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Abstract. We study two classes of operators we call Airy operators, which arise
in the construction of parametrices for boundary problems with grazing and gliding
rays. In the grazing case these operators are pseudodifferential operators. In the
gliding case they are of a more singular character. We analyze the latter class via a
family of Airy operator identities. The derivation of such identities has some points
in common with one proof of Egorov’s theorem.

This is a TeXed version of the paper [T].

1. Introduction

This paper describes some joint work of the author and R. Melrose, which is
more fully expounded in [8].

Airy operators arise in constructing parametrices for boundary problems with
grazing and gliding rays. The basic Airy operators, Φ and Φi, are the following
Fourier multipliers:

(1.1) Φ̂u(ξ) = Φ(ζ0)û(ξ), Φ̂i u(ξ) = Φi(ζ0)û(ξ),

where

(1.2) Φ(ζ0) =
A′

A
(ζ0), Φi(ζ0) =

Ai′

Ai
(ζ0),

and

(1.3) ζ0 = ξ
−1/3
1 (ξn + iT ).

For Φi, we fix T > 0; for Φ, we can take T = 0. Here, Ai(ζ) is the usual Airy
function, the Fourier transform of eis3/3, and A(ζ) = A±(ζ) = Ai(e±2πi/3ζ). The
operator Φ appears in the analysis of grazing ray problems and is a pseudodiffer-
ential operator (microlocally near ξn = 0, ξ1 > 0):

(1.4) Φ ∈ OPS
1/3
1/3,0.

The operator Φi appears in the analysis of gliding ray problems and is not a pseu-
dodifferential operator. In fact, it is a rather singular operator, a locally infinite
sum of Fourier integral operators with singular phase. One thing Φi has in common
with Φ is its order on Sobolev spaces:

(1.5) Φi : Hs −→ Hs−1/3.
1
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This is a consequence of the estimate

(1.6) |Φi(ζ0)| ≤ CT ξ
1/3
1 .

This estimate and other facts about Φi(ζ0) we record here follow from elementary
properties of the Airy function, and are proved in [8]. We have the following
description of how Φi affects the singularity of a distribution to which it is applied.

Proposition 1.1. Let u ∈ E ′(Rn). Say u = 0 for xn < A. Then Φi u = 0 for
xn < A. Also, the wave front set of Φi u satisfies the following three conditions:

WF(Φi u) ∩ {ξn > 0} ⊂ WF(u),(1.7)

WF(Φi u) ∩ {ξn = 0} ⊂ {x + (0, . . . , 0, y), ξ) :(1.8)

(x, ξ) ∈ WF(u), y ≥ 0, ξn = 0},

WF(Φi u) ∩ {ξn < 0} ⊂
∞⋃

k=0

J k[WF(u) ∩ {ξn < 0}],(1.9)

where J is the singular canonical transformation

(1.10) J (x, ξ) =
(
x1 +

2
3

(
−ξn

ξ1

)3/2

, x2, . . . , xn−1, xn + 2
(
−ξn

ξ1

)1/2

, ξ
)
.

This is proved in [8]; see also [1]. The inverse Φi−1 also obeys Proposition 1.1,
but whereas Φ−1 has order zero:

(1.11) Φ−1 ∈ OPS0
1/3,0,

for Φi−1 we only have the same behavior as (1.5):

(1.12) Φi−1 : Hs −→ Hs−1/3.

This follows from the estimates

(1.13)
|Φi(ζ0)−1| ≤ CT ξ

1/3
1 (1 + ξ

−1/3
1 |ξn|)−1, for ξn ≤ 0,

CT (1 + ξ
−1/3
1 |ξn|)−1/2, for ξn ≥ 0,

proved in [8].
In the study of boundary problems, we are led to invert operators of the form

(1.14) PΦ + Q, PΦi + Q,

with

(1.15) P ∈ OPSm−1/3, Q ∈ OPSm,
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and certain generalizations. The inversion of PΦ + Q, under certain natural hy-
potheses, can be carried out using the calculus of pseudodifferential operators,
whereas other techniques are required to invert PΦi + Q. We will utilize certain
Airy operator identities, derived in §4, to do this.

In §2 we will recall some facts about constructing parametrices for boundary
problems in the case of grazing and gliding rays. Granted the material of this
section, the following sections are self contained. Section 3 gives a brief discussion of
Airy operators in the diffractive case, where they are pseudodifferential operators,
and in §4 we get to the main new point, the development of a calculus of Airy
operators in the gliding case.

2. Grazing and gliding ray parametrices

We look at parametrices for boundary problems

(2.1) Pu = 0 on Ω, Bu = f on ∂Ω.

Recall that grazing rays are null bicharacteristics of P that hit ∂Ω non-transversally,
with exactly second order contact, remaining in Ω. If Ω ⊂⊂ Ω̃ and P has smooth
coefficients on Ω̃, one has gliding rays on ∂Ω if Ω̃ \ Ω has grazing rays. The basic
form of the grazing ray parametrix is

(2.2) u =
∫

[gA(ζ) + ihA′(ζ)]A(ζ0)−1eiθF̂ (ξ) dξ,

and the gliding ray parametrix has the form

(2.3) u =
∫

[g Ai(ζ) + ihAi′(ζ)]A(ζ0)eiθF̂ (ξ) dξ.

Here, (ζ, θ) is a pair of phase functions, obtained by solving certain eikonal equa-
tions, and (g, h) is a pair of amplitudes, obtained by solving certain transport
equations, g ∈ S0, h ∈ S−1/3. In the special case that P is a second order scalar
operator, with principal symbol P2(x, ξ), a quadratic form in ξ, the eikonal equa-
tions are of the form

(2.4)
〈dθ, dθ〉+ ζ〈dζ, dζ〉 = 0,

〈dθ, dζ〉 = 0,

where 〈ξ, η〉 is the bilinear form polarizing P2, 〈ξ, ξ〉 = P2(x, ξ), and the transport
equations are of the form

(2.5)
2〈dθ, dgν〉 − 2ζ〈dζ, dhν〉 − 〈dζ, dζ〉hν + (P bθ)gν − ζ(P bζ)hν = iPgν−1,

2〈dζ, dgν〉 − 2〈dθ, dhν〉+ (P bζ)gν − (P bθ)hν = −iPhν−1,
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where g ∼ ∑
ν≥0 gν , etc. Here P b is obtained from P by dropping the zero order

part. (On ξn ≥ 0, these equations are solved to infinite order on ∂Ω; in ξn < 0
they are solved exactly.) See [8] or [11] for a discussion of the eikonal and transport
equations in other contexts, e.g., for first order systems. In the gliding case, (2.3),
we evaluate the amplitudes and phase phase functions in the complex domain, with
ξn replaced by ξn + iT , e.g.,

(2.6) ζ = ζ(x, ξ1, . . . , ξn−1, ξn + iT ),

etc. One takes almost holomorphic extensions of these functions in the ξn variable.
It is significant that one can arrange, on ∂Ω,

(2.7) ζ
∣∣∣
∂Ω

= ζ0 = ξ
−1/3
1 (ξn + iT ).

One can also arrange

(2.8) h
∣∣∣
∂Ω

= 0,

in the case of second order, scalar P .
The grazing ray parametrix was constructed by Melrose [3] and Taylor