dy2

=
∑

|γ|=N

A[γ](x)v(y, x)

=
∑

|γ|=N

A[γ]v(y, x).
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Here the operator A[γ] is applied to the HK-valued fuction v (of x). For N large, the
integral operator A[γ] has a very weak singularlty, so wN (x, y) will be in HK for any
given K if N is sufficiently large. Consequently we can interpret (1.36) as an asymptotic
expansion

(1.41) ABu(x) ∼
∑
γ≥0

A[γ](x)B[γ](x)u(x).

As already noted, B[γ](x) is a smooth function of x with values in OPXµ. As for A[γ](x),
in view of (1.37) and (1.35), if Xm ⊂ Sνρ# (with ν = m for m ≥ 0, mσ for m < 0), then

A[γ](x) is a smooth function of x with values in S
ν−ρ|γ|
ρ# . Thus the terms in (1.40) become

highly smoothing for large |γ|. To obtain results within the framework of OP X̃∗, we add
the following hypotheses to (1.25)–(1.27):

(1.42) P (ξ) ∈ Xm =⇒ Dα
ξ p(ξ) ∈ Xm−τ |α|,

for some τ ∈ (0, 1], and

Kj ∈ Xm−τj ⇒ ∃ K ∈ Xm such that, for any M,(1.43)

if N is sufficiently large, K − (K0 + · · ·+KN ) ∈ S−M
ρ# .

It follows from these hypotheses and from (1.27) that the γ-term in (1.41) belongs to

OP X̃m+µ−τ |γ|. We summarize the result we have obtained:

Proposition 1.2. Let Xm be a nested family of Frechet spaces satisfying the hypotheses

(1.25)–(1.27) and (1.42)–(1.43). If A ∈ OP X̃m and B ∈ OP X̃µ, then AB ∈ OP X̃m+µ,

and, with C ∈ OP X̃m+µ given by (1.33), we have AB− C ∈ OP X̃m+µ−τ . More precisely,
the asymptotic expansion (1.41) holds.

We turn to the analysis of adjoints of elements of OP X̃m. If K is given by (1.10)–(1.11),
we have

(1.44) K∗v(x) =

∫
k#(y, xy−1)v(y)H1(y) dy,

where
k#(y, z) = k(y, z−1).

We compare this with K#, defined by

(1.45) K#v(x) =

∫
k#(x, xy−1)v(y)H1(y) dy.

We see that K# ∈ OP X̃m provided Xm satisfies the condition

(1.46) p(ξ) ∈ Xm =⇒ p(ξ) ∈ Xm.
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The formula (1.45) differs from (1.44) only in the first argument of k#, so, in analogy with
(1.34), we make the expansion

(1.47) k#(y, z) =
∑

|γ|<N

φγ(xy
−1)k#γ (x, z) +

∑
|γ|=N

φγ(xy
−1)r#γ (x, y, z).

In this case, r#γ (x, y, z) is a smooth function of x and y, taking values in X̂m. It follows
that

(1.48) K∗v(x) =
∑

|γ|<N

K{γ}(x)v(x) +R#
Nv(x),

where

(1.49) K{γ}(z)v(x) =

∫
k#γ (z, xy

−1)φγ(xy
−1)v(y)H1(y) dy,

and R#
N is given by

(1.50) R#
Nv(x) =

∑
|γ|=N

∫
r#γ (x, y, xy

−1)φγ(xy
−1)v(y)H1(y) dy.

We see that k#(x, z) is a smooth function of x taking values in X̂m, and hence, granted

hypothesis (1.42), the map K{γ} given by K{γ}v(x) = K{γ}(x)v(x) belongs to OP X̃
m−τ |γ|.

Meanwhile, an analysis very like that of RN shows that R#
N is arbitrarily smoothing if N

is sufficiently large. We have established the following result.

Proposition 1.3. Let Xm be a nested family of Frechet spaces satisfying the hypotheses

(1.25)–(1.27), (1.42)–(1.43), and (1.46). If K ∈ OP X̃m, then the adjoint K∗ belongs to

OP X̃m, and one has the asymptotic expansion

(1.51) K∗v(x) ∼
∑
γ≥0

K{γ}(x)v(x).

As we have noted, the hypotheses giving Propositions 1.2 and 1.3 are satisfied by Xm =

Smρ#, if 1/2 ≤ ρ ≤ 1. In case 1/2 ≤ ρ < 1, OP X̃m is a strict subclass of OPSmρ,1−ρ. It is
useful to note that for ρ = 1 these two classes coincide.

Proposition 1.4. If Xm = Sm1#, then, locally and modulo smoothing operators, we have

(1.52) OP X̃m = OPSm1,0.

Proof. We already have OP X̃m ⊂ OPSm1,0. For the converse, let p(x,D) ∈ OPSm1,0. Then,

guided by (1.19) and (1.21), we define k̂(x, ξ) by

(1.53) p(x, ξ) = k̂
(
x, ψ(x, x)ξ

)
H1(x)D̃(x, x),
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where ψ, H1, and D̃ are defined in the proof of Proposition 1.1. It is routine to verify that

this does indeed define k̂(x, ξ) as a smooth function of x with values in Sm1#. Now define

K0 ∈ OP X̃m by

(1.54) K0u(x) =

∫
k(x, xy−1)u(y)H1(y) dy.

The proof of Proposition 1.1 shows that K0 ∈ OPSm1,0 and p(x,D) − K0 = p2(x,D) ∈
OPSm−1

1,0 . Inductively, we obtain Kj ∈ OP X̃m−j , which asymptotically sum to K ∈ OP X̃m,

and p(x,D)− K is a smoothing operator. This finishes the proof.

We next derive a simple abstract hypoellipticity result from the operator calculus de-
veloped so far. In the Euclidean case, this is the regularity theorem for elliptic operators.

Proposition 1.5. Suppose K ∈ OP X̃m has the form K = K1 + K0, with K0 ∈ OP X̃m−τ

and K1u(x) = K1(x)u(x). Keep the hypotheses on Xm used in Proposition 1.2. Assume
that

(1.55) E1(x) = K1(x)
−1 is smooth in x with values in OPX−m.

Then K is hypoelliptic, with a parametrix in OP X̃−m.

Proof. By (1.55), we can define E1 ∈ OP X̃−m by

(1.56) E1u(x) = E1(x)u(x).

Then Proposition 1.2 gives

(1.57) E1K = I −R, R ∈ OP X̃−τ .

Hence

(1.58) (I +R+R2 + · · ·+RN−1)E1K = I −RN , RN ∈ OP X̃−Nτ .

Taking N arbitrarily large we deduce K is hypoelliptic, with parametrix

E ∼ (1 +R+R2 + · · · )E1.

We now take a look at the behavior of such operators as considered above under a
change of variable. That is, if φ : G → G is a C∞ diffeomorphism (not necessarily

a group automorphism) with inverse ψ, and A ∈ OP X̃m, we want to understand the
nature of the conjugated operator ψ∗Aφ∗ (where φ∗u(x) = u(φ(x)). In many cases the

class OP X̃m will not be invariant under general diffeomorphisms φ. For example, when

G = Rn, Xm = Smρ#, 1/2 ≤ ρ ≤ 1, we have OP X̃m = OPSmρ,0, but the classes invariant

under diffeomorphisms are OPSmρ,1−ρ; unless ρ = 1, OP X̃m is not invariant under general
diffeomorphisms in this case.
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Nevertheless, Xm in many cases is defined by special properties (e.g., quasi-homogeneity)
associated with a certain structure on G (e.g., a contact structure, discussed in Chapter

III), and OP X̃m may be invariant under those diffeomorphisms preserving such a structure.
Results along these lines depend strongly on particular cases, but we will outline some
general features of the phenomena here, which will apply to special cases, as in Chapter
III.

If an operator A is given by

(1.59) Au(x) =

∫
a(x, xy−1)u(y)H1(y) dy, x ∈ G,

the conjugated operator B = ψ∗Aφ∗ is given by

(1.60)

Bu(x) =

∫
a
(
ψ(x), ψ(x)y−1

)
u
(
φ(y)

)
H1(y) dy

=

∫
a
(
ψ(x), ψ(x)ψ(y)−1

)
u(y)H̃(y) dy

=

∫
b
(
x,Ψ(x, y, xy−1)

)
u(y)H̃(y) dy,

where
b(x, z) = a(ψ(x), z), Ψ(x, y, xy−1) = ψ(x)ψ(y)−1.

There is some freedom in the construction of Ψ, and we can arrange that, in exponential
coordinates, Ψ(x, y, z) is linear in z, with

(1.61) Ψ(x, x, z) = Dψ(x)z = Ψ(x)z,

where Dψ(x) is the derivative of the map ψ, as a linear map on g. The next natural thing
to do is to make a power series expansion of b

(
x,Ψ(x, y, xy−1)

)
in the third argument, y,

about y = x, in analogy with (1.34). We get

(1.62) b
(
x,Ψ(x, y, xy−1)

)
∼

∑
γ≥0,|σ|≥|γ|

Cσγ (xy
−1)γ+σ b(γ)

(
x,Ψ(x)(xy−1)

)
,

where b(γ)(x, z) = Dγ
z b(x, z). Here, if w = xy−1 is given in exponential coordinates by

w = (w1, . . . , wn), and if γ = (γ1, . . . , γn), we set w
γ = wγ11 · · ·wγnn . Now we would like the

summands in (1.62) to be smoothing of high order if |γ| is large. Denote the partial Fourier

transform of b(x,w) by b̃(x, ξ). With w = xy−1 in (1.62), the partial Fourier transform of
a general term in (1.62) with respect to w is

(1.63) Cσγ D
γ+σ
ξ ξγ b̃

(
x,Ψ(x)tξ

)
.

If, for example, b̃(x, ξ) is a smooth function of x with values in Sm1#, then such a term

is a smooth function of x with values in S
m−|σ|
1# ⊂ S

m−|γ|
1# . Modulo estimating the er-

ror term when (1.62) is truncated to a finite sum, this retraces the proof that OPSm1,0
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is invariant under coordinate changes. On the other hand, if b̃(x, ξ) is a smooth func-
tion of x with values in Smρ#, with 1/2 < ρ < 1, then the term in (1.63) belongs to

S
m+(1−ρ)|γ|−ρ|σ|
ρ,1−ρ ⊂ S

m−(2ρ−1)|γ|
ρ,1−ρ , which is not the same as being a smooth function of x

with values in S
m−(2ρ−1)|γ|
ρ# .

As mentioned, we will pursue further the question of behavior under changes of variables
later on.
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2. Operator classes for groups with dilations

Having worked on the level of general Lie groups in §1, we now specialize a bit. Let G be
a simply connected Lie group with a one-parameter family α(t) of automorphisms. Denote
also by α(t) the automorphisms induced on the Lie algebra g. We make the assumption
that these are dilations. In other words,

(2.1) g =
⊕
b∈B

gb,

where B is a subset of (0,∞) and

(2.2) α(t)X = etbX, X ∈ gb.

Note that

(2.3) [gb, gc] ⊂ gb+c.

Hence g must be nilpotent. Thus exp : g → G is a diffeomorphism, taking Lebesgue
measure on g to Haar measure on G.

Definition. Ĥ(G,α,m) is the space of distributions u on G such that

u ∈ C∞(G \ 0),(2.4)

u = u1 + u2, u1 ∈ E ′(G), u2 ∈ S(G), the Schwartz space,(2.5)

t ∈ (0,∞) ⇒ eσtα(t)∗u− e−tmu ∈ S(G),(2.6)

where eσt is the factor by which α(t) expands volumes in G. If dj = dim gbj ,

(2.7) σ =
∑

bjdj .

Here, for v ∈ S(G), α(t)∗v(x) = v(α(t)x), x ∈ G. Then α(t)∗ extends uniquely to
a continuous linear map on S ′(G). In words, we say u is approximately homogeneous
of degree −(m + σ). We can characterize the space H(G,α,m) of (Euclidean) Fourier

transforms of elements of Ĥ(G,α,m) as follows.

Proposition 2.1. The tempered distribution u belongs to Ĥ(G,α,m) if and only if û(ξ)
satisfies

(2.8) û ∈ C∞(g′),

where we identify G and g, and

(2.9) β(t)∗û− etmû ∈ S(g′), ∀ t ∈ (0,∞),

where β(t) = α(t)t.

Proof. Since the Fourier transform of α(t)∗u is given by e−σtβ(t)∗û, (2.9) and (2.6) are
equivalent. Clearly (2.5) implies (2.8). That (2.8) and (2.9) also give (2.4) follows easily
from the following observation.
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Proposition 2.2. Suppose û ∈ C∞(g′). Then (2.9) is equivalent to the existence of
v ∈ C∞(g′ \ 0), such that

(2.10) v(β(t)ξ) = etmv(ξ) on g′ \ 0, ∀ t ∈ (0,∞),

and

(2.11) χ(ξ)[û(ξ)− v(ξ)] ∈ S(g′),

where χ(ξ) is smooth, equal to 0 for ξ in a neighborhood of 0, and equal to 1 for ξ outside
a compact set.

Proof. Clearly (2.10) and (2.11) imply (2.9). Conversely, suppose

(2.12) û(β(1)ξ)− emû(ξ) = ĥ(ξ) ∈ S(g′).

Then, replacing ξ by β(j)ξ, we have

û(β(j + 1)ξ)− emû(β(j)ξ) = ĥ(β(j)ξ).

Hence

e−m(j+1)û(β(j + 1)ξ)− û(ξ) =

j∑
k=0

e−mkĥ(β(k)ξ),

so let

(2.13) v(ξ) =
∞∑
k=0

e−mkĥ(β(k)ξ) + û(ξ).

Since ĥ ∈ S(g′), v belongs to C∞(g′ \ 0), and (2.12) implies

e−mj û(β(j)ξ) −→ v(ξ), as j → ∞.

Using increments of β(1/N) instead of β(1) and passing to the limit, we have

(2.14) e−mtû(β(t)ξ) −→ v(ξ), as t→ ∞.

It follows that v satisfies (2.10). Furthermore, (2.13) easily yields (2.11), so the proof is
complete.

So we see that, for u ∈ Ĥ(G,α,m), û differs by a rapidly decreasing function from
a homogeneous function. However, it is not always the case that u differs by a smooth
function from a homogeneous function. Consider the case G = R, α(t)x = etx. Then

(2.15) φ(x) log |x| ∈ Ĥ(R, et,−1),

where φ ∈ C∞
0 (R) is equal to 1 near the origin.

Now OPH(G,α,m) is the set of convolution operators

Ku = k ∗ u, k ∈ Ĥ(G,α,m).

We have the following result on compositions of such operators.
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Proposition 2.3. If Kj ∈ OPH(G,α,mj), then

(2.16) K1K2 ∈ OPH(G,α,m1 +m2).

Proof. We have Kju = kj ∗ u, kj ∈ Ĥ(G,α,mj). It suffices to show

(2.17) k1 ∗ k2 ∈ Ĥ(G,α,m1 +m2).

This is very simple. Since α(t) is a group of automorphisms of G,

(2.18) α(t)∗(k1 ∗ k2) = eσt α(t)∗k1 ∗ α(t)∗k2.

Now, for each t ∈ (0,∞),

α(t)∗kj = e−t(mj+σ)kj + hj , hj ∈ S(G),

and since it is elementary to show

kj ∗ hℓ, hℓ ∗ kj ∈ S(G),

under these circumstances, we have, for each t ∈ (0,∞),

(2.19) α(t)∗(k1 ∗ k2) = e−t(m1+m2−σ) k1 ∗ k2, mod S(G).

This completes the proof.

As we have said, an element k of Ĥ(G,α,m) need not be equal to a smooth function
plus a homogeneous function. However, for some range of m this turns out to be the case.

It is useful to note the following simple results on the behavior of elements of Ĥ(G,α,m).

Proposition 2.4. If k ∈ Ĥ(G,α,m), then

(2.20) k = k1 + k2

with k2 ∈ C∞(G) and k1 homogeneous, satisfying

(2.21) α(t)∗k1 = e−t(m+σ)k1,

provided

(2.22) m > −σ.

Proof. The point of the hypothesis (2.22) is precisely to guarantee that the homogeneous
function v(ξ) of Proposition 2.2 be locally integrable in a neighborhood of the origin. This
guarantees that v(ξ) defines a homogeneous distribution in S ′(g′). We can set k1 equal to
the inverse Fourier transform of v(ξ), and (2.20) follows easily.
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We take a look at the mapping properties of convolution operators in OPH(G,α, 0).
As is well known, such operators are bounded on Lp(G), for 1 < p < ∞. This follows
from the general theories of Coifman and Weiss [C4] and Koranyi and Vagi [K8], which
were exploited in [F4] and [R5], and which are given a nice exposition in Goodman [G7].
We give a brief description of the situation. We can define a “homogeneous norm” on G
(identified with g via the exponential map) by

(2.23) |X| =
(∑

∥Xi∥2/bi
)1/2

,

where
X =

∑
Xi, Xi ∈ gbi ,

and ∥Xi∥ is a Euclidean norm on gbi . Note that

(2.24) |α(t)X| = et|X|.

If k ∈ Ĥ(G,α, 0), then pick k1 and k2 as in Proposition 2.4, so k1 is homogeneous of
degree −σ and smooth outsied the origin. We claim k1 must have mean value zero in each
region

(2.25) Ar = {X ∈ g : r ≤ |x| ≤ 2r}.

In fact, we can pick a unique constant C such that

(2.26) k1(X) = k#1 (X) + C|X|−σ

for X ∈ g \ 0, where k#1 does have mean value zero on each Ar. Then k#1 defines a
principal value distribution, homogeneous of degree −σ (cf. [G7]). We can deduce that C
in (2.26) is equal to zero if we know that |X|−σ cannot be extended to a distribution that
is homogeneous of degree −σ, i.e., whose Fourier transform is homogeneous of degree zero
with respect to β(t). In fact, not only does |X|−σ just fail to be integrable near 0, it also
just fails to be integrable near infinity. If a cut-off χ(X) is used, χ ∈ C∞(g), χ = 0 near 0,
χ = 1 outside a compact set, and 0 ≤ χ(X) ≤ 1 for all X, then χ(X)|X|−σ is smooth, ≥ 0,
and not quite integrable at infinity. A simple regularization argument shows its Fourier
transform must blow up at the origin. However, such Fourier transform must differ by
a smooth function from the Fourier transform of a homogeneous distribution extending
|X|−σ, if such exists, and this is not compatible with homogeneity of order zero for its
Fourier transform.

Consequently, each K ∈ OPH(G,α, 0) is convolution by a k, which differs by a smooth
function from a k1, which defines a principal value distribution, homogeneous of degree
−σ, plus a multiple of the delta function concentrated at 0. As shown in [G7], convolution
by k1 is continuous on Lp(G), 1 < p <∞. Thus we have:

Proposition 2.5. If K ∈ OPH(G,α, 0), then K : Lp → Lp, for 1 < p <∞.

From OPH(G,α,m), we can pass to the classes of “variable coefficient” operators

OP H̃(G,α,m), where, as usual, K ∈ OP H̃(G,α,m) is given by Ku(x) = K(x)u(x), where
K(x) is a smooth function of x with values in OPH(G,α,m). It follows that if Kj belong

to OP H̃(G,α,mj), then K1K2 is in OP H̃(G,α,m1 +m2) and K∗
j ∈ OP H̃(G,α,mj). We

also have Lp continuity for elements of OP H̃(G,α, 0):



24

Proposition 2.6. If K ∈ OP H̃(G,α, 0), then

(2.27) K : Lpcomp −→ Lploc, for 1 < p <∞.

Proof. Using Proposition 2.4 we can deduce that, modulo a smoothing operator, K is given
by

Ku(x) = kx ∗ u(x),

where ky is a smooth function of y taking values in Ĥ0(G,α), the space of principal value
distributions, homogeneous of degree −σ, smooth on g\0. Working locally, we can suppose
k(y, x) = ky(x) has compact support in y. Now write

k(y, x) =

∫
ℓ(η, x)eiy·η dη,

where

ℓ(η, x) = (2π)−n/2
∫
k(y, x)e−iy·η dy = ℓη(x).

Then ℓ is a rapidly decreasing function of η, taking values in the space Ĥ0(G,α) of principal
value distributions. It follows from Proposition 2.5 that Lη, defined by Lηu = ℓη ∗ u, is
bounded on Lp(G), with

∥Lη∥L(Lp) ≤ CN (p)(1 + |η|)−N .

Since the operator of multiplication by eix·η has operator norm 1 on Lp, the identity

Ku(x) =

∫
eix·η Lηu dη

shows that (2.27) holds.

We now discuss an amalgamation of a given operator class OP H̃(G,α,m) with the clas-
sical pseudodifferential operators OPSm. For this, we will assume G is a simply connected,
step 2 nilpotent Lie group. In this case the Fourier integral representation for an oper-
ator constructed from convolutions takes the simple form (1.23)–(1.24). In particular, if
Ku = k ∗ u, then

(2.28) Ku = p(x,D)u, p(x, ξ) = k̂(L̃xξ).

This enables us to establish the following result, following Phong and Stein [P3], who noted
it for operators on the Heisenberg group.

Proposition 2.7. Suppose G is a step 2 nilpotent Lie group. If Ku = k ∗ u defines a
convolution operator in OPH(G,α,m) and Lu = ℓ ∗ u defines a convolution operator in
OPSµ, then

(2.29) LKu = Pu = p ∗ u,
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where p̂(ξ) has an asymptotic expansion of the form

(2.30) p̂(ξ) ∼ k̂(ξ)ℓ̂(ξ) +
∑
j≥1

aj(ξ)bj(ξ).

Here,

(2.31) aj(ξ) ∈ H(G,α,mj), bj(ξ) ∈ Sµj (g′),

with

(2.32) mj ≤ m, µj ≤ µ, mj + µj < m+ µ, and mj + µj → −∞, as j → ∞.

Also

(2.33) KLu = P1u = p1 ∗ u,

where p̂1(ξ) has an expansion similar to (2.30), with the same leading term k̂(ξ)ℓ̂(ξ).

Proof. By (2.28), convolution operators are characterized by

Au = A(x,D)u =

∫
A(x, ξ)û(ξ)eix·ξ dξ,

with
A(x, ξ) = â(L̃xξ).

If we put K in this form, we have

(2.34) Ku = K(x,D)u =

∫
K(x, ξ)û(ξ)eix·ξ dξ,

with
K(x, ξ) = k̂(L̃xξ).

Now if k̂ ∈ H(G,α,m), it follows that

(2.35) k̂(ξ) ∈ SMρ#,

with ρ = ρ(b1, . . . , bi) > 0 and

(2.36)

M = m max
j

bj , m ≥ 0,

M = m min
j

bj , m < 0.

The pseudodifferential operator calculus as worked out in [H6] allows us to apply

(2.37) L = L(x,D) ∈ OPSµ, L(x, ξ) = ℓ̂(L̃xξ)
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to (2.34), to get

(2.38) LK = P (x,D) ∈ OPSM+µ
ρ,1−ρ,

with

(2.39) P (x, ξ) ∼
∑
α≥0

1

α!
L(α)(x, ξ)Dα

xK(x, ξ).

Since LK is a convolution operator, P (x, ξ) = p̂(L̃xξ) = P (0, L̃xξ), so evaluating (2.39) at
x = 0 gives (2.30). The analysis of KL is the same.

Proposition 2.7 motivates considering the following classes of symbols.
Definition. We say

(2.40) p(ξ) ∈ Hm,µα,δ

provided p(ξ) has an asymptotic expansion

(2.41) p(ξ) ∼
∑
j≥0

aj(ξ)bj(ξ),

where

(2.42) aj(ξ) ∈ H(G,α,mj), bj(ξ) ∈ Σµj (g′),

and

(2.43) mj ≤ m, µj ≤ µ, mj + µj → −∞ as j → ∞.

Here Σµ denotes the subspace of Sµ1# consisting of b(ξ) ∈ Sµ1# with asymptotic expansion

b(ξ) ∼
∑
bj(ξ), bj homogeneous of degree µ − j in ξ, with respect to the homogeneous

dilations

(2.44) δ(t)ξ = etξ.

From now on, OPΣµ will denote the set of convolution operators Lu = ℓ ∗ u that belong
to OPSµ.

The pair of subscripts α, δ in (2.40) stands for the pair of dilation groups in effect here.
Proposition 2.7 shows that, for G nilpotent of step 2,

(2.45) K ∈ OPH(G,α,m), L ∈ OPΣµ =⇒ KL and LK ∈ OPHm,µα,δ .

We have the following converse result.
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Proposition 2.8. If G is a step 2 nilpotent Lie group and P ∈ OPHm,µα,δ , then P has an
asymptotic expansion

(2.46) P ∼
∑
j≥0

KjLj ,

in the sense that the difference between P and a sufficiently large partial sum is smoothing
to arbitrary order, where

(2.47) Lj ∈ OPH(G, a,mj), Lj ∈ OPΣµj ,

with

(2.48) mj ≤ m, µj ≤ µ, and mj + µj → −∞.

Proof. We can reduce our problem to considering

(2.49) p̂(ξ) = k̂0(ξ)ℓ̂0(ξ), k̂0 ∈ H(G,α,m), ℓ̂0 ∈ Σµ.

Then K0u = k0 ∗ u defines an operator K0 ∈ OPH(G,α,m), and L0u = ℓ0 ∗ u defines
L0 ∈ OPΣµ. If we apply Proposition 1.12 to K0L0 we see that K0L0 ∈ OPHm,µα,δ , and the

principal term in the expansion is given by (2.49). Applying the same reasoning to the
remainder terms and iterating repeatedly, we get (2.46).

This result enables us to obtain the following Lp boundedness.

Proposition 2.9. If G is a step 2 nilpotent Lie group and P ∈ OPH0,0
α,δ, then

P : Lp −→ Lp, 1 < p <∞.

Proof. By (2.46), this follows from Proposition 2.5, which gives

Kj : L
p → Lp, 1 < p <∞, if Kj ∈ OPH(G,α,mj),mj ≤ 0,

(the result for mj < 0 being elementary), together with the well known result

Lj : L
p → Lp, 1 < p <∞, if Lj ∈ OPSµj , µj ≤ 0.

This result was proved by Phong and Stein [P3], in the context of convolution operators
on the Heisenberg group. They also treated the harder problem of weak type (1,1) prop-
erties, which are not necessarily preserved by taking compositions, as are Lp continuity
properties.

The operator classes OPHm,µα,δ have the following properties for compositions and ad-
joints:
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Proposition 2.10. If G is step 2 and Pj ∈ OPH
mj ,µj

α,δ , then

(2.50) P1P2 ∈ OPHm1+m2,µ1+µ2

α,δ ,

and

(2.51) P ∗
j ∈ OPH

mj ,µj

α,δ .

Proof. Apply (2.46) to Pj . Then P1P2 is a sum of terms

(2.52) KkLkK
′
kL

′
k, Kk ∈ OPH(G,α,mk), K

′
k ∈ OPH(G,α,m′

k), etc.,

where mk ≤ m1,m
′
k ≤ m2, etc. Now (2.45) implies LkK

′
k ∈ OPH

mk,µ
′
k

α,δ , and hence, by
Proposition 2.8,

(2.53) LkK
′
k ∼

∑
ν≥0

K ′
kνLkν .

If we substitute (2.53) into (2.52), we see that (2.50) holds for P1P2. The same sort of
argument yields (2.51).

We now pass from the classes of convolution operators OPHm,µα,δ to their “variable co-

efficient” versions OP H̃m,µα,δ . Since Hm,µα,δ does not have a Frechet space structure, we make

the special definition that an operator Ku(x) = K(x)u(x) belongs to OP H̃m,µα,δ if

(2.54) k̂(y, ξ) ∼
∑
j≥0

aj(y, ξ)bj(y, ξ),

where aj(y, ξ) is a smooth function of y with values in H(G,α,mj), bj(y, ξ) is a smooth
function of y with values in Σµj , and, as in (2.43),

(2.55) mj ≤ m, µj ≤ µ, mj + µj → −∞, as j → ∞.

The meaning of this is that, for any K, if N is large enough,

(2.56) k̂(y, ξ)−
∑
j≤N

aj(y, ξ)bj(y, ξ) ∈ S−K
ρ# , smoothly in y,

where ρ is some number in (0, 1]. The basic operator calculi developed so far apply. We
have the following consequences of Proposition 2.7 and Proposition 2.8.

Proposition 2.11. If G is step 2 and Pj ∈ OP H̃
mj ,µj

α,δ , then

(2.57) P1P2 ∈ OP H̃m1+m2,µ1+µ2

α,δ ,

and

(2.58) P∗ ∈ OP H̃
mj ,µj

α,δ .

We are also able to obtain the following, in parallel with Proposition 2.8:
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Proposition 2.12. If G is step 2 and P ∈ OP H̃m,µα,δ , then P has an asymptotic expansion

(2.59) P ∼
∑
j≥0

KjLj ,

where

(2.60) Kj ∈ OP H̃(G,α,mj), Lj ∈ OPSµj ,

with

(2.61) mj ≤ m, µj ≤ µ, mj + µj → −∞.

Proof. This goes like the proof of Proposition 2.8. We can reduce our problem to consid-
ering

(2.62) p̂y(ξ) = k̂y(ξ)ℓ̂y(ξ), k̂y(ξ) ∈ H(G,α,m), ℓ̂y(ξ) ∈ Σµ.

Then K0u = kx ∗ u(x) defines an operator K0 ∈ OP H̃(G,α,m) and L0u = ℓx ∗ u(x) defines
L0 ∈ OPSµ. If we apply Proposition 2.11 to K0L0 we see that K0L0 belongs to OP H̃m,µα,δ

and the principal term in the expansion is given by (2.62). Applying the same reasoning
to the remainder term and iterating repeatedly, we get (2.59).

As in Proposition 2.9, we deduce the following Lp boundedness.

Proposition 2.13. If G is step 2 and P ∈ OP H̃0,0
α,δ, then

(2.63) P : Lpcomp −→ Lploc, 1 < p <∞.

Proof. Using the decomposition (2.59), it suffices to invoke Proposition 2.6 and the well
known Lp boundedness of OPS0

1,0.
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3. Symbols

In §§1–2 we have developed what one would call an “operator calculus.” We want to

elevate this to a “symbol calculus.” The symbol of an operator in OP X̃m will be described
in terms of the irreducible unitary representations of G.

Let Ĝ denote the set of (equivalence classes of) such representations. The symbol of a
convolution operator Ku = k ∗ u will be defined as

(3.1) σK(x, π) = π(k), x ∈ G, π ∈ Ĝ,

where

(3.2) π(k) =

∫
G

k(y)π(y)dm(y).

As before, dm denotes Haar measure on G; in local coordinates dm(y) = H1(y) dy. At
least if k ∈ L1(G), (3.2) is well defined as a bounded operator on the representation space
Hπ of π. We briefly set up machinery to define π(k) for more singular k ∈ E ′(G).

A vector v ∈ Hπ is called a smooth vector (we write v ∈ H∞
π ) if the function φv(x) =

π(x)v is C∞ from G to Hπ. Following Rockland [R2], we call v weakly smooth (and write
V ∈ H∞w

π ) if the function φv,w(x) = (π(x)v, w) is C∞ on G for each w ∈ Hπ. As is well
known, H∞

π contains the G̊arding space {π(ψ) : ψ ∈ C∞
0 (G)} and consequently is dense

in Hπ. Clearly H
∞
π ⊂ H∞w

π . As a matter of fact, these two spaces coincide:

(3.3) H∞
π = H∞w

π .

To see this, let Φ(x) be a function from an open set U ⊂ G (which we identify with a ball
in Rn) to Hπ that is weakly C1. Thus we have ∂j(Φ(x), w) = Ψj(x,w) defined and linear
in w, and continuous in x for each w. In particular (Φ(x), w) is Lipschitz in x for each
w ∈ H, i.e., (Φ(x)− Φ(y)

|x− y|
, w

)
is bounded on U × U , for each w ∈ H. The uniform boundedness theorem then implies
that there exists L <∞ such that

(3.4)
∥Φ(x)− Φ(y)∥

|x− y|
≤ L,

i.e., Φ is strongly Lipschitz. Since

Ψj(x,w) = lim
h→0

h−1
(
(Φ(x+ hej)− Φ(x)), w

)
,
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(where e1, . . . , en is the standard basis of Rn) we deduce that

∥Ψj(x,w)∥ ≤ L∥w∥,

hence
Ψj(x,w) = (Ψj(x), w), Ψj : U → H.

Furthermore if Φ is weakly Ck then each Ψj is weakly Ck−1, hence strongle Lipschitz, if
k ≥ 2. Continuing this argument we see that Φ is strongly Ck−1 whenever it is weakly Ck,
and this gives (3.3).

Now, given k ∈ E ′(G), we define

(3.5) π(k) : H∞
π −→ Hπ

by

(3.6) (π(k)v, w) = ⟨φv,w, k⟩.

It is routine to check that this is well defined. Also, for v ∈ H∞
π , w ∈ Hπ,

(π(x)π(k)v, w) = ⟨φv,w, ρxk⟩,

where ρxk(y) = k(x−1y) for k ∈ C∞
0 , extending to k ∈ E ′(G), and this makes it clear that

π(k)v ∈ H∞w
π . In view of (3.3), we have

(3.7) π(k) : H∞
π −→ H∞

π , for k ∈ E ′(G).

It is routine to verify that, for k1, k2 ∈ E ′(G), k1 ∗ k2 ∈ E ′(G) and

(3.8) π(k1 ∗ k2) = π(k1)π(k2),

and, if k∨(x) = k(x−1) for k ∈ C∞
0 , then k 7→ k∨ extends to k ∈ E ′, and

(3.9) π(k∨) = π(k)∗.

With these preliminaries out of the way, we define the symbol of an operator

(3.10) Ku(x) =

∫
k(x, xy−1)u(y)H1(y) dy

for k(x, ·) a smooth function of x with values in E ′(G), by

(3.11) σK(x, π) = π(kx),

with kx(y) = k(x, y). Thus, loosely speaking,

(3.12) σK(x, π) =

∫
G

k(x, y)π(y) dm(y).
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By (3.8), we have the following formula for the symbol of the term Cγ

(3.13) Cγu(x) = A[γ](x)B[γ](x)u(x)

in the expansion (1.41) for a composite map AB:

(3.14) σCγ (x, π) = π(A[γ](x))π(B[γ](x)).

Thus we can rewrite (1.41) as

(3.15) σAB(x, π) ∼
∑
γ≥0

π(A[γ](x))π(B[γ](x)),

and in particular

(3.16) σC(x, π) = σA(x, π)σB(x, π), AB− C ∈ OP X̃m+µ−τ .

Similarly, on the symbol level, we can write the asymptotic expansion (1.51) for the

adjoint K∗ of K ∈ OP X̃m as

(3.17) σK∗(x, π) ∼
∑
γ≥0

π(K{γ}(x)).

In this case we have

(3.18) σK#(x, π) = σK(x, π)
∗, K∗ − K# ∈ OP X̃m−τ .

The problem that remains in producing symbol calculi is to specify classes Xm, satisfying
(1.25)–(1.27), (1.42)–(1.43), and (1.46), and to describe such classes in terms of their
symbols. Important classes of such symbols will arise in the next chapter.

We make some further remarks about the continuity of operators on L2. If G is a

unimodular type I group, there is a Plancherel measure µ on Ĝ such that

(3.19) ∥u∥2L2(G) =

∫
Ĝ

∥π(u)∥2HS dµ(π).

