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Abstract. It is known that pointwise behavior of multidimensional spherical
Fourier inversion is more complicated on the torus than on Euclidean space. Figures
presented here give graphical evidence of a certain choppiness of partial sums of
the Fourier series of some functions with simple singularities on the 2-torus T2.
This choppiness is provably absent for the analogous partial Fourier inversion on
Euclidean space R2. Curiously, this choppiness clears up for a discrete set of partial
sums. We call this phenomenon serendipitous Fourier inversion. The purpose of
this paper is to introduce this notion and to produce estimates that establish its
existence.

1. Introduction

The investigation discussed here began with a numerical study of partial sums

(1.1) SNf(x) =
∑

k2
1+k2

2≤N2

f̂(k1, k2) ei(k1x1+k2x2)

of the Fourier series of a function f on T2 = R2/(2πZ2), with

(1.2) f̂(k1, k2) = (2π)−2

∫∫

T2

f(x1, x2) e−i(k1x1+k2x2) dx1 dx2.

We studied graphically the nature of convergence SNf → f , with particular atten-
tion to two cases. The first is

(1.3) f(x) = χa(x),

the characteristic function of the disk Da of radius a centered at 0. We take a = 2.5.
The second is

(1.4) f(x) = Ra(x),

the fundamental solution to the wave equation on R × T2, evaluated at t = a; we
take a = 1.5. Given a ∈ (0, π), there is the formula

(1.5)
Ra(x) =

1
2π

(a2−|x|2)−1/2, x ∈ Da,

0, x /∈ Da.
1
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Note that χa is piecewise smooth with a simple jump across ∂Da, while Ra blows
up at ∂Da. We have Ra ∈ Lp(T2) for 1 ≤ p < 2, but Ra /∈ L2(T2).

In each of these cases we can implement (1.1) using exact formulas for f̂(k), k =
(k1, k2). We have χ̂a(0) = a2/4π and

(1.6) χ̂a(k) =
a

2π|k| J1(a|k|), k 6= 0.

Furthermore R̂a(0) = a/4π2 and

(1.7) R̂a(k) =
sin a|k|
4π2|k| , k 6= 0.

A number of graphs of SNχa and SNRa are presented at the end of this paper, and
many more are given in [T4].

Various qualitative properties of SNf , which apply to f = χa and to f = Ra,
have been established in recent papers, particularly [BC1], [T1], and [T3]. It is
shown that SNχa(x) → χa(x) as N → ∞ at each point x ∈ T2, where we set
χa = 1/2 on ∂Da. In a neighborhood of ∂Da, there is a uniform analysis of the
behavior of SNχa(x) analogous to the analysis of the Gibbs phenomenon for one-
dimensional Fourier series. It is also shown, in [T1], that SNχa(x) converges to
χa(x) more slowly at x = 0 than at other points x ∈ T2 \ ∂Da. (See the comments
below (2.8) for a more precise statement.) Graphical depictions of these phenomena
are given in Figure 1.

The nature of SNRa(x) is a bit more exotic than that of SNχa(x). There is an
analogue of the Gibbs phenomenon, analyzed in a more general context in [T3]. In
this case, one has pointwise convergence SNRa(x) → Ra(x) for each x /∈ ∂Da ∪ 0.
However, SNRa(0) has an oscillatory divergence, manifesting a two-dimensional
variety of the Pinsky phenomenon, discussed in the context of a piecewise smooth
function on Rn, for n ≥ 3, in [P]. These behaviors are displayed in Figures 2A–2F.

One notable feature of these figures is the choppiness of the graphs of these
functions SNf , particularly apparent in Figures 2B–2E, and to a smaller extent
in the 2nd–5th graphs in Figure 1. This choppiness is provably absent for the
analogous partial Fourier inversion SNf on R2, as we will discuss further in the
next section. Also apparent in these figures, as part of the choppiness, is the
obvious lack of rotational symmetry of these graphs, a symmetry that holds for
SNf in these cases but is broken when one passes from R2 to T2.

A further surprise, and the stimulus for this paper, is that for certain discrete
values of N this choppiness magically clears up, and SNf behaves about as nicely
on the torus as does SNf on Euclidean space. This is illustrated in the first and
last graphs in Figure 1 and, more strikingly, in Figures 2A and 2F. We call this
phenomenon serendipitous Fourier inversion, and the main goal of this paper is to
demonstrate its existence, for a natural class of functions, containing χa and Ra as
special cases.
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In §2 we recall some known results on partial Fourier inversion on R2 and on T2

(and in more general contexts), using a wave equation approach, as in [CV], [PT],
and a number of subsequent papers. We show that SNf can be written as a sum
Sβ

Nf + T β
Nf , and the behavior of Sβ

Nf specified as precisely as that of SNf , when
f is such a conormal distribution as χa or Ra. Known estimates on T β

Nf , while
requiring substantial effort, have a cruder form, a fact that is consistent with the
choppiness of SNf that we observe.

The Poisson summation formula is frequently effective in connecting Fourier
analysis on Tn and Rn. However, it is generally not so successful in the analysis
of pointwise convergence. The simple reason for this is brought forth in §3. There
the first key to the existence of serendipity in Fourier series on T2 arises as the
disappearance of the obvious obstruction to applying this method to pointwise
convergence. Once one sees what it is (cf. (3.4)), it is clear that this condition might
lead to serendipity. However, the most familiar stationary phase estimates are not
strong enough to show that this condition does lead to serendipity. Demonstrating
this requires a new estimate on SNf(x), uniformly valid for large N and |x|, when
f is a compactly supported conormal distribution (satisfying geometrically natural
conditions). The primary such estimate is stated in Proposition 3.1, and it is shown
how this leads to the main result of this paper, stated as Theorem 3.2. We then
begin to prove Proposition 3.1, and reduce it to a technical estimate, given in
Lemma 3.3.

This lemma is proven in §4. The analysis there also uses the wave equation
method discussed in §2, and the demonstration involves a careful uniform analysis
of the large space and large time behavior of the solution to the wave equation on
R×R2 with compactly supported, conormal initial data. The estimates established
in §4 complete the proof of Proposition 3.1 and hence of the main result, Theorem
3.2.

When the analysis of §4 is specialized to the function Ra, its special structure
gives rise to explicit formulas that make the desired uniform estimates on SNRa(x)
relatively elementary, compared to the general case. We give these formulas in
Appendix A, which one might want to read as a warm-up before tackling §4.

Appendix B analyzes the oscillation of the spike in SNRa. While this is not part
of serendipity, it is a noteworthy part of the behavior of the Fourier series of Ra,
whose study initiated this work.

2. Fourier inversion on R2 and T2

The behavior of SNf can be compared and contrasted with that of the Euclidean
partial Fourier inversion

(2.1) SNf(x) =
∫∫

|ξ|2≤N2

f̂(ξ) eiξ·x dξ,
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of the Fourier transform of a function f on R2, with

(2.2) f̂(ξ) = (2π)−2

∫∫

R2

f(x) e−ix·ξ dx.

The Gibbs and Pinsky phenomena were studied in this context in [CV], [P], and
[PT] (also with R2 replaced by Rn for n ≥ 2). Some of these papers use a wave
equation approach to the analysis of SN . Namely, one writes

(2.3) SNf(x) =
1
π

∫ ∞

−∞

sin Nt

t
u(t, x) dt,

where u(t, x) solves

(2.4) utt −∆u = 0, u(0, x) = f(x), ut(0, x) = 0.

The large |t| behavior in (2.3) is controlled by the fact that, if f has compact
support, then, for any compact K ⊂ R2, there exists T0 < ∞ such that u(t, x) is
smooth for |t| > T0, and has at least an algebraic rate of decay as |t| → ∞.