Consequently, a convolution operator Ku = k ∗u is continuous on L2(G) if and only if the

operator norms of π(k) are uniformly bounded, as π ranges over the support of µ in Ĝ.
As for operators of the form (1.10)–(1.11), we have the following result:

Proposition 3.1. Let X be a Frechet space such that for each convolution operator Ku =

k ∗ u, K ∈ OPX, the operator norms ∥π(k)∥ are uniformly bounded as π runs over Ĝ.

Then each K ∈ OP X̃ is continuous on L2, provided G is a unimodular type I group.

Proof. We can regard

(3.20) K0u(x) = K(y)u(x) = v(y, x)
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as a convolution operator on G from scalar functions to functions taking values in the
Sobolev space HK(Gy), with K picked arbitrarily large. Since the operator norms of

π(Dα
y k(y, ·)) are uniformly bounded as π runs over Ĝ, and y runs over a neighborhood of

e ∈ G, for each α, it follows that

(3.21) K0 : L2(G) −→ L2(G,HK).

If K is picked large enough to apply the Sobolev imbedding theorem, we deduce that for
u ∈ L2, Ku(x) = v(x, x) also belongs to L2, which completes the proof.

Let us note that, if G is a type I unimodular group, the Plancherel formula (3.19)
polarizes to give

(3.22) (u, v) =

∫
Tr

(
π(v)∗π(u)

)
dµ(π).

If we let v be an approximate identity and pass to the limit, and if we have control over
the trace norm of π(u), we obtain the inversion formula

(3.23) u(x) =

∫
Ĝ

Tr
(
π(x)∗π(u)

)
dµ(π), x ∈ G.

Now, since π(k ∗ u) = π(k)π(u), we get the following formula for the operator K given by
(3.10)–(3.12) (granted that, for u ∈ C∞

0 (G), ∥π(u)∥Tr is under control):

(3.24) Ku(x) =

∫
Ĝ

Tr
(
π(x)σK(x, π)π(u)

)
dµ(π).

Note the direct parallel with the formula for a pseudodifferential operator on Rn:

(3.25) p(x,D)u(x) =

∫
Rn

eix·ξp(x, ξ)û(ξ) dξ.

Actually, however neat this parallel is, we will not make much direct use of the formula
(3.24).
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Chapter II. Harmonic analysis on the Heisenberg group

The Heisenberg group Hn has the simplest representation theory of all noncommutative
Lie groups. We develop several classes of right invariant pseudodifferential operators on
Hn. A point worth emphasizing is that we give a unified treatment of convolution oper-
ators with the type of homogeneity related to certain automorphisms of Hn and also of
the classical pseudodifferential operators, with the usual Euclidean homogeneity. Using
harmonic analysis on Hn to study this last class is not as direct as studying OPSm via
Fourier analysis on Rn, but once one puts forth the effort to do it this way, one is rewarded
with natural amalgamations of classes of operators with different types of homogeneity.
This facilitates doing microlocal analysis on the Heisenberg group.

In §1 we define the Heisenberg group, as R2n+1, parametrized by (t, q, p) with t ∈
R, q, p ∈ Rn, with a particular group law. We describe the irreducible unitary representa-
tions of Hn, consisting of the one-parameter families π±λ of infinite dimensional represen-
tations and the 2n-parameter family π(y,η) of one dimensional representations. We study
the images of convolution operators under these representations. In particular π±λ(k) is
given in terms of the Weyl calculus. To Ku = k ∗ u we associate the symbols

(0.1) σK(±λ)(X,D) = π±λ(k) = k̂(±λ,±λ1/2X,λ1/2D).

The Weyl calculus plays a central role in the work in this section. A brief treatment of
this subject is given in Appendix A, at the end of this paper.

In §2 we study convolution pseudodifferential operators, homogeneous with respect to
the dilations on Hn of the form α(s)(t, q, p) = (σ2t, σq, σp), σ = es, which are group
automorphisms. These operators we denote OPΨm0 ; they are the same as OPH(Hn, α,m),
which made an appearance in Chapter I, §2, in a more general context. Their symbols
satisfy

(0.2) σK(±λ)(X,D) = λm/2σK(±1)(X,D),

and we characterize which operators can be put on the right side of (0.2) to actually define
symbols of operators in OPΨm0 . This characterization is a crucial tool in the development
of our symbol calculus for OPΨm0 and its natural extension, OPΨm, involving lower order
terms. We develop this symbol calculus and use it in §2 to produce a hypoellipticity
criterion for operators in OPΨm, including in particular the Heisenberg Laplacian L0 and
variants, Lα = L0 + iαT .

In §3 we study the class OPΣm of convolution operators that are classical pseudodiffer-
ential operators, via their symbols. We have OPΣm = OPH(Hn, δ,m), where δ(s) is the
family of Euclidean dilations of Hn. Then we study amalgamations of OPΨ∗ and OPΣ∗.
We define the class

(0.3) OPΩm,k,
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related to a class of operators studied by Boutet de Monvel. These classes are somewhat

larger than the classes OPHm
′,µ′

α,δ , introduced (for more general 2-step nilpotent groups) in
Chapter I, §2.

In §4 we study functions of the Heisenberg Laplacian L0, including fractional powers

(−L0)
γ , the “heat” semigroup esL0 , and the Poisson semigroup e−s(−L0)

1/2

. In §5 we
produce some results on the Heisenberg wave equation ∂2su − L0u = 0. We conclude this
chapter with §6, discussing a hypoellipticity result of Rothschild.
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1. Convolution operators on the Heisenberg group

The purpose of this section is to achieve a basic understanding of the symbol π(k)
of a convolution operator Ku = k ∗ u where k is a compactly supported function (or
distribution) on the Heisenberg group. The material in the first half of this section is well
known; we collect it for use in the next section. We begin with a brief description of the
Heisenberg group Hn and its irreducible unitary representations. For a more complete
discussion, see the first chapter of [T5].

As a C∞ manifold, Hn is R2n+1. Let us denote a point in Hn by (t, q, p), with t ∈
R, q, p ∈ Rn. The group law is given by

(1.1) (t1, q1, p1) · (t2, q2, p2) = (t1 + t2 +
1
2 (p1 · q2 − q1 · p2), q1 + q2, p1 + p2).

The Lie algebra hn of Hn is spanned by the right invariant vector fields

(1.2) T =
∂

∂t
, Lj =

∂

∂qj
− pj

2

∂

∂t
, Mj =

∂

∂pj
+
qj
2

∂

∂t
, 1 ≤ j ≤ n.

Note that

(1.3) [Lj ,Mj ] = −[Mj , Lj ] = T,

all other commutators being zero.
For λ ∈ (0,∞), irreducible unitary representations of Hn on L2(Rn) are given by

(1.4) π±λ(t, q, p) = ei(±λt±λ
1/2q·X+λ1/2p·D),

where q ·X is the multiplication operator defined by

(1.5) (q ·X)u(x) =
∑

qjxju(x),

and p ·D is the differential operator given by

(1.6) (p ·D)u(x) =
1

i

∑
pj
∂u

∂xj
.

An alternative formula, equivalent to (1.4), is

(1.7) π±λ(t, q, p)u(x) = ei(±λt±λ
1/2q·x±λq·p/2) u(x+ λ1/2p).

There are also one-dimensional representations π(y,η), for (y, η) ∈ R2n, given by

(1.8) π(y,η)(t, q, p) v = ei(y·q+η·p) v, v ∈ C.
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It is the content of the Stone-von Neumann theorem that any irreducible unitary repre-
sentation of Hn is unitarily equivalent to one of those just described.

The Plancherel identity on Hn is

(1.9)

∫
Hn

|u(x)|2 dx = cn

∫
R\0

∥πλ(u)∥2HS |λ|n dλ,

where ∥T∥2HS = Tr (T ∗T ) is the squared Hilbert-Schmidt norm of T . (Haar measure on
Hn coincides with Lebesgue measure on R2n+1.) A proof of (1.9) will be given below. In
particular, the set of one-dimensional representations (1.8) has Plancherel measure zero.

Given a compactly supported function (or distribution) k on Hn, we want to understand
π±λ(k) and π(y,η)(k). Indeed (1.4) gives

(1.10)
π±λ(k) =

∫
k(t, q, p)ei(±λt±λ

1/2q·X+λ1/2p·D) dt dq dp

= k̂(±λ,±λ1/2X,λ1/2D),

where k̂(τ, y, η) denotes the Euclidean space (inverse) Fourier transform

(1.11) k̂(τ, y, η) =

∫
k(t, q, p)ei(tτ+q·y+η·p) dt dq dp,

and the operator a(X,D) is defined by the Weyl functional calculus:

(1.12) a(X,D) =

∫
â(q, p)ei(q·X+p·D) dq dp,

â(q, p) denoting the Fourier transform of a. Such operators have been studied by several
people, including Grossman, Loupias and Stein [G11], Voros [V3], Hörmander [H10], and
Howe [H11]; see also Nelson [N4] and Anderson [A1]. Background material on the Weyl
calculus is collected in Appendix A at the end of this paper. Here we mention that a few
manipulations of integrals give the following formula for a(X,D):

(1.13) a(X,D)u(x) = (2π)−n
∫∫

ei(x−y)·ξa
(
1
2 (x+ y), ξ

)
u(y) dy dξ.

To restate (1.10), we have

(1.14) π±λ(k) = σK(±λ)(X,D),

where

(1.15) σK(±λ)(x, ξ) = k̂(±λ,±λ1/2x, λ1/2ξ),

or equivalently

(1.16) k̂(±τ, y, η) = σK(±τ)(±τ−1/2y, τ−1/2η), τ > 0.
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The behavior of π(y,η)(k) is given simply by

(1.17)
π(y,η)(k) =

∫
k(t, q, p)ei(y·q+η·p) dt dq dp

= k̂(0, y, η).

Regarding the associated representation of the Lie algebra hn of Hn, we have

(1.18) π±λ(T ) = ±iλ, π±λ(Lj) = ±iλ1/2xj , π±λ(Mj) = λ1/2
∂

∂xj
,

and

(1.19) π(y,η)(T ) = 0, π(y,η)(Lj) = iyj , π(y,η)(Mj) = iηj .

We now show how formulas (1.10)–(1.13) give a proof of the Plancherel formula (1.9).
Note that the squared Hilbert-Schmidt norm of an operator Au(u) =

∫
A(x, y)u(y) dy is∫∫

|A(x, y)|2 dx dy. Thus (1.10) and (1.13) imply

(1.20)

cn∥π±λ(k)∥2HS =

∫
R2n

|k̂(±λ,±λ1/2x, λ1/2ξ)|2 dx dξ

= |λ|−n
∫

R2n

|k̂(±λ, y, η)|2 dy dη,

so

(1.21) cn

∫ ∞

−∞
∥πλ(k)∥2HS |λ|n dλ =

∫
R2n+1

|k̂(λ, y, η)|2 dλ dy dη.

Now (1.9) follows from this, together with the ordinary Euclidean space Plancherel theo-
rem:

(1.22)

∫
Hn

|k(z)|2 dz =
∫

R2n+1

|k̂(λ, y, η)|2 dλ dy dη.

This completes the proof of (1.9). Note that polarization of (1.9) gives

(1.23)

∫
Hn

f(z)g(z) dz = cn

∫ ∞

−∞
Tr

(
πλ(g)

∗πλ(f)
)
|λ|n dλ.

If we replace g by a sequence in C∞
0 (Hn) tending to the delta function and pass to the

limit, we get the inversion formula

(1.24) f(z) = cn

∫ ∞

−∞
Tr

(
πλ(z)

∗πλ(f)
)
|λ|n dλ.
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We can use the Plancherel formula to estimate the L2-operator norm of a convolution
operator Ku = k ∗ u. In fact, (1.9) implies

(1.25) ∥K∥L(L2) = sup
λ

∥σK(±λ)(X,D)∥,

where the latter norm is the operator norm on L2(Rn). We can estimate this operator
norm via the following special case of the Calderon-Vaillancourt theorem. Suppose a(x, ξ)
satisfies the estimates

(1.26) |Dα
x,ξa(x, ξ)| ≤ A, |α| ≤ K(n),

where K(n) is sufficiently large. Then

(1.27) ∥a(X,D)∥ ≤ C(n)A.

A proof of this can be found in Appendix A. In light of (1.25) and (1.15), this implies the
following estimate on ∥K∥:

(1.28) ∥K∥L(L2) ≤ C(n) sup
±λ,y,η

sup
|α|≤K(n)

λ|α|/2 |Dα
y,ηk̂(±λ, y, η)|.

In particular, K : L2(Hn) → L2(Hn) if k̂ ∈ S0
1/2#, where we recall from Chapter I that

k̂ ∈ Sm1/2# means

(1.29) |Dα
τ,y,ηk̂(τ, y, η)| ≤ Cα(1 + |τ |+ |y|+ |η|)m−|α|/2.

Note that Proposition 1.1 of Chapter I implies K ∈ OPS0
1/2,1/2 in this case, so the L2

boundedness of K when k̂ ∈ S0
1/2# also follows directly from the Calderon-Vaillancourt

theorem for OPS0
1/2,1/2, as already noted in Chapter I.

One significant structure that accompanies the Heisenberg group is the family of dila-
tions

(1.30) α±λ(t, q, p) = (±λt,±λ1/2q, λ1/2p), λ > 0.

These are all automorphisms of Hn. Note that

(1.31) π±λ(w) = π1(α±λw), w ∈ Hn.

If we let α∗
λ act on C∞

0 (Hn) (or on E ′(Hn) and other spaces) by

(1.32) α∗
λu(w) = u(αλw),

then

(1.33) πλ(α
∗
τu) = |τ |−n−1πλ/τ (u).
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We make a few remarks on the Schwartz space S(Hn) of functions that, together with
all their derivatives, are rapidly decreasing on Hn = R2n+1. Note that we could equally
specify that X1 · · ·Xku be rapidly decreasing for any right invariant vector fields Xj . It is
easy to see that S(Hn) is a convolution algebra:

(1.34) u, v ∈ S(Hn) =⇒ u ∗ v ∈ S(Hn);

here we use the Heisenberg group convolution. If u ∈ S(Hn), then û(τ, y, η) ∈ S(R2n+1),
and vice-versa. Note that

π±λ(u) = û(±λ,±λ1/2X,λ1/2D)

is hence a rapidly decreasing function of λ with values in OPS−∞
1 as λ → ∞, where we

define the class Sm1 to consist of a(x, ξ) such that

|Dβ
xD

α
ξ a(x, ξ)| ≤ Cαβ(1 + |x|+ |ξ|)m−|α|−|β|.

There is a slightly delicate matter of specifying whether u belongs to S(Hn) purely in
terms of

(1.35) π±λ(u) = σu(±λ)(X,D),

namely to specify adequately the behavior of π±λ(u) as λ→ 0. Of course, since

(1.36) û(±λ, y, η) = σu(±λ)(±λ−1/2y, λ−1/2η),

we could simply specify that the right side of (1.36) define an element of S(R2n+1), but
this is not very explicit. We call the reader’s attention to work of Geller [G3], describing
S(Hn) via π±λ(u).

We now describe a certain transform of u ∈ S(Hn), which struck the author as unex-
pected and amusing. This transform also helps to establish a certain technical point later
in this section. To u ∈ S(Hn), associate κ(u) defined by inverting the paramater λ:

(1.37) σκ(u)(±λ)(X,D) = σu(±λ−1)(X,D).

This is equivalent to saying

κ̂(u)(±τ, y, η) = ℓ̂(±τ, y, η) = û(±τ−1, τ−1y, τ−1η),

or
û(±λ, y, η) = ℓ̂(±λ−1, λ−1y, λ−1η).

Thus it is clear that ℓ = κ(u) is a well defined element of S ′(R2n+1). Indeed, as we will
see, it is quite a special element.

If we first restrict attention to û on the upper half space λ ≥ 0, we see that û coincides

with the restriction to {λ ≥ 0} of an element of S(R2n+1) if and only if ℓ̂(τ, y, η), restricted

to τ ≥ 0, is equal to ℓ̂+(τ, y, η), with the following three properties:

(1.38) ℓ̂+(τ, y, η) ∈ S0
1#(R2n+1),
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(1.39) ℓ̂+(τ, y, η) ∼
∑
j≥0

ℓ̂j(τ, y, η),

with ℓ̂j homogeneous of degree −j in (τ, y, η), and

(1.40) ℓ̂+(τ, y, η) = 0 for τ < 0.

Note that (1.38) in particular says ℓ̂+(τ, y, η) is smooth in all of R2n+1, so (1.40) implies

ℓ̂(τ, y, η) vanishes to infinite order at τ = 0, for τ ≥ 0. In addition we see that û on λ ≤ 0

coincides with the restriction to {λ ≤ 0} of an element of S(R2n+1) if and only if ℓ̂ = ℓ̂−
on τ < 0, where ℓ̂− satisfies (1.38), (1.39), and, instead of (1.40), we have

(1.41) ℓ̂−(τ, y, η) = 0 for τ > 0.

To see whether û satisfying both these conditions is actually in S(R2n+1) we need to
know whether all the appropriate compatibility conditions hold at λ = 0. It is simplest to
state these if we break up û into its even and odd parts:

(1.42) û = ûe + ûo,

(1.43) ûe(λ, y, η) = ûe(−λ, y, η), ûo(λ, y, η) = −ûo(−λ, y, η).

Clearly the compatibility conditions are equivalent to

(1.44)
Dj
λûe(0, y, η) = 0 for j odd,

Dj
λûo(0, y, η) = 0 for j even,

the latter case including j = 0. The associated decomposition

(1.45) ℓ̂(τ, y, η) = ℓ̂e(τ, y, η) + ℓ̂o(τ, y, η)

stores up these conditions in the form

(1.46)

ℓ̂e(τ, y, η) ∼
∑
j≥0

ℓ̂2j(τ, y, η),

ℓ̂o(τ, y, η) ∼
∑
j≥0

ℓ̂2j+1(τ, y, η),

where ℓ̂k(τ, y, η) is homogeneous of degree −k in (τ, y, η). If we let κ1(u) denote the
operator of left convolution by κ(u), these observations produce the following:
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Inversion Trick. The transformation u 7→ κ1(u) is an isomorphism of S(Hn) onto the
class of right invariant pseudodifferential operators on Hn, in OPS0, of the form Lf = ℓ∗f
(ℓ = κ(u)) with ℓ̂ characterized by (1.38)–(1.41) and (1.45)–(1.46). If only (1.38)–(1.41)

are considered, we get the isomorphic image of the “piecewise” elements û of S(R2n+1
+ ) +

S(R2n+1
− ). Furthermore, these isomorphisms are isomorphisms of convolution algebras:

(1.47) κ(u ∗ v) = κ(u) ∗ κ(v).

Note that (1.47) follows directly from (1.37). Note also that κ(u) ∈ S ′(Hn) is singular
only at the origin (the identity element of Hn) and is equal to an element of S(Hn) outside
any neighborhood of the origin. Let us denote by OPC the set of convolution operators

Lu = ℓ ∗ u with ℓ̂ satisfying (1.38)–(1.41) and by OPC0 those that also satisfy (1.45)–
(1.46). Thus OPC0 is the image of the convolution algebra S(Hn). It follows that OPC0 is
a convolution algebra. It is clear that OPC is a convolution algebra; hence the set of u with
u a piecewise element of S(R2n+1), with simple jump across λ = 0, is also a convolution

algebra; let us call this convolution algebra ŜP (Hn).
Let us note that û(τ, y, η) ∈ S(R2n+1) vanishes to infinite order at (λ, y, η) = 0 if and

only if ℓ̂(τ, y, η) ∈ S0
1# vanishes to infinite order along the rays (±τ, 0, 0), τ → ∞. We can

restate this:

Corollary to inversion trick. The map u 7→ κ1(u) sets up an isomorphism between the
set of u ∈ S(Hn) such that û(λ, y, η) vanishes to infinite order at (λ, y, η) = 0 and the
subalgebra of OPC0 consisting of pseudodifferential operators whose full symbols vanish to
infinite order on the conic subset of T ∗Hn \ 0 which is the right invariant set whose fiber
over the origin is generated by dt.

This line bundle Λ, which is being intersected with T ∗Hn\0, furnishes a contact structure
on Hn, and will arise in other contexts later. We remark that the property of a pseudo-
differential operator in OPSm1,0(Ω) (or even more general classes) of having its complete
symbol vanish to infinite order on a closed conic subset of T ∗(Ω) \ 0 is invariant.

Let us record the following definition:

(1.48)
u ∈ S00(Hn) ⇔ û(τ, y, η) vanishes to infinite

order at the origin.

We will use the corollary, characterizing the image under κ of S00(Hn), to study the action

on S00(Hn) of convolution operators Lu = ℓ ∗ u, where ℓ̂ is singular at the origin, so
L does not map S(Hn) into itself. This will be useful in streamlining some results to
be developed in the next section. We begin by observing that u ∈ S00(Hn) if and only if
u ∈ S(Hn) and ⟨u, p⟩ = 0 for every polynomial function onHn = R2n+1. Since the translate
py(x) = p(y−1x) is a polynomial in x for each y ∈ Hn whenever p(x) is a polynomial, we
see that if u ∈ S00(Hn), then so is uy(x) = u(y−1x). This easily gives:

(1.49) u ∈ S00(Hn), ℓ ∈ E ′(Hn) =⇒ ℓ ∗ u ∈ S00(Hn),
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and

(1.50) u ∈ S00(Hn), ℓ ∈ S(Hn) =⇒ ℓ ∗ u ∈ S00(Hn).

Of course, (1.50) can also be obtained from the corollary to the inversion trick, since
Lj ∈ OPC0 implies that L1L2 ∈ OPC0 has full symbol vanishing to infinite order at Λ
provided either factor does.

We now want to studyKu = k∗u for u ∈ S00(Hn), where k̂(τ, y, η) satisfies the following
conditions:

k̂ ∈ C∞(R2n+1 \ 0),(1.51)

k̂(±sλ, s1/2y, s1/2η) = sm/2k̂(±λ, y, η), s > 0.(1.52)

Note that (1.52) implies

(1.53) σK(±λ)(X,D) = λm/2σK(±1)(X,D).

Now if χ(y, η) is a smooth cut-off, equal to 1 for |y|+ |η| ≤ σ, 0 for |y|+ |η| ≥ 2σ, and if
ψ(λ) is a smooth cut-off, equal to 1 for |λ| ≤ σ, 0 for |λ| ≥ 2σ, write

k̂ = k̂1 + k̂2 = χψk̂ + (1− χψ)k̂.

Thus k̂1 is supported on |λ| ≤ 2σ, |y|+|η| ≤ 2σ, while k̂2 ∈ Sm1/2# vanishes near 0. It follows

that k2 is the sum of an element of S(Hn) and an element of E ′(Hn), so, by (1.49)–(1.50),
k2u ∈ S00(Hn) if u ∈ S00(Hn). Now we look at k1 ∗ u, for u ∈ S00(Hn). Note that, if

ℓ = κ(k1 ∗ u),

we have, for Lf = ℓ ∗ f ,
L ∈ OPS0(Hn),

since the full symbol of κ1(u) vanishes to infinite order at Λ. Hence,

L ∈ OPC.

This implies that k1 ∗ u has Euclidean Fourier transform piecewise in S on R2n+1
+ and

R2n+1
− . In fact, the full symbol of L vanishes outside a small conic neighborhood of Λ, if σ

is chosen small, and this implies the Fourier transform of k1 ∗u vanishes to infinite order as
±τ → 0, for |y|+ |η| ≥ σ′, where σ′ is small if σ is. It follows that Ku = k1 ∗u+ k2 ∗u has

Euclidean Fourier transform piecewise in S in R2n+1
+ and R2n+1

− , and these functions in the
upper and lower half spaces match up at τ = 0 to be smooth, provided (y, η) ̸= (0, 0). But
the origin cannot carry any singularity, so in fact Ku ∈ S(Hn). Furthermore, since the full
symbol of L = κ1(k1 ∗ u) vanishes to infinite order at Λ, it follows that k1 ∗ u ∈ S00(Hn),
so finally we have

(1.53) u ∈ S00(Hn) =⇒ k ∗ u ∈ S00(Hn), if k satisfies (1.51)–(1.52).
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Let us renotate the decomposition k = k1 + k2 by

(1.54) k = ko + kb.

Here, ko is singular only at the origin, and equal to an element of S(Hn) outside a neighbor-
hood of the origin, while kb is C∞, with k̂b(τ, y, η) supported in |τ | ≤ 2σ, |y|+|η| ≤ 2σ. If kj
satisfy (1.51)–(1.52) with decompositions kj = koj+k

b
j as in (1.54), setKjf = Ko

j f+K
b
jf =

koj ∗ f + kbj ∗ f . Note that Ko
j : S(Hn) → S(Hn) and Kb : E ′(Hn) → C∞(Hn). Now

(1.55)
K3(u− χu) = ko1 ∗ ko2 ∗ (u− χu) + ko1 ∗ kb1 ∗ (u− χu)

+ kb1 ∗ ko2 ∗ (u− χu) + kb1 ∗ kb2 ∗ (u− χu),

where K3 is defined by

(1.56) σK3
(±λ)(X,D) = σK1

(±λ)(X,D)σK2
(±λ)(X,D),

and χu is given by

(1.57) χu = ψ ∗ u

where ψ̂(τ, y, η) is a smooth function, with compact support, equal to 1 for |τ | ≤ 2σ, |y|+
|η| ≤ 2σ. Note that the second and third terms on the right side of (1.55) represent convo-
lution of u− χu by C∞ functions. This identity generalizes to more general distributions,
in particular to u = δ. We have

(1.58) K3(δ − χδ) = Ko
1K

o
2δ + kb1 ∗ kb2 ∗ (δ − χδ) + φ, φ ∈ C∞.

Now, under the transformation κ1, we get from kb1 ∗kb2 ∗ (δ−χδ) the operator product of a
pair of right invariant pseudodifferential operators with symbol supported in a certain conic
neighborhood of Λ, with a right invariant pseudodifferential operator whose full symbol
vanishes on a conic neighborhood of such support. Such a product is a smoothing operator,
and hence belongs to the image under κ1 of an element of S(R2n+1). In other words,

(1.59) K3δ = Ko
1K

o
2δ + φ̃, φ̃ ∈ C∞(Hn).

This enables one to manipulate some classes of pseudodifferential operators symbolically,
in a clean fashion, without worrying too much about the necessity to smooth out the
singularity of their symbols at the origin. Compare the remarks at the end of the proof of
Proposition 2.6, in the next section.
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2. Right invariant pseudodifferential operators on Hn, I: α-homogeneous operators

Having made a basic study of convolution operators on Hn, we now determine some
classes of operators that deserve the exalted title of pseudodifferential operators. One
important class is generated by the study of the “Heisenberg Laplacian”

(2.1) L0 =

n∑
j=1

(L2
j +M2

j ),

a second-order nonelliptic (but hypoelliptic) operator. Note that, by (1.18)–(1.19),

(2.2) π±λ(L0) = λ

n∑
j=1

( ∂2

∂x2j
− x2j

)
,

and

(2.3) π(y,η)(L0) =

n∑
j=1

(y2j + η2j ).

We define the following classes:

Definition 2.1. The class Ψm0 consists of functions k̂(τ, y, η), smooth except at 0, such
that, for τ > 0,

(2.4) k̂(±τ, y, η) = τm/2k̂(±1, τ−1/2y, τ−1/2η).

Neglecting the singularity of the symbol at the origin, elements of Ψm0 belong to Sm1/2# if

m ≥ 0 and to S
m/2
1/2# ifm < 0. If k̂ ∈ Ψm0 , we sayK ∈ OPΨm0 , withKu = k∗u. Proposition

1.1 of Chapter I implies OPΨm0 ⊂ OPSm1/2,1/2 for m ≥ 0, OPS
m/2
1/2,1,2 for m < 0. In fact,

using the dilations α(s)(t, q, p) = (σ2t, σq, σp), σ = es, we see that, modulo smoothing
operators,

OPΨm0 = OPH(Hn, α,m),

a special case of a class studied in Chapter I, §2. From (1.15), we have K ∈ OPΨm0
provided k̂(τ, y, η) is smooth away from (τ, y, η) = 0 and, for λ > 0,

(2.5) σK(±λ)(x, ξ) = λm/2σK(±1)(x, ξ).

Thus (2.2) gives

(2.6) L0 ∈ OPΨ2
0.

Note also that

(2.7) π±λ(T ) = ±iλ,
and hence

(2.8) T ∈ OPΨ2
0.

The following is a convenient characterization of Ψm0 . For a related result, see Geller
[G2].
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Proposition 2.2. Let a±(x, ξ) ∈ C∞(R2n). Then (2.5) defines an element of Ψm0 , with

σK(±1)(x, ξ) = a±(x, ξ),

if and only if a±(x, ξ) have the compatible asymptotic expansions

(2.9) a±(ry, rη) ∼
∑
j≥0

rm−2j(±1)jφj(±y, η), r → +∞,

for |y|2 + |η|2 = 1, φj ∈ C∞(S2n−1).

Proof. We have

k̂(±τ, y, η) = τm/2a±(±τ−1/2y, τ−1/2η),

for τ ̸= 0. The only problem is to specify when this extends to a function smooth at
τ = 0, (y, η) ̸= (0, 0). Writing

k̂(±τ, y, η) ∼
∑
j≥0

(±τ)jφj(y, η)

= τm/2a±(±τ−1/2y, τ−1/2η),

and changing variables, setting r = τ−1/2, makes the characterization (2.9) apparent.

A characterization equivalent to (2.9) is

(2.10) σK(±1)(x, ξ) ∼
∑
j≥0

(±1)jφj(±x, ξ), |x|2 + |ξ|2 → ∞,

with φj(x, ξ) homogeneous of degree m− 2j in (x, ξ). Note from (1.17) that

(2.11) π(y,η)(k) = φ0(y, η).

In other words, π(y,η)(k) is the principal symbol of the operator σK(+1)(X,D), evaluated
at (y, η).

Note in particular that if σK(±1)(x, ξ) ∈ S(Rn), the Schwartz space of rapidly decreas-
ing functions, then (2.5) defines an element of OPΨm0 .

Since π±1(L0 + iαT ) =
∑n

1 (∂
2/∂x2j − x2j )∓ α, we have

(2.12) σL0+iαT (±1)(x, ξ) = −|ξ|2 − |x|2 ∓ α,

which is consistent with (2.10).
Proposition 2.2 motivates us to make the following definitions.

Definition 2.3. We say a(x, ξ) ∈ Hm
b if a(x, ξ) is smooth and has the asymptotic expan-

sion

(2.13) a(x, ξ) ∼
∑
j≥0

φj(x, ξ), |x|2 + |ξ|2 → ∞,

where φj(x, ξ) is homogeneous of degree m− 2j in (x, ξ).



47

Definition 2.4. We say the pair a±(x, ξ) belongs to Hm if both a+(x, ξ) and a−(x, ξ)
belong to Hm

b , and if furthermore their expansions are compatible, in the sense that

(2.14) a±(x, ξ) ∼
∑
j≥0

(±1)jφj(±x, ξ).

The content of Proposition 2.2 is hence that K ∈ OPΨm0 precisely when (2.5) holds and
σK(±1)(x, ξ) ∈ Hm. Note that if L ∈ OPΨµ0 , then

(2.15) σKL(±λ)(X,D) = λ(m+µ)/2σK(±1)(X,D)σL(±1)(X,D), λ > 0.

Thus, to deduce from Proposition 2.2 that the composition KL belongs to OPΨm+µ
0 , we

need to discuss compositions of operators in the Weyl calculus. This theory has been
worked out, in enough generality for our needs, in [G11], and in much more generality in
[H10]. we state some results here, referring to these sources for proofs. See also Appendix
A of this paper for further discussion of the Weyl calculus.

The class Hm
b of symbols is a subset of the class Sm1 , which we define to consist of

a(x, ξ), smooth, such that

(2.16) |Dβ
xD

α
ξ a(x, ξ)| ≤ Cαβ(1 + |x|+ |ξ|)m−|α|−|β|.

If a(x, ξ) ∈ Sm1 , we say a(X,D) ∈ OPSm1 ; similarly if a(x, ξ) ∈ Hm
b , we say a(X,D) ∈

OPHm
b ; finally, if a±(x, ξ) ∈ Hm, we say a±(X,D) ∈ OPHm. Now if a(X,D) ∈ OPSm1

and b(X,D) ∈ OPSµ1 , then

(2.17) a(X,D)b(X,D) = c(X,D) ∈ OPSm+µ
1 ,

and c(x, ξ) has the asymptotic expansion

(2.18) c(x, ξ) ∼
∑
j≥0

1

j!
{a, b}j(x, ξ),

where {a, b}j(x, ξ) is defined by

(2.19) {a, b}0(x, ξ) = a(x, ξ)b(x, ξ),

and, for j ≥ 1,

(2.20) {a, b}j(x, ξ) =
( 1

2i

)j{ n∑
k=1

( ∂2

∂yk∂ξk
− ∂2

∂xk∂ηk

)}j
a(x, ξ)b(y, η)

∣∣∣
y=x,η=ξ

.

Note that if ak(x, ξ) and bℓ(x, ξ) are homogeneous of degree k and ℓ, respectively (not
necessarily integers), then {ak, bℓ}j(x, ξ) is homogeneous of degree k+ℓ−2j in (x, ξ). This

shows that if a(X,D) ∈ OPHm
b and b(X,D) ∈ OPHµ

b , then a(X,D)b(X,D) ∈ OPHm+µ
b .

Furthermore, we have:



48

Proposition 2.5. If a±(X,D) ∈ OPHm and b±(X,D) ∈ OPHµ, then

(2.21) a±(X,D)b±(X,D) = c±(X,D) ∈ OPHm+µ.

Proof. We know that c+(X,D) and c−(X,D) belong to OPHm+µ
b and

(2.22) c±(x, ξ) ∼
∑
j≥0

1

j!
{a±, b±}j(x, ξ).

Let us say

(2.23) f±(x, ξ) ∈ Hm,k ⇔ f±(x, ξ) ∼
∑
j≥k

(±1)jψj(±x, ξ),

with ψj(x, ξ) homogeneous of degree m−2j in (x, ξ). Note that Hm,k ⊂ Hm∩Sm−2k
1 , and

formal series of elements of Hm,k, k = 1, 2, . . . , asymptotically sum to elements of Hm.
Now the jth term of (2.22) is seen to belong to Hm+µ,j , so the proof is complete.

An immediate consequence of Proposition 2.5 is:

Proposition 2.6. If K1 ∈ OPΨm0 , K2 ∈ OPΨµ0 , then K1K2 ∈ OPΨm+µ
0 , and

(2.24) σK1K2
(±λ)(X,D) = σK1

(±λ)(X,D)σK2
(±λ)(X,D).

In view of the discussion at the end of §1, leading up to (1.59), we have a similar result

for the operators obtained by regularizing k̂j near the origin.

Similarly we can discuss adjoints. It follows from the Weyl calculus that if a(X,D) ∈
OPSm1 , then a(X,D)∗ = a∗(X,D) ∈ OPSm1 , and

(2.25) a∗(x, ξ) = a(x, ξ).

This formula shows that if a(X,D) ∈ OPHm
b then a(X,D)∗ ∈ OPHm

b and furthermore if
a±(X,D) ∈ OPHm then a±(X,D)∗ ∈ OPHm. Consequently we have:

Proposition 2.7. If K ∈ OPΨm0 , then K∗ ∈ OPΨm0 , and

(2.26) σK∗(±λ)(X,D) = σK(±λ)(X,D)∗.