This decay phenomenon holds more generally when R2 is replaced by Rn, but it
has no analogue when Rn is replaced by Tn, and this makes the analysis of SN more
subtle than the analysis of SN . Approaches taken in [BC1], [BC2], and [T1]–[T3]
involve setting SN = Sβ

N + T β
N , where we pick an even function β ∈ C∞0 (R), with

supp β ⊂ [−A,A] and β(t) = 1 for |t| ≤ A/2, and set

(2.5) Sβ
Nf(x) =

1
π

∫
sin Nt

t
β(t)u(t, x) dt.

The analysis of Sβ
Nf(x) involves techniques well developed in [PT]. Analogues of

Gibbs phenomena and Pinsky phenomena are accounted for by (2.5), provided β is
chosen appropriately. There remains the task of estimating T β

Nf . Results of [BC1]
give

(2.6) ‖T β
Nχa‖L∞ −→ 0, as N →∞.

In (5.31) of [T1] it is shown that, if A/2 > a,

(2.7) ‖T β
Nχa‖L∞ = o(N−1/2).

This combines with the following result, established in [PT]:

(2.8)
Sβ

Nχa(x)− χa(x) = O(N−1), x ∈ T2 \ (∂Da ∪ 0),

O(N−1/2), x = 0.



5

In fact, this oscillates with an amplitude proportional to N−1/2 at 0. This yields
the result mentioned in §1, that SNχa(x) tends to χa(x) more slowly at x = 0 than
at x /∈ ∂Da ∪ 0, though information about how much more slowly is less precise for
SNχa on T2 than for SNχa on R2.

Regarding the Fourier series of Ra, it follows from (5.22) of [T1] that, if A/2 > a,

(2.9) ‖T β
NRa‖L∞ −→ 0, as N →∞,

which reduces convergence results on SNRa mentioned in §1 to results on Sβ
NRa,

obtainable by wave equation techniques as described above.
To close this section, we describe more precise results that have been shown to

hold for Sβ
Nf , when f is a conormal distribution, such as χa or Ra. (The definition

of conormal distributions will be recalled in (3.7).) On a neighborhood U of ∂Da

in T2 we have the following expansion, from (4.11) of [T3].

(2.10)

Sβ
Nf(x)− f(x) = A0(x)

[
N bFb(Nψ(x))− ψ(x)−b

+

]

+
K∑

j=1

N b−jAj(x)Φa−j(Nψ(x)) + JK(x,N),

with

(2.11) |JK(x,N)| ≤ CK N b−K−1, K ≥ 0.

Here b = 0 for f = χa, b = 1/2 for Ra, Aj(x) are certain smooth coefficients, and,
for b < 1,

(2.12) Fb(s) =
1
π

∫ ∞

−∞

sin t

t
(s− t)−b

+ dt,

which is absolutely convergent if b ∈ (0, 1) and defined as an oscillatory integral for
b ≤ 0. Also we set

(2.13) Φb−j(s) = Fb−j(s)− sj−b
+ .

As shown in §3 of [T3], one has, for b < 1,

(2.14) Fb(s) ∼ s−b
+ + B(b)

sin(s− π(1− b)/2)
s

+ O(s−2), |s| → ∞.

When f is conormal with singularity along ∂Da, the function ψ(x) solves the eikonal
equation |dψ| = 1, ψ|∂Da = 0, so in fact

(2.15) ψ(x) = a− |x|.
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Finally we mention that the results described in this section have been estab-
lished in more general contexts, including higher-dimensional compact manifolds.
We say no more about this here, but refer to the cited papers.

3. Poisson summation and serendipity

As mentioned in the introduction, we can connect partial Fourier inversion on
the torus and on Euclidean space via the Poisson summation formula, which in this
context (stated more generally for n dimensions) takes the form

(3.1) SNf(x) =
∑

ν∈Zn

SNf(x + 2πν),

with x = (x1, . . . , xn) ∈ Rn, ν = (ν1, . . . , νn) ∈ Zn. Assume f has support in
(−π, π)n, which we identify with Tn. We identify the left side of (3.1) with a
periodic function on Rn, and a priori we can say that (3.1) converges in S ′(Rn).
But of course this is rather weak convergence, and we desire something stronger.

However, there is a simple obstruction to using (3.1) to obtain pointwise results
on Tn when corresponding results on Rn are known. To see this, note that

(3.2) SNf(x) =
∫

χN (ξ)f̂(ξ)eix·ξ dξ

is the inverse Fourier transform of χN (ξ)f̂(ξ), which in the current setting is piece-
wise smooth, generally with a jump across {ξ : |ξ| = N}. By the stationary phase
method one has, as |x| → ∞,

(3.3)
SNf(x) = |x|−(n+1)/2

[
A0(N,ω)eiN |x| + B0(N,ω)e−iN |x|]

+ O(|x|−(n+3)/2), ω =
x

|x| .

Of course this implies that SNf(x) is not integrable if A0(N, ω) 6= 0 or B0(N, ω) 6=
0. And that is bad news.

However, suppose f has the following property:

(3.4) |ξ| = N =⇒ f̂(ξ) = 0.

Then we have

(3.5) SNf(x) = |x|−(n+3)/2
[
A1(N, ω)eiN |x| + B1(N,ω)e−iN |x|] + O(|x|−(n+5)/2).

In particular, when (3.4) holds,

(3.6) |SNf(x)| ≤ C(N, f) (1 + |x|)−(n+3)/2.
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If n = 2, this implies that the series (3.1) is absolutely and uniformly convergent,
for each such value of N . (From here on we stick to the setting n = 2.) When the
condition (3.4) holds, we call SNf a serendipitous partial Fourier inversion of f on
T2.

Consider the example f = Ra. By (1.7), we see that (3.4) holds for aN/π ∈ Z+.
In Figures 2A–2F we graph SNRa(x, y) for a range of values of N , namely N =
(k + δ)π/a, with k = 6 and δ = 0, 0.2, . . . , 0.8, 1. Recall that we are taking a = 1.5.
Note the qualitatively different appearances of Figures 2A and 2F, in which k + δ
is an integer, compared to Figures 2B–2E, in which k + δ is not an integer.

The phenomenon of serendipitous Fourier inversion also arises for SNχa, though
its appearance is more subtle than for SNRa, since χa is more regular than Ra.
From (1.6) we see that SNχa is serendipitous whenever J1(aN) = 0. Figure 1 shows
graphs of SNχa(x, y) as aN ranges between the zeros r1 ≈ 41.6171 and r2 ≈ 44.7593
of J1. Here a = 2.5.

To formulate our main result, we bring in the following class of conormal distri-
butions. Let Ω ⊂ R2 be a compact set with smooth boundary ∂Ω = Σ. For µ ∈ R,
set

(3.7) Iµ(R2, Σ) = {PχΩ : P ∈ OPSµ(R2)},

where OPSµ denotes the space of classical pseudodifferential operators of order µ.
We will assume Ω ⊂ (−π, π)2, and that Σ has strictly positive curvature. Then

let K be a compact set containing both Ω and all caustics formed by the Lagrangian
flow-out of the conormal bundle of Σ. (In many cases, we can take K = Ω.)

Our main technical estimate of this section is the following.

Proposition 3.1. Assume Ω has the properties stated above, and let

(3.8) f ∈ Iµ(R2, Σ) have compact support.

Assume f satisfies the serendipity condition (3.4) for a set N of positive real num-
bers N` → +∞. Let O be an open neighborhood of K. Then

(3.9) |SNf(x)| ≤ C|x|−5/2 N−1+µ, N ∈ N , x ∈ R2 \ O.