Our next task is to examine K ∈ OPΨm0 in the case when the operators σK(±1)(X,D)
are elliptic. In general, whenever a(X,D) ∈ OPSm1 is elliptic, there exists a parametrix
b(X,D) ∈ OPS−m

1 .
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Proposition 2.8. If a±(X,D) ∈ OPHm, with both operators elliptic, having parametrices
b±(X,D), belonging a priori to OPS−m

1 , then b±(X,D) ∈ OPH−m.

Proof. The content of this proposition is that

(2.27) b±(x, ξ) ∼
∑
j≥0

(±1)jψj(±x, ξ),

with ψj(±x, ξ) homogeneous of degree −m−2j in (x, ξ). If we assume (2.14), pick β±(x, ξ)
smooth, with

(2.28) β±(x, ξ) = φ0(±x, ξ)−1, |x|2 + |ξ|2 large.

Then clearly β±(x, ξ) ∈ H−m. By (2.17)–(2.18), we have

(2.29) β±(X,D)a±(X,D) = I + r±(X,D),

with

(2.30) r±(x, ξ) ∈ H0,1.

A simple extension of Proposition 2.5 is that

(2.31) r±j (X,D) ∈ OPHmj ,kj =⇒ r±1 (X,D)r±2 (X,D) ∈ OPHm1+m2,k1+k2 .

In particular,

(2.32) r±(X,D)k ∈ OPH0,k ⊂ OPS−2k
1 .

Consequently

(2.33) b± ∼
(
I − r±(X,D) + r±(X,D)2 − · · ·

)
β±(X,D)

belongs to OPH−m, as asserted.

Suppose that K ∈ OPΨm0 and that σK(±1)(X,D) are elliptic. Then denoting para-
metrices by σL(±1)(X,D), we obtain an operator L ∈ OPΨ−m

0 . It does not follow that
KL− I or LK − I is smoothing. Rather, one has

(2.34) σKL(±λ)(X,D) = I + r±(X,D),

with r±(x, ξ) ∈ S−∞
1 . An operator R ∈ OPΨ0

0 with

(2.35) σR(±λ)(x, ξ) ∈ S−∞
1

will be said to belong to OPΨ0,∞
0 . More generally, we have the following notion:
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Definition 2.9. We say R ∈ OPΨm,k0 if R ∈ OPΨm0 with

(2.36) σR(±1)(X,D) ∈ OPHm,k.

We denote ∩k≥0OPΨ
m,k
0 by OPΨm,∞0 .

In order to construct a (left or right) parametrix for K ∈ OPΨm0 with σK(±1)(X,D)
elliptic, it is necessary to assume σK(±1)(X,D) has a (left or right) inverse. As shown,
e.g., in [B4] or [G12], the following are equivalent if a(X,D) ∈ OPSm1 is elliptic:

a(X,D) has a left inverse in OPS−m
1 ,(2.37)

a(X,D) is injective on the Schwartz space S(Rn),(2.38)

a(X,D) is injective on the space S ′(Rn).(2.39)

Similarly, the following three conditions are equivalent:

a(X,D) has a right inverse in OPS−m
1 ,(2.40)

a(X,D) is surjective on S(Rn),(2.41)

a(X,D)∗ is injective on S(Rn).(2.42)

Our regularity result is the following.

Theorem 2.10. If K ∈ OPΨm0 has the property that σK(±1)(X,D) are elliptic, then K
has a left inverse L ∈ OPΨ−m

0 if and only if σK(±1)(X,D)∗ are injective on S(Rn), and
such a right inverse if and only if σK(±1)(X,D) are injective on S(Rn).

Proof. In light of the discussion above, this is an immediate consequence of Proposition
2.8.

Corollary 2.11. If K ∈ OPΨm0 has the property that σK(±1)(X,D) are elliptic and
injective on S(Rn), then K is hypoelliptic.

In the case of scalar differential operators, the hypoellipticity is proved by Miller [M10],
using somewhat different arguments; see also Rockland [R2]. A more general result has
been proved by Helffer and Nourrigat [H3], by different means. This result was also
announced by Dynin [D2]; his announcement did not include proofs, but it is fairly likely
that his argument was similar to that given here. If K is scalar, with σK(±1)(X,D)
elliptic, then, as observed by Grusin [G12], the operators σK(±1)(X,D) are Fredholm of
index zero, so one-sided and two-sided invertibility coincide. The propositions above also
work for k×k matrices of operators, in which case σK(±1)(X,D) may have nonzero index.
As a counterpoint to Corollary 2.11, we have:

Proposition 2.12. If K ∈ OPΨm0 has the property that σK(±1)(X,D) are elliptic but
not both injective on S(Rn), then K is not hypoelliptic.

Proof. Say σK(+1)(X,D) has a nontrivial kernel. Such a null space must be a finite-
dimensional subspace of S(Rn), so the orthogonal projection of L2(Rn) onto this null
space is r(X,D) with r(x, ξ) ∈ S−∞

1 . Then

(2.43) σS(+λ)(X,D) = r(X,D), σS(−λ)(X,D) = 0,
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for λ > 0, defines an element S ∈ OPΨ0,∞
0 , and KS = 0. Since S is right invariant

and not smoothing, v = Sδ0 is not smooth; it is smooth except at the origin. Since
Kv = 0, K is not hypoelliptic on any neighborhood of the origin. By right invariance, K
is not hypoelliptic on any open set.

Let us apply these results on hypoellipticity to the well known important example
L0 + iαT , first treated by Folland and Stein [F4], by a different method. By (2.12), we
have

(2.44) σL0+iαT (±1)(X,D) = ∆− |x|2 ∓ α,

which clearly gives an elliptic pair in OPH2. We determine the spectrum of ∆ − |x|2.
In fact, as is well known, −d2/dx2 + x2, acting on functions on R, has discrete spectrum
consisting of the eigenvalues 2j + 1, j = 0, 1, 2, . . . , all simple. Indeed the complete set of
eigenfunctions of d2/dx2 − x2 is given by the set of Hermite functions

(2.45) hj(x) = [π1/22jj!]−1/2
( d

dx
− x

)j
e−x

2/2,
( d2

dx2
− x2

)
hj(x) = −(2j + 1)hj(x).

It follows that, on L2(Rn), ∆ − |x|2 has spectrum consisting of all the negative integers
of the form −n − 2k, k = 0, 1, 2, . . . . Thus Theorem 2.10 and Proposition 2.12 yield the
result of Folland and Stein:

Proposition 2.13. For α ∈ C, L0 + iαT is hypoelliptic on Hn if and only if

(2.46) −(n± α) /∈ {0, 1, 2, . . . }.

If (2.46) holds, L0 + iαT has a two-sided inverse in OPΨ−2
0 . If (2.46) fails, there exists a

non-smoothing element S of OPΨ0,∞
0 such that (L0 + iαT )S = 0.

For a large class of homogeneous second-order polynomials Q(x, ξ), the spectrum of
Q(X,D) is completely specified by the following result; see Sjöstrand [S6], Hörmander
[H8], Grigis [G10].

Proposition 2.14. Let Q(x, ξ) be a second-order homogeneous polynomial in (x, ξ). Sup-
pose that Q takes values in a cone of the form

(2.47) Γ = {z ∈ C : |Im z| ≤ K Re z}.

Denote by iµj the eigenvalues in Γ \ 0 of the Hamilton map F of Q, defined by

(2.48) Q(v, v′) = σ(v, Fv′),

where σ is the symplectic form on R2n:

(2.49) σ
(
(x, ξ), (x′, ξ′)

)
= x′ · ξ − x · ξ′,
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and Q(v, v′) is the bilinear form polarizing Q. Let N0 ⊂ C2n be the space of generalized
eigenvectors of F associated to the eigenvalue 0. Then α is not in the spectrum of Q(X,D)
if and only if

(2.50) −α+Q(v, v) +
∑
j

(2kj + 1)µj ̸= 0, ∀ v ∈ N0, kj ∈ {0, 1, 2, 3, . . . } = Z+.

In particular, if Q(x, ξ) is positive-definite, the spectrum of Q(X,D) consists of

(2.51)
{∑

j

(2kj + 1)µj : kj ∈ Z+
}
.

The result on the spectrum of Q(X,D) in the positive-definite case is older; using the
metaplectic representation, one can reduce it to a simple result in linear algebra, plus the
analysis of the harmonic oscillator d2/dx2−x2 described above. Compare the calculations
in (4.55)–(4.64) of this chapter, and those in (3.56)–(3.65) of Chapter III. See also Chapter I
of [T5] for an exposition of this case. For certain homogeneous polynomials of degree 3, the
spectrum of Q(X,D) has been analyzed by Helffer [H1]. For general Q(X,D) ∈ OPHm,
it would be out of the question to explicitly describe the spectrum, though qualitative
studies of the spectrum have been made; see [H2] and references therein.

Here we mean the operator Q(X,D) to be defined by the Weyl calculus, of course. In
particular,

Q(x, ξ) = xjξk =⇒ Q(X,D)u(x) =
i

2

(
xj

∂u

∂xk
+

∂

∂xk
(xju)

)
.

The fact that hypoellipticity of an element K of OPΨm0 depends not just on the ellip-
ticity of σK(±1)(X,D) but also on the invertibility of these operators, is closely related
to the essential non-commutativity of OPΨ0

0. In fact, if L ∈ OPΨµ0 , then the commutator
[K,L] = KL− LK has symbol

(2.52) σ[K,L](±λ)(X,D) = λ(m+µ)/2[σK(±1)(X,D), σL(±1)(X,D)].

Clearly this is not the symbol of an operator belonging to OPΨm+µ−1
0 . In fact, the result

one has is the following; recall Definition 2.9:

Proposition 2.15. If K ∈ OPΨm0 and L ∈ OPΨµ0 , then

(2.53) [K,L] ∈ OPΨm+µ,1
0 .

More generally, if K ∈ OPΨm,k0 , L ∈ OPΨµ,ℓ0 , then

(2.54) [K,L] ∈ OPΨm+µ,k+ℓ+1
0 .

Proof. It suffices to show that, if a±(X,D) ∈ OPHm,k and b±(X,D) ∈ OPHµ,ℓ, then

(2.55) [a±(X,D), b±(X,D)] ∈ OPHm+µ,k+ℓ+1.

This follows from the formula (2.18) for the symbol of a product, along the same lines as
the proof of Proposition 2.5.

We now want to pass from operators in OPΨm0 with homogeneous symbols to nonho-
mogeneous operators given as asymptotic sums. We define the class OPΨm as follows.
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Definition 2.16. We say a convolution operator K belongs to OPΨm if

(2.56) K ∼
∑
j≥0

Kj , Kj ∈ OPΨm−j
0 ,

where (2.56) means K −
∑
j≤N Kj is arbitrarily smoothing for N picked sufficiently large.

In order to fit OPΨm into the framework of Chapter I, we make Ψm into a Frechet

space as follows. We say k̂(τ, y, η) ∈ Ψm if k̂ is C∞ and

(2.57) k̂ ∼
∑
j≥0

kj(τ, y, η), as |τ |2 + |y|2 + |η|2 → ∞,

where k̂j satisfy the homogeneity conditions

(2.58) k̂j(rτ, r
1/2y, r1/2η) = r(m−j)/2k̂j(τ, y, η).

Here, (2.57) holds in the sense that, if φ(τ, y, η) vanishes near 0 and is 1 near ∞,

k̂ − φ
N∑
j=1

k̂j ∈ Sm−N/2
1 .

Since we have required k̂ to be C∞, even at the origin, strictly speaking Ψm0 is not contained

in Ψm, but altering k̂ on a compact set in (τ, y, η) space changes a convolution operator
by a smoothing operator, so, modulo smoothing operators OPΨm0 is contained in OPΨm.

Now to describe the Frechet space structure on Ψm, we first pick a large compact

neighborhood of the origin and use the Cj norms of k̂ on this neighborhood. For the rest,
take (τ, y, η) ∈ S2n, and define

(2.59) κ(s, τ, y, η) = sm k̂(s−2τ, s−1y, s−1η), 0 < s ≤ 1.

Then k̂ ∈ Ψm if and only if k̂ ∈ C∞ and κ ∈ C∞([0, 1]×S2n), so we transfer the seminorms
of this Frechet space to obtain a complementary set of seminorms on Ψm.

It is a simple consequence of Proposition 2.6 that

(2.60) Kj ∈ OPΨmj =⇒ K1K2 ∈ OPΨm1+m2 , K∗
j ∈ OPΨmj .

Note the remark following the proof of Proposition 2.6. We also easily obtain the following
result.

Theorem 2.17. Let K ∈ OPΨm. Suppose K0, in the expansion (2.56), satisfies the
conditions that σK0(±1)(X,D) are elliptic and both are injective (resp., surjective; resp.,
invertible) on S(Rn). Then K has a left (resp., right; resp., two-sided) parametrix L ∈
OPΨ−m.
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Proof. Take the case that σK0(±1)(X,D) are injective. Then Theorem 2.10 gives L0 ∈
OPΨ−m

0 such that L0K0 = I. It follows that

(2.61) L0K = I + S1, S1 ∈ OPΨ−1.

Then we can construct L ∈ OPΨ−m such that

(2.62) L ∼ (I − S1 + S2
1 − · · · )L0,

and then LK = I modulo a smoothing operator. The other assertions of this theorem
follow similarly.

For example, L0 + iαT + P , with P ∈ OPΨ1, has a parametrix in OPΨ−2 provided
α satisfies the condition (2.46). In the case of scalar differential operators, the regularity
result contained in Theorem 2.17 was obtained by Miller [M10], via energy estimates,
rather than a symbolic construction of a parametrix.

Unlike the situation in Proposition 2.12, if K ∈ OPΨm as in Theorem 2.17, with
σK0

(±)(X,D) elliptic but not injective, it is still possible for K to be hypoelliptic. We
consider the following example due to Stein [S7]; see also Rothschild [R4]. Let

(2.63) K = L0 + iαT + β ∈ OPΨ2,

where α is chosen to be an integer such that the condition (2.46) for hypoellipticity of

K0 = L0 + iαT is violated, and we take β ∈ C. Let S ∈ OPΨ0,∞
0 be the projection

produced by the proof of Proposition 2.12. Then, as in (2.34), we have E0 ∈ OPΨ−2 such
that

(2.64) E0(L0 + iαT ) = I − S,

while

(2.65) S(L0 + iαT ) = 0.

Then, if β ̸= 0,

(2.66) (E0 + β−1S)K = (E0 + β−1S)(K0 + β) = I + βE0.

Note that R = βE0 ∈ OPΨ−2
0 . It follows that

(2.67) E ∼ (I −R+R2 − · · · )(E0 + β−1S) ∈ OPΨ0

gives a left parametrix for K, so the operator (2.63) is hypoelliptic, with loss of two
derivatives, whenever β ̸= 0. A generalization, in the case of right invariant differential
operators on Hn, was given by Rothschild, and will be discussed in §6 of this chapter. We
will look at further generalizations of this phenomenon in Chapter III.

The machinery summarized in Theorem 2.17 and Proposition 2.14 is particularly ef-
fective in examining hypoellipticity and constructing parametrices for a second-order dif-
ferential operator P (right invariant) on Hn, which is doubly characteristic on the set
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Λ ⊂ T ∗Hn of characteristics for L0. Note that Λ is characterized as a line bundle which is
translation invariant and its fiber over the identity 0 ∈ Hn is the linear span of dt. Suppose
the principal symbol of P is positive and vanishes to exactly second order on Λ. It follows
that the principal symbol of P must agree with that of

(2.68)

2n∑
j,k=1

ajkXjXk = P2,

where we have set

(2.69) Xj = Lj , Xj+n =Mj , 1 ≤ j ≤ n.

The matrix (ajk) is symmetric and positive definite. Since Lj ,Mj ∈ OPΨ1
0, by (2.5), it

follows that

(2.70) P =
∑
j,k

ajkXjXk + iαT +B, B ∈ OPΨ1,

for some α ∈ C. The sum of the first two terms belongs to OPΨ2
0, and we have

(2.71) σP2+iαT (±1)(x, ξ) = −
∑

ajkχjχk ∓ α,

where we have set

(2.72) χj = xj , χj+n = ξj , 1 ≤ j ≤ n.

In particular, the ellipticity hypothesis of Theorem 2.17 holds, and Proposition 2.14 applies
in a straightforward fashion to the question of invertibility. Non-translation-invariant
generalizations form a very important class of operators, which will be investigated in
Chapter III.
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3. Right invariant pseudodifferential operators on Hn, II: δ-homogeneous op-
erators and amalgamations

In order to achieve a genuine microlocal analysis, we want to amalgamate the operator
classes OPΨm and their non-right-invariant extensions, with the classical operator classes
OPSm. We begin by considering right invariant operators in OPSm from the point of
view of the representations of Hn. We shall discuss connections with Propositions 2.7–2.13
of Chapter I in §1 of Chapter III.

Definition 3.1. We say k̂ ∈ Σm0 provided k̂(τ, y, η) is C∞ away from (0, 0, 0) and

(3.1) k̂(λτ, λy, λη) = λmk̂(τ, y, η), λ > 0.

In such a case, we say Ku = k ∗ u defines K ∈ OPΣm0 . If

(3.2) k̂ ∼
∑
j≥0

k̂j , k̂j ∈ Σm−j
0 ,

we say k̂ ∈ Σm and K ∈ OPΣm.

The proof of Proposition 1.4 from Chapter I immediately implies that, modulo smooth-
ing operators, OPΣm is identical with the class of right invariant operators in OPSm.
Note that (3.1) is equivalent to

(3.3) σK(±λ)(x, ξ) = λmσK(±1)(λ−1/2x, λ−1/2ξ).

Parallel to Proposition 2.2, we have the following simple result, whose proof we omit.

Proposition 3.2. The formula (3.3) defines an element of Σm0 if and only if σK(±1)(x, ξ)
are smooth with asymptotic behavior

(3.4) σK(±1)(x, ξ) ∼
∑
j≥0

(±1)jφm−j(±x, ξ),

where φm−j(x, ξ) is homogeneous of degree m− j in (x, ξ).

Of course the operator calculus for OPSm gives us that if Pj ∈ OPΣmj , then P1P2 ∈
OPΣm1+m2 . We want to perceive this via the representation theory of Hn. The argument
proving Proposition 2.6, on products of elements of OPΨmj , will have to be modified,
since, in (3.3), the argument of σK(±1) is (λ−1/2x, λ−1/2ξ). In fact, in this case, letting
λ → 0 causes technical problems we wish to avoid. One way to avoid this problem is to
restrict attention to operators defined by (3.3) with σK(±1)(x, ξ) ∈ C∞

0 (R2n). It is clear
that this subset of OPSm contains operators that agree with any right invariant operator
in OPSm, microlocally on a conic neighborhood of the line bundle Λ (characteristic set of
L0) discussed in §2. That this is a sufficiently rich class for our purposes is guaranteed by
the following result.
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Proposition 3.3. If K ∈ OPΨm, then, microlocally on the complement of any conic
neighborhood of Λ ⊂ T ∗Hn \ 0, K belongs to OPSm.

Proof. Given the formula (1.23) from Chapter I, analyzing K as a pseudodifferential op-

erator, we see this is a simple consequence of the following observation. If k̂(τ, y, η) ∈ Ψm0 ,

then, on the complement of any conic neighborhood of {y = η = 0} in R2n+1 \ 0, k̂ agrees
with an element of Σm.

Let us now consider the symbolic calculus applied to a product of A ∈ OPΣm0 and
B ∈ OPΣµ0 , with

(3.5) σA(±1)(x, ξ) = a±(x, ξ), σB(±1)(x, ξ) = b±(x, ξ) ∈ C∞
0 (R2n).

Let us denote

(3.6) a±,λ(x, ξ) = a±(λ
−1/2x, λ−1/2ξ),

with b±,λ(x, ξ) similarly defined. Consequently,

(3.7) σAB(±λ)(X,D) = λm+µe±(λ,X,D),

with

(3.8) e±(λ, x, ξ) =
N∑
j=0

1

j!
{a±,λ, b±,λ}j(x, ξ) + λ−NR±

N (λ, x, ξ).

Recall that {a, b}j is given by (2.20). To see that we can avoid considering λ → 0, note
that, if A′ is defined by

(3.9) σA′(±λ)(X,D) = ψ(λ)σA(±λ)(X,D),

where ψ(λ) is smooth, equal to 1 for |λ| ≥ 1, and to 0 for |λ| ≤ 1/2, then A and A′

differ by an operation of convolution by w, where ŵ(τ, y, η) has compact support. Hence
w ∈ C∞(Hn), so A and A′ differ by a smoothing operator. Hence, in (3.7)–(3.8), we can
restrict attention to |λ| ≥ 1. We can rewrite (3.8) as

(3.10) e±(λ,X,D) =
N∑
j=0

λ−je±j (λ
−1/2X,λ−1/2D) + λ−NR±

N (λ,X,D).

Results of [H10] imply that R±
N (λ,X,D) is bounded in OPS0

1 (defined by (2.16)), for
|λ| ≥ 1. To see that the remainder in (3.10) makes a contribution that is smoothing to
a high degree when N is large, consider the following. The operator T ∈ OPΣ1

0 has the
symbol

(3.11) σT (±λ)(X,D) = ±iλ.
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Thus A(BT k) has a form similar to (3.7), (3.10), with λm+µ replaced by (±i)kλm+µ+k; in
fact,

(3.12)
σABTk(±λ)(X,D) = (±i)kλm+µ+k

N∑
j=0

λ−je±j (λ
−1/2X,λ−1/2D)

+ (±i)kλm+µ+k−NR±
N (λ,X,D).

Consequently, (3.7) and (3.10) give AB as a sum

(3.13) AB =

N∑
j=1

Ej + SN ,

where Ej ∈ OPΣm+µ−j
0 and SN has the following property:

(3.14) T k1SNT
k2 : L2(Hn) −→ L2(Hn), for N ≥ m+ µ+ k1 + k2.

Since SN is certainly an operator in OPSm+µ whose symbol is essentially supported near
Λ, and since T ∈ OPS1 is microlocally elliptic near Λ, this implies that SN is arbi-
trarily smoothing for N large. Consequently (3.13) is an asymptotic relation, so, for
A ∈ OPΣm0 , B ∈ OPΣµ0 , we have AB ∈ OPΣm+µ, and

(3.15) σAB(±λ)(X,D) ∼ λm+µ
∑
j≥0

λ−je±j (λ
−1/2X,λ−1/2D).

Note that

(3.16) e±0 (x, ξ) = a±(x, ξ)b±(x, ξ),

which verifies that (for scalar operators)

(3.17) [A,B] = AB −BA ∈ OPΣm+µ−1.

Of course, examining products of operators in OPΣmj via the Heisenberg group har-
monic analysis involves a bit more work than just appealing to theOPSm operator calculus.
The point is that it does work to produce a symbol calculus for such operators, whereas
commutative harmonic analysis does not work to produce a symbol calculus for OPΨm.
The calculations just done can be viewed as a warm-up for what is to come.

Now let us consider products PK and KP , given K ∈ OPΨµ, P ∈ OPΣm0 , the symbol
of P being supported near Λ. Thus

(3.18) σPK(±λ)(X,D) = λm+µ/2p±(λ
−1/2X,λ−1/2D)a±(X,D).

As above, we can restrict attention to |λ| ≥ 1. As in the analysis of (3.7), we have

(3.19) σPK(±λ)(X,D) = e±(λ,X,D),
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where, with p±,λ(x, ξ) = p±(λ
−1/2x, λ−1/2ξ),

(3.20) e±(λ, x, ξ) =

N∑
j=0

1

j!
{p±,λ, a±}j(x, ξ) + λ−N/2R±

N (λ, x, ξ).

This time, R±
N (λ, x, ξ) is bounded in Sµ1 for |λ| ≥ 1.

In this case, the formula (2.20) for {a, b}j gives

(3.21) e±(λ, x, ξ) =

N∑
j=1

K(j)∑
k=1

λ−j/2p±kj(λ
−1/2x, λ−1/2ξ)a±kj(x, ξ) + λ−N/2R±

N (λ, x, ξ),

where

(3.22) p±kj(x, ξ) ∈ C∞
0 (R2n), a±kj(x, ξ) ∈ Hµ−j

b .

The same argument as before shows the remainder in (3.21) contributes a term smoothing
to high order. To summarize, we have:

Proposition 3.4. If K ∈ OPΨµ0 and P ∈ OPΣm0 , the symbol of P being supported near
Λ, then

(3.23) σPK(±λ)(X,D) ∼ λm+µ/2
∑
j≥0

λ−j/2e±j (λ,X,D),

where

(3.24) e±0 (λ, x, ξ) = p±(λ
−1/2x, λ−1/2ξ)a±(x, ξ),

and generally

(3.25) e±j (λ, x, ξ) =

K(j)∑
k=1

p±kj(λ
−1/2x, λ−1/2ξ)a±kj(x, ξ),

with (3.22) holding. In a similar fashion we have

(3.26) σKP (±λ)(X,D) ∼ λm+µ/2
∑
j≥0

λ−j/2f±j (λ,X,D),

where

(3.27) f±0 = e±0 ,

and f±j (λ, x, ξ) has an expression similar in form to (3.25).

Note that this analysis gives for the commutator [P,K]:

(3.28) σ[P,K](±λ)(X,D) ∼ λm+µ/2
∑
j≥1

λ−j/2[e±j (λ,X,X)− f±j (λ,X,D)].

Inductively, from the representation (3.23)–(3.25), we obtain:
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Corollary 3.5. If K ∈ OPΨµ, P ∈ OPΣm0 are as above, then

(3.29) [P,K] ∼
∑
j≥1

K(j)∑
k=1

PkjAkj , Pkj ∈ OPΣm, Akj ∈ OPΨµ−j .

It is worth noting that more precise statements can be made about PK when K ∈
OPΨµ,∞. Of course, elements of OPΨµ,∞ have special properties, one of which is the
following.

Proposition 3.6. If K ∈ OPΨµ,∞0 , then, microlocally on the complement of any conic
neighborhood of Λ, K belongs to OPS−∞.

Proof. In view of the analysis of K as a pseudodifferential operator given in Chapter I,

Proposition 1.1, this follows from the observation that, if k̂(τ, y, η) ∈ Ψµ,∞0 , then k̂(τ, y, η)
is rapidly decreasing outside any conic neighborhood of {y = η = 0} in R2n+1 \ 0.

Now, if P ∈ OPΣm is as above and K ∈ OPΨµ,∞0 , the formulas (3.18)–(3.22) hold, and
in addition we have

(3.30) a±kj(x, ξ) ∈ S(R2n).

We can expand p±kj(λ
−1/2x, λ−1/2ξ) is a power series, in powers of λ−1/2. Indeed,

(3.31) p±kj(λ
−1/2x, λ−1/2ξ) =

N∑
ℓ=0

1

ℓ!
λ−ℓ/2 Ωℓp±kj(x, ξ, 0, 0) + λ−N/2r±kjN (λ, x, ξ),

where

(3.32) Ωp(x, ξ, y, η) = (x, ξ) · ∇y,ηp(y, η),

and

(3.33) r±kjN (λ, x, ξ) is bounded in SN1 , for λ ≥ 1.

Since the factors a±kj(x, ξ) in (3.22) belong to S(R2n) = S−∞
1 in this case, we have

(3.34) σPK(±λ)(X,D) = λm+µ/2e±(λ,X,D),

with

(3.35) e±(λ,X,D) ∼
∑
j≥0

λ−j/2e±j (X,D), e±j (x, ξ) ∈ S(R2n).

Note that

(3.36) e±0 (x, ξ) = p±(0, 0)a±(0, 0).

We have proven the following result.
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Proposition 3.7. If P ∈ OPΣm and K ∈ OPΨµ,∞0 , then PK ∈ OPΨ2m+µ,∞. Moreover,
modulo a smoothing operator, PK = L, with

(3.37) σL(±λ)(x, ξ) ∼
∑
j≥0

λm+µ/2−j/2e±j (x, ξ),

with e±j (x, ξ) ∈ S(R2n) and

(3.38) e±0 (x, ξ) = p0± σK(±1)(x, ξ).

The factor p0± is equal to the principal symbol of P , evaluated at the point ±dt lying in the
fiber of T ∗Hn over the origin. The product KP ∈ OPΨ2m+µ,∞ has a similar behavior.

Note that, in light of Proposition 3.6, we need not make the assumption that the symbol
of P is essentially supported near Λ. From Proposition 3.7 we obtain the following simple
corollary.

Corollary 3.8. If K ∈ OPΨµ,∞, then there exists A ∈ OPΣµ/2 such that

(3.39) K = AK0, K0 ∈ OPΨ0,∞.

It follows that elements of OPΨµ,∞ enjoy stronger continuity properties on Sobolev
spaces than general elements of OPΨµ, if µ > 0.

We now consider a certain synthesis of the classical (right invariant) pseudodifferential
operator classes OPΣ∗ and the operator classes OPΨ∗. We will first consider a class
of operators that are microlocally supported in a small conic neighborhood of the line
bundle Λ in T ∗Hn \ 0. In light of our calculations involving one-parameter families of
pseudodifferential operators on Rn, the following class is quite natural.

Definition 3.9. We say a right invariant operator A belongs to OPΩm,kb provided the
symbol b±(λ, x, ξ) = σA(±λ)(x, ξ) satisfies the following two conditions:

(3.40) b±(λ, x, ξ) is smooth and supported on |x|+ |ξ| ≤ Cλ1/2, λ ≥ C ′,

and

(3.41) λj−mDj
λb±(λ, ·, ·) is bounded in Sk1 , for λ ∈ R+.

Recall that the symbol class Sk1 is defined by (2.16). Hence (3.41) is equivalent to

(3.42) |Dj
λD

β
xD

α
ξ b±(λ, x, ξ)| ≤ Cjαβ λ

m−j (1 + |x|+ |ξ|)k−|α|−|β|.

If Au = a ∗ u, then, according to (1.16), we have

(3.43) â(±τ, y, η) = b±(τ,±τ−1/2y, τ−1/2η).

Hence we see that the support condition in (3.40) is equivalent to:

(3.44) â(τ, y, η) is supported on |y|+ |η| ≤ C|τ |, |τ | ≥ C ′.

As for the content of (3.41), we have the following.
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Proposition 3.10. The hypothesis (3.41) is equivalent to the following estimate on â:

(3.45)
|Dj

τD
β
yD

α
η â(τ, y, η)| ≤ Cjαβτ

m−j−k/2 (τ1/2 + |y|+ |η|)k−|α|−|β|

= Cjαβ τ
m−j−(|α|+|β|)/2 (1 + |τ−1/2y|+ |τ−1/2η|

)k−|α|−|β|
.

Proof. It is straightforward to differentiate the right side of (3.43) with respect to y and
η. We get

(3.46)
|Dβ

yD
α
η â(τ, y, η)| = τ−(|α|+|β|)/2 |Dβ

xD
α
ξ b±(τ,±τ−1/2y, τ−1/2η)|

≤ Cτm−(|α|+|β|)/2 (1 + |τ−1/2y|+ |τ−1/2η|
)k−|α|−|β|

,

thereby verifying (3.45) in case j = 0. Since it is not so easy to apply Dj
τ to the right

side of (3.43), we proceed more carefully. Let us say that b±(λ, x, ξ) belongs to Ω(m, k) if
(3.40) and (3.41) hold. now applying one τ derivative to (3.43) gives

(3.47)

Dτ b±(τ,±τ−1/2y, τ−1/2η) = Dλb±(τ,±τ−1/2y, τ−1/2η)

∓ 1
2τ

−3/2y Dxb±(τ,±τ−1/2y, τ−1/2η)

− 1
2τ

−3/2η Dξb±(τ,±τ−1/2y, τ−1/2η).

Now, note that

c±(λ, x, ξ) ∈ Ω(m, k) =⇒ Dλc±, λ
−1xDxc±, λ

−1ξ Dξc± ∈ Ω(m− 1, k).

We deduce that, if b±(λ, x, ξ) ∈ Ω(m, k), then

Dτ b±(τ,±τ−1/2y, τ−1/2η) =
∑
ℓ

cℓ±(τ,±τ−1/2y, τ−1/2η),

with cℓ±(λ, x, ξ) ∈ Ω(m− 1, k). It follows by induction that

Dj
τ b±(τ,±τ−1/2y, τ−1/2η) =

∑
ℓ

cjℓ±(τ,±τ−1/2y, τ−1/2η),

with
cjℓ±(λ, x, ξ) ∈ Ω(m− j, k).

In view of this, the estimate (3.46) shows that (3.45) follows from (3.41). The converse
result is proven by a similar argument.

The estimates (3.45) show that

(3.48) â(τ, y, η) ∈ S
m+κ/2
1/2# , κ = max(k, 0),

and, outside any conic neighborhood of {y = η = 0}, â satisfies the estimates for mem-

bership in S
m+k/2
1# . Recalling the support condition (3.44), we deduce the following from

Proposition 1.1 and (1.23) of Chapter I.
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Proposition 3.11. If A ∈ OPΩm,kb , then

(3.49) A ∈ OPS
m+κ/2
1/2,1/2, κ = max(k, 0).

Furthermore, A belongs to OPS
m+k/2
1,0 microlocally outside any conic neighborhood of the

line bundle Λ ⊂ T ∗Hn \ 0, and, outside a certain conic neighborhood V of Λ, A is microlo-
cally in OPS−∞.

The following result on the symbol calculus for OPΩm,kb follows easily from the proper-
ties of OPS∗

1 .

Proposition 3.12. If A ∈ OPΩm,kb and B ∈ OPΩm
′,k′

b , then, modulo a smoothing oper-

ator, AB ∈ OPΩm+m′,k+k′

b . Also A∗ ∈ OPΩm,kb .

Proof. We have AB ∈ OPS
m+m′+(κ+κ′)/2
1/2,1/2 , and

(3.50) σAB(±λ)(X,D) = σA(±λ)(X,D)σB(±λ)(X,D).

It is clear that σAB(±λ)(x, ξ) satisfies the condition (3.41), with m replaced by m +m′

and k replaced by k+k′. The support condition (3.40) is not quite verified, but since both
A and B are microlocally in OPS−∞ outside V, by Proposition 3.11, so is their product,
so one can subtract a smoothing operator from AB to recover the support property (3.40).
The proof for A∗ is immediate.

In view of the material developed above, it is reasonable to introduce the following
classes of operators.

Definition 3.13. We say a right invariant operator A belongs to OPΩm,k provided that

A coincides with an element of OPΩm,kb microlocally on some conic neighborhood of Λ and

A belongs to OPS
m+k/2
1,0 outside any conic neighborhood of Λ.

A straightforward amalgamation of the symbol calculus (3.50) and the usual operator
calculus for OPSm1,0 handles adjoints and products of operators in OPΩm,k. We should

point out that, in view of the characterization (3.45), OPΩm,k is contained in Boutet de
Monvel’s class

(3.51) OPSm+k/2,k(Hn,Λ).
See Boutet de Monvel [B7] for a development of these operator classes. In fact, OPΩm,k

coincides (modulo smoothing operators) with the set of right invariant operators in Boutet
de Monvel’s class. However, when the machinery of Chapter I is implemented to produce

OP Ω̃m,k (see Chapter III), this class will be a strict subclass of OPSm+k/2,k(Hn,Λ), and
will have the advantage of possessing the symbol calculus we have developed.