This result is not an immediate consequence of (3.5)–(3.6); we need further
control of the role of N in such estimates. Arguments given below, and in the next
section, will provide such control.

Given Proposition 3.1, we can readily establish the main result of this paper. To
formulate this result, let A be the minimal subset of Z2 such that

(3.10)
⋃

ν∈A
[−π, π]2 + 2πν contains a neighborhood of K.

Of course, A is a finite set. (Frequently A = {0}.) Then we have:
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Theorem 3.2. Under the hypotheses of Proposition 3.1,

(3.11)
∣∣∣SNf(x)−

∑

ν∈A
SNf(x + 2πν)

∣∣∣ ≤ CN−1+µ, N ∈ N , x ∈ [−π, π]2.

Example 1. Take f = Ra, which belongs to I1/2(R2, ∂Da). In this case we can
take K = Da and A = {0}. The estimate (3.9) specializes to

(3.12) |SNRa(x)| ≤ Cε|x|−5/2N−1/2, |x| ≥ a + ε, N ∈ (π/a)Z+.

The special nature of Ra allows for a fairly straightforward demonstration of the
estimate (3.12), which we give in Appendix A.

Example 2. Similarly, for χa, which belongs to I0(R2, ∂Da), we have

(3.13) |SNχa(x)| ≤ Cε|x|−5/2N−1, |x| ≥ a + ε, J1(aN) = 0.

In contrast to (3.12), we do not have an elementary direct proof of (3.13). Note
that the corollary

(3.14) ‖SNχa − SNχa‖L∞(T2) ≤ CN−1, J1(aN) = 0,

is much more precise than the estimate (2.7), valid for general N ∈ [1,∞), and
interfaces quite nicely with (2.8) (or rather its analogue, with Sβ

Nχa replaced by
SNχa).

The first step in the proof of Proposition 3.1 is to note that, when (3.4) holds, we
can write eix·ξ = (ixj)−1∂ξj e

ix·ξ and integrate by parts without a boundary term
to get

(3.15)

SNf(x) = − 1
ixj

∫

|ξ|≤N

∂ξj f̂(ξ) eix·ξ dξ

=
1
xj
SN (xjf)(x).

Of course f ∈ Iµ(R2, Σ) ⇒ xjf ∈ Iµ(R2, Σ). Hence Proposition 3.1 is a conse-
quence of the following result.

Lemma 3.3. In the setting of Proposition 3.1, assume we have a compactly sup-
ported

(3.16) g ∈ Iµ(R2,Σ).
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Then

(3.17) |SNg(x)| ≤ C|x|−3/2 N−1+µ, x ∈ R2 \ O, N ≥ 1.

The proof of this lemma will occupy §4.

4. Proof of Lemma 3.3

To prove Lemma 3.3, we will use the wave equation approach to SNg, parallel
to (2.3), i.e.,

(4.1) SNg(x) =
2
π

∫ ∞

0

sin Nt

t
u(t, x) dt,

where u(t, x) solves

(4.2) utt −∆u = 0, u(0, x) = g(x), ut(0, x) = 0.

For convenience we assume µ < 1 in (3.16), which is the interesting case, after all.
In particular, we assume

(4.3) g ∈ L1(R2), supp g ⊂ BA = {x : |x| ≤ A}.

Then

(4.4) u(t, x) = ∂tR(t, ·) ∗ g(x),

where, for t > 0,

(4.5) R(t, x) =
1
2π

(t2 − |x|2)−1/2
+ .

We will be able to deduce the desired estimate (3.17) from sufficiently detailed
estimates on u(t, x).

Note that, by finite propagation speed, u(t, x) vanishes for |x| > t + A, if (4.3)
holds and t > 0. We will separately estimate u(t, x) in the regions

(4.6) |x| −A ≤ t ≤ |x|+ 2A + 1, t ≥ |x|+ 2A + 1,

assuming also (in the former case at least) that x ∈ R2 \ O, as specified in (3.17).
For the first round of estimates we note from (4.5) that, for s > 0,

(4.7)

t = |x|+ s ⇒ t2 − |x|2 = s(2|x|+ s)

⇒ |R(t, x)| ≤ Cs−1/2(|x|+ s)−1/2, and

|∂`
tR(t, x)| ≤ Cs−`−1/2(|x|+ s)−1/2.
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We then see from (4.4) that, if (4.3) holds, then, for s > 0,

(4.8)
t = |x|+ 2A + s ⇒ |u(t, x)| ≤ Cs−3/2(|x|+ s)−1/2‖g‖L1 , and

∣∣∣∂`
t

u(t, x)
t

∣∣∣ ≤ Cs−`−3/2(|x|+ s)−3/2‖g‖L1 .

These estimates can be applied to a piece of SNg(x), defined as follows. Pick
ϕ ∈ C∞(R) having the property that

(4.9)
ϕ(t) = 0 for t ≤ 0,

1 for t ≥ 1,

and set

(4.10) Sb
Ng(x) =

2
π

∫ ∞

0

sin Nt
ϕ(t− |x| − 2A− 1)

t
u(t, x) dt.

Integration by parts gives

(4.11) Sb
Ng(x) = (−1)`N−2` 2

π

∫ ∞

0

sin Nt ∂2`
t

(ϕ(t− |x| − 2A− 1)
t

u(t, x)
)
dt,

and using (4.8) we have that, as long as (4.3) holds,

(4.12) |Sb
Ng(x)| ≤ C`N

−2` ‖g‖L1 |x|−3/2.

Using finite propagation speed, we can write

(4.13) SNg(x) = S#
N g(x) + Sb

Ng(x),

where S#
N g(x) is given as follows. Pick ψ ∈ C∞0 (R) such that

(4.14) suppψ ⊂ [−3A− 1, 1], ϕ(t) + ψ(t) = 1 for t ≥ −3A− 1.

Then set

(4.15) S#
N g(x) =

2
π

∫ ∞

0

sin Nt
ψ(t− |x| − 2A− 1)

t
u(t, x) dt.

It remains to estimate S#
N g(x), which we will do after estimating u(t, x) in the first

region specified in (4.6).
For this estimate, we need the full force of (3.16), in addition to (4.3). We

examine (4.4) from the point of view of mapping properties on spaces of Lagrangian
distributions of an operator κg, defined by

(4.16) κgS(t, x) = S(t, ·) ∗ g(x),
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where S(t, x) is a Lagrangian distribution of the same class as ∂tR(t, x). From (4.5)
we see that

(4.17) R ∈ I1/2(R3, C),

where C = {(t, x) : |t| = |x|}, and this space is defined similarly to (3.7), at least
away from (t, x) = (0, 0), which is sufficient for our purpose here. More precisely,
the factorization

(4.18) R(t, x) =
1
2π

(t + |x|)−1/2(t− |x|)−1/2
+

gives

(4.19) R = O(|x|−1/2) in I1/2(R3, C),

in the sense of measuring seminorms of R on any given ball of radius 1 and center
(t, x). Similarly

(4.20) ∂tR = O(|x|−1/2) in I3/2(R3, C).

Recall we are assuming

(4.21) g ∈ Iµ(R2, Σ), supp g ⊂ BA.

Now under our hypotheses on Σ we can say that, for T0 sufficiently large that all
caustics disappear, on Ω0 = {(t, x) : t ≥ T0} we have

(4.22) κg : I3/2(Ω0, C) −→ Iµ(Ω0,M
+) + Iµ(Ω0,M

−),

where M+ and M− are two smooth surfaces, characteristic for ∂2
t − ∆, formed

by the Lagrangian flow-out of the conormal bundle to Σ. The mapping property
(4.22) is a consequence of the general calculus of Lagrangian distributions; cf. [H],
Chapter 25 (but note that the definition of the order of a conormal distribution
used here is shifted from that used in [H]). It follows from (4.20)–(4.22) that

(4.23) u
∣∣
Ω0

= κg∂tR
∣∣
Ω0

= O(|x|−1/2) in Iµ(Ω0,M
+) + Iµ(Ω0,M

−).