Let us note the following inclusions of operator classes (which are all evident):

OPΨm ⊂ OPΩm/2,m,(3.52)

OPΨm,k ⊂ OPΩm/2,m−k, k ≥ 0,(3.53)

OPΣm ⊂ OPΩm,µ, µ = max(m, 0).(3.54)

The classes OPΩm,k have associated hypoellipticity results, extending Theorem 2.17. We
will postpone discussing such results until Chapter III.
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4. Functional calculus for the Heisenberg Laplacian and for the harmonic
oscillator

In §2 we considered inverses of the operators

(4.1) Lα = L0 + iαT,

where

(4.2) L0 =
∑

(L2
j +M2

j )

is the “Heisenberg Laplacian.” We saw that Lα is hypoelliptic, with inverse in OPΨ−2
0 ,

provided α avoids the set

(4.3) {. . . ,−n− 2,−n− 1,−n} ∪ {n, n+ 1, n+ 2, . . . }.

Here we would like to understand the behavior of more general functions f(Lα). There is
some overlap between the material of this section and the material presented in Chapter 1,
§7, of [T5], but here we will concentrate more on the technical aspects having to do with
the theory of pseudodifferential operators. Recall that

(4.4) σLα
(±λ)(X,D) = −λ(−∆+ |x|2 ± α).

It follows that

(4.5) σf(Lα)(±λ)(X,D) = f
(
−λ(∆ + |x|2 ± α)

)
.

Thus we need to understand

(4.6) f(H), H = −∆+ |x|2

for a general class of functions of the harmonic oscillator H = −∆+ |x|2.
We begin by computing the Weyl symbol of the operator semigroup

(4.7) e−tH = ht(X,D).

Formula (4.8) below was given by Peetre [P1]; see also Unterberger [U1].

Proposition 4.1. We have

(4.8) ĥt(q, p) = c′n(sinh t)
−n e−(|q|2+|p|2)(coth t)/4

and

(4.9) ht(x, ξ) = (cosh t)−n e−(|x|2+|ξ|2)tanh t.
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Proof. As a first step, note that, by commutativity,

e−tH = e−tH1 · · · e−tHn ,

where

Hj = − ∂2

∂x2j
+ x2j .

Thus ht(x, ξ) = ht(x1, ξ1) · · ·ht(xn, ξn), and h̃t(q, p) satisfies the analogous multiplicative
condition. Since the right sides of (4.8) and (4.9) are also multiplicative, it suffices to prove
the proposition for H = −d2/dx2 + x2, acting on functions of one variable. Now the Weyl
symbol ht(x, ξ) is related to the integral kernel of the operator e−tH , defined by

(4.10) e−tHu(x) =

∫
Kt(x, y)u(y) dy,

by

(4.11) Kt(x, y) =

∫
ei(x−y)ξ ht

(
1
2 (x+ y), ξ

)
dξ.

Consequently, the identity (4.9) (for n = 1) is equivalent to

(4.12) Kt(x, y) = (2π)−1/2(sinh 2t)−1/2 exp
{
[− 1

2 (cosh 2t)(x
2 + y2) + xy]/sinh 2t

}
,

which in turn is equivalent to Mehler’s generating function identity

(4.13)

∞∑
j=0

hj(x)hj(y)t
j = π−1/2(1−t2)−1/2 exp

{
[2xyt−(x2+y2)t2]/(1−t2)

}
e−x

2/2−y2/2

for hermite functions; see Lebedev [L4], pp. 61–63. This proves (4.9), and (4.8) follows by
taking the Fourier transform.

A different proof of Proposition 4.1, making use of the Weyl calculus, is given in Ap-
pendix A of this paper; see (A.18). Yet another proof, closer to that of Peetre, utilizing
the Bargmann-Fok representation of Hn, is given in Chapter 1 of [T5].

Now we can make an analytic continuation of (4.7)–(4.9) to Re t > 0, and pass to the
limit as t becomes purely imaginary. In that way we get formulas for the Weyl symbol of
eitH , t ∈ R. We have

(4.14) eitH = Et(X,D)

with

(4.15) Et(x, ξ) = (cos t)−n e−i(tan t)(|x|
2+|ξ|2),

at least when t is different from a half-integral multiple of π. At such singular values of t,
Et(x, ξ) achieves a limiting value in S ′(R2n).

One simple consequence of (4.15) is the following analysis of a general class of operators
as pseudodifferential operators.
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Proposition 4.2. Let f(λ) ∈ Smρ#, i.e., suppose |f (j)(λ)| ≤ Cj(1 + |λ|)m−ρj. If 1/2 ≤
ρ ≤ 1, then

(4.16) f(H) = F (X,D) ∈ OPS2m
ρ′ , ρ′ = 2ρ− 1,

i.e.,

|Dβ
xD

α
ξ F (x, ξ)| ≤ Cαβ(1 + |x|+ |ξ|)2m−ρ′(|α|+|β|).

Furthermore,

(4.17) F (x, ξ) = f(|x|2 + |ξ|2) + r(|x|2 + |ξ|2),

with

(4.18) r(|x|2 + |ξ|2) ∈ S2m−2(2ρ−1)
ρ′ .

Proof. If f(λ) ∈ Smρ#(R), we can write f = f1 + f2 where f̂1 ∈ E ′(R) is supported on

|t| < π/4 and f2 ∈ S(R), the Schwartz space of rapidly decreasing functions. Hence
f(H) = f1(H) + f2(H). Now

(4.19) f2(H) = H−kf2,k(H), f2,k(λ) = λkf2(λ).

It follows that f2(H) is a smoothing operator, and

(4.20) ∥Hkf2(H)∥ ≤ sup |λkf2(λ)|.

As for f1(H), we have

(4.21) f1(H) =

∫
f̂1(t)e

itH dt,

and, using (4.15) with |t| < π/4, we have f1(H) = F1(X,D), with

(4.22) F1(x, ξ) = 2−n
∫
f̂1(arctan s)(1 + s2)n/2eis(|x|

2+|ξ|2) ds.

Here the distribution f̂1(arctan s) is written formally. Thus

(4.23) F1(x, ξ) = φ(|x|2 + |ξ|2),

with

(4.24) φ(λ) = 2−n
∫
f̂1(arctan s)(1 + s2)n/2eisλ ds.

We see this is equal to the symbol (at s = 0) of a pseudodifferential operator obtained by
applying a change of variable to f1(Ds) ∈ OPSmρ#(R). Thus, if ρ ≥ 1/2,

(4.25) φ(λ)− f(λ) ∈ S
m−(2ρ−1)
ρ′# .
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Our conclusions (4.37)–(4.38) follow immediately from this.

If ρ > 1/2, a complete asymptotic expansion can be given for φ(λ). Note in particular
that, if f(λ) has an asymptotic expansion

(4.26) f(λ) ∼
∑
j≥0

fm−j(λ),

with fm−j homogeneous of degree m− j, then

(4.27) F (x, ξ) ∼ f(|x|2 + |ξ|2) +
∑
j≥1

r2m−2j(x, ξ) ∈ H2m
b .

It is well known that, if F (x, ξ) ∈ S0
1,0(Rn), and in particular if F (x, ξ) ∈ S0

1 , then F (X,D)
is continuous on Lp(Rn), for 1 < p < ∞. See, e.g., Nagase [N2] or Stein [S8]. As a
consequence we deduce that, if f(λ) ∈ S0

1#, then f(H) : Lp(Rn) → Lp(Rn), for 1 < p <

∞. This result was proven by Mauceri [M2] by different means, involving setting up a
Littlewood-Paley theory based on the semigroup e−tH .

Proposition 4.2 is a special case of a result proven by Helffer and Robert [H4], by
different means. The method of proof here, via

(4.28) f(H) =

∫
f̂(t)eitH dt,

is a modification of the method used by the author to derive a functional calculus for first
order elliptic self-adjoint pseudodifferential operators; see Chapter 12 of [T2], and also
[T3]. Compare also some of the arguments in Appendix B of this paper.

One class of operators that Proposition 4.2 helps us analyze is the class of fractional
powers of −L0. Note that, for α ∈ R,

(4.29) σ(−L0)α(±λ)(X,D) = λαHα.

Now Proposition 4.2, together with (4.27), gives

(4.30) Hα ∈ OPH2α
b ,

if we let f(λ) be an even element of Sα1# equal to |λ|α for λ ≥ 1/2 and smoothed out for

|λ| ≤ 1/2. Since |λ| ≤ 1/2 does not intersect the spectrum of H, we have Hα = f(H).
Now, we claim

(4.31) Hα = Pα(X,D), Pα(x, ξ) ∼
∑
j≥0

φα,j(|x|2 + |ξ|2),

where φα,0(λ) = λα and φα,j(λ) is homogeneous of degree α− 2j in λ; in other words, the
odd terms in (4.26) are absent.
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To prove (4.31) we may as well suppose α < 0, since (4.31) could then be deduced for
general α by multiplication by integral powers of H. In that case, we have Hα = F1(X,D)
mod OPS−∞

1 , with F1(X,D) given by (4.22) and

(4.32) f̂1(arctan s) = ψ(s)|arctan s|1−α = ψ(s)|s|1−α g(s2),
where ψ ∈ C∞

0 (−π/4, π/4), ψ(s) = 1 for |s| ≤ π/8, say, and g is analytic. Since the factors
(1 + s2)n/2 and g(s2) are both analytic in s2, for |s| ≤ π/4, the result (4.31) follows. This
gives

(4.33) σ(−L0)α(±1)(X,D) = Hα ∈ OPH2α,

and hence Proposition 2.2 applies, to give the following result:

Proposition 4.3. We have

(4.34) (−L0)
α ∈ OPΨ2α

0 .

For more complicated functions of L0, Proposition 4.2 is not such an incisive tool, since
it is not so effective in studying f(λH) for a large parameter λ, unless λ factors out, as it
does in (4.29). However, using the identities given in Proposition 4.1, we can analyze the
solution operator

(4.35) esL0

to the “Heisenberg group heat equation”

(4.36)
∂u

∂s
= L0u.

In fact, we have

(4.37) esL0δ0(t, q, p) = ks(t, q, p)

with

(4.38)
k̂s(±τ, y, η) = σesL0 (±τ)(±τ−1/2y, τ−1/2η)

= hsτ (±τ−1/2y, τ−1/2η),

where ht(x, ξ) is given by (4.9). Hence, if

(4.39) (F1ks)(λ, q, p) =

∫ ∞

−∞
e−itλ ks(t, q, p) dt,

we have, by (4.8),

(F1ks)(τ, q, p) = cnτ
n(sinh sτ)−n exp[−(τ coth sτ)(|q|2 + |p|2)/4],

so

(4.40)

ks(t, q, p) = cns
−n−1

∫ ∞

−∞
eiτ(t/s)

( τ

sinh τ

)n
exp[−(τ coth τ)(|q|2 + |p|2)/4s] dτ

= s−n−1 k1

( t
s
,
q√
s
,
p√
s

)
,

where

(4.41) k1(t, q, p) = cn

∫ ∞

−∞
eitτ

( τ

sinh τ

)n
exp[−(τ coth τ)(|q|2 + |p|2)/4] dτ.

Let us state this formally.
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Proposition 4.4. For s > 0, we have

(4.42) esL0δ0(t, q, p) = ks(t, q, p),

with

(4.43) ks(t, q, p) = s−n−1k1

( t
s
,
q√
s
,
p√
s

)
,

and k1 ∈ S(Hn) given by (4.41).

This result was obtained by Gaveau [G1] by a different method, utilizing a diffusion
process construction. It was also obtained, from a representation theory point of view, by
Hulanicki [H14] and in the Ph.D. thesis of Geller [G4]. From (4.40)–(4.43) it is a simple
matter to calculate the kernel

(4.44) (−L0)
−1/2e−s(−L0)

1/2

δ0(t, q, p) = Ps(t, q, p),

using the subordination identity

(4.45) y−1e−xy = π1/2

∫ ∞

0

e−x
2/4ve−vy

2

v−1/2 dv,

valid for x, y > 0. We obtain

(4.46) Ps(t, q, p) = c′n

∫ ∞

−∞

( τ

sinh τ

)n[
1
4s

2 + (τ coth τ)(|q|2 + |p|2)− itτ
]−n−1/2

dτ.

We have developed certain aspects of the functional calculus for L0. It is useful to treat
more general operators, of the form

(4.47) P =
∑

ajkXjXk + iαT = P0 + iαT,

with (ajk) real and positive definite, whose hypoellipticity was discussed in (2.68)–(2.72),
as a consequence of Proposition 2.14. To construct the heat kernel, we can proceed as in

(4.37)–(4.41), provided we know the Weyl symbol hQt (x, ξ) of

(4.48) e−tQ(X,D) = hQt (X,D).

Here Q(x, ξ) =
∑
ajkχjχk, as in (2.72). Now, if Q(x, ξ) takes the form

(4.49) Q(x, ξ) =
∑

µj(x
2
j + ξ2j ), µj > 0,

which is equivalent to having

(4.50) P0 =
∑

µj(L
2
j +M2

j ),
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then the proof of Proposition 4.1 gives

(4.51) hQt (x, ξ) =
n∏
j=1

(cosh tµj)
−1 exp

(
−

n∑
j=1

(x2j + ξ2j )(tanh tµj)
)
.

Consequently, for P0 of the form (3.50), we have

(4.52) esP0δ0(t, q, p) = kQs (t, q, p),

with

(4.53) kQs (t, q, p) = s−n−1kQ1

( t
s
,
q√
s
,
p√
s

)
,

where kQ1 ∈ S(R2n+1) is given by

(4.54) kQ1 (t, q, p) = cn

∫ ∞

−∞
eitτ

n∏
j=1

( τ

sinhµjτ

)
exp

(
−

n∑
j=1

(τ cothµjτ)(q
2
j + p2j )

)
dτ.

Now, given any P0 of the form
∑
ajkXjXk, we can pick a symplectic basis of R2n

diagonalizing the quadratic form Q(x, ξ) =
∑
ajkχjχk. The resulting automorphism of

Hn puts P0 in the form (4.49), so the formula (4.54) for the heat kernel is valid generally,
upon applying an automorphism to Hn. If ajk(y) depends smoothly on a parameter y,
automorphisms of Hn putting P0(y) into diagonal form may not be chosen to depend
smoothly on y, so it is desirable to express the kernel (4.54) in an invariant form. We
do this using the Hamilton map FQ associated with the quadratic form Q, as defined in
(2.48), i.e.,

(4.55) Q(u, v) = σ(u, FQv),

where Q(u, v) is the symmetric bilinear form such that Q(u, u) = Q(u). The eigenvalues
of FQ are of the form ±iµj , where µj are as in (4.49), so

(4.56) det sinh (τ/i)FQ = −
( n∏
j=1

sinhµjτ
)2

,

and hence

(4.57)
n∏
j=1

( τ

sinhµjτ

)
=

(
−τ−2n det sinh (τ/i)FQ

)−1/2
.

Now let

(4.58) AQ = (−F 2
Q)

1/2,
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the unique square root of −F 2
Q with positive spectrum. Then, with

(4.59) (q, p) = z,

we can write

(4.60) −τ
n∑
j=1

(cothµjτ)(q
2
j + p2j ) = −τQ(A−1

Q coth τAQz, z).

Consequently we can write the heat kernel (4.54) invariantly as

(4.61) kQ1 (t, z) = cn

∫ ∞

−∞
eitτ ΦQ(τ, z) dτ,

with

(4.62) ΦQ(τ, z) =
(
−τ−2n det sinh (τ/i)FQ

)−1/2
exp

[
−τQ(A−1

Q coth τAQz, z)
]
.

Note that, if Pα = P0 + iαT , then

(4.63)

esPαδ0(t, q, p) = esP0δ0(t+ isα, q, p)

= s−n−1kQ1

( t
s
+ iα,

q√
s
,
p√
s

)
,

where kQ1 (t+ iα, q, p) is defined from (4.61) by analytic continuation as long as

(4.64) |Re α| <
n∑
j=1

µj =
1

2
TrAQ.
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5. Remarks on the Heisenberg wave equation

Here we derive some results on solutions to the Heisenberg group wave equation

(5.1)
∂2u

∂s2
− L0u = 0.

We can analyze this by analytically continuing (4.46). First, with z = q+ ip ∈ Cn, we can
rewrite (4.46) as

(5.2) Ps(t, z) = cn

∫
γ

( τ

sin τ

)n[
s2 + gA,B(τ)

]−n−1/2
dτ,

where the path γ is the imaginary axis, from −i∞ to +i∞, and

(5.3) gA,B(ζ) = Bζ cot ζ +Aζ, A = 4t, B = 4|z|2.

We can analytically continue Ps(t, z) to Re s > 0, and pass to purely imaginary s,
by deforming the contour γ. If γ is deformed to γ′ in such a way that its image under
gA,B hugs part of the positive real axis, then singularities of the deformed path γ′ (where
g′A,B = 0) will correspond to singularities in the solution operator

(5.4) (−L0)
−1/2eis(−L0)

1/2

to (5.1) (with appropriate initial data). We refer to Chapter 1, §8 of [T5] for details on
this, but record the result here. Such a result was first obtained by Nachman [N1], by a
different method.

Proposition 5.1. The fundamental solution of the wave equation

(5.5) (−L0)
−1/2eis(−L0)

1/2

δ0(t, z)

has singularities only where, for some j

(5.6) s2 = gA,B
(
xj(A,B)

)
,

where gA,B(ζ) is given by (5.3) and the points xj(A,B) are the real zeros of g′A,B(x).

Such a result is also a special case of results on propagation of singularities proven by
Melrose [M6] and Lascar [L1] for ∂2/∂s2 − P when P has symplectic characteristics of
codimension 2 (including (5.5) on the three-dimensional Heisenberg group) and Lascar

and Lascar [L2] in greater generality. These results imply the group eis(−L0)
1/2

moves the
wave front set of a distribution by the unique continuous (not smooth) extension of the
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Hamilton flow defined by the symbol of (−L0)
1/2 on the complement of the characteristic

set. In particular, if P is any pseudodifferential operator on Hn, the conjugate

(5.7) e−is(−L0)
1/2

Peis(−L0)
1/2

= P (s)

must preserve wave front sets;WF (P (s)u) ⊂WF (u) for any u ∈ E ′(Hn). It is consequently
of interest to analyze the conjugated operator as some sort of pseudodifferential operator,
thus generalizing Egorov’s theorem, which would describe such a conjugated operator if
L0 were elliptic. We will look at some examples here where P is a convolution operator on
Hn. We will see that such conjugated operators are outside the classes of pseudodifferential
operators we have defined so far, and further classes of operators will arise.

To start with what seems to be the simplest example, suppose P ∈ OPΨm,∞0 , so

(5.8) σP (±λ)(X,D) = λmA±, A± ∈ OPS−∞
1 .

It follows that P (s), given by (5.7), satisfies

(5.9) σP (s)(±λ)(X,D) = λme−isλ
1/2H1/2

A±e
isλ1/2H1/2

= λmB±(s, λ).

Note that, for any integer k, the operator norm of HkB±(s, λ)H
k on L2(Rn) is bounded

independently of λ, so, for 0 < λ < ∞, B±(s, λ) is bounded in OPS−∞
1 (as s runs over a

bounded interval). If we take λ-derivatives, we see that

(5.10) Dj
λB±(s, λ) = λ−j/2e−isλ

1/2H1/2

[(−adH1/2)j(A±)]e
isλ1/2H1/2

+ · · · ,

where the finite number of lower order terms in (5.10) all involve lower order powers of λ.

Hence, for general A±, λ
j/2eisλ

1/2H1/2

Dj
λB±(s, λ) e

−isλ1/2H1/2

tends to a nonzero limit as
λ→ ∞, so the best that can be said is:

(5.11) λj/2Dj
λB±(s, λ) is bounded in OPS−∞

1 , for 1 ≤ λ <∞.

Note that cutting off (5.9) on some bounded λ-interval alters P (s) by a smoothing operator
in this case, so we need only worry about |λ| ≥ 1. Note that (5.11) is weaker than the
hypothesis (3.41), in case k = −∞, so P (s) does not belong to OPΩm,−∞.

This example suggests the following class of operators. We say the right invariant

operator A belongs to OPΩm,k1/2b provided b±(λ, x, ξ) = σA(±λ)(x, ξ) satisfies the conditions

(5.12) b±(λ, x, ξ) is smooth and supported on |x|+ |ξ| ≤ Cλ1/2, λ ≥ C ′,

and

(5.13) λj/2−mDj
λb±(λ, ·, ·) is bounded in Sk1 , for λ ∈ R+.

Note the parallel with the conditions (3.40)–(3.41), defining OPΩm,kb . The analysis proving
Proposition 3.10 shows that, for Au = a ∗ u, the hypothesis (5.13) implies

(5.14) |Dj
τD

β
yD

α
η a(τ, y, η)| ≤ Cjαβτ

m−j/2−(|α|+|β|)/2 (1 + |τ−1/2y|+ |τ−1/2η|
)k−|α|−|β|

.
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Thus we see that

(5.15) OPΩm,kb ⊂ OPΩm,k1/2b ⊂ OPS
m+κ/2
1/2,1/2, κ = max(k, 0).

Also, in view of (5.14), it is reasonable to say a right invariant operator A belongs to

OPΩm,k1/2 if it can be written as a sum of an element of OPΩm,k1/2b and an element of

OPS
m+k/2
1,0 . It follows that

(5.16) OPΩm,k ⊂ OPΩm,k1/2 ⊂ OPS
m+κ/2
1/2,1/2, κ = max(k, 0).

We should remark that OPΩm,k1/2 is not contained in Boutet de Monvel’s class of operators

OPSm+k/2,k(Hn,Λ). If we let

OPΩm,−∞
1/2 = ∩k>−∞OPΩ

m,k
1/2 ,

then what we have seen is that

(5.17) P ∈ OPΨm,∞ =⇒ P (s) ∈ OPΩm,−∞
1/2 ,

where P (s) is given by (3.71). More generally, one sees without much trouble that

(5.18) P ∈ OPΩm,−∞
1/2 =⇒ P (s) ∈ OPΩm,−∞

1/2 .

The assertions (5.17) and (5.18) follow directly from (5.10) and its natural generalization
with A± replaced by A±(λ), in view of the fact that

(5.19) E ∈ OPS−∞
1 =⇒ e−isH

1/2

EeisH
1/2

is bounded in OPS−∞
1 , s ∈ R+.

That this is true follows from the fact that a complete set of seminorms defining the
topology of OPS−∞

1 is given by the sequence of L2-operator norms

(5.20) Pk(E) = ∥HkEHk∥, k = 0, 1, 2, . . . ,

each of which is invariant under conjugation by eisH
1/2

.

For finite k, it does not seem that P ∈ OPΩm,k1/2 implies P (s) ∈ OPΩm,k1/2 . To see what

sort of operator P (s) is, we need to understand

(5.21) E(t) = eitH
1/2

E0e
−itH1/2

, t = sλ1/2,

given E0 ∈ OPSk1 . We need to have an analysis as |t| → ∞ as well as for finite t. A good
analysis for |t| bounded is provided as follows. Set

(5.22) E0(t) = E0,
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and, for j ≥ 1, let Ej(t) be defined by

(5.23)
dEj
dt

= i[H1/2, Ej−1(t)], Ej(0) = 0.

Then, by induction, wee see that

(5.24) Ej(t) = Ejt
j , Ej =

ij

j!
(adH1/2)jE0 ∈ OPSk−j1 .

If we write

(5.25) E(t) =

N∑
j=0

Ejt
j +RN (t) = FN (t) +RN (t),

we see that

(5.26)
dFN
dt

= i[H1/2, FN (t)]− itN [H1/2, EN ],

from which it follows, by Duhamel’s principle, that

(5.27) RN (t) =
iN+1

N !

∫ t

0

eisH
1/2

[(adH1/2)N+1 · E0]e
−isH1/2

(t− s)N ds.

Let us introduce the following notions. Set

(5.28) Ds = H−s/2(L2(Rn)),

and say

(5.29) T ∈ O(m) ⇐⇒ T : Ds → Ds, ∀ s ∈ R.

Note that

(5.30) OPSm1 ⊂ O(m),

so we have Ej ∈ O(k − j) if E0 ∈ OPSk1 , and, for each N ,

(5.31) (1 + |t|)−N−1RN (t) is bounded in O(k −N), ∀ t ∈ R.

This is not a very incisive result, due to the blow-up of RN (t) as |t| → ∞.
We can do a little better by using a geometrical optics approach. Note that, if e(t, x, ξ)

is the full symbol of E(t), it satisfies

(5.32)
∂e

∂t
∼ Hge+

∑
j≥3,odd

2i

j!
{g, e}j ,
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where {g, e}j is given by (2.20) and g is the symbol of H1/2:

(5.33) g(X,D) = H1/2.

We have g ∈ H1
b ; in fact, by (4.31),

(5.34) g(x, ξ) ∼ g1(x, ξ) + g2(x, ξ) + · · · ,

with g1+j(x, ξ) homogeneous of degree 1− 4j and

(5.35) g1(x, ξ) = (|x|2 + |ξ|2)1/2.

We produce

(5.36) e(t, x, ξ) ∼
∑
j≥0

ej(t, x, ξ),

with e0(t, x, ξ) satisfying

(5.37)
∂e0
∂t

= Hg1e0, e(0, x, ξ) = E0(x, ξ),

so

(5.38) e0(t, x, ξ) = E0

(
χ(t)(x, ξ)

)
,

where

(5.39) χ(t) = exp tHg1 = exp
t

g1

∑ ∂

∂θj
;

here

(5.40)
∑ ∂

∂θj
=

1

2
H|x|2+|ξ|2

generates a group

(5.41) ρ(t) = exp t
∑ ∂

∂θj

of rotations on R2n, and

(5.42) e0(t, x, ξ) = E0

(
ρ(t/g1)(x, ξ)

)
.

Note that e0(t, x, ξ) satisfies estimates of the form

(5.43) |Dα
ξD

β
xe0(t, x, ξ)| ≤ Cαβ(1 + |x|+ |ξ|)k−|α|−|β|

(
1 +

|t|
g1

)|α|+|β|
.
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Then

(5.44)
∂e0
∂t

(t,X,D)− i[H1/2, e0(t,X,D)] = A1(t,X,D),

where A1(t, x, ξ) satisfies estimates of the form

(5.45) |Dα
ξD

β
xA1(t, x, ξ)| ≤ Cαβ(1 + |x|+ |ξ|)k−5−|α|−|β|

(
1 +

|t|
g1

)3+|α|+|β|
.

One can hence solve for e1(t, x, ξ) the equation

(5.46)
∂e1
∂t

−Hg1e1 = −A1(t, x, ξ), e1(0, x, ξ) = 0,

and continue in this fashion, to get a more accurate approximation to e(t,X,D) = E(t).

Such an approach still does not give an incisive analysis of (5.7) for P ∈ OPΨm,k0 , with k
finite, but it does allow one to analyze (5.7) in case P ∈ OPΣm has symbol vanishing on
a conic neighborhood of Λ. In that case we are reduced to understanding (5.21) when the
symbol of E0 is supported on

(5.47) M−1λ1/2 ≤ (|x|2 + |ξ|2)1/2 ≤Mλ1/2,

and, as the right sides of (5.43) and (5.45) indicate, the growth in t does not present a
problem in this case. Since the symbol of P is supported where L0 is elliptic, in this case,
this analysis merely reproduces standard results of geometrical optics, so we will not dwell
on it.

The correct class of (not necessarily right invariant) pseudodifferential operators, in-

variant under conjugation by such unitary operators as eis(−L0)
1/2

, and the corresponding
extension of Egorov’s theorem, remain to be achieved.
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6. A hypoellipticity result of Rothschild

As we saw in §2, if K0 ∈ OPΨm0 has the property that the operators σK0
(X,D) are

elliptic but not both injective, K0 will not be hypoelliptic, but it is possible for K0+K1 to
be hypoeliptic, for some K1 ∈ OPΨ−1. In [R4], Rothschild proved the following surprising
result, giving a complete analysis for such operators that are differential operators.

Proposition 6.1. Let K be a right invariant differential operator on Hn. Suppose K =
K0 + K1 with K0 ∈ OPΨm0 , K1 ∈ OPΨm−1, and σK0(±1)(X,D) elliptic. Suppose fur-
thermore that, for some M ,

(6.1) σK(±λ)(X,D) is injective, whenever λ ≥M.

Then K is hypoelliptic.

This section will be devoted to a proof of the following natural generalization of Propo-
sition 4.1.

Proposition 6.2. Suppose K ∈ OPΨm is a pseudodifferential operator given by a finite
sum

(6.2) K = K0 +K1 + · · ·+Kµ, Kj ∈ OPΨm−j
0 .

Suppose σK0(±1)(X,D) elliptic, and suppose (6.1) holds. Then K is hypoelliptic.

The proof of Proposition 6.2 will be along the same lines as Rothschild’s proof, with
some simplifications, due to the use of the machinery developed in §2.

Of course, the hypoellipticity of K fails to follow from Theorem 2.17 only in the case
when at least one of the operators σK0(±1)(X,D) has a nontrivial kernel. Let π± denote
the orthogonal projections of L2(Rn) onto these kernels. (One of these operators might be
zero, but not both.)

We make some preliminary simplifications. First, we can assume K is self-adjoint, since
the hypoellipticity of K∗K implies the hypoellipticity of K, and hypothesis (6.1) for K
implies the same sort of hypothesis for K∗K. Thus each Kj in (6.2) is self-adjoint, and

σKj (±λ)(X,D) is formally self-adjoint. Now, if we define K̃0 ∈ OPΨm0 by

(6.3) σ
K̃0

(±λ)(X,D) = σK0
(±λ)(X,D) + λm/2π±,

then K̃0 has an inverse G̃0 ∈ OPΨ−m
0 , and we obtain a new operator

(6.4)
E = G̃0K = G̃0K0 + · · ·+ G̃0Kµ

= E0 + E1 + · · ·+ Eµ ∈ OPΨ0,

with Ej ∈ OPΨ−j
0 . To prove hypoellipticity of K, it will suffice to construct a parametrix

for E. Note that

(6.5) σE0
(±1)(X,D) = I − π±.
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By the observation above, to construct a parametrix for E, it suffices to do so for E∗E, so
we can assume without loss of generality that

(6.6) E ∈ OPΨ0 is self-adjoint, with expansion (6.4),

and the operator we have still satisfies (6.5), and, in addition:

(6.7) σE(±λ)(X,D) is invertible, for λ ≥M.

Consequently, we are reduced to constructing a parametrix for E, under assumptions (6.5)–
(6.7). Note that π± are projections onto finite dimensional subspaces of S(Rn) and hence
are operators in OPS−∞

1 ; this follows from general results on the kernel of an elliptic
operator in OPH0

b ⊂ OPS0
1 ; see Grusin [G12] or Beals [B4].

Note that, if

(6.8) σEj
(±1)(X,D) = A±

j ∈ OPH−j ⊂ OPS−j
1 ,

then

(6.9) σE(±λ)(X,D) = I − π± +

µ∑
j=1

λ−j/2A±
j .

The operators A±
j in (6.9) are all compact and self-adjoint. Now, if we set

(6.10) ε = λ−1/2, |ε| ≤M−1/2,

then, according to (6.9), σE(±λ)(X,D) is equal to

(6.11) P±(ε) = I − π± +

µ∑
j=1

A±
j ε

j = I − π± +A±(ε),

an analytic function (in fact, a polynomial) in ε, taking values in OPH0. Our hypothesis
(6.7) states that the operators P±(ε) are invertible on L2(Rn), for sufficiently small ε. We
wish to study these inverses.

Clearly A±(ε) has small operator norm if |ε| is small, so the spectrum of P±(ε) is
concentrated near the points 0 and 1, say within a distance 1/4. Let γ denote the circle
of radius 1/2 centered about 0, and set

(6.12) π̃±(ε) =
1

2πi

∫
γ

(
ζ − P±(ε)

)−1
dζ,

and

(6.13) Q±(ε) = I − π̃±(ε) =
1

2πi

∫
γ′

(
ζ − P±(ε)

)−1
dζ,

where γ′ denotes the circle of radius 1/2 centered about 1. The operators π̃±(ε) are analytic
in ε, taking values in L(L2(Rn)), and are all projections. Note that π̃±(ε) → π± in operator
norm as ε→ 0, so all are projections onto finite dimensional spaces, of dimension equal to
the range of π±, for ε small. Let us write

(6.14) π̃±(ε) =

∞∑
j=0

κ±j ε
j , κ±0 = π±,

so κ±j are bounded operators on L2(Rn).
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Lemma 6.3. We have

κ±j ∈ OPS−∞
1 .

Proof. The operators Q±(ε) are analytic in ε with values in OPH0, all with principal
symbol equal to 1, so in fact π̃±(ε) are analytic in ε with values in OPS−1

1 , and hence

π̃±(ε) = π̃±(ε)
N

is analytic in ε with values in OPS−N
1 , for each N ∈ Z+, which yields the desired result.

Suppose that W±(ε) inverts P±(ε) on the range of π̃±(ε), and

(6.15) W±(ε) = π̃±(ε)W±(ε) =W±(ε)π̃±(ε).

This uniquely characterizes W±(ε). Then

(6.16) (I +W±(ε))P±(ε) = I + (π̃±(ε)− π±) +A±(ε) = I + Ã±(ε),

where Ã±(ε) is an analytic function of ε, with values in OPS−1
1 . In fact,

(6.17) Ã±(ε) =
∞∑
j=1

Ã±
j ε

j , Ã±
j ∈ OPH−j ,

by (6.8) and Lemma 6.3. Consequently, if we define an operator W by

(6.18) σW(±λ)(X,D) = ψ(ε)W±(ε), ε = λ−1/2,

where ψ(ε) is smooth, with small support, and equal to 1 for ε very small, we have

(6.19) (I +W)E = I +A,

with

(6.20) σA(±λ)(X,D) = Ã±(ε), ε = λ−1/2, small,

and hence, in light of (6.17),

(6.21) A ∈ OPΨ−1.

The following information on W will be central for our parametrix construction.
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Lemma 6.4. We have

(6.22) W ∈ OPΨκ,∞,

for some κ ∈ Z+.

Proof. To prove (6.22), it suffices to show that for some κ

(6.23) εκW±(ε) is analytic in ε, with values in OPS−∞
1 .

We transform the analysis of W±(ε) to a finite dimensional problem. Consider the opera-
tors

(6.24) U±(ε) = π±π̃±(ε) + (I − π±)(I − π̃±(ε)).

It is easy to see that

(6.25) U±(ε) : R
(
π̃±(ε)

)
−→ R(π±),

where R(T ) denotes the range of the operator T . Also,

(6.26) kerU±(ε) = ker π̃±(ε) ∩R(π±)⊕R
(
π̃±(ε)

)
∩ kerπ± = kerU±(ε)

∗.

Furthermore,

(6.27) U±(ε) = I + (I + 2π±)ρ±(ε) = I +K±(ε),

where

(6.28) ρ±(ε) = π̃±(ε)− π±,

and it is easy to verify from (6.26) that kerU±(ε) = kerU±(ε)
∗ is spanned by the +1 and

−1 eigenspaces of K±(ε). However, ∥K±(ε)∥ is small if ε is, so consequently U±(ε) is
invertible for small ε, and hence the map (6.25) is bijective. It follows that

(6.29) W±(ε) = U±(ε)
−1X±(ε)U±(ε),

where X±(ε) is the inverse, on the range of π±, of

(6.30) Y±(ε) = U±(ε)P±(ε)U±(ε)
−1.

Note that U±(ε) and U±(ε)
−1 are analytic functions of ε with values in OPS0

1 .
Now, on the range of π±, Y±(ε) is an analytic family of L± × L± matrices, where L±

is the dimension of the range of π±. Since P±(ε) is a polynomial in ε, and since U±(ε) is
invertible, uniformly as ε → 0, it follows that these matrices have determinants that are
analytic functions of ε, and, being not identically zero, they vanish to finite order, say to
order κ, at ε = 0. Thus Cramer’s rule applied to the construction of their inverses yields
meromorphic matrix valued functions with poles of order at most κ at ε = 0. This proves
the assertion (6.23) and establishes the lemma.

Now I +A, arising in (6.19), has a parametrix I + B, B ∈ OPΨ−1, and hence

(6.31) (I + B)(I +W)E = I,

modulo a smoothing operator. Since (I+B)(I+W) ∈ OPΨκ, this proves the hypoellipticity
of E. In fact, we obtain the following more precise version of Proposition 6.2.
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Proposition 6.5. If K ∈ OPΨm satisfies the conditions of Proposition 6.2, then K is
hypoelliptic, with a parametrix of the form

(6.32) L1 + L2,

where

(6.33) L1 ∈ OPΨ−m, L2 ∈ OPΨ−m+κ,∞.

Finally we show that the condition (6.1) is necessary for hypoellipticity, granted the
other hypotheses of Proposition 6.2. Indeed, passing from K to E ∈ OPΨ0 as before,
we can still obtain the L± × L± matrix valued analytic function X±(ε), given by (6.29),
making a slight change in the argument in Lemma 6.4 if E is not assumed to be self-adjoint.
(The self-adjointness was used in a minimal way, in (6.26), and can be avoided.) Now, if
the hypothesis (6.1) does not hold, then either X+(ε) or X−(ε) must have determinant
identically zero (for small ε). Now we have the following result.

Lemma 6.6. Assume X(ε) is an analytic L×L matrix valued function, near ε = 0, with
determinant identically zero. Then there is an analytic function u(ε) with values in CL
such that u(0) ̸= 0 and X(ε)u(ε) ≡ 0.

Proof. Replacing X(ε) by X(ε)∗X(ε), we can suppose that X(ε) itself is self adjoint. Then
the result follows from Theorem 1.10, p. 71, of Kato [K1].

So if X+(ε) (say) has determinant identically zero, for |ε| small, define Ṽ+(ε) to be the
orthogonal projection onto such u(ε), thought of as an analytic function of ε with values

in R(π+) ⊂ S(Rn) ⊂ L2(Rn), and let V+(ε) = U+(ε)
−1Ṽ+(ε)U+(ε), an analytic function

of ε with values in S−∞
1 . Then define S0 ∈ OPΨ0,∞:

(6.34) σS0
(λ)(X,D) = ψ(λ)V+(|λ|−1/2),

where ψ(λ) = 1 for λ ≥ 2M , ψ(λ) = 0 for λ ≤ M , M picked sufficiently large. Then we
see that S0 is not a smoothing operator, but clearly

(6.35) KS0 = 0, mod OPS−∞.

This establishes the following converse to Proposition 6.2.

Proposition 6.7. If K ∈ OPΨm is of the form (6.2) with σK0
(±1)(X,D) elliptic, then

the hypothesis (6.1) is necessary as well as sufficient for hypoellipticity of K.
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Chapter III. Pseudodifferential operators on contact manifolds

A contact structure on a manifoldM , of dimension 2n+1, is given by a line bundle Λ in
T ∗M that is symplectic in T ∗M \ 0, i.e., the symplectic form on T ∗M \ 0 is nondegenerate
acting on tangent vectors to Λ. An alternative characterization is the following: for a local
nonvanishing section α of Λ, we demand that α∧dα∧· · ·∧dα ̸= 0, where there are n factors
of dα. Darboux’ theorem implies that any two contact manifolds of the same dimension
are locally diffeomorphic via a map preserving these contact structures, i.e., preserving α
up to a scalar factor.

The Heisenberg group Hn forms a convenient local model for a contact manifold of
dimension 2n+1, as was emphasized by Dynin [D2], following Folland and Stein [F4], who
used Hn as an “infinitesimal” model for constructing kernels on certain CR-manifolds, such
as the boundary of a strictly pseudoconvex domain in Cn+1. The contact structure we
put on Hn is the line bundle, invariant by right translations, whose fiber over the identity
in Hn is spanned by dt, in the coordinates on Hn used in Chapter II. This is also the
characteristic set of the “Heisenberg Laplacian” L0, discussed in that chapter.

In the definition of a contact manifold M , associated with the line bundle Λ there is the
orthogonal bundle B ⊂ TM , of fiber dimension 2n. A CR-manifold (of maximal complex
dimension) with nondegenerate Levi form, is a contact manifold with a family of complex
structures on the fibers of B, which satisfy a certain integrability condition. For example,
if M is a hypersurface in Cn+1, Bx consists of the vectors v ∈ Cn+1, tangent to M at x,
such that iv is also tangent to M . In this case TxM is naturally identified as an R-linear
subspace of Cn. The nondegeneracy condition α ∧ dα · · · ∧ dα ̸= 0 is equivalent to the
nondegeneracy of the Levi form. On such a CR-manifold is a sequence of Kohn Laplacians
�b, some of which are hypoelliptic with loss of one derivative, in the strictly pseudoconvex
case. The analysis of such operators via analysis on Hn provides a nice tool for constructing
parametrices of �b in such cases. Such parametrices lie in classes of operators determined
by the contact structure on M . As concerns the ease of constructing such parametrices,
we are fortunate that they lie in classes of operators rather insensitive to the finer CR-
structure, since two CR-manifolds need not be locally isomorphic, and classifying these
structures may be hopeless. (On the infinitesimal level, one does have the Moser normal
form.)

In §1 we develop several classes of pseudodifferential operators on contact manifolds. We

use the Heisenberg group as a model. Operator classes studied include OP Ψ̃m, OP Ψ̃m,k,

of pure Heisenberg type, the classical operators OP Σ̃m = OPSm, and amalgamations,

OP Ω̃m,k and OP H̃m,µα,δ . We establish invariance of these operator classes under contact
diffeomorphisms, to conclude that they are naturally defined on contact manifolds. Section
2 gives some technical results on the expansion of the symbol of a product.

Section 3 constructs parametrices for a natural class of subelliptic operators on contact
manifolds, with double characteristics on the contact line bundle Λ. Second order subel-

liptic differential operators, such as the Kohn Laplacian �b, have parametrices in OP Ψ̃−2.
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More general operators P ∈ OPSm, doubly characteristic on Λ, are seen to be hypoel-
liptic, under a certain condition on the subprincpal symbol. We obtain parametrices in

OP Ω̃−m+1,−2. In §4 we look at �+, the Neumann operator for the ∂-Neumann problem;
here �+ ∈ OPS1(M) with M = ∂O, where O ⊂ Cn is a strongly pseudoconvex domain,
and �+ is doubly characteristic on one componentΛ+ of Λ \ 0. We show that �+ has a

parametrix E ∈ OP H̃−2,1
α,δ , which is a more precise result than E ∈ OP Ω̃0,−2. In fact, we

obtain an even more precise analysis of E, as a sum of three terms, in OP Ψ̃0,1, OP Ψ̃−1,

and OP H̃0,−1
α,δ .

In §5 we construct a parametrix for the heat semigroup etP , when P is a negative, self-
adjoint second order subelliptic operator on a contact manifold M , doubly characteristic
on Λ and with an appropriate restriction on its subprincipal symbol; the case of the Kohn
Laplacian on the boundary of a strongly pseudoconvex domain is included. We obtain an
asymptotic expansion for the trace of etP , which yields eigenvalue asymptotics.

In §6 we study the Szegö projector S, the orthogonal projection of L2(∂O) onto the
space of boundary values of holomorphic functions on O, a strongly pseudoconvex domain

in Cn. We show that S ∈ OP Ψ̃0,∞ and examine its symbol. We draw conections with
other studies of S, particularly of Boutet de Monvel and Sjöstrand [B12].
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1. Operator classes on contact manifolds

Since we are interested in a local analysis of pseudodifferential operators on a contact
manifold M , we can implement Darboux’ theorem and suppose M = Hn, with the contact
structure given by the right invariant line bundle Λ = charL0, discussed in Chapter II.
Thus our operator classes will be obtained from the classes of convolution operators devel-
oped in Chapter II, via the machinery fashioned in Chapter I. Recall that we developed in
Chapter II the classes OPΨm, OPΣm, and OPΩm,k. Thus the theory of Chapter I gives
us the following operator classes:

(1.1) OP Ψ̃m, OP Ψ̃m,k, OP Σ̃m, OP Ω̃m,k.

We also make a further study of the classes OP H̃m,µα,δ , introduced in Chapter I, §2, now
specialized to G = Hn. Of these, the class OP Σ̃m has a transparent behavior. Indeed, the
proof of Proposition 1.4 of Chapter I gives immediately:

Proposition 1.1. Locally, and modulo smoothing operators, we have

(1.2) OP Σ̃m = OPSm.

The other classes require further study. Of course, in light of (2.4) of Chapter II and
the discussion following it, we have

(1.3) OP Ψ̃m ⊂ OPSm1/2,1/2, if m ≥ 0, OPS
m/2
1/2,1/2 if m ≤ 0,

as a corollary to Proposition 1.1 of Chapter I. Similarly, (2.18) of Chapter II implies

(1.4) OP Ω̃m,k ⊂ OPS
m+κ/2
1/2,1/2, κ = max(k, 0).

Now, the whole point of our analysis is not to make such use of the rather weak results

(1.3) and (1.4), but to develop symbolic operator calculi for OP Ψ̃m and OP Ω̃m,k. In order
to do this, we need to verify the hypotheses that figured in Propositions 1.2, 1.3, and 1.5
of Chapter I; these hypotheses are given in (1.25), (1.26), (1.27), (1.42), (1.43), and (1.46)
of Chapter I. We recall them here:

((1.25)) Xm ⊂ Smρ# for some ρ ∈ (0, 1], m ≥ 0,

((1.26)) Xm ⊂ Smσρ# if m < 0, for some σ ∈ (0, 1],

((1.27)) A ∈ OPXm, B ∈ OPXµ =⇒ AB ∈ OPXm+µ,

((1.42)) p(ξ) ∈ Xm =⇒ Dα
ξ p(ξ) ∈ Xm−τ |α|, for some τ ∈ (0, 1],

((1.43)) Kj ∈ Xm−τj =⇒ ∃ K ∈ Xm, K ∼ K0 +K1 + · · · ,

((1.46)) p(ξ) ∈ Xm =⇒ p(ξ) ∈ Xm.

In the cases of Ψm, Ψm,k, and Ωm,k, all these results are either immediate from the
definitions or taken care of explicitly in Chapter II, §2, except for ((1.42)), which we take
care of now.
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Proposition 1.2. If k̂(τ, y, η) ∈ Ψm0 , then

(1.5) Dj
τD

γ1
y D

γ2
η k̂(τ, y, η) ∈ Ψ

m−2j−|γ1|−|γ2|
0 .

Proof. This is an immediate consequence of differentiating the identity

k̂(τλ, τ1/2y, τ1/2η) = τm/2k̂(λ, y, η),

which defines membership in Ψm0 .

Proposition 1.3. If k̂ ∈ Ωm,k, then

(1.6) Dj
τD

γ1
y D

γ2
η k̂(τ, y, η) ∈ Ωm−j−(|γ1|+|γ2|)/2,k−|γ1|−|γ2|.

Proof. This follows immediately from the characterization (3.45) of Ωm,k given in Chapter
II.

If K(w) is a smooth function of w = (t, q, p) ∈ Hn with values in one of these classes,
we denote the symbol of

(1.7) Ku(w) = K(w)u(w)

by

(1.8) σK(w,±λ)(X,D) = π±λ(K(w)).

Using Proposition 1.2 and the machinery of Chapters I and II, we deduce the following:

Proposition 1.4. If A ∈ OP Ψ̃m, B ∈ OP Ψ̃µ, then AB ∈ OP Ψ̃m+µ. If C ∈ OP Ψ̃m+µ

is defined by

(1.9) σC(w,±λ)(X,D) = σA(w,±λ)(X,D)σB(w,±λ)(X,D),

then

(1.10) AB − C ∈ OP Ψ̃m+µ−1.

To apply Proposition 1.3, note that

(1.11) Ωµ−ν/2,k−ν ⊂ Ωµ,k ∩ Sµ−ν/2+κ(ν)1/2,1/2 , κ(ν) = max(k − ν, 0),

and that a formal series

(1.12)
∑
ν≥0

Pν , Pν ∈ OPΩµ−ν/2,k−ν

asymptotically sums to an element of OPΩµ,k. Also

(1.13) Ωµ−1/2,k ⊂ Ωµ,k−1.

Hence we have:
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Proposition 1.5. If A ∈ OP Ω̃m,k, B ∈ OP Ω̃µ,ℓ, then

(1.14) AB ∈ Ω̃m+µ,k+ℓ.

Furthermore, if C is defined by (1.9), then

(1.15) AB − C ∈ OP Ω̃m+µ−1/2,k+ℓ−1.

We turn to a consideration of the invariance of OP Ψ̃m and OP Ω̃m,k under coordinate
changes. Let φ : Hn → Hn be a C∞ diffeomorphism that preserves the contact structure,
with inverse denoted ψ. If A is an operator on functions on Hn given by

(1.16) Au(w) =

∫
a(w,wz−1)u(z) dz, w, z ∈ Hn,

then B = ψ∗Aφ∗ is given by formula (1.60) of Chapter I:

(1.17) Bu(w) =

∫
b
(
w,Ψ(w, z, wz−1)

)
u(z)H̃(z) dz,

where b(w, z) = a(ψ(w), z) and Ψ(w, z, y) is linear in y, in exponential coordinates (which
for Hn are the standard coordinates on R2n+1). In the formal expansion

(1.18) b
(
w,Ψ(w, z, wz−1)

)
∼

∑
γ≥0,|σ|≥|γ|

Cσγ (wz
−1)γ+σ b(γ)

(
w,Ψ(w)(wz−1)

)
,

if we set γ = (γ0, γ1, γ2) and

Dγ b̂(τ, y, η) = Dγ0
τ D

γ1
y D

γ2
η b̂(τ, y, η),

then the Fourier transform of the general term in (1.18) is

(1.19) Cσγ D
γ0+σ0
τ Dγ1+σ1

y Dγ2+σ2
η

[
τγ0yγ1ηγ2 b̂

(
w,Ψ(w)t(τ, y, η)

)]
.

Now the hypothesis that φ preserves the contact structure on M = Hn is equivalent to
the hypothesis that

(1.20) Ψ(w)t = Dψ(w)t preserves the space {y = η = 0}.

We claim that, in this case, if A ∈ OP Ψ̃m0 , then (1.20) is a smooth function of w ∈ Hn
with values in Ψm−2σ0−|σ1|−|σ2| ⊂ Ψm−|γ|. This follows from Proposition 1.2 if we know
that

b̂
(
w,Ψ(w)t(τ, y, η)

)
∈ Ψm,

for each w, which follows easily from (1.20). Similarly, using Proposition 1.3, one sees that

if A ∈ OP Ω̃m,k, then (1.19) is a smooth function of w with values in

Ωm−σ0−(|σ1|+|σ2|)/2,k−|σ1|−|σ2| ⊂ Ωm−|γ|/2,k.

If the sum in (1.18) is restricted to 0 ≤ |γ| ≤ N, |γ| ≤ |σ| ≤ 2N , it is not hard to see that
the remainder term represents an arbitrarily smooth kernel if N is sufficiently large. We
have the following result.
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Proposition 1.6. Let φ : Hn → Hn be a diffeomorphism that preserves the contact struc-
ture, with inverse ψ. Then

A ∈ OP Ψ̃m =⇒ ψ∗Aφ∗ ∈ OP Ψ̃m

and

A ∈ OP Ω̃m,k =⇒ ψ∗Aφ∗ ∈ OP Ω̃m,k.

We now turn our attention to OP H̃m,µα,δ , which was studied gor general 2 step nilpotent

Lie groups in Chapter I, §2. In the case G = Hn, α(s)(t, q, p) = (e2st, esq, esp), we can

say a bit more. Recall that to say Pu(w) = P (w)u(w) defines P ∈ OP H̃m,µα,δ is equivalent

to saying that P (w)u(w) = py ∗ u(w)|y=w and that p̂(w, ζ) = p̂w(ζ) has an asymptotic
expansion

(1.21) p̂(w, ζ) ∼
∑
j≥0

aj(w, ζ)bj(w, ζ),

where

(1.22) aj(w, ζ) ∈ Ψmj , bj(w, ζ) ∈ Σµj (smooth in w),

with

(1.23) mj ≤ m, µj ≤ µ, mj + µj → −∞.

As shown in Proposition 2.12 of Chapter I, P ∈ OP H̃m,µα,δ if and only if

(1.24) P ∼
∑
j≥0

KjLj ,

with

(1.25) Kj ∈ OP Ψ̃mj , Lj ∈ OPSµj ,

and mj , µj satisfying (1.23). In the case G = Hn, recall that, outside any conic neighbor-

hood of Λ ⊂ T ∗Hn \ 0, elements of OP Ψ̃m belong to OPSm. Thus, microlocally away

from Λ, OP H̃m,µα,δ coincides with OPSm+µ. In order to understand such operators better
near Λ, we can use Proposition 3.4 from Chapter II. This yields:

Proposition 1.7. If K ∈ OP Ψ̃m and L ∈ OPSµ, the symbol of L being supported near
Λ, then

(1.26) σKL(w,±λ)(X,D) ∼ λm/2+µ
∑
j≥0

λ−j/2e±j (w, λ,X,D),
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where

(1.27) e±0 (w, λ, x, ξ) = σK(w,±1)(x, ξ) σL(w,±1)(λ−1/2x, λ−1/2ξ),

and for j ≥ 1

(1.28) e±j (w, λ, x, ξ) =

K(j)∑
k=1

p±kj(w, λ
−1/2x, λ−1/2ξ)a±kj(w, x, ξ),

with

(1.29)
p±kj(w, x, ξ) ∈ C∞, compactly supported in (x, ξ),

a±kj(w, x, ξ) ∈ Hm−j
b .

In a similar fashion we have

(1.30) σLK(w,±λ)(X,D) ∼ λm/2+µ
∑
j≥0

λ−j/2f±j (w, λ,X,D),

where

(1.31) f±0 = e±0 ,

and f±j (w, λ, x, ξ) has an expression similar in form to (1.28)–(1.29).

In light of the characterization (1.24)–(1.25) of OP H̃m,µα,δ , we have:

Corollary 1.8. Let the symbol of P be supported near Λ. Then P ∈ OP H̃m,µα,δ if and only

if σP(w,±λ)(X,D) has the form

(1.32) σP(w,±λ)(x, ξ) ∼ λm/2+µ
∑
j≥0

λ−j/2e±j (w, λ, x, ξ),

where e±j (w, λ, x, ξ) has the form (1.28)–(1.29).

This result makes precise the inclusion

(1.33) OP H̃m,µα,δ ⊂ OP Ω̃m/2+µ,m.

We also remark that, in light of the characterization (1.24)–(1.25), Proposition 1.6 extends

to A ∈ OP H̃m,µα,δ .



90

2. More on symbol expansions of products

In this section we will derive further results on the expansion of a product

(2.1) ABu(x) =
∑
γ≥0

A[γ](x)B[γ](x)u(x),

derived in (1.41) of Chapter I. This material will be useful in some analyses of Szegö
operators and Toeplitz operators, in §6. We desire to obtain explicit information on the
major terms after the principal term. In particular, we will look at the cases

(2.2) γ = (1, 0, 0), and γ = (0, γ1, γ2), |γ1|+ |γ2| = 1 or 2.

We want to understand A[γ] on the symbol level. Recall from (1.37) of Chapter I that,
if Au(x) = a ∗ u(x), then A[γ]u = a[γ] ∗ u with

(2.3) â[γ](ξ) = Dγ â(ξ).

In case G = Hn, with coordinates (t, q, p) and dual coordinates (τ, y, η), this reads

(2.4) â[γ](τ, y, η) = Dγ0
τ D

γ1
y D

γ2
η â(τ, y, η), γ = (γ0, γ1, γ2).

Now recall that

(2.5) â(±τ, y, η) = σA(±τ)(±τ−1/2y, τ−1/2η),

and

(2.6) σA(±λ)(x, ξ) = â(±λ,±λ1/2x, λ1/2ξ).

It follows easily that

(2.7) σA[(0,γ1,γ2)](±λ)(x, ξ) = λ−|γ|/2(±Dx)
γ1Dγ2

ξ σA(±λ)(x, ξ).

In particular,

(2.8)
Dγ1
x = Dxj

⇒ σA[(0,γ1,0)](X,D) = ±λ−1/2(Dxj
σA)(±λ)(X,D)

= ±λ−1/2 [Dj , σA(±λ)(X,D)],

and

(2.9)
Dγ2
ξ = Dξj ⇒ σA[(0,0,γ2)](X,D) = λ−1/2 (DξjσA)(±λ)(X,D)

= λ−1/2 [Xj , σA(±λ)(X,D)].
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Equivalently, for right invariant A on Hn, we have, in case (2.8),

(2.10) A[(0,γ1,0)] = T−1[Mj , A],

and in case (2.9),

(2.11) A[(0,0,γ2)] = T−1[Lj , A].

Recall that Lj and Mj are the right invariant vector fields generating the Lie algebra of
Hn, and T spans its center.

Next we look at A[(1,0,0)]. From (2.5) we have

(2.12) σA[(1,0,0)](±λ)(x, ξ) =
[
− 1

2λ
−1(x ·Dx + ξ ·Dξ) +Dλ

]
σA(±λ)(x, ξ).

In particular, if A ∈ OPΨm0 ,

(2.13)
σA[(1,0,0)](±λ)(x, ξ) = − 1

2λ
−1(x ·Dx + ξ ·Dξ −m)σA(±λ)(x, ξ)

= −1

2
λ−1

(
r
∂

∂r
−m

)
σA(±λ)(x, ξ),

where r denotes the radial variable; r2 = |x|2 + |ξ|2. Note that the principal term in
σA(±λ)(x, ξ), homogeneous of degree m in (x, ξ), is annihilated by r ∂/∂r −m.

We turn now to B[γ](y), given by

(2.14) B[γ](y) =
1

γ!
Dγ
wB((expw)y)

∣∣
w=0

, y ∈ Hn,

in light of the formula (1.34) of Chapter I. If |γ| = 1, the right side of (2.14) clearly involves
a right invariant vector field; we have

(2.15) Dγ1
x = Dxj ⇒ B[(0,γ1,0)](y) = (LjB)(y),

and

(2.16) Dγ2
ξ = Dξj ⇒ B[(0,0,γ2)] = (MjB)(y).

To simplify notation, let Xγ = Lj in case (2.15) and Xγ =Mj in case (2.16), so we get

(2.17) γ0 = 0, |γ| = 1 =⇒ B[γ](y) = (XγB)(y).

To complete the analysis of B[γ](y) for |γ| = 1, note that

(2.18) γ = (1, 0, 0) =⇒ B[γ](y) = (TB)(y).

Let us now look at B[(0,γ1,γ2)](y) in case |γ1|+ |γ2| = 2. We can write (0, γ1, γ2) = γ+γ′

with |γ| = |γ′| = 1, so both γ and γ′ satisfy the condition (2.17). Note that

(2.19) Xγ′XγB(y) = Dγ′

w′D
γ
wB

(
(expw)(expw′)y

)∣∣
w,w′=0

.
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If we use the Campbell-Hausdorff formula

(2.20) (expw)(expw′) = exp
(
w + w′ + 1

2 [w,w
′] + · · ·

)
and plug the right side of (2.19) into

(2.21) B((expw)y) ∼
∑
γ≥0

wγ B[γ](y),

we get

(2.22)
2B[γ+γ′](y) = Xγ′XγB(y)− 1

2 [Xγ′ , Xγ ]B(y)

= 1
2 (Xγ′Xγ +XγXγ′)B(y).

Note that, precisely when γ′ and γ are complementary, e.g., Dγ
x,ξ = Dxj

, Dγ′

x,ξ = Dξj , we

have [Xγ′ , Xγ ] nonzero, and then this commutator is ±T .



93

3. Subelliptic operators on contact manifolds

Our main goal in this section is to show that the classes of operators considered in §1
contain the parametrices of classical pseudodifferential operators on a contact manifold M
that are doubly characteristic on the contact line bundle and satisfy a certain condition,
which will be given below, that will guarantee hypoellipticity with loss of one derivative.
As we have seen, we can use local diffeomorphisms preserving the contact structure, and
assume M is Hn, with the right invariant contact structure described in the introduction
to this chapter.

First consider a second order differential operator on Hn, with nonnegative principal
symbol vanishing to precisely second order on Λ ⊂ T ∗Hn \ 0. Then we have (generalizing
(2.70) of Chapter II):

(3.1) P =
∑
j,k

ajk(w)XjXk + iα(w)T +B(w,Dw), w ∈ Hn.

Here, ajk(w) = akj(w) is a smooth function of w, forming a positive definite, real matrix,
α(w) ∈ C∞(Hn), and B = B(w,Dw) is a first order differential operator on Hn whose

principal symbol vanishes on Λ. Hence B ∈ OP Ψ̃1. The vector fields Xj are as in (2.69)
of Chapter II. Our first result follows immediately from Theorem 2.17 of Chapter II and
the machinery of §1 of this chapter.

Theorem 3.1. Suppose that, for all y ∈ Ω ⊂ Hn, the symbols

(3.2) σP2
(±1)(X,D)

are elliptic in OPH2 and invertible on L2(Rn), where P2(y) is the right invariant differ-
ential operator

(3.3) P2(y) =
∑
j,k

ajk(y)XjXk + iα(y)T,

which is to say, ±α(y) avoids the discrete set determined by the spectrum of the second
order operator Q(y,X,D) associated with the quadratic form derived from the double sum
in (3.3). (See Proposition 2.14 of Chapter II.) Then P , defined by (3.2), is hypoelliptic on

Ω, with parametrix in OP Ψ̃−2.

Proof. Let A ∈ OP Ψ̃−2 be defined by

(3.4) σA(w,±λ)(X,D) = λ−1 σP2(w)(±1)(X,D)−1.

The Proposition 1.5 yields

(3.5) PA = I +R1, AP = I +R2, Rj ∈ OP Ψ̃−1.
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From here the standard construction of a parametrix for P goes through.

We remark that the analysis above works if in (3.1) α(w) and B are matrix valued, as
long as ajk(w) are scalar. The condition for hypoellipticity is then that all eigenvalues of
±α(y) avoid the spectrum of Q(y,X,D), for all y ∈ Ω ⊂ Hn. Such a result applies to �b,
the Kohn Laplacian, on the boundary of a strictly pseudoconvex domain, in cases where
one has hypoellipticity with loss of one derivative.

We take the space to explain here the phrase “hypoellipticity with loss of one derivative.”
If P ∈ OPSm is elliptic, we have the regularity result

Pu ∈ Hs
loc =⇒ u ∈ Hs+m

loc .

Now, in the case covered by Theorem 3.1, since OP Ψ̃−2 ⊂ OPS−1
1/2,1/2, we have

(3.6) Pu ∈ Hs
loc =⇒ u ∈ Hs+1

loc ,

rather than u ∈ Hs+2
loc . This result cannot be improved, and this explains the terminology.

We now consider the more general situation, where P ∈ OPSm is a classical pseudo-
differential operator on M = Hn whose principal symbol is nonnegative and vanishes to
exactly second order on Λ. We assume the Hessian of pm transverse to Λ is nondegen-
erate. For the purpose of constructing a parametrix, we can compose P with an elliptic
operator in OPS2−m, and suppose without loss of generality that P ∈ OPS2. We want to

construct a microlocal parametrix belonging to OP Ω̃−1,−2, under appropriate hypotheses.
In the following, Λ+ denotes a particular connected component of Λ. We will be working
microlocally near Λ+.

First consider the case when P is right invariant on Hn. We can find operators (Ajk) ∈
OPΣ0, whose symbol at a point of Λ+ is a positive definite, real matrix, and B ∈ OPΣ1,
such that

(3.7) P =
∑
j,k

AjkXjXk +B.

Here Xj are as in (3.1). Now write

(3.8) Ajk = ajk +Bjk,

where ajk are real constants and Bjk ∈ OPΣ0 have symbols vanishing on Λ+. Similarly,
write

(3.9) B = iαT +
∑

BjXj +B0, Bj ∈ OPΣ0, 0 ≤ j ≤ 2n.

Thus we have

(3.10)

P =
∑
j,k

ajkXjXk + iαT +
∑

BjkXjXk +
∑

BjXj +B0

= Pα +
∑

BjkXjXk +
∑

BjXj +B0.
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Recall that Bj , Bjk ∈ OPΣ0, and the symbols of Bjk vanish on Λ+. Since by hypothesis
P is elliptic off Λ+, to construct a parametrix in OPΩ−1,−2, it will suffice to construct a
parametrix for (3.10) where Bjk, Bj , and B0 are cut off to have symbols supported in a
small conic neighborhood of Λ+.

The operator

(3.11) Pα =
∑
j,k

ajkXjXk + iαT

belongs to OPΨ2
0. Suppose α avoids the appropriate discrete set, so there is

(3.12) P−1
α ∈ OPΨ−2

0 , PαP
−1
α = P−1

α Pα = I microlocally near Λ+.

Now look at

(3.13) Q = PP−1
α = I +

∑
BjkXjXkP

−1
α +

∑
BjXjP

−1
α +B0P

−1
α .

Its symbol is

(3.14)

σQ(±λ)(X,D) = I +
∑

b±jk(λ
−1/2X,λ−1/2D) a±jk(X,D)

+ λ−1/2
∑

b±j (λ
−1/2X,λ−1/2D) a±j (X,D)

+ λ−1b±0 (λ
−1/2X,λ−1/2D) a±0 (X,D).

Here

(3.15) b±jk(x, ξ), b
±
j (x, ξ) ∈ C∞

0 (R2n)

and

(3.16) a±jk(x, ξ) ∈ H0, a±0 (x, ξ) ∈ H−2, a±j (x, ξ) ∈ H−1, j ≥ 1.

We deduce that

(3.17) σQ(±λ)(X,D) = I + r±(λ,X,D)

where

(3.18) r±(λ, x, ξ) is supported in |x|+ |ξ| ≤ C1λ
1/2, λ ≥ C,

and

(3.19) λkDk
λr±(λ, ·, ·) is bounded in S0

1 , for λ ≥ 1.

Since we are working microlocally near Λ+, we could drop the ± subscripts, but we will
instead retain the ± notation.
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Now, in (3.19), we can suppose r±(λ, x, ξ) is small. In fact, if Bjk are cut off sufficiently
near Λ, we can suppose, the ε0 picked small

(3.20) sup
x,ξ

|r±(λ, x, ξ)| ≤ C0(ε0 + λ−1/2),

and, for α > 0,

(3.21) sup
x,ξ

|Dα
x,ξ r±(λ, x, ξ)| ≤ Cαλ

−1/2.

An operator norm estimate proven in Appendix A implies

(3.22) ∥r±(λ,X,D)∥ ≤ C(ε0 + λ−1/2).

Thus, for λ large, I + r±(λ,X,D) is invertible on L2(Rn), so we can define

(3.23) I + s±(λ,X,D) =
(
I + r±(λ,X,D)

)−1
.

We now undertake to show that s±(λ, x, ξ) satisfies the conditions (3.19)–(3.21) and a
slight midification of (3.18).

As a preparation for the analysis of s±(λ, x, ξ), let us define σ±(λ, x, ξ) by the identity

(3.24) 1 + σ±(λ, x, ξ) =
(
1 + r±(λ, x, ξ)

)−1
, λ large.

It is easy to see that σ±(λ, x, ξ) satisfies (3.18)–(3.21). In particular, the L2 operator norm
∥σ±(λ,X,D)∥ is small, for λ large. Thus we have

(3.25) (I + r±(λ,X,D))(I + σ±(λ,X,D)) = I − ρ±(λ,X,D),

with

(3.26) ∥ρ±(λ,X,D)∥ small, for λ large.

Also ρ±(λ, x, ξ) ∈ S−1
1 , and more generally

(3.27) λkDk
λρ±(λ, ·, ·) is bounded in S−1

1 , for λ large.

Furthermore, ρ±(λ, x, ξ) satisfies the estimate (3.20). Using ρ±(λ) as shorthand for ρ±(λ,X,D),
we have

(3.28) (I − ρ±(λ))
−1 = I + ρ±(λ) + · · ·+ ρ±(λ)

k + ρ±(λ)
ℓ(I − ρ±(λ))

−kρ±(λ)
k−ℓ,

for 0 ≤ ℓ ≤ k. It follows that

(3.29) (I − ρ±(λ))
−1 = I + τ±(λ,X,D)
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with λkDk
λτ±(λ, ·, ·) bounded in S−k

1 for λ large, and τ± satisfies (3.20)–(3.21). Since

(3.30) I + s±(λ,X,D) = (I + σ±(λ,X,D))(I + τ±(λ,X,D)),

we see that s±(λ,X,D) satisfies conditions (3.19)–(3.20).
We proceed to modify s±(λ, x, ξ) to obtain (3.18). Note that (3.23) is equivalent to

(3.31) s±(λ,X,D) = −r±(λ,X,D)− r±(λ,X,D)s±(λ,X,D).

Since r±(λ,X,D) satisfies (3.18), we can find χ ∈ C∞
0 (R2n) with χ(λ−1/2x, λ−1/2ξ) = 1

on supp r±(λ, x, ξ), and then

(3.32) r±(λ,X,D)χ(λ−1/2X,λ−1/2D)− r±(λ,X,D) = v±(λ,X,D)

with Dk
λv±(λ, x, ξ) = O(λ−∞) in S−∞

1 , for large λ, with a similar result for the products
in the reverse order. Thus if we set

(3.33) s̃±(λ,X,D) = s±(λ,X,D)χ(λ−1/2X,λ−1/2D),

formula (3.31) shows that

(3.34) s̃±(λ,X,D) = −r±(λ,X,D)− r±(λ,X,D)s̃±(λ,X,D) + ṽ±(λ,X,D),

with Dk
λṽ± = O(λ−∞) in S−∞

1 . This is equivalent to

(3.35) (I + r±(λ,X,D))(I + s̃±(λ,X,D)) = I + δ±(λ,X,D),

with δ±(λ, x, ξ) = O(λ−∞) in S−∞
1 . Thus

(3.36) σD(±λ)(X,D) = δ±(λ,X,D)ψ(λ)

defines a smoothing operator on Hn, where ψ(λ) is a smooth cut-off, equal to 1 for large

λ, 0 for small λ. Now s̃±(λ,X,D) defines an operator S̃ ∈ OPΩ0,0
b by

(3.37) σ
S̃
(±λ)(X,D) = s̃±(λ,X,D),

and (3.17) and (3.35) yield

(3.38) PP−1
α (I + S̃) = I +D,

with D a smoothing operator on Hn. A similar argument yields a left parametrix for P ,
and the two are seen to be equal, modulo a smoothing operator, so a two-sided parametrix
for P is given by

(3.39) E = P−1
α (I + S̃) ∈ OPΩ−1,−2.

Given this work on the right invariant case, we can now easily obtain the following
general result.
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Theorem 3.2. Let P ∈ OPSm have nonnegative principal symbol, doubly characteristic
on the variety Λ ⊂ T ∗Hn \ 0, satisfying the condition

pm(z, ζ) ≥ C|ζ|m−2dist((z, ζ),Λ)2.