Hence

(4.24) t−1ψ(t− |x| − 2A− 1)u = O(|x|−3/2) in Iµ(Ω0,M
+) + Iµ(Ω0,M

−).

It then follows directly from (4.15) and (4.24) that

(4.25) |S#
N g(x)| ≤ C N−1+µ |x|−3/2,
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for x ∈ O, N ≥ 1. The proof of Lemma 3.3 is complete.

A. Specific formulas for SNRa

In case f = Ra, we can derive a rather precise formula for SNf , as follows. With
Λ =

√−∆ on R2, we have

(A.1) SNRa(x) =
1
π

∫ ∞

−∞

sinNt

t
cos tΛ

sin aΛ
Λ

δ(x) dt.

Using (cos tΛ)(sin aΛ) = 1
2 sin(a + t)Λ + 1

2 sin(a− t)Λ, we obtain

(A.2) SNRa(x) =
1
2π

∫ ∞

−∞

sinNt

t

[
Ra+t(x) + Ra−t(x)

]
dt.

Note that the quantity in square brackets is twice the even part (with respect to t)
of Ra−t(x). A change of variable yields

(A.3)
SNRa(x) =

1
π

∫ ∞

−∞

sin N(a− t)
a− t

Rt(x) dt

=
1
π

∫ ∞

−∞

(sin aN) cos Nt− (cos aN) sin Nt

a− t
Rt(x) dt.

As mentioned in §3, serendipity in this case is expected when N is an integral
multiple of π/a. In fact, the implication of aN/π ∈ Z+ on (A.3) is clear:

(A.4) aN/π ∈ Z⇐⇒ sin aN = 0.

Note that (sin Nt)Rt(x) is an even function of t, and hence it integrates to 0 against
1/t. Since (a− t)−1 + t−1 = −a/t(t− a), we have

(A.5) aN/π ∈ Z+ ⇒ SNRa(x) = − a

π
cos aN

∫ ∞

−∞

sin Nt

t(t− a)
Rt(x) dt.

Recalling the formula (1.5) and making another change of variable, we have

(A.6)
SNRa(x) =

a cos aN

π2

∫ ∞

|x|

sin Nt

t(t− a)
(t2 − |x|2)−1/2 dt

=
a cos aN

|πx|2
∫ ∞

1

sinN |x|s
s(s− a/|x|) (s2 − 1)−1/2 ds,

whenever aN/π ∈ Z+. Elementary analysis of the last integral yields

(A.7) |SNRa(x)| ≤ Cε|x|−5/2N−1/2, for |x| ≥ a + ε, N ≥ 1,
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as asserted in (3.12).

B. The spike in SNRa

Graphs of SNRa(x) indicate that, at least in the large N limit, SNRa(0) oscillates
between 0 and 2Ra(0). We make a calculation showing this is exactly true for
SNRa(0), hence, by (2.9), asymptotically true for SNRa(0).

In fact, using (A.2) and the formula (1.5) for Ra(x, y), valid for a > 0, and noting
Ra is odd in a, we have

(B.1) SNRa(0) =
1

4π2

∫ ∞

−∞

sin Nt

t

( 1
a + t

+
1

a− t

)
dt.

We can replace the quantity in parentheses by 2/(a− t) since sin Nt/t is even in t.
A partial fraction decomposition of 1/t(a− t) then yields

(B.2)
SNRa(0) =

1
2π2a

∫ ∞

−∞

(
sin Nt

)(1
t

+
1

a− t

)
dt

=
1− cos aN

2πa
,

giving precisely the asserted behavior.
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