Write P in the form

(3.40) Pu(w) = P (w)u(w)

where P (y) is a right invariant (convolution) operator in OPSm, for each y ∈ Hn. Con-
struct, for each y ∈ Hn, the second order differential operator Pα(y), according to the
prescription (3.7)–(3.11). Suppose that, for each y ∈ Ω ⊂ Hn, the operator Pα(y) satisfies
the condition for hypoellipticity (microlocally near Λ+) given in Theorem 3.1. Then P has
a parametrix on Ω, microlocally near Λ+:

(3.41) E ∈ OP Ω̃−m+1,−2,

and consequently P is hypoelliptic on Ω, microlocally near Λ+.

Proof. The argument just given leads to E(y), a smooth function of y with values in

OPΩ−m+1,−2, such that E(y) is a parametrix for P (y), for each y. Define E1 ∈ OP Ω̃−m+1,−2

by

(3.42) E1u(w) = E(w)u(w).

Then, by Proposition 1.5, especially (1.15), we have

(3.43) E1P = I +R, R ∈ OP Ω̃−1/2,−1.

Since OP Ω̃−1/2,−1 ⊂ OPS
−1/2
1/2,1/2, R has negative order, so the Neumann series yields a

parametrix in OP Ω̃0,0 for IR:

(3.44) (I +R)−1 = I + S, S ∈ OP Ω̃−1/2,−1.

Then a parametrix for P is given by

(3.45) E = (I + S)E1.

This finishes the proof.

Since OP Ω̃−m+1,−2 ⊂ OPS−m+1
1/2,1/2, we get the regularity results

(3.46) Pu ∈ Hs
loc =⇒ u ∈ Hs+m−1

loc ,

as in (3.6), i.e., hypoellipticity with loss of one derivative. It is useful to complement this

with a couple of other results. If E ∈ OP Ω̃−m+1,−2, then, since Xj ∈ OPΨ1
0, we have

(3.47) XjE ∈ OP Ω̃−m+3/2,−1 ⊂ OPS
−m+3/2
1/2,1/2 ,
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and

(3.48) XjXkE ∈ OP Ω̃−m+2,0 ⊂ OPS−m+2
1/2,1/2.

Thus, in addition to (3.46), we have

(3.49) Pu ∈ Hs
loc =⇒ Xju ∈ H

s+m−3/2
loc , XjXku ∈ Hs+m−2

loc ,

providing the condition for hypoelliptiticy in Theorem 3.2 is satisfied.
We next want to restate the condition for hypoellipticity with loss of one derivative

given in Theorem 3.2, for an operator P ∈ OPSm, doubly characteristic on Λ ⊂ T ∗Hn \ 0,
more explicitly in terms of its symbol. We will produce some invariants associated with
the symbol of such an operator. These quantities played a role in the papers of Sjöstrand
[S6], Boutet de Monvel [B7], Ivrii and Petkov [I1], Hörmander [H9], and others, and they
are also discussed in Chapters 13 and 15 of [T2]. For the purposes of this discussion, we
shall assume m = 2, which involves no loss of generality.

If P ∈ OPS2 has principal p2, nonnegative and vanishing to second order on Λ, with
nondegenerate transverse Hessian, then, microlocally near any given point of Λ, we can
write

(3.50) p2(x, ξ) =

µ∑
j=1

aj(x, ξ)
2,

where aj(x, ξ) are real, homogeneous of degree 1, vanishing on Λ, with daj linearly inde-
pendent at each point of Λ. Hence

(3.51) P =

µ∑
j=1

aj(x,D)2 +B(x,D), B ∈ OPS1.

On the set Λ, we have

(3.52)

B1(x, ξ) = p1(x, ξ)−
1

i

∑
|α|=1

a
(α)
j (x, ξ) aj(α)(x, ξ)

= p1(x, ξ) +
i

2

∑
ν

∂2p2
∂xν∂ξν

,

The right side of (3.52) is called the subprincipal symbol of P , and is denoted

(3.53) subσ(P )(x, ξ).

It is easy to see that, for any A ⊂ OPS0, with principal symbol a(x, ξ),

(3.54) subσ(AP ) = subσ(PA) = a(x, ξ) subσ(P )(x, ξ), on Λ.
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Furthermore, if J is an elliptic Fourier integral operator with associated canonical trans-
formation J , then

(3.55) subσ(JPJ−1)(J (x, ξ)) = subσ(P )(x, ξ), on Λ.

For two proofs of this, see Chapter 15 of [T2].
Also, at each point (x0, ξ0) ∈ Λ, we define a Hamilton map F , which is associated to the

Hessian of p2(x, ξ) at (x0, ξ0); see the process by which a Hamilton matrix is associated to
a quadratic form on a symplectic vector space, as described in Proposition 2.14 of Chapter
II. It is straightforward that, for the special case

(3.56) P =
n∑
j=1

µj(L
2
j +M2

j ) + iαT +B =
n∑
j=1

µj(X
2
j +X2

j+n) + iαT +B,

where B is a first order differential operator whose principal symbol vanishes on Λ, we
have (with (τ, y, η) denoting dual coordinates to (t, q, p)), on Λ+,

(3.57) subσ(P )((t, q, p), (τ, y, η)) = −α|τ |,

and

(3.58) spec i−1F = {±µj |τ |} = {±µ#
j },

the last equality serving to define µ#
j . In particular, if we denote by Tr+ F the sum of the

positive eigenvalues of F/i (counting multiplicities), we have

(3.59) Tr+F =
∑

µj |τ |.

In this case Theorem 3.2 reduces to a special case of the analysis of the right invariant
operators in (2.70) of Chapter II. The hypoellipticity condition derived there, in light of
(3.57)–(3.58) of this section, is equivalent to the following condition: for all nonnegative
integers αν , the quantity

(3.60) subσ(P ) +
∑
ν

(2αν + 1)µ#
ν

is nonvanishing on Λ; here {µ#
ν } is the set of positive eigenvalues of F/i. More generally,

if P is the second order right invariant differential operator

(3.61) P =
∑

ajkXjXk + iαT +B,

where B is a first order differential operator whose principal symbol vanishes on Λ, then
there is a linear map on Hn, given in fact by a symplectic transformation on R2n = {(q, p)},
which takes P to the form (3.56). Such a transformation is a group automorphism of Hn.
By the preceeding discussion, the quantity (3.60) is invariant under this transformation, so
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Theorem 2.17 and Proposition 2.14 of Chapter II imply that the right invariant differential
operator (3.61) is hypoelliptic onHn, with parametrix inOPΨ−2, if and only if the quantity
(3.60) is nonvanishing on Λ.

Now let us pass to general P ∈ OPS2, p2 ≥ 0, vanishing on Λ+, with nondegenerate
transverse Hessian. Then P has the form (generalizing (3.7)):

(3.62) Pu(z) =
∑

Ajk(z)XjXku+ iα(z)Tu+Bu, z = (t, q, p) ∈ Hn.

Here, Ajk(z) is a smooth function of z with values in OPΣ0, α ∈ C∞(Hn), and B ∈ OPS1

has principal symbol vanishing on Λ+. If we work microlocally on Λ+, which is a ray
bundle over Hn, we can write

(3.63) Ajk(z) = ajk(z) +Bjk(z)

where ajk ∈ C∞(Hn) and Bjk(z) is a smooth function of z with values in right invariant
operators in OPS1 whose principal symbols vanish on Λ+. It is easy to show that, for
(z, ζ) ∈ Λ+ ⊂ T ∗Hn \ 0,

(3.64) subσ(P ) = subσ(P̃ )(z, ζ),

where P̃ ∈ OPS2 is defined by

P̃ u(z) =
∑

ajk(z)XjXku+ iα(z)Tu.

In fact, we have the stronger statement: at (z0, ζ0) ∈ Λ+,

(3.65) subσ(P )(z0, ζ0) = subσ(P̃z0)(z0, ζ0),

where P̃z0 is the right invariant differential operator

(3.66) P̃z0u(z) =
∑

ajk(z0)XjXku(z) + iα(z0)Tu(z).

Furthermore, the Hamilton matrices for P and P̃z0 have the same eigenvalues at (z0, ζ0) ∈
Λ+. Consequently, Theorem 3.2 implies the following result.

Theorem 3.3. Let P ∈ OPS2 have principal symbol p2 ≥ 0, vanishing to second order
on the variety Λ+ ⊂ T ∗Hn \ 0 defining the contact structure for Hn. Let (z0, ζ0) ∈ Λ+

and suppose that, for all nonnegative integers αν , the quantity (3.60) is nonvanishing
at (z0, ζ0). Then P is microlocally hypoelliptic on a conic neighborhood of (z0, ζ0), with

microlocal parametrix in OP Ω̃−1,−2.

The microlocal hypoellipticity of P , with loss of one derivative, is a special case of a
more general result proved by Sjöstrand [S6] and Boutet de Monvel [B7], and Boutet de
Monvel and Treves [B13]:
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Theorem 3.4. Let P ∈ OPS2 have principal symbol p2 ≥ 0 on T ∗Ω \ 0, vanishing to
second order on a conic set Σ, assumed to be a symplectic submanifold of T ∗Ω\0. Assume
a nondegenerate transverse Hessian. Then P is hypoelliptic with loss of one derivative
provided that, at each point of Σ, for all nonnegative integers αν , the quantity (3.60) is
nonvanishing.

These authors also prove that (3.60) is necessary for hypoellipticity with loss of one
derivative, as well as sufficient, granted the other hypotheses of the theorem. In [B7], a
parametrix E is produced with

E ∈ OPS−2,−2(Ω,Σ) ⊂ OPS−1
1/2,1/2(Ω).

As mentioned in Chapter II, §3, if (Ω,Σ) = (Hn,Λ), we have

OP Ω̃−1,−2 ⊂ OPS−2,−2(Hn,Λ).

Hypoellipticity of P with loss of one derivative, under more general conditions, when Σ
need not be symplectic, is studied in detail in [B10], [H8], and other places, but we will
not go into it here.

We do want to show that “half” of Theorem 3.4 follows from Theorem 3.3.

Proposition 3.5. Suppose 2n is the codimension of Σ in T ∗Ω \ 0. Then, if

k = dim Ω ≤ 2n+ 1,

Theorem 3.3 implies Theorem 3.4.

Proof. The proof will utilize the following result in symplectic geometry. If Σj are conic
submanifolds of T ∗Ωj \ 0, if dimΩ1 = dimΩ2 and dimΣ1 = dimΣ2, and if Σj are both
symplectic submanifolds, then, given pj ∈ Σj , there exists a homogeneous symplectic
diffeomorphism from a conic neighborhood U1 of p1 to a conic neighborhood U2 of p2,
taking Σ1 ∩ U1 onto Σ2 ∩ U2. First consider the case

(3.67) dimΩ = 2n+ 1 = codimΣ + 1.

In this case, with Ω1 = Ω, Σ1 = Σ, we can take Ω2 = Hn, Σ2 = Λ, and get Σ locally
symplectically equivalent to Λ. If we implement this local transformation by an elliptic
Fourier integral operator J , we see that JPJ−1 satisfies the hypotheses of Theorem 3.3
on its principal symbol. Since the quantity (3.60) is invariant under conjugation by J ,
it follows that the condition for hypoellipticity of P in Theorem 3.4 is equivalent to the
condition for hypoellipticity of JPJ−1 given in Theorem 3.3.

This establishes Proposition 3.5 in case dimΩ = codimΣ + 1. Now suppose that

(3.68) codimΣ + 1 = dimΩ + ℓ, ℓ > 0.

Let us form Ω̃ = Ω× Rℓ, and let P̃ = P ⊗ I. If

(3.69) Pu = f
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we have

(3.70) P̃ ũ = f̃ ,

where ũ(x, y) = u(x), x ∈ Ω, y ∈ Rℓ, and f̃ is similarly defined. Note that WF (ũ) and

WF (f̃) are contained in {η = 0}, if (ξ, η) are dual to (x, y) ∈ Ω × Rℓ. P̃ is not quite a
pseudodifferential operator, but its symbol is smooth near {η = 0}, so we can treat it as

a pseudodifferential operator, when analyzing (3.70). Note that, if Σ̃ is the characteristic
variety of P , then near {η = 0} we have

Σ̃ = {(x, y, ξ, η) : (x, ξ) ∈ Σ}.

Thus codim Σ̃ = codimΣ = dimΩ+ ℓ−1 = dim Ω̃−1. Note that, if (3.60) is nonvanishing

for P at (x0, ξ0) ∈ Σ, then it is nonvanishing for P̃ at (x0, y0, ξ0, 0). Thus the previous

argument applies, to give hypoellipticity for P̃ , which implies hypoellipticity for P . This
proves Proposition 3.5.

Note that, generally, 2 ≤ codimΣ ≤ 2 dimΩ. If 2 ≤ codimΣ ≤ dimΩ − 2, then
Theorem 3.4 can be proved using analysis on the group Hn×Rℓ, the Cartesian product of
a Heisenberg group and an abelian group. It has been my intention to give the details of
this in a future publication, but the reader is not advised to wait with baited breath for
this.
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4. The Neumann operator for the ∂-Neumann problem

There is a pseudodifferential operator �+ ∈ OPS1(M) that arises on the boundary
M = ∂Ω of a strongly pseudoconvex domain Ω ⊂ Cn+1, which is doubly characteristic
on half the contact line bundle, Λ+ ⊂ T ∗M \ 0, and which arises in the study of the ∂-
Neumann problem. We discuss this here. First we briefly indicate how �+ arises and how
it is related to the Kohn Laplacian �b. We will be sketchy on this, referring to Greiner
and Stein [G9] and to Chapter 12, §9 of [[T]] for further details. Then we show that the
construction of a parametrix for �+ is much simpler than the general construction used

for Theorem 3.2, and the resulting parametrix has a simpler structure; it lies in OP H̃−2,1
α,δ ,

which is smaller than OP Ω̃0,−2.
We consider the following ∂-Neumann problem:

(4.1) �u = 0 on Ω; σ∂∗(x, ν)u = 0, σ∂∗(x, ν)∂u = f on ∂Ω.

Here �u = ∂∂
∗
u+ ∂

∗
∂u = −(1/2)∆u. We want to produce u in terms of a solution to the

Dirichlet problem

(4.2) �u = 0 on Ω, u
∣∣
∂Ω

= g,

i.e., u = PI g.
One ingredient involves the Neumann operator N for the Dirichlet problem:

(4.3) N g =
∂u

∂ν
, u = PI g.

The operator N is an elliptic operator in OPS1(M), whose structure is well understood.
One has

(4.4) N = −
√

−∆M +B, B ∈ OPS0(M),

and the principal symbol of B is given in terms of the second fundamental form of M ⊂
R2n+2. (Cf. (9.31) in [[T]], Chapter 12.)

After some computation (cf. (9.8)–(9.24) of [[T]], Chapter 12) one obtains

(4.5) 8f = (N + iY )g + Cg.

Here Y is a certain vector field tangent to M = ∂Ω, namely

(4.6) Y = J(∇ρ)

where M is defined by {ρ = 0} and |∇ρ| = 1 on M , and J gives the complex structure
on R2n+2 ≈ Cn+1. Furthermore C ∈ OPS0(M), and its principal symbol on Λ+ involves
the Levi form. (Cf. (9.25)–(9.29) in [[T]], Chapter 12.) We define �+g to be the right
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side of (4.5). The operator �+ is the Neumann operator for the ∂-Neumann problem. Its
principal symbol is given by

(4.7) σ�+(x, ξ) = −|ξ|+ ⟨Y, ξ⟩,

which vanishes to second order on Λ+ and is elliptic elsewhere. We can also write

(4.8) −�+ =
√

−∆M − iY +B1, B1 = −B − C ∈ OPS0(M).

One can express the principal symbol of B1 on Λ+ in terms of the Levi form.
Now, if we define �− ∈ OPS1(M) by

(4.9) −�− =
√

−∆N + iY +B2,

then a certain choice of B2 ∈ OPS0(M) yields

(4.10) �−�+ = −∆M + Y 2 − iα(x)Y +R = �b +R,

with α ∈ C∞(M) given in terms of the Levi form and

(4.11) R ∈ OPS1(M), σR(x, ξ) = 0 on Λ.

Cf. (9.36)–(9.44) of [[T]], Chapter 12. The operator

(4.12) �b = −∆M + Y 2 − iα(x)Y

is the Kohn Laplacian on M = ∂Ω. The hypothesis that Ω is strongly pseudoconvex
implies that �b satisfies the condition for hypoellipticity given in Theorem 3.1, except for
the case of (0, 1)-forms on Ω ⊂ C2. In this case the Kohn Laplacian fails to satisfy the
condition for hypoellipticity with loss of one derivative. However, microlocally this failure
occurs only on the component Λ− of Λ, where �+ is elliptic, so the construction described
below will still provide a microlocal parametrix for �+ even in this case.

So let �−1
b ∈ OP Ψ̃−2 denote a parametrix for �b (appropriately modified away from

Λ+ in case Ω ⊂ C2). In view of (4.11), write

(4.13) R =
∑

XjRj +R0, Rj ∈ OPS0.

We have

(4.14)
(�−1

b �−)�+ = I + S,

S =
∑

�−1
b XjRj +�−1

b R0.

Note that �−1
b Xj ∈ OP Ψ̃−1, so

(4.15) S ∈ OP H̃−1,0
α,δ .

Hence a left parametrix for �+ is given by

(4.16) E ∼ (1− S + S2 − · · · )�−1
b �−.

We are in a position to establish the following result.
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Theorem 4.1. If Ω ⊂ Cn+1 is a strongly pseudoconvex domain, the Neumann operator
�+ for the ∂-Neumann problem on (0, 1)-forms is hypoelliptic, with parametrix

(4.17) E ∈ OP H̃−2,1
α,δ .

More precisely, we can write E = E1 + E2 + E3 with (microlocally near Λ+)

(4.18) E1 ∈ OP Ψ̃0,1, E2 ∈ OP Ψ̃−1, E3 ∈ OP H̃0,−1
α,δ .

Proof. The result (4.17) is an immediate consequence of (4.16) and the operator properties

of OP H̃m,µα,δ , given in Proposition 2.11 of Chapter I. To obtain (4.18) we argue as follows.

Let us set �− = �−
0 + �−

1 , with �−
0 having essential support near Λ+ and �−

1 having
order −∞ near Λ+. Then

(4.19) (I − S + S2 − · · · )�−1
b �−

1 ∈ OPS−1(M).

To analyze the rest of E, let us write (microlocally near Λ+)

(4.20) �−
0 = TMφ +

∑
XjAj +A0, Aj ∈ OPS0, φ ∈ C∞(M),

and expand this further by setting (microlocally near Λ+)

(4.21) Aj =Mφj
+
∑

XkBjk + Cj , 0 ≤ j ≤ 2n,

with

(4.22) φj ∈ C∞(M), Bjk, Cj ∈ OPS−1,

so

(4.23)
�−

0 = TMφ +
∑

XjMφj
+

∑
XjXkBjk

+
∑

XjCj +Mφ0
+

∑
XkB0k + C0.

We have

(4.24) �−1
b �−

0 = F1 + F2 + F3,

with

(4.25)

F1 = �−1
b TMφ ∈ OP Ψ̃0,1,

F2 =
∑

�−1
b XjMφj

+�−1
b Mφ0

∈ OP Ψ̃−1,

F3 =
∑

(�−1
b XjXk)Bjk +

∑
�−1
b Xj(Cj +B0j) +�−1

b C0 ∈ OP H̃0,−1
α,δ .

Similarly the operator S given in (4.14) can be written (microlocally near Λ+)

(4.26) S = S0 + S1, S0 ∈ OP Ψ̃−1, S1 ∈ OP H̃0,−1
α,δ .

Putting together (4.19), (4.25), and (4.26), we obtain (4.18).

Note that the operators Ej are equally strong away from Λ+, each being microlocally in
OPS−1, but E1 carries the strongest singularity and E2 the second strongest singularity
on Λ+. Note that (parallel to (3.47)–(3.48))

(4.27) E1 ∈ OPS0
1/2,1/2, E2 ∈ OPS

−1/2
1/2,1/2, E3 ∈ OPS−1

1/2,1/2.
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5. Heat equations and spectral asymptotics for subelliptic operators

Suppose M is a compact contact manifold, of dimension 2n+ 1. Let −P be a positive
self adjoint second order differential operator, with principal symbol p2 ≥ 0, vanishing to
exactly second order on Λ ⊂ T ∗M \ 0, the span of the contact form on M . Assume

(5.1) |subσ(P )| < Tr+ F on Λ,

where F is the Hamilton map of p2, and Tr+ F is the sum of the positive eigenvalues of F/i.

It follows from Theorem 3.4 that P is hypoelliptic. Note that P ⊂ OP Ψ̃2; its parametrix

belongs to OP Ψ̃−2. In particular, P has compact resolvent, since

(5.2) (λ− P )−1 : L2(M) −→ H1(M),

so P has discrete spectrum. We aim to study the spectral asymptotics of P , by means of a
study of the “heat semigroup” etP and an asymptotic analysis of Tr etP as t→ ∞. Menikoff
and Sjöstrand [M8] have made such studies in more general contexts. However, the method
used here is shorter and simpler. It also has the advantage that we produce a complete
asymptotic expansion for this heat trace, whereas [M8] produces only the principal term.
We note that Metivier [M9] has results on spectral asymptotics for P of the form

∑
X2
j ,

Xj vector fields, using analysis on nilpotent Lie groups. Also Fefferman and Phong [F3]
have estimates on the spectrum of subelliptic operators in very general contexts. We also
mention Iwasaki and Iwasaki [I2].

Locally, on an open set U ⊂ M , mapped diffeomorphically to an open set in Hn,
preserving the contact form, we can write

(5.3) Pu(x) = P (x)u(x),

where, for each y, P (y) is a right invariant second order differential operator on Hn. For
y fixed, we have analyzed the semigroup etP (y) on Hn in Chapter II, §4. We have, for
y ∈ U, (s, z) ∈ Hn,

(5.4) etP (y) δ0(s, z) = etb(y) kt(y; s, z), t > 0,

where

(5.5) kt(y; s, z) = k
Q(y)
t (s+ itα(y), z),

the right side of (5.5) being given by (4.61)–(4.62) of Chapter II. Here we suppose

P (y) =
∑

ajk(y)XjXk + iα(y)T + b(y),
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as in (2.70) of Chapter II, and Q(y) is the quadratic form determined by (ajk(y)). Note
that

(5.6) kt(y; s, z) = t−n−1 k1

(
y;
s

t
,
z√
t

)
,

and k1(y; ·, ·) is a smooth function of y with values in S(Hn). Thus, for (s, z) ̸= (0, 0), kt(y; s, z)
vanishes to infinite order as t↘ 0. Define k#(y; t, s, z) by

(5.7)
k#(y; t, s, z) = kt(y;s, z) for t ≥ 0,

0 for t < 0.

Note that (5.6) yields

(5.8) k#(y; rt, rs, r1/2z) = r−n−1 k#(y; t, s, z).

Also, k# is smooth for (t, s, z) ̸= (0, 0, 0). Let us set

(5.9) k#(y; t, s, z) = χ(t, s, z)k#(y; t, s, z),

where χ is a compactly supported cut-off, equal to 1 near (0, 0, 0). Then k# is a smooth

function of y with values in Ĥ(G,α,−2), where

(5.10) G = R×Hn, α(ρ) = (r2t, r2s, rz), r = eρ, t ∈ R, (s, z) ∈ Hn.

Note that α(ρ) expands volumes by a factor of r2n+4 = e(2n+4)ρ. Let us denote

(5.11) Xm0 = H(G,α,m),

with G and α given by (5.10), and let Xm consist of asymptotic sums of elements of

Xm−j
0 , j = 0, 1, 2, . . . . We see that, if K0 is defined by

(5.12) K0u(t, x) = kb(t, x; ·) ∗ u(t, x), (t, x) ∈ R×Hn,

where kb = etb(y)k#, then

(5.13) K0 ∈ OP X̃−2.

In view of results of Chapter I, we have

(5.14)
( ∂
∂t

− P
)
K0u(t, x) = (I −R)u, R ∈ OP X̃−1.

Note that both K0 and R have the evolution property: if v(t, x) is defined on R×Hn and
vanishes for t < T , so do K0v and Rv. Also, so does any iterate Rk. Proposition 1.8 of
Chapter I implies

(5.15) Rk ∈ OP X̃−k,
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and

(5.16) K0R
k ∈ OP X̃−2−k.

Thus (∂/∂t− P ) has a left parametrix

(5.17) K ∼ K0 + K0R+ K0R
2 + · · · = K0 + K1 + K2 + · · · ,

satisfying the evolution property, and similar considerations show K is also a right parametrix.
Now if

(5.18) Kv(t, x) = K(t, x; ·) ∗ v(t, x), (t, x) ∈ R×Hn,

the convolution being on R×Hn, we have K(t, x; t′, x′) independent of t and

(5.19) etP δp(x) = K(0, x; t, x−1p), t > 0,

modulo an error smooth in R+ ×M . Thus

(5.20) Tr etP =

∫
M

K(0, x; t, 0) dVol(x) +A(t),

with A ∈ C∞(R+
). Now, by (5.17), upon rearrangement, we can write

(5.21) K(t, x; t′, x′) ∼
∑
j≥0

Kj(t, x; t
′, x′),

whereKj(t, x; t
′, x′) is smooth in (t, x) and approximately homogeneous of degree −2n−2+

j in (t′, x′), with respect to the group of dilations given in (5.10). According to Proposition
1.9 of Chapter I, subtracting a smooth function from Kj , we can suppose

(5.22) Kj(t, x; r
2t′, r2s, rz) = r−2n−2+j Kj(t, x; t

′, x′),

provided

(5.23) j < 2n+ 2.

In particular, modulo a smooth function of t,

(5.24) Kj(0, x; t, 0) = t−n−1+j/2Kj(0, x; 1, 0), for j < 2n+ 2.

For j ≥ 2n + 2, say j = 2n + 1 + k, k ≥ 1, we can apply Proposition 1.9 of Chapter I

to Dk
t′Kj , the kernel of an element of OP X̃−2−j+2k, and conclude

(5.25) Dk
t′Kj(0, x; rt

′, 0) = r−1/2−k/2Dk
t′Kj(0, x; t

′, 0).

Integrating, we see that Kj must be given by a smooth function plus

(5.26) Kj(0, x; t, 0) = Cjt
(k−1)/2Kj(0, x; 1, 0), if k ≥ 0 is even,

and

(5.27) C ′
jt

(k−1)/2Kj(0, x; 1, 0) + C ′′
j (x)t

(k−1)/2 log t, if k ≥ 1 is odd,

where

(5.28) k = j − 2n− 1 ≥ 0.

From (5.20), we have our conclusion:
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Theorem 5.1. If P is a second order differential operator on a compact contact manifold,
satisfying the hypotheses of the first paragraph of this section, then

(5.29)
Tr etP ∼ t−n−1(A0 +B0t

1/2 +A1t+B1t
3/2 + · · ·+Ant

n +Bnt
n+1/2 + · · · )

+ (A′
n+1 log t+A′

n+2t log t+ · · · ).

The asymptotic expansion (5.29) together with Karamata’s Tauberian theorem (for a
proof see p. 341 of [T2]) implies the following result on the eigenvalue asymptotics for P .
Suppose

(5.30) specP = {−λj : j ≥ 1}, λj ↗,

and

(5.31) N(λ) = #{−λj ∈ specP : λj < λ}.

Corollary 5.2. Under the hypotheses of Theorem 3.1, we have

(5.32) lim
λ→∞

λ−n−1N(λ) =
A0

Γ(n+ 2)
.

Our construction of a parametrix for ∂/∂t − P on R ×M could have proceeded along
lines more directly analogous to the construction of a parametrix for P in §3, utilizing a
symbol calculus on R × Hn. The infinite dimensional irreducible unitary representations
of this group are of the form

(5.33) πσ,±λ(t, s, q, p) = eiσtπ±λ(s, q, p), σ ∈ R, λ ∈ (0,∞),

where t ∈ R, (s, q, p) ∈ Hn. If k ∈ E ′(R×Hn), Ku = k ∗ u,

(5.34)
πσ,±λ(k) = k̂(σ,±λ,±λ1/2X,λ1/2D)

= σK(σ,±λ)(X,D),

which implies

(5.35) k̂(σ,±τ, y, η) = σK(σ,±τ)(±τ−1/2y, τ−1/2η).

We are interested in k̂, smooth on (σ, λ, y, η) ̸= 0 and homogeneous:

(5.36) k̂(τσ, τλ, τ1/2y, τ1/2η) = τm/2k̂(σ, λ, y, η), τ > 0.

This homogeneity is equivalent to

(5.37) σK(τσ,±τλ)(x, ξ) = τm/2 σK(σ,±λ)(x, ξ), τ > 0.
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It would be convenient to have a result parallel to Proposition 2.2 of Chapter II, charac-

terizing when σK(σ,±λ) given such that (5.37) holds gives k̂, via (5.35), which is C∞ on
the complement of the origin. In setting down (5.4)–(5.5), to construct the parametrix
K of ∂/∂t − P , we have exploited the explicit calculation from §4 of Chapter II, rather
than such a general theory of harmonic analysis and pseudodifferential operator calculus
on R×Hn, whose construction we will not pursue here, but merely mention to the reader
as one sort of direction in which to extend the theory developed in this chapter and the
preceding one.

We point out that Melin [M4] has developed an operator calculus and parametrix con-
struction (but not a symbol calculus) in a context that contains R ×M here as a special
case.

Remark. Work of R. Beals, P. Greiner, and N. Stanton [[BGS]] has produced an expan-
sion more precise than (5.39). They are able to show that all the Bj are zero and all the
log terms are absent. See also a related study of Stanton and Tartakoff [[ST]].
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6. Szegö operators, Toeplitz operators, and hypoellipticity with loss of two
derivatives

Let M be a compact contact manifold, with contact line bundle Λ, and let Λ+ denote
one of the two connected components of Λ \ 0. As in §5, let P be a self-adjoint, second
order differential operator (or pseudodiferential operator) whose principal symbol p2 is
≥ 0, vanishing on Λ but with Hessian nondegenerate transverse to Λ \ 0.

We have seen that P is hypoelliptic with loss of one derivative provided that, for all
nonnegative integers αν , the quantity

(6.1) subσ(P ) +
∑
ν

(2αν + 1)µν

is nowhere vanishing on Λ \ 0. See Theorem 3.3. Here we shall consider a case where this
condition is violated uniformly on Λ+; we will suppose it holds on the other connected
component Λ−. More precisely, we will suppose (6.1) vanishes when αν = 0:

(6.2) subσ(P ) + Tr+ F = 0 on Λ+.

The best known case when this happens is when P is the Kohn Laplacian �(0)
b on functions

(0-forms) on the boundary of a strongly pseudoconvex domain O ⊂ Ck. In this case, if
S is the Szegö projector of L2(∂O) onto the subspace of boundary values of functions

holomorphic on O, then �(0)
b S = S�(0)

b = 0. Now there are holomorphic functions on O
with singularities at any given point of ∂O, hence singular elements of the range of S, so

�(0)
b is certainly not hypoelliptic. However, many zero order perturbations of �(0)

b turn
out to be hypoelliptic.

One of our goals in this section is to analyze the structure of the Szegö projector for �(0)
b

mentioned above. Also we will examine the relationship between an operator P ∈ OPS2

having a Szegö operator and certain zero order perturbations of P being hypoelliptic with
loss of two derivatives. First, some definitions. An operator P ∈ OPS2 will be said to
have a Szegö operator S and complementary parametrix E provided the following three
conditions hold:

E ∈ OPS−1
1/2,1/2, S ∈ OPS0

1/2,1/2,(6.3)

EP + S ∼ I,(6.4)

SP ∼ 0,(6.5)

where we say

(6.6) A ∼ B ⇐⇒ A−B ∈ OPS−∞.

If these conditions hold microlocally in some conic open set Γ ⊂ T ∗M \ 0, we say P has a
Szegö operator S and complementary parametrix E microlocally on Γ. One might want to
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weaken the hypotheses in (6.3); however when we show such operators exist we will want

to obtain them in smaller operator classes, such as OP Ψ̃−2 and OP Ψ̃0,∞, respectively, in
favorable cases. It is also useful to weaken hypotheses (6.4)–(6.5), to

(6.7) EP + S = I +R1, SP = R2, Rj ∈ OPS−ε
1/2,1/2,

for some ε > 0. A pair (S,E) satisfying (6.3) and (6.7) will be called a weak Szegö operator
with complementary parametrix.

The following result generalizes the argument of Stein [S7], which we discussed in (2.63)–
(2.67) of Chapter II.

Proposition 6.1. Let P ∈ OPS2 satisfy the hypotheses of the first paragraph of this
section, and assume (6.2) holds, while (6.1) is always nonzero on Λ−. Suppose P has a
weak Szegö operator S with complementary parametrix E. Consider P1 = P + A, with
A ∈ OPS0. Then P1 is hypoelliptic, with loss of two derivatives, provided the principal
symbol of A is nonvanishing on Λ+.

Proof. Since P is assumed to satisfy the condition for hypoellipticity with loss of one
derivative away from Λ+, we can suppose S is essentially supported in any given conic
neighborhood of Λ+. Let B ∈ OPS0 be a parametrix for A, microlocally near Λ+. Then
BS is well defined, mod OPS−∞, and we have

(6.8)

(E +BS)P1 = (E +BS)(P +A)

= I − S +R1 +BR2 +BSA+ EA

= I −R3,

where

(6.9) R3 = S −BSA−R1 −BR2 − EA ∈ OPS−ε
1/2,1/2.

It follows that the Neumann expansion yields a parametrix for I −R3:

(6.10) F ∼ I +R3 +R2
3 + · · · ∈ OPS0

1/2,1/2,

so

(6.11) F (E +BS)P1 ∼ I.

Thus P1 has a left parametrix in OPS0
1/2,1/2, and the proposition is proven.

We will next show that, when a Szegö operator S and complementary parametrix E
exist, microlocally, they are microlocally unique. One use of this is to reduce the global
construction of Szegö operators to microlocal constructions.



114

Proposition 6.2. Let P ∈ OPS2 be self-adjoint. Suppose (6.3)–(6.5) hold on an open
set Γ ⊂ T ∗M \ 0. Then, on Γ,

(6.12) S ∼ S∗ ∼ S2,

and, if S1 ∈ OPS0
1/2,1/2 satisfies

(6.13) S1P ∼ 0,

then

(6.14) S1 ∼ S1S.

Furthermore, if there exists E1 ∈ OPS−1
1/2,1/2 such that

(6.15) E1P + S1 ∼ I,

then

(6.16) S1 ∼ S,

and, provided E and E1 are normalized so

(6.17) ES ∼ 0 ∼ E1S1,

then

(6.18) E ∼ E1.

Finally, granted the normalization (6.17), we have

(6.19) E ∼ E∗.

Proof. If P = P ∗, then (6.4) implies

(6.20) PE∗ + S∗ ∼ I.

If we multiply on the left by S, we get

S ∼ SS∗.

Since this implies S∗ ∼ SS∗, this gives (6.12). If we multiply (6.20) on the left by S1,
hypothesis (6.13) implies

S1 ∼ S1S
∗,
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and, in light of (6.12), (6.14) follows. Now, if (6.15) holds, then, as with S, we have
S1 ∼ S∗

1 ∼ S2
1 , and S ∼ SS1. Combining with (6.14), we have

S1 ∼ S∗
1 ∼ S∗S∗

1 ∼ SS1 ∼ S,

so (6.16) is proven.
Note that, if (6.4) holds, it also holds with E replaced by E(I − S) (assuming (6.5)

holds), so the normalization (6.17) may be assumed for E. If E1 enjoys the same sort of
normalization, since S ∼ S1, we have

(E − E1)P ∼ 0,

and hence, by (6.14), in conjunction with (6.17) and its analogue for E1,

E − E1 ∼ (E − E1)S ∼ 0,

so (6.18) is proven. Finally

(I − S)E∗ ∼ EPE∗ ∼ E(I − S),

and hence, if ES ∼ SE∗ ∼ 0, we obtain (6.19).

Suppose P ∈ OPS2 is a self-adjoint operator on a compact manifold M , satisfying the
conditions of this section, such that one can construct microlocally on a conic neighborhood
of each point of T ∗M \ 0 a Szegö operator S with complementary paramterix E. By
the uniqueness result of Proposition 6.2 it follows that there exist global operators S ∈
OPS0

1/2,1/2, E ∈ OPS−1
1/2,1/2 on M such that (6.4)–(6.5) hold. It then follows that (6.12),

(6.17), and (6.19) hold globally on M . One can replace S by (S + S∗)/2, altering S by a
smoothing operator, and achieve S = S∗. From the relation S2 − S ∈ OPS−∞ we deduce
that S can be altered further by an element of OPS−∞, so that

(6.21) S∗ = S and S = S2,

i.e., S is an orthogonal projection. We still have SP ∼ PS ∼ 0, of course. However, it is
not necessarily true that S can be taken to be the orthogonal projection onto the kernel
of P . If the orthogonal projection of L2(M) onto ker P does satisfy the condition to be a
Szegö operator, we say it is the Szegö projector (associated with P ).

The orthogonal projection of L2(∂O) onto the space of boundary values of functions
holomorphic on a strongly pseudoconvex domain O ⊂ Ck is indeed a Szegö projector

associated to the Kohn Laplacian �(0)
b . We will discuss this in a moment. On the other

hand, it follows from an example of Nirenberg [N5] that there is a P on a three dimensional
M such that ker P consists of constants, and the orthogonal projection fails to satisfy
(6.3)–(6.5)

We turn now to the analysis of the orthogonal projection S of L2(∂O) onto the space of
boundary values of functions holomorphic in O, given O ⊂ Ck strongly pseudoconvex. We
begin with some observations of Boutet de Monvel and Sjöstrand [B12]. We first consider
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the case dim O ≥ 5, so k ≥ 3. We have the ∂b-complex; see, e.g., Krantz [K9]; and S is

the orthogonal projection of L2(∂O) onto ker �(0)
b , where �(0)

b = ∂
∗
b∂b on 0-forms. More

generally, we have �(j)
b = ∂

∗
b∂b + ∂b∂

∗
b on sections of certain vector bundles Ej ; ∂b maps

sections of Ej to sections of Ej+1. Note that

(6.22) ∂b�(0)
b = ∂b∂

∗
b∂b = �(1)

b ∂b.

As long as k ≥ 3, the Kohn Laplacian �(1)
b on sections of E1 satisfies the criterion for

hypoellipticity with loss of one derivative, as in Theorem 3.1 and Theorem 3.3 of this
chapter; cf. [F4], [G9], or [[T]], Chapter 12. Consequently, there exists

(6.23) L1 ∈ OP Ψ̃−2

such that

(6.24) L1�(1)
b = �(1)

b L1 = I − S1, S1L1 = L1S1 = 0, L1 = L∗
1,

where S1 is the orthogonal projection onto the kernel of �(1)
b , which is a finite dimensional

space of smooth sections of E1. Thus ∂b∂
∗
bL1 is the orthogonal projection onto the image

of ∂b and ∂
∗
bL1∂b is the orthogonal projection onto the orthogonal complement of ker ∂b.

Hence S is given by the following formula:

(6.25) S = I − ∂
∗
bL1∂b ∈ OP Ψ̃0.

This formula for S was derived in [B12]. If we set

(6.26) E = ∂
∗
bL

2
1∂b(I − S) ∈ OP Ψ̃−2,

we see that

(6.27) S�(0)
b = 0, E�(0)

b = I − S, ES = 0,

so S is a Szegö operator for �(0)
b with complementary parametrix E.

The formula (6.25) is not wholly satisfactory. For example it hides the fact that S
belongs to OPS−∞ outside any conic neighborhood of Λ+, which is an automatic con-

sequence of the fact that S�(0)
b = 0 together with the hypoellipticity of �(0)

b away from

Λ+. We will proceed to analyze S as an element of the smaller operator class OP Ψ̃0,∞,
and produce an explicit formula for its leading term. This will produce an analysis of the
leading singularity of S alternative to, and in some respects simpler than, that of Boutet
de Monvel and Sjöstrand [B12].

In this case, in local coordinates identifying a patch of M with a neighborhood of the

identity in Hn (dim M = 2n+ 1), we have �(0)
b of the form

(6.28) Pu = P (x)u(x) =
∑

ajk(x)XjXku+ iα(x)Tu+
∑

bj(x)Xju+ c(x)u, x ∈ Hn.
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We have shown that there exists a Szegö operator S ∈ OP Ψ̃0 and complementary parametrix

E ∈ OP Ψ̃−2. Say

(6.29) Su(x) = S(x)u(x), Eu(x) = E(x)u(x),

where S(x) is a smooth function on Hn with values in OPΨ0, etc. According to Proposition
6.2, the complete symbols of S and E are uniquely determined by the properties SP ∼
0, EP + S ∼ I. Let us proceed to derive their principal symbols.

Now the hypothesis (6.2), which is satisfied by P = �(0)
b , implies that, for each x0 ∈ Hn,

the right invariant operator

(6.30) P2(x0) =
∑

ajk(x0)XjXk + iα(x0)T

fails to satisfy the condition for hypoellipticity that σP2(x0)(+1)(X,D) be invertible. In-
deed, this self-adjoint operator has a one dimensional kernel, varying smoothly with x0,
and consisting of elements of S(Rn). Let π0(x0) denote the L2-orthogonal projection onto
this kernel. Now define

(6.31) S0 ∈ OP Ψ̃0,∞

by

(6.32)
σS0(x, λ)(X,D) = π0(x) for λ > 0,

0 for λ < 0.

Similarly define

(6.33) E0 ∈ OP Ψ̃−2

by the requirement that σE0
(x, λ)(X,D) be the inverse of σP2

(x, λ)(X,D) for λ < 0, and
for λ > 0 it should annihilate the range of π0(x) and should invert σP2

on the kernel of
π0(x). Now since

(6.34) P (x) = P2(x) +
∑

bj(x)Xj + c(x) = P2(x) +B(x),

with B(x) smooth in OPΨ1, we see from the symbol calculus of §1 that S0 and E0 must
be the principal parts of S and E:

(6.35) S − S0 ∈ OP Ψ̃−1, E − E0 ∈ OP Ψ̃−3.

That S0 belongs to OP Ψ̃0,∞ and not merely to OP Ψ̃0 is a hint of the following:

(6.36) S ∈ OP Ψ̃0,∞.

To see this, note that the relation S�(0)
b = 0 together with the fact that �(0)

b is hypoelliptic
off Λ+ implies S belongs to OPS−∞ microlocally outside any conic neighborhood of Λ+.
Thus (6.36) is a consequence of the following.
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Lemma 6.3. Let T ∈ OP Ψ̃m, and suppose that, away from any conic neighborhood of

Λ+ ⊂ T ∗M \ 0, T belongs to OPS−∞. Then T ∈ OP Ψ̃m,∞.

Proof. If Tu(z) = T (z)u(z), the hypothesis implies each right invariant T (z0) ∈ OPΨm

belongs to OPS−∞ outside Λ+. Set

T (z) ∼
∑
j≥0

Tj(z)

with
σTj

(z,±λ)(X,D) = λ(m−j)/2 τ±j (z,X,D).

We have
σTj (z,−λ)(X,D) = 0 for λ > 0,

for all j. Now, the characterization of OPΨm−j
0 given by Proposition 2.2 of Chapter II

implies σTj
(z,+λ)(X,D) ∈ OPS−∞

1 , for λ > 0, for each j, and this completes the proof.

A general element of OP Ψ̃m,∞ belongs to OPS−∞ away from Λ \ 0 = Λ+ \ 0 ∪ Λ− \ 0.
If T ∈ OP Ψ̃m,∞ actually belongs to OPS−∞ away from Λ+, we will say

(6.37) T ∈ OP Ψ̃m,∞+ .

We now tackle the task of specifying the complete asymptotic expansion of S and E for

�(0)
b . We have S0 ∈ OP Ψ̃0,∞

+ and E0 ∈ OP Ψ̃−2 such that

(6.39) S0P = R0 ∈ OP Ψ̃1,∞
+ , E0P + S0 − I = Q0 ∈ OP Ψ̃−1.

We will produce by induction

(6.40) Sj ∈ OP Ψ̃−j,∞
+ , Ej ∈ OP Ψ̃−2−j ,

such that

(6.41) (S0 + · · ·+ Sk)P = Rk ∈ OP Ψ̃1−k,∞
+

and

(6.42) (E0 + E1 + · · ·+ Ek)P + (S0 + · · ·+ Sk)− I = Qk ∈ OP Ψ̃−1−k.

We also want ES ∼ 0, which is equivalent to

(6.43) (E0 + · · ·+ Ek)(S0 + · · ·+ Sk) =Wk ∈ OP Ψ̃−3−k.

Suppose we have S0, . . . , Sk and E0, . . . , Ek. We will specify Sk+1 and Ek+1. Let R#
k

and Q#
k denote the principal parts of Rk and Qk, belonging, respectively, to OP Ψ̃

1−k,∞
0

and OP Ψ̃−1−k
0 . Similarly let W#

k denote the principal part of Wk. We have

R#
k u(x) = R#

k (x)u(x), x ∈ Hn,
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where R#
k (y) is smooth in y with values in OPΨ1−k,∞

0 , and similar formulas for Q#
k , etc.

Now for (6.41) to hold with k replaced by k+1, it is necessary and sufficient that, for each
y ∈ Hn,

(6.44) Sk+1(y)P2(y) = −R#
k (y).

We note that a necessary and sufficient condition for there to exist Sk+1 ∈ OP Ψ̃−k−1,∞
0

such that this holds is that the quantity

(6.45) π1
(
R#
k (y)S0(y)

)
= σR#

k
(y)S0(y)

(+1)(X,D)

vanish for each y. For a general P of the form (6.48) this might be expected to be a

nontrivial condition. However, for P = �(0)
b , we know that S and E exist, in the operator

classes OP Ψ̃0,∞
+ and OP Ψ̃−2, so the vanishing of (6.45) is automatic. It follows that

(6.46) Sk+1(y) = −R#
k (y)E0(y) + αk+1(y)S0(y),

where αk+1(y) is a smooth function of y with values in OPΨ−k−1
0 , which remains to be

determined. In view of the formulas of Chapter I, §1, applied to the symbol of a product
S0P2, we have

(6.47) R#
0 (y) =

∑
|γ1|+|γ2|=1

S
[(0,γ1,γ2)]
0 (y)P2[(0,γ1,γ2)] +

∑
bj(y)S0(y)Xj .

Specifying αk+1(y) will be a byproduct of the study of Ek+1, to which we turn. For
(6.42) to hold with k replaced by k + 1, it is necessary and sufficient that, for each y,

(6.48) Ek+1(y)P2(y) = −Sk+1(y)−Q#
k (y).

Now, for (6.48) to be solvable for Ek+1(y), it is necessary and sufficient that

(6.49) π1
(
[Sk+1(y) +Q#

k (y)]S0(y)
)

vanish. This vanishing is equivalent to

π1
(
αk+1(y)

)
π0(y) = −π1(Q#

k (y))π0(y),

so we can replace (6.46) by

(6.50) Sk+1(y) = −R#
k (y)E0(y)−Q#

k (y)S0(y).

With this granted, we have

(6.51)
Ek+1(y) = −[Sk+1(y) +Q#

k (y)]E0(y) + βk+1(y)S0(y)

= [R#
k (y)E0(y)−Q#

k (y)]E0(y) + βk+1(y)S0(y).
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Here, the factor βk+1(y) is a smooth function of y with values in OPΨ−k−3
0 that remains

to be specified. This specification is a result of (6.43), with k replaced by k + 1, which
requires

E0(y)Sk+1(y) + Ek+1(y)S0(y) +W#
k (y) = 0.

If we plug in (6.50) and (6.51), we see this is equivalent to

(6.52) βk+1(y)S0(y) = −W#
k (y) + E0(y)R

#
k (y)E0(y) + E0(y)Q

#
k (y)S0(y).

Again this apparently nontrivial identity is a consequence of the existence of S and E in

OP Ψ̃0 and OP Ψ̃−2, and it uniquely specifies βk+1(y)S0(y), since the other terms in (6.52)
have already been specified. We can rewrite (6.51) as

(6.53)
Ek+1(y) = [R#

k (y)E0(y)−Q#
k (y)]E0(y)

+ E0(y)[R
#
k (y)E0(y) +Q#

k (y)S0(y)]−W#
k (y).

To summarize, for k ≥ 3, we have proven the following result. We note that a result
along these lines was suggested by Dynin [D2].

Theorem 6.4. Let O ⊂ Ck be a strongly pseudoconvex domain, with smooth boundary
M = ∂O. Then the Szegö projector S, the orthogonal projection of L2(M) onto the space

of boundary values of holomorphic functions, is an operator belonging to OP Ψ̃0,∞
+ , whose

complete symbol is given by (6.32) and (6.50).

The construction of the Szegö projector for �(0)
b based on (6.25) does not quite work

for k = 2, i.e., dim ∂O = 3. In that case, the hypoellipticity of �(1)
b fails on Λ−, though

not on Λ+. Hence we can pick L1 ∈ OP Ψ̃−2 to be a parametrix for �(1)
b microlocally away

from Λ−, and if we define Sa and Ea by (6.25)–(6.26), we see that

Sa ∈ OP Ψ̃0, Ea ∈ OP Ψ̃−2,

and
Sa�(0)

b = A, Ea�(0)
b + Sa = I −B, EaSa = C,

where A ∈ OP Ψ̃2,∞, B ∈ OP Ψ̃0, and C ∈ OP Ψ̃−2,∞ belong to OPS−∞ outside any conic
neighborhood of Λ−. In analogy with (6.37), and with Lemma 6.3 in mind, we write

A ∈ OP Ψ̃2,∞
− , B ∈ OP Ψ̃0,∞

− , C ∈ OP Ψ̃−2,∞
− .

The important point is that, microlocaly on a conic neighborhood of Λ+, Sa and Ea furnish

a Szegö operator and complementary parametrix for �(0)
b . Since �(0)

b has a parametrix in

OP Ψ̃−2 away from Λ+, this shows that in the case dim ∂O = 3, we have a Szegö operator

S′ and complementary parametrix E′ for �(0)
b on ∂O, and the complete symbol of the

Szegö operator is still specified by (6.32) and (6.50). Once one has this result, it is possible
to deduce that the Szegö projector in this case is equal to S′ mod OPS−∞, using Kohn’s
estimate for the ∂-Neumann problem. This argument is carried out in detail in Boutet
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de Monvel and Sjöstrand [B12]. It relies heavily on M = ∂O being embedded in Ck as
the boundary of a strongly pseudoconvex domain. The Szegö projector for more general
strongly pseudoconvex CR-manifolds has been studied by Kohn [K6]. We also mention
another approach to the analysis of the Szegö projector, of Kerzman and Stein [K3]. The
Szegö projector is related to the Bergman kernel function; see [B12], and also the paper
[B1] of Beals, Fefferman and Grossman for a description of this and of Fefferman’s original
analysis of the Bergman kernel function.

Let us take a closer look at what sort of operator S was produced by the preceding
construction. First look at S0, defined by (6.32). Take the case where

(6.54) P2(y) = L0 + inT,

on Hn. Then π0 = π0(y) is the orthogonal projection onto the lowest eigenspace of H =

−∆ + |x|2, which is spanned by e−|x|2/2. From the formula (1.13) of Chapter II relating
an operator to its Weyl symbol, we readily obtain

(6.55) π0 = π0(X,D), π0(x, ξ) = cne
−|x|2−|ξ|2 .

Now if we write

(6.56) S0u(x) = s0 ∗ u(x)

in this case, the formulas

(6.57)

ŝ0(τ, y, η) = π0(τ
−1/2y, τ−1/2η)

= cn e
−(|y|2+|η|2)/τ , τ > 0,

ŝ0(τ, y, η) = 0 τ < 0,

give

(6.58) s0(t, q, p) = c′n
∂n

∂tn

(1
4
|q|2 + 1

4
|p|2 + it

)−1

,

a formula derived in Folland and Stein [F4].
In the more general case

(6.59) P2(y) =
∑

ajk(y)XjXk + iα(y)T,

under the hypothesis on α that follows from (6.2), we see that π0(y) is the orthogonal
projection onto the lowest eigenspace of Q(X,D) = Q(y,X,D), where

(6.60) Q(x, ξ) =
∑

ajk(y)χjχk,

and

(6.61) χj = xj , χj+n = ξj , 1 ≤ j ≤ n.
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If we choose a symplectic basis of R2n to diagonalize Q(x, ξ) and exploit metaplectic
covariance, we see that π0(y) = π0(X,D) with

(6.62) π0(x, ξ) = C(Q) e−ψ(Q,x,ξ),

where ψ(Q, x, ξ) is a positive quadratic form in (x, ξ), given explicitly by

(6.63) ψ(Q, x, ξ) = Q(A−1
Q ζ, ζ), ζ = (x, ξ).

Compare formula (A.31) of Appendix A, or formulas (4.51) and (4.60) of Chapter II. Now,
if we write S0(y) as a convolution operator:

(6.64) S0(y)u(x) = s0y ∗ u(x),

we have

(6.65)
ŝ0y(τ, y, η) = Cn(Q) e−ψ(Q,y,η)/τ , τ > 0,

0, τ < 0,

and hence

(6.66) s0y(t, q, p) =

∫ ∞

0

∫∫
e−ψ(Q,y,η)/τ eiy·q+iη·p+iτt dy dη dτ.

Now the Fourier transform of a Gaussian is another Gaussian:

(6.67)

∫∫
e−ψ(Q,y,η)/τ eiy·q+iη·p dy dη = C ′(Q) e−ψ

#(Q,q,p)τ ,

where, if we use the natural coordinates on R2n to represent the quadratic form ψ(Q, x, ξ)
as a 2n× 2n matrix,

ψ(Q, x, ξ) = ζ ·ΨQζ,

we have

(6.68) ψ#(Q, q, p) =
1

4
z ·Ψ−1

Q z, z = (q, p).

Hence the distribution s0y in (6.64) is given by

(6.69) s0y(t, q, p) = C ′′(Q)
∂n

∂tn
[
ψ#(Q, q, p) + it

]−1
.

Using (6.65) or (6.69), it is possible to analyze S0 as a Fourier integral operator with
complex phase, associated with a certain positive almost complex canonical relation C, and
of order zero:

(6.70) S0 ∈ I0(M,M ;C).
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See Melin and Sjöstrand [M5] for the theory of Fourier integral operators with complex
phase. Inductively from (6.50) one obtains

(6.71) Sj ∈ I−j/2(M,M ;C).

Thus S is a Fourier integral operator “adapted” to the contact structure of M = ∂O, in
the sense of [B11], Appendix A. We omit the details of passing from (6.65) to (6.70)–(6.71),
which do not differ essentially from the model case analysis given in [B11] and [B12].

It may be tempting to ask if the order of the elements in the expansion of S actually
drops by integers rather than by half-integers. To see that this does not necessarily happen,
consider

(6.72) P = L0 + inT + iX1 − 1.

We will construct the Szegö operator for this right invariant operator on Hn. With S ∼
S0 + S1 + · · · , Sj ∈ OPΨ−j,∞

0 , we see that S0 must be the operator defined by (6.55)–
(6.58), the Szegö operator for L0 + inT = P2. If S1 exists, it must satisfy the identity
(6.44), which in this case becomes

(6.73) S1P2 = −iS0X1.

The condition for solvability,

(6.74) π1(S0X1S0) = 0,

is seen to hold; all elements of the (one-dimensional) range of π1(S0) are even; applying
X1 makes them odd, hence orthogonal to the range of π1(S0). In this case, we have

(6.75) S1 = −iS0X1E0 − iE0X1S0.

If S2 exists, it must satisfy

(6.76) S2P2 = −iS1X1 − S0 = −S0X1E0X1 − E0X1S0X1 − S0.

Note that π1(L0 + inT ) acts as the identity operator on the range of π1(X1S0), so
S0X1E0X1S0 = S0X

2
1S0. Now

π1(S0X
2
1S0) = −γ π1(S0)

with

γ =

∫
x21e

−|x|2 dx∫
e−|x|2 dx

= 1.

This guarantees that then the right side of (6.76) is multiplied on the right by S0, the
product vanishes. Indeed, the exact Szegö operator for (6.72) is given by

(6.77) S = S0 + S1 + S2, Sj ∈ OP Ψ̃−j,∞ (Sj ∈ I−j/2(M,M ;C)),
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and the term S1, given by (6.75), is not zero.
We note that the operator P in (6.72) is unitarily equivalent to L0 + inT ; a simple

calculation shows

(6.78) L0 + inT + iX1 − 1 = e(i/2)T
−1Xn+1 (L0 + inT ) e−(i/2)T−1Xn+1 .

Microlocally near Λ, cT−1Xn+1 is a pseudodifferential operator in OPS0, and so is its
exponential. Thus the operator (6.72) is microlocally conjugate to an operator of the form

�(0)
b near the characteristic set. In particular, the Szegö projector (6.77) is microlocally

conjugate to the Szegö projector S0, given by (6.56)–(6.58).
As shown by Boutet de Monvel and Sjöstrand [B12], any two Szegö operators are mi-

crolocally conjugate, via a Fourier integral operator.
Given a Szegö operator S acting on D′(M), one defines a Toeplitz operator (of order

m) as an operator of the form

(6.79) T = SQS, Q ∈ OPSm(M).

As noted above, any two Szegö operators are microlocally conjugate, via a Fourier integral
operator, so microlocally one is reduced to studying (6.79) when S = S0 is the Szegö
projector for L0 + inT on Hn (or any other local model). We will not develop the basic

theory of Toeplitz operators as a consequence of the operator calculus for OP Ψ̃2m,∞
+ .

Instead we refer to Boutet de Monvel and Guillemin [B11], where the basic theory is
worked out from a different point of view. We mention the following three results, proven
in the first chapters of [B11].

Theorem A. If Q ∈ OPSm has principal symbol vanishing on Λ+, then SQS is a Toeplitz
operator of order m− 1.

Theorem B. Any Toeplitz operator (6.79) can be written in the form T = SQ′S, where
Q′ ∈ OPSm commutes with S. If T is self-adjoint, then Q′ can be taken self-adjoint.

Theorem C. If T1 and T2 are Toeplitz operators, of order m1 and m2, respectively, then
T1T2 is a Toeplitz operator of order m1 +m2.

We remark that Theorem C follows from Theorem B and that Theorem A is used to
prove Theorem B. Theorem A might seem surprising, in light of (6.77), and we will say a
little more about it below. This result is strongly related to a result of R. Howe, which
we will discuss in Appendix B, which sets up a natural isomorphism between the space
OPH2m

b of pseudodifferential operators on Rn and the space of Toeplitz operators of order
m on the unit sphere in Cn. Our discussion of this in Appendix B will also make use of
Theorem B above. Another use of Theorem B is to set one up to study spectral asymptotics
for TQ = SQS in case Q is elliptic and self-adjoint, by studying eisTQ = S eisQ

′
S. Much

of [B11] is devoted to studying the composition of Fourier integral operators like eisQ
′

and operators like S, and applying this to obtain deep information on the behavior of the
spectrum of TQ.

Let us take a look at the symbol of a Toeplitz operator (6.79), as an element of

OP Ψ̃2m,∞
+ , in the case S = S0, the Szegö projector for L0 + inT on Hn. Recall that

we have

(6.80) σS0
(λ)(X,D) = π0(X,D), λ > 0,
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with π0(x, ξ) given by (6.55). If Q ∈ OP Σ̃m0 ,. then, from our operator calculus, we have,
for w ∈ Hn,

(6.81) σQS0(w, λ)(X,D) ∼ λm
∑
k≥0

1

k!
λ−k/2 (X · ∇x +D · ∇ξ)

kq(w; 0, 0)π0(X,D),

where

(6.82) σQ(w, λ)(x, ξ) = λmq(w;λ−1/2x, λ−1/2ξ), λ > 0.

Consequently, we can obtain the symbol of S0QS0 = TQ, since TQu(w) = TQ(w)u(w) with

(6.83) TQ(y) ∼
∑
γ≥0

S
[γ]
0 (QS0)[γ].

Note that, after the principal symbol, which is

(6.84) λm q(w; 0, 0)π0(X,D),

the next highest order symbol (defining an element of OP Ψ̃2m−1,∞) is

λm−1/2π0(X,D)(X · ∇x +D · ∇ξ)q(w; 0, 0)π0(X,D)(6.85)

+ λm−1/2
∑

|γ1|+|γ2|=1

π
[(0,γ1,γ2)]
0 (X,D) q[(0,γ1,γ2)](w; 0, 0)π0(X,D).(6.86)

Now (6.85) always vanishes since Xj and Dj map even functions to odd functions. As
for (6.86), if the principal symbol of Q vanishes everywhere on Λ+, then q(w; 0, 0) = 0
on Hn and its w-derivatives q[(0,γ1,γ2)](w; 0, 0) also vanish on Hn. Hence TQ belongs to

OP Ψ̃2m−2,∞
+ in this case, which is consistent with Theorem A.
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7. Further material on Szegö operators

As we have seen in §6, if M = ∂O is the boundary of a smoothly bounded, strongly
pseudoconvex domain in Ck, then the Szegö projector S has the property

(7.1) S ∈ OP Ψ̃0,∞
+ .

We want to deduce further properties of S from (7.1), particularly the following.

Proposition 7.1. If S is such a Szegö projector, then

(7.2) S : Hs,p(M) −→ Hs,p(M), ∀ s ∈ R, p ∈ (1,∞).

To establish this, we recall from Proposition 2.13 of Chapter I that

(7.3) P ∈ OP H̃0,0
α,δ =⇒ P : Lp → Lp, ∀ p ∈ (1,∞).

As noted in (1.24)–(1.25) of this chapter, in this setting we have

(7.4)

P ∈ OP H̃m,µα,δ ⇐⇒ P ∼
∑
j≥0

KjLj ,

Kj ∈ OP Ψ̃mj , Lj ∈ OPSµj , mj ≤ m, µj ≤ µ, mj + µk → −∞.

Hence, for S as in (7.1), S ∈ OP Ψ̃0 ⊂ OP H̃0,0
α,δ. This gives (7.2) for s = 0. Next,

Proposition 2.12 of Chapter I gives

(7.5) Pj ∈ OP H̃
mj ,µj

α,δ =⇒ P1P2 ∈ H̃m1+m2,µ1+µ2

α,δ .

In particular, given

(7.6) Λs ∈ OPSs(M), Λ−s ∈ OPS−s(M),

we see that

(7.7) P ∈ OP Ψ̃0,∞
+ =⇒ ΛsPΛ−s ∈ OP H̃0,0

α,δ.

This gives (7.2) for all s ∈ R, p ∈ (1,∞), and proves Proposition 7.1.
While (7.7) suffices to prove (7.2), we claim the following more precise result:

(7.8) P ∈ OP Ψ̃0,∞
+ =⇒ Λ−sPΛs ∈ OP Ψ̃0,∞

+ .

We establish the following, which yields (7.8). This extends Proposition 3.7 of Chapter II,
and is implicit in arguments given in §6.
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Proposition 7.2. We have

(7.9) Q ∈ OP Ψ̃m,∞+ , P ∈ OPSµ =⇒ QP,PQ ∈ OP Ψ̃m+2µ,∞
+ .

Proof. We can assume the symbol of P is supported near Λ+. By Proposition 1.7, we have

(7.10) σQP (w,±λ)(X,D) ∼ λm/2+µ
∑
j≥0

λ−je±j (w, λ,X,D),

where

(7.11) e±0 (w, λ, x, ξ) = σQ(w,±1)(x, ξ)σP (w,±1)(λ−1/2x, λ−1/2ξ),

and, for j ≥ 1,

(7.12) e±j (w, λ, x, ξ) =

K(j)∑
k=1

p±kj(w, λ
−1/2x, λ−1/2ξ)a±kj(w, x, ξ),

with

(7.13)
p±kj(w, x, ξ) ∈ C∞, compactly supported in (x, ξ),

a±kj(w, x, ξ) ∈ S−∞
1 .

Given this, (7.11)–(7.12) yields QP ∈ OP Ψ̃m+2µ,∞. The argument for PQ is similar.



128

Appendix A. The Weyl calculus

In our development of harmonic analysis on the Heisenberg group, we made considerable
use of the Weyl calculus, which is defined as follows. Given a(x, ξ), we set

(A.1) a(X,D) = (2π)−n
∫∫

â(q, p)ei(q·X+p·D) dq dp,

where ei(q·X+p·D) is given by (1.5)–(1.7) of Chapter II and â(q, p) is the Fourier transform
of a(x, ξ). A few manipulations of integrals give

(A.2) a(X,D)u(x) = (2π)−n
∫∫

a
(
1
2 (x+ y), ξ

)
ei(x−y)·ξu(y) dy dξ.

This defines a kernel in S ′(Rn ×Rn) and hence a map a(X,D) : S(Rn) → S ′(Rn), for any
a ∈ S ′(R2n). We will touch on only a few properties of the Weyl calculus here, referring
to the papers [H10], [G11] for a complete treatment. See also [[T]], Chapter 7.

One important class of symbols a(x, ξ) is Smρ , defined to consist of smooth a(x, ξ) such
that

(A.3) |Dβ
xD

α
ξ a(x, ξ)| ≤ Cαβ(1 + |x|+ |ξ|)m−ρ(|α|+|β|).

If a(x, ξ) satisfies (A.3), we say a(X,D) ∈ OPSmρ ; generally ρ ∈ [0, 1]. If ρ > 0, we have
the following:

aj(X,D) ∈ OPSmj
ρ =⇒ a1(X,D)a2(X,D) ∈ OPSm1+m2

ρ ,

and the the symbol b(x, ξ) of this product has the asymptotic expansion

(A.4) b(x, ξ) ∼
∑
j≥0

1

j!
{a1, a2}j(x, ξ),

where

(A.5)

{a1, a2}j(x, ξ)

=
( 1

2i

)j{ n∑
k=1

( ∂2

∂yk∂ξk
− ∂2

∂xk∂ηk

)}j
a1(x, ξ)a2(y, η)

∣∣∣
y=x,η=ξ

.

In particular {a1, a2}1 = {a1, a2} is 1/2i times the Poisson bracket. The meaning of (A.4)
is that the difference between b(x, ξ) and the sum of the right side of (A.4) over 0 ≤ j < N
belongs to Sm1+m2−2Nρ

ρ . We refer to [H10] for a proof of results containing (A.4).
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Note that, if a1(x, ξ) or a2(x, ξ) is a polynomial in (x, ξ), of degree d, then all the terms
in (A.5) are zero for j > d. In fact, in this case, (A.4) is not merely asymptotic; we have
the identity

(A.6) b(x, ξ) =
d∑
j=0

1

j!
{a1, a2}j(x, ξ),

if either a1(x, ξ) or a2(x, ξ) is a polynomial of degree d in (x, ξ). The proof of (A.6) is
elementary, since one of the factors aj(X,D) is a differential operator. In particular, if
either a1(x, ξ) or a2(x, ξ) is a quadratic polynomial, we have

(A.7)

b(x, ξ) = a1(x, ξ)a2(x, ξ)−
i

2
{a1, a2}(x, ξ)

− 1

8

{ n∑
k=1

( ∂2

∂yk∂ξk
− ∂2

∂xk∂ηk

)}2

a1(x, ξ)a2(y, η)
∣∣∣
y=x,η=ξ

.

If we compare the symbol of a2(X,D)a1(X,D), we see that only the middle term changes
(by a sign), and so, whenever Q(x, ξ) is a quadratic polynomial, the commutator

[Q(X,D), a(X,D)] = C(X,D)

has the symbol

(A.8) C(x, ξ) = −{Q, a}(x, ξ).

We can use (A.8) to analyze the conjugate of an operator a(X,D) by eiQ(X,D), with
Q(x, ξ) quadratic. We claim

(A.9) e−isQ(X,D)a(X,D)eisQ(X,D) = (a ◦ gs)(X,D),

where gs ∈ Sp(n,R) is the one parameter group of symplectic linear maps on Rn generated
by the Hamilton vector field

(A.10) HQ =
∑( ∂Q

∂xj

∂

∂ξj
− ∂Q

∂ξj

∂

∂xj

)
,

i.e.,

(A.11) gs = exp(sHQ).

To prove (A.9), we note that it is equivalent to the operator differential equation

(A.12)
d

ds
(a ◦ gs)(X,D) = −i[Q(X,D), a ◦ gs(X,D)].
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Now the left side of (A.12) is clearly equal to {Q, a ◦ gs}(X,D), so (A.12) is equivalent to

(A.13) {Q, a}(X,D) = −i[Q(X,D), a(X,D)].

But this follows from (A.8), so we have proved (A.9).
The set of quadratic polynomials Q(x, ξ), with the Poisson bracket, is naturally isomor-

phic to the Lie algebra sp(n,R) of the symplectic group Sp(n,R). The map Q 7→ Q(X,D)
gives a Lie algebra representation of sp(n,R) by skew-adjoint operators. This generates a
representation of the universal cover of Sp(n,R):

(A.14) ω : S̃p(n,R) −→ U(L2(Rn)).

We deduce from (A.9) that, if j : S̃p(n,R) → Sp(n,R) is the natural projection, then

(A.15)
(
a ◦ j(g)

)
(X,D) = ω(g)−1a(X,D)ω(g).

As a matter of fact, one can reduce (A.14) to a representation of Mp(n,R), the 2-fold
cover of Sp(n,R), known as the metaplectic group. See Chapter 10 of [T5] for a discussion
of this.

We now want to use the identity (A.7) to derive a formula for the Weyl symbol of

(A.16) e−tH = ht(X,D), H = −∆+ |x|2 = Q(X,D),

where

(A.17) Q(x, ξ) = |x|2 + |ξ|2.

We will show that

(A.18) ht(x, ξ) = (cosh t)−ne−(tanh t)(|x|2+|ξ|2),

thus providing an alternative proof of Proposition 4.1 of Chapter II. First, we can see
by symmetry that ht(x, ξ) is a function of |x|2 + |ξ|2. Indeed, the unitary group U(n) is
naturally contained in Sp(n,R), and it acts transitively on spheres, so this is a consequence
of (A.15), since cetainly ω(g) for j(g) ∈ U(n) commutes with all functions of H. Thus, if
we set

(A.19) bt(X,D) = H ht(X,D),

then (A.7) implies

(A.20) bt(x, ξ) = Q(x, ξ)ht(x, ξ)−
1

4

∑
k

( ∂2

∂x2k
+

∂2

∂ξ2k

)
ht(x, ξ).

Note that the Poisson bracket vanishes in this case. Hence, ht(x, ξ) must satisfy the
equation

(A.21)
∂ht
∂t

(x, ξ) = −
(
|x|2 + |ξ|2

)
ht(x, ξ) +

1

4

∑
k

( ∂2

∂x2k
+

∂2

∂ξ2k

)
ht(x, ξ).
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If we write

(A.22) ht(x, ξ) = g(t,Q), Q = |x|2 + |ξ|2,

then (A.21) becomes

(A.23)
∂g

∂t
= −Qg +Q

∂2g

∂Q2
+ n

∂g

∂Q
.

Now (having peeked at (A.18)) we will make the “inspired guess” that

(A.24) ht(x, ξ) = a(t) eb(t)(|x|
2+|ξ|2), i.e., g(t,Q) = a(t) eb(t)Q.

Then the left side of (A.23) is (a′/a+ b′Q)g and the right side is (−Q+Qb2 +nb)g, so the
identity (A.23) is equivalent to

(A.25)
a′(t)

a(t)
= n b(t), and b′(t) = 1− b(t)2.

We can solve the second equation for b(t) by separation of variables. Since h0(x, ξ) = 1,
we need b(0) = 0, so the unique solution is easily seen to be

b(t) = − tanh t.

Then the equation a′/a = −n tanh t, with a(0) = 1, immediately gives

a(t) = (cosh t)−n.

This completes the proof of the identity (A.18).
We can also analyze the Weyl symbol of

(A.26) e−tQ(X,D) = hQt (X,D)

for a general positive-definite quadratic form Q(x, ξ). If

(A.27) Q(x, ξ) =
∑

µj(x
2
j + ξ2j ),

with µj > 0, then the proof of (A.18) also gives

(A.28) hQt (x, ξ) =
n∏
j=1

1

cosh tµj
exp

(
−
∑
j

(tanh tµj)(x
2
j + ξ2j )

)
.

We can express this in invariant form, as follows. Use the Hamilton map FQ associated
with Q, given by

(A.29) σ(u, FQv) = Q(u, v),
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where σ is the symplectic form on R2n and Q(u, v) is the symmetric bilinear form polarizing
the quadratic form Q(u), u = (x, ξ). For Q positive definite, a basic result of symplectic
algebra is that FQ has spectrum {±iµj}, 1 ≤ j ≤ n, µj > 0; see, e.g., Chapter 1, §6 of
[T5]. Given this, we have

det cosh i−1tFQ =
( n∏
j=1

cosh tµj

)2

.

Also, if we set

(A.30) AQ = (−F 2
Q)

1/2,

the unique square root of −F 2
Q with positive spectrum, we obtain (with ζ = (x, ξ))∑

(tanh tµj)(x
2
j + ξ2j ) = Q(A−1

Q tanh tAQ ζ, ζ),

and hence

(A.31) hQt (x, ξ) =
e−Q(A−1

Q
tanh tAQ ζ,ζ)(

det cosh (t/i)FQ
)1/2 .

Since any positive-definite form Q(x, ξ) can be put in the form (A.27) via a symplectic
change of coordinates, the identity (A.15) implies that (A.31) is valid for a general positive-
definite quadratic form Q(x, ξ), as the formula for the Weyl symbol of e−tQ(X,D).

We turn to a study of L2 boundedness of operators a(X,D). We will show that a(X,D)
is bounded on L2(Rn) if a(x, ξ) ∈ S0

0 . This is a result of Calderon and Vaillancourt [C1];
see also [H10]. The approach we take is due to Cordes [C6] and Kato [K2], in a slightly
different context. A related approach is given in Howe [H11]. The proof starts with the
following two simple operator-theoretic results, whose proofs can be found in Chapter 13
of [T2], or the reader can try them as exercises.

Lemma A.1. Let Y be any σ-finite measure space and U(y) a weakly measurable family
of bounded operators on a Hilbert space H such that

(A.31)

∫
Y

|(U(y)f, g)|2 dy ≤ C∥f∥2∥g∥2, f, g ∈ H.

If b ∈ L∞(Y ), then for any trace-class operator G on H,

(A.33) B = b{G} =

∫
Y

b(y)U(y)∗GU(y) dy

satisfies the operator bound

(A.34) ∥B∥ ≤ C∥b∥L∞∥G∥tr.

In our case, we take Y = R2n with Lebesgue measure, y = (x, ξ). We let H =
L2(Rn), Xju(x) = xju(x), Dju(x) = −i∂u/∂xj , and

(A.35) U(y) = U(x, ξ) = eiξ·X+ix·D.
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Lemma A.2. If U(y) is given by (A.35), then (A.32) is satisfied.

The way in which (A.33)–(A.34) will be implemented is described as follows.

Proposition A.3. Let a = b ∗ g, G = g(X,D). Then

(A.36) a(X,D) =

∫∫
b(x, ξ)eiξ·X−ix·D Ge−iξ·X+ix·D dx dξ.

Proof. Clearly the superposition principle gives

a(X,D) =

∫∫
b(x, ξ)g(X − x,D − ξ) dx dξ.

Thus (A.36) is equivalent to the observation that

(A.37) g(X − x,D − ξ) = eiξ·X−ix·D g(X,D) e−iξ·X+ix·D,

which is elementary (and which complements (A.9)).

We shall apply (A.36) to the case

(A.38) b(x, ξ) = (1−∆x −∆ξ)
ka(x, ξ), g(x, ξ) = (1−∆x −∆ξ)

−kδ,

so ĝ(q, p) = (1 + |q|2 + |p|2)−k. We will pick k = k(n) sufficiently large below. In such a
case, the hypothesis

(A.39) |Dα
x,ξa(x, ξ)| ≤ A, |α| ≤ K(n),

implies b(x, ξ) ∈ L∞(R2n), provided K(n) = 2k(n). It remains to ensure that G = g(X,D)
is trace class. Note that

(A.40) Gu(x) =

∫
K(x, y)u(y) dy,

where

(A.41) K(x, y) =

∫
ei(x−y)·ξ g

(
1
2 (x+ y), ξ

)
dξ = L

(
x− y, 12 (x+ y)

)
.

Note that

(A.42) xγyδDα
xD

β
yL(x, y) =

∫
eix·ξ yδξαDγ

ξD
β
y g(y, ξ) dξ.

Now the definition of g(x, ξ) given in (A.38) implies that g ∈ C∞(R2n \ 0) and g(x, ξ) is
rapidly decreasing together with all its derivatives, as |x| + |ξ| → ∞. Also g is Cℓ in a
neighborhood of the origin, if k(n) > ℓ+ n/2. Thus (A.42) is bounded and continuous for
|α|, |β|, |γ|, |δ| ≤ µ if ℓ ≥ 2µ. On the other hand, it is easy to verify that, for µ = µ(n) large
enough, such a condition implies K is the integral kernel of a trace-class operator. Thus
for G = g(X,D) defined by (A.38) with k = k(n) sufficiently large, G is of trace class.

Now the first two lemmas and Proposition A.3 yield the following Calderon-Vaillancourt
theorem, which was stated in Chapter II, §1; see (1.26), (1.27).
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Theorem A.4. If the estimate (A.39) holds, with K(n) sufficiently large, then

(A.43) a(X,D) : L2(Rn) → L2(Rn), ∥a(X,D)∥ ≤ C(n)A.

In particular, A is bounded on L2 if A ∈ OPS0
0 . The class S0

0 coincides with the class
S0
0,0, where we say a(x, ξ) belongs to Smρ,δ if and only if

(A.44) |Dβ
xD

α
ξ a(x, ξ)| ≤ Cαβ(1 + |ξ|)m−ρ|α|+δ|β|.

A more general version of the Calderon-Vaillancourt theorem is that a(X,D) is continuous
on L2(Rn) provided that, for some ρ ∈ [0, 1), a(x, ξ) ∈ S0

ρ,ρ. This result is particularly
important in the case ρ = 1/2. We will not give the proof of this, but note that it can be
deduced from Theorem A.4 via the Cotlar-Stein lemma; see Beals [B2] for this argument,
in a more general context.

We now show how the identity (A.18) for the Weyl symbol of e−tH , with H = −∆+|x|2,
helps one to prove a sharp G̊arding inequality. That one could do this was pointed out by
Unterberger [U1], which concerned itself not with sharp G̊arding inequalities, but rather
with further generalizations of the Calderon-Vaillancourt theorem. We seek conditions
under which a symbol p(x, ξ) ≥ 0 defines an operator which, if not positive, is at least
semi-bounded:

(A.45) (p(X,D)u, u) ≥ −K∥u∥2L2 .

Now what the identity (A.18) implies is that

(A.46) αt(x, ξ) =
( t
π

)n
e−t(|x|

2+|ξ|2) ⇒ αt(X,D) ≥ 0, 0 < t ≤ 1,

since clearly e−sH is a positive operator for any s ≥ 0. Now operators can be synthesized
from αt(X,D) and various other operators unitarily equivalent to it, and these will provide
a sufficiently rich class of positive operators to enable us to obtain the following sharp
G̊arding inequality.

Proposition A.5. The semiboundedness (A.45) holds for all p(x, ξ) such that

(A.47) p ∈ S2
1 .

Proof. Consider the operator p1(X,D), where p1 = p ∗ α1. Then, as in (A.36),

(A.48) p1(X,D) =

∫∫
p(x, ξ) eiξ·X−ix·D α1(X,D) e−iξ·X+ix·D dx dξ ≥ 0.

Consequently (A.45) follows from the fact that

(A.49) p1 − p ∈ S0
1 ,

in view of Theorem A.4. The result (A.49) in turn is straightforward, and we leave it as
an exercise.

A somewhat more complicated variation of the argument given above can be used to
show that the semiboundedness (A.45) holds for all p(x, ξ) ≥ 0 when p ∈ S1

1,0. Proposition
A.5 has the appearance of a weak form of the Fefferman-Phong inequality, to the effect that
the semiboundedness (A.45) holds when p(x, ξ) ≥ 0 and p ∈ S2

1,0, if p is scalar; cf. [F1].
This result is more powerful than Proposition A.5, in the scalar case. However, Proposition
A.5 holds for systems.
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Appendix B. Toeplitz operators and more general Weyl calculus

A principal goal of this appendix is to discuss the following result of R. Howe: there
is a natural unitary map from L2(Rn) to L2

H(Bn), the space of holomorphic L2 functions
on the unit ball B ⊂ Cn, which sets up an isomorphism between the algebra OPHm

b of
pseudodifferential operators on Rn and the algebra of Toeplitz operators on Bn of order
m/2. This elegant result was given in [H11] and also discussed in [G15]. Since these
references confine the proof to a sketch, we shall take the space to provide a full proof
here. The proof will arise as an application of a more general sort of Weyl calculus than
that dealt with in Appendix A.

The unitary isomorphism of L2(Rn) with L2
H(Bn) starts with the unitary transformation

intertwining the representation π1 of the Heisenberg group Hn on L2(Rn) (given in Chapter
II, §1) with the Bargman-Fok representation, which we will now define. The representation
β acts on the Hilbert space

(B.1) H =
{
u(z) holomorphic on Cn :

∫
|u(z)|2e−|z|2/2 dV (z) <∞

}
.

Then, for (t, q, p) ∈ Hn, the unitary operator β(t, q, p) on H is defined by

(B.2) β(t, q, p)u(z) = eit+i(q+ip)·z
√
2−(|q|2+|p|2) u

(
z + i(q − ip)/

√
2
)
.

Note that, on the Lie algebra level,

(B.3) β(T ) = iI, β(Lj) =
√
2
( ∂

∂zj
+ zj

)
, β(Mj) =

1

i
√
2

( ∂

∂zj
− zj

)
.

Recall that, for the Schrödinger representation π1 of Hn on L2(Rn),

(B.4) π1(T ) = iI, π1(Lj) =
∂

∂xj
, π1(Mj) = ixj .

The unitary operator W : L2(Rn) → H intertwining π1 and β is given by

(B.5)

Wf(z) =

∫
f(x)K(x, z) dx,

K(x, z) = exp
(√

2z · x− z · z + |x|2

2

)
.

Now there is a natural unitary isomorphism

(B.6) V : H −→ L2
H(Bn),
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which arises as follows. An orthonormal basis of H is

(B.7) uα = aαz
α, aα =

√
2

α!
,

(see, e.g., [T5], Chapter 1), while an orthonormal basis of L2
H(Bn) is given by

(B.8) vα = bαz
α, bα =

√
(n+ |α|)!

α!
.

See Rudin [R7]. Now we define V by V uα = vα, i.e.,

(B.9) V zα = γαz
α, γα =

bα
aα

=

√
(n+ |α|)!

2
= γ|α|.

Now we want to analyze the operators Zj and Lj , defined by

(B.10) Zj = V zjV
−1, Lj = V

∂

∂zj
V −1.

In fact, (B.9) shows that

Zjzα =
γ|α|+1

γ|α|
zjz

α, Ljzα =
γ|α|−1

γ|α|

∂

∂zj
zα.

In particular,

(B.11) Zjzα =
√

|α|+ n+ 1 zjz
α.

The operator zα 7→ |α|zα can be extended to C∞(Bn) as u(z) 7→ i−1Xu, where X is the
real vector field on R2n = Cn generated by the flow z 7→ eitz on Cn. If we set D = i−1X,
a first order differential operator, we get

(B.12) Zj = zj
√
|D|+ n+ 1.

Since zj and ∂/∂zj are adjoints of each other on H, the adjoint of Zj on L2
H(Bn) is Lj .

Thus, if ν is the unitary representation of Hn on L2
H(Bn) defined by

(B.13) ν(g) = V β(g)V −1, g ∈ Hn,

then, with π denoting the orthogonal projection of L2(Bn) onto L2
H(Bn), we have

(B.14)
ν(T ) = iI, ν(Lj) = iπ

(
zj(|D|+ n+ 1)1/2 + (|D|+ n+ 1)1/2zj

)
π,

ν(Mj) = π
(
zj(|D|+ n+ 1)1/2 − (|D|+ n+ 1)1/2zj

)
π,
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on L2
H(Bn). This was derived in [H11] and [G15]. Here π is the orthogonal projection of

L2(Bn) onto L2
H(Bn).

Alternatively, we can regard π as the orthogonal projection ofH−1/2(S2n−1) on L2
H(Bn),

which we identify with a closed linear subspace of the Sobolev space H−1/2(S2n−1) via the
Poisson integral. The projection π is then essentially the Szegö projector. We can write

(B.15) ν(Lj) = iπDjπ, ν(Mj) = iπXjπ,

where

(B.16)
Dj = zj(|D|+ n+ 1)1/2 + (|D|+ n+ 1)1/2zj ,

iXj = zj(|D|+ n+ 1)1/2 − (|D|+ n+ 1)1/2zj .

Now Dj and Xj are not quite pseudodifferential operators. But note that, for all u ∈
D′(S2n−1), π u has wave front set in Λ+, a ray bundle in T ∗S2n−1 \ 0 defining the contact
structure, and the differential operator D is noncharacteristic on Λ+, and so elliptic on a
conic neighborhood of Λ+. Thus, when analyzing Dj and Xj , we can treat these operators

as pseudodifferential operators on S2n−1, belonging to OPS1/2. Note that, on Λ+,

(B.17) σXj
(ω, ξ) = (Reωj)|ξ|1/2, σDj

(ω, ξ) = (Imωj)|ξ|1/2, mod S−1/2,

where ω = (ω1, . . . , ωn) ∈ S2n−1 ⊂ Cn.
We will now alter Xj and Dj , making use of Theorem B from Chapter III, §6, to

operators Xj and Dj that commute with π. The map

U = VW : L2(Rn) −→ L2
H(Bn)

is unitary, and under it, a pseudodifferential operator a(X,D) is taken to

(B.18) Ua(X,D)U−1 = πa(X,D)π,

where a(X,D) is a function of the self-adjoint operators X1, . . . ,Xn,D1, . . . ,Dn, defined
by the Weyl calculus:

(B.19) a(X,D) = (2π)−n
∫∫

â(q, p)eiq·X+ip·D dq dp,

where q · X =
∑
qjXj and p ·D =

∑
pjDj .

With this in mind, we will consider the Weyl calculus in the following more general
context. On a compact manifold, take L1, . . . , Lk self-adjoint operators,

(B.20) Lj ∈ OPSa, 0 < a ≤ 1.

We suppose Lj have scalar principal symbol. We also suppose

(B.21) L = L2
1 + · · ·+ L2

k ∈ OPS2a is elliptic.
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We want to analyze the operator a(L), defined by the formula

(B.22) a(L) =

∫
â(s) eis·L ds,

as a pseudodifferential operator, given a(ξ1, . . . , ξk) ∈ Smρ , i.e.,

(B.23) |Dαa(ξ)| ≤ Cα(1 + |ξ|)m−ρ|α|.

In (B.22), we take s · L = s1L1 + · · · + skLk, s ∈ Rk. Note that (B.23) implies â(s) is
C∞ outside the origin and rapidly decreasing, with all its derivatives, as |s| → ∞. We can
localize the analysis of a(L) under the following hypothesis:

(B.24) a ∈ S(Rk) =⇒ a(L) ∈ OPS−∞.

We will go into cases where (B.24) is sure to be valid shortly. Granted this hypothesis, in
(B.22), we can suppose a(s) is supported on a small set |s| ≤ ε. We will use the method
of geometrical optics to obtain a parametrix for e−s·L, for |s| ≤ ε. In fact, let A ∈ OPSa

be some real linear combination of L1, . . . , Lk, and we represent eitA, for |t| small, in the
form (in local coordinates)

eitAu(x) =

∫
a(t, x, ξ) eiφ(t,x,ξ)+ix·ξ û(ξ) dξ.

Here, the phase φ satisfies the eikonal equation

∂φ

∂t
= A1(x, ξ +∇xφ), φ(0, x, ξ) = 0,

where A1(x, ξ) ∈ Sa is the principal symbol of A ∈ OPSa. Thus, for small t we can solve
for φ, real valued in Sa. We get a sequence of transport equations for a ∼

∑
aj , yielding

a(t, x, ξ) ∈ S0 with a(0, x, ξ) = 1. Writing A =
∑
sjLj , the functions φ and a depend

smoothly on their parameters on some set |s| ≤ s0, |t| ≤ t0. We can freeze t at t0 and
rescale s, to write, for |s| ≤ ε,

(B.25) eis·Lu(x) =

∫
b(s, x, ξ)eiψ(s,x,ξ)+ix·ξ û(ξ) dξ.

Here b(0, x, ξ) = 1, b ∈ S0, and ψ ∈ Sa is real valued and satisfies

(B.26)
∂ψ

∂sj
(0, x, ξ) = σLj

(x, ξ), ψ(0, x, ξ) = 0.

Returning to (B.22), we have, for a ∈ Smρ such that â(s) is supported on |s| ≤ ε,

(B.27)

a(L) =

∫∫
â(s)b(s, x, ξ)eiψ(s,x,ξ)eix·ξ û(ξ) dξ ds

=

∫
a(Ds)(be

iψ)
∣∣
s=0

eix·ξ dξ.



139

Now we can use the stationary phase method to evaluate a(Ds)(be
iψ) provided we know

∇sψ ̸= 0 at s = 0. In view of (B.26), this is equivalent to the hypothesis (B.21). Thus we
obtain, for a ∈ Smρ , provided 1/2 < ρ ≤ 1,

(B.28) a(Ds)(be
iψ) = B eiψ,

where

(B.29) B ∈ Smaρ′,1−ρ′

has an asymptotic expansion

(B.30) B(s, x, ξ) ∼ b(s, x, ξ)a(∇sψ) + · · · .

In particular,
B(0, x, ξ) ∼ a

(
σL1

(x, ξ), . . . , σLk
(x, ξ)

)
+ · · · .

Now (B.27) gives

(B.31) a(L)u =

∫
B(0, x, ξ)eix·ξû(ξ) dξ,

and this implies a(L) is a pseudodifferential operator. In particular, for a ∈ Sm1 , we have
a(L) ⊂ OPSma1,0 , and

(B.32) σa(L)(x, ξ) = a
(
L1(x, ξ), . . . , Lk(x, ξ)

)
mod Sma−a1,0 ,

where Lj(x, ξ) is the principal symbol of Lj .
In general, one might not have (B.24), but the operator calculus (B.31)–(B.32) still

holds for a ∈ Smρ such that â(s) is supported in a small neighborhood of 0. This can still
be quite useful, as we will see below. One case where we can guarantee (B.24) is when
L1, . . . , Lk all commute. In that case, one has

L2
ja(L) =

∫
D2
sj â(a) e

is·L ds,

and hence, if a ∈ S(Rk),

Lja(L) =
∫

∆j â(a) eis·L ds

is bounded on each Sobolev space Hs(M) for all j. Since L is elliptic, this implies A(L) ∈
OPS−∞, if a ∈ S(Rk). In this commutatice case, the analysis of the functional calculus
given here is equivalent to that given by the author in [T3], and in Chapter 12 of [T2].
Other approaches to functional calculi in the commutative case were given by Strichartz
[S9] and Colin de Verdiere [C5].

This argument can be pushed to yield (B.24) as long as

(B.33) Dsje
is·L = Bj(s)e

is·L + Lje
is·L,
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where each Bj(s) is a polynomial in s with values in OPSa−ε, for some ε > 0. A favorable

case is Lj ∈ OPS1/2 and Bj(s) polynomials in s with values in OPS0. Since πXjπ, πDjπ
satisfy the same commutation relations as X,D, we see that such an identity holds in this
case, so

(B.34) a ∈ S =⇒ πa(X,D)π is smoothing.

Thus the geometrical optics analysis applies, to give

(B.35) πa(X,D)π = πPaπ,

where

(B.36) a ∈ Sm1 =⇒ Pa ∈ OPS
m/2
1,0 (S2n−1).

Suppose a ∈ Sm, i.e., a(x, ξ) ∼
∑
aj(x, ξ) with aj homogeneous of degreem−j in (x, ξ).

In this case, since Xj ,Dj ∈ OPS1/2 (microlocally near Λ+), we see that the phase function
ψ(s, x, ξ), obtained as a solution to an eikonal equation, is asymptotic to ψ1 + ψ2 + · · · ,
with ψ1+k homogeneous of degree 1− k/2. Also the amplitude B(s, x, ξ) is asymptotic to
b0 + b1 + b2 + · · · , with bj homogeneous of degree −j/2 in ξ. It follows that (B.35) holds,
with

(B.37) a ∈ Sm =⇒ Pa ∼ P0 + P1 + P2 + · · · , Pj ∈ OPSm/2−j/2.

Now, if a(x, ξ) is equal to a function homogeneous of degree m for |x| + |ξ| large, the
expansion above for Pa can be improved. In fact, if we use our class of symbols

(B.38) Hm
b =

{
a(x, ξ) : a ∼

∑
j≥0

aj , aj homogeneous of degree m− 2j
}
,

then we will prove the following.

Proposition B.1. If a(x, ξ) ∈ Hm
b , then (B.35) holds with Pa ∈ OPSm/2, so

(B.39) Pa ∼ P0 + P1 + P2 + · · · , Pj ∈ OPSm/2−j .

The content of this proposition is that for a ∈ Hm
b , the terms in the expansion (B.37)

vanish for j odd. The amplitude B(0, x, ξ) in (B.31) arises by an inductive construction,
and such a construction does not lend itself easily to proving this infinite sequence of
identities. We will take a different approach, one involving the Weyl functional calculus in
a context not quite covered by hypothesis (B.20).

Namely, we need a functional calculus for the quadratic forms in X and D occurring in
the metaplectic representation (on the Lie algebra level). Thus, with sp(n,R) ≈ P2, the
linear space of second-order homogeneous polynomials Q(x, ξ), we pick a basis Qj for this
vector space and set

(B.40) p(Q1(X,D), . . . , QN (X,D)) =

∫
p̂(s) eis1Q1(X,D)+···+isNQN (X,D) ds,
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where N = dim sp(n,R) = n(n + 1)/2. To write it in a more invariant fashion, let Q
denote the linear map from sp(n,R) to self-adjoint operators on L2(Rn) given by

(B.41) Q(Q) = Q(X,D),

and set

(B.42) p(Q) =

∫
p̂(Q)eiQ(Q) dQ =

∫
p̂(Q)eiQ(X,D) dQ.

We will parallel the analysis of (B.22), via a representation of eiQ(X,D) as a Fourier integral
operator and use of stationary phase, as in (B.27). Our next order of business is hence to
represent eiQ(X,D) as a Fourier integral operator for Q ∈ P2.

That this can be done is related to the fact that commutators of operators in OPSmj

belong to OPSm1+m2−2, so operators in OPS2 behave for many purposes like pseudodif-
ferential operators of order 1 on compact manifolds. The Fourier integral representation of
eiQ(X,D) can be derived by the method of geometrical optics (see, e.g., Helffer and Robert
[H4]), but we will derive it from the identity (A.31) of Appendix A, which says that, for
Q(x, ξ) ∈ P2, positive definite,

(B.43) e−tQ(X,D) = hQt (X,D),

with

(B.44) hQt (x, ξ) =
e−Q(A−1

Q
tanh tAQ ζ,ζ)(

det cosh (t/i)FQ
)1/2 .

Here, ζ = (x, ξ), and Q(u, v) is the bilinear form such that Q(ζ, ζ) = Q(ζ). Recall that FQ
is the linear transformation on R2n defined by

(B.45) Q(u, v) = σ(FQu, v),

and AQ = (−F 2
Q)

1/2. Compare (4.55)–(4.60) of Chapter II. If we set

(B.46) θ(t) = t−1 tanh t,

which is an even function of t, we can write (B.44) as

(B.47) hQt (x, ξ) =
e−tQ(θ(tFQ)ζ,ζ)(

det cosh (t/i)FQ
)1/2 .

We can analytically continue to imaginary time, and, with

(B.48) ϑ(t) = t−1 tan t,
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we get

(B.49) hQit(x, ξ) =
eitQ(ϑ(tFQ)ζ,ζ)(

det cos (t/i)FQ
)1/2 .

Consequently we have the Fourier integral representation

(B.50) eiQ(X,D)u(x) =

∫
a(Q)eiφ(Q,

1
2 (x+y),ξ)+i(x−y)·ξ u(y) dy dξ,

where

(B.51) φ(Q, x, ξ) = −Q(ϑ(FQ)ζ, ζ), ζ = (x, ξ),

and

(B.52) a(Q) = (det cosFQ/i)
−1/2.

Now (B.50) was derived under the hypothesis that Q(x, ξ) was positive definite, but it is
clear that the resulting formula is valid for all Q ∈ P2. The amplitude a(Q) and phase
φ have singularities at Q ∈ P2 for which FQ/i has (k + 1/2)π as an eigenvalue for some
integer k, but formula (B.50) is valid, with a(Q) and φ smooth, for Q in a neighborhood
O of the origin.

If p ∈ Sm and p̂ is supported in O, then (B.42) and (B.50) give

(B.53)

p(Q)u(x) =

∫∫∫
p̂(Q)

(
a(Q)eiφ(Q,

1
2 (x+y),ξ)

)
ei(x−y)·ξ u(y) dy dξ dQ

=

∫∫
p(DQ)

(
a(Q)eiφ(Q,

1
2 (x+y),ξ)

)∣∣
Q=0

ei(x−y)·ξ u(y) dy dξ.

Now, in view of (B.51), we see that ∇Qφ(0, x, ξ) = Q(x, ξ), so the Q-gradient vector of φ
is nonvanishing for (x, ξ) ̸= (0, 0), and hence the stationary phase method yields

(B.54) p(Q)u(x) =

∫∫
b
(
0, 12 (x+ y), ξ

)
ei(x−y)·ξ u(y) dy dξ = b(0, X,D)u(x),

where

(B.55) b
(
Q, 12 (x+ y), ξ) = e−iφp(DQ)

(
a(Q)eiφ

)
.

If p ∈ Sm, we obtain the asymptotic expansion

(B.56) b(Q, x, ξ) =
∑
j≥0

bj(Q, x, ξ),

with bj(Q, x, ξ) homogeneous of degree 2(m − j) in (x, ξ). (Note that bj(Q, x, ξ) =
bj(Q,−x,−ξ).) Thus

(B.57) p ∈ Sm =⇒ p(Q) ∈ OPH2m
b ,

if p̂ is supported sufficiently near the origin, and we have

(B.58) σp(Q)(x, ξ) = p(Q̃(x, ξ)), mod H2m−2
b .

Here we define Q̃ : R2n → P′
2, the linear dual of P2, by

(B.59) ⟨Q̃(x, ξ), Q⟩ = Q(x, ξ).

Using (B.57) and (B.58), we will establish the following.
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Lemma B.2. Let q(x, ξ) ∈ Hm
b be even, i.e., q(x, ξ) = q(−x,−ξ). Then there exists

p ∈ Sm/2 such that

(B.60) p(Q)− q(X,D) ∈ OPS−∞
1 .

Proof. We begin with the observation that if q(x, ξ) ∈ Hm
b is even, there is a smooth

function p0 ∈ Sm/2 such that p0(Q̃(x, ξ)) is equal to q(x, ξ), outside some neighborhood
of the origin. This follows from the result of A. Schwartz [S2]; see also Mather [M1]. This
argument was noted in another context in [G15]; see the proof of Lemma 6.14 there. One
can truncate p̂0, preserving evenness, so p̂0 is supported near the origin. This alters p0 by
an element of S−∞

1 . For such p0, (B.57)–(B.58) give

(B.61) p0(Q)− q(X,D) ∈ OPHm−2
b .

Now an inductive argument yields pj(Q) ∈ OPHm−2j
b such that, if p ∼

∑
pj , (B.60) holds.

We return to our analysis of

(B.62) πa(X,D)π = Ua(X,D)U−1

for a(x, ξ) ∈ Hm
b . Recall that we have

(B.63) πa(X,D)π = πPaπ

with Pa ∈ OPS
m/2
1,0 being asymptotic to

∑
Pj , Pj ∈ OPSm/2−j/2. Now suppose a(x, ξ) ∈

Hm
b is even. Then, by Lemma B.2, we can write

(B.64) a(X,D) = p(Q), mod OPS−∞
1 ,

where p ∈ Sm/2. Now if we define a linear map Σ from P2 to self-adjoint operators by

(B.65) Σ(Q) = Q(X,D),

we have, modulo a smoothing operator,

(B.66) πa(X,D)π = πp(Σ)π.

Note that, by (B.16)–(B.17), for each Q ∈ P2, Q(X,D) ∈ OPS1 microlocally near Λ+,
and the functional calculus for p(L), Lj ∈ OPS1 developed above applies to p(Σ). In
other words, on a conic neighborhood of Λ+ ⊂ T ∗(S2n−1) \ 0,

(B.67) p ∈ Sm/2 =⇒ p(Σ) ∈ OPSm/2,

at least as long as p̂ is supported near the origin. Consequently we have proved:

(B.68) a(x, ξ) ∈ Hm
b even =⇒ πa(X,D)π = πPaπ, Pa ∈ OPSm/2.

We are now in a position to prove Proposition B.1. In fact, the weak result (B.37)
implies that the correspondence a(X,D) 7→ Pa is “microlocal,” and in analyzing Pa on a
microlocal level there is no loss of generality in supposing a(x, ξ) is even. From Proposition
B.1 easily follows the more rounded out statement of affairs whish we record here:
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Theorem B.3. With the unitary map U given above, the correspondence

(B.69) a(X,D) 7→ Ua(X,D)U−1 = πa(X,D)π

sets up an isomorphism between OPHm
b and T m/2, where

(B.70) T m/2 = {πPπ : P ∈ OPSm/2(S2n−1)}.

Proof. We need only check the surjectivity. If πPπ ∈ T m/2, the construction above pro-
duces a0(X,D) ∈ OPHm

b whose image in T m/2 is πP1π, where P1 ∈ OPSm/2 has the
same principal symbol as that of P on Λ+. Now we appeal to Theorem A, stated near the
end of §6, Chapter III. The difference π(P −P1)π is a Toeplitz operator of order m/2− 1.

Inductively we obtain aj(X,D) ∈ OPHm−2j
b which asymptotically sum to a(X,D), whose

image differs from πPπ by a smoothing operator, which in turn is readily absorbed. The
proof is complete.

Note that Theorem B.3 implies an equivalence between index theorems for elliptic op-
erators in OPHm

b (contained, e.g., in [H10]) and the index theorem of Venugopalkrishna
[V2] for Toeplitz operators on Bn. Boutet de Monvel [B8] has index theorems for general
strongly pseudoconvex domains. Also Theorem B.3 implies an equivalence between results
on spectral asymptotics for elliptic operators obtained by Helffer and Robert [H4], Shubin
[S5], Chazarin [C2], and others, and results on spectral asymptotics for elliptic Toeplitz
operators on Bn. Such results on spectral asymptotics, for elliptic Toeplitz operators
on general strongly pseudoconvex domains, have been proved by Boutet de Monvel and
Guillemin [B11]. Also, Guillemin and Sternberg [G15] analyze spectral asymptotics for
a(X,D) ∈ OPHm

b , in the special case when a(x, ξ) is even, using a different “compactifi-
cation.”
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Index of symbol classes

For pseudodifferential operators on Rn, we have an operator p(x,D) associated to a
symbol p(x, ξ), via formula (1.1) of Chapter I. In this case, symbol classes of particular
importance include Smρ,δ, consisting of p(x, ξ) such that

|Dβ
xD

α
ξ p(x, ξ)| ≤ Cαβ(1 + |ξ|)m−ρ|α|+δ|β|,

and the subclass Sm of Sm1,0, consisting of p(x, ξ) with an asymptotic expansion

p(x, ξ) ∼
∑
j≥0

pm−j(x, ξ)

where, for |ξ| ≥ 1, pm−j(x, ξ) is homogeneous of degreem−j in ξ. A large number of other
classes of “symbols” has arisen in this paper, to which operators have been associated, by
various rules. We provide a list of these classes here, for convenience. We list the chapter
and numbered formula at (or near) which each listed symbol class is defined.

Symbol Class Defined at: Symbol Class Defined at:

Smρ# I (1.4) Ωm,kb II (3.41)

H(G,α,m) I (2.6) Ωm,k II (3.51)-
Hm,µα,δ I (2.40) Sm,k(Hn,Λ) II (3.51)

Ψm0 II (2.4) Ωm,k1/2 II (5.13)

Hm
b II (2.13) Ψ̃m III (1.1)

Hm II (2.14) Ψ̃m,k III (1.1)

Sm1 II (2.16) Σ̃m III (1.1)

Hm,k II (2.23) Ω̃m,k III (1.1)

Ψm,k0 II (2.36) H̃m,µα,δ III (1.1)+

Ψm II (2.56) Ψ̃m,∞+ III (6.37)
Σm0 II (3.1) Smρ (A.3)
Σm II (3.2) Sm (B.36)+
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Index of other notations

The following is a list of other special symbols, and the chapter and formula number at
(or near) which each is introduced.

Notation Defined at: Notation Defined at:
p(x,D) I (1.1) FQ II (4.55)

OP X̃ I (1.11) AQ II (4.58)
σK(x, π) I (3.1) subσ(P ) III (3.53)
Hn II (1.1) �+ III (4.7)
hn II (1.2) �b III (4.12)
π±λ(t, q, p) II (1.4) ∂b III (6.22)-
π(y,η) II (1.8) Sp(n,R) (A.14)-

a(X,D) II (1.12) L2
H(Bn) (B.8)-

σK(±λ)(x, ξ) II (1.15) a(X,D) (B.19)
L0 II (2.1) p(Q) (B.42)
{a, b}j(x, ξ) II (2.20) T m/2 (B.70)
Λ II (2.68)-
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[[FeK]] C. Fefferman and J.J. Kohn, “Hölder estimates on domains of complex dimension
2 and on 3 dimensional CR manifolds,” Advances in Math. 69 (1988), 223–303.

[[Gel]] D. Geller, Analytic Pseudodifferential Operators on the Heisenberg Group and Local
Solvability, Princeton Univ. Press, Princeton, N.J., 1990.

[[NW]] A. Nagel, J. Rosay, E. Stein, and S. Wainger, “Estimates for the Bergman and
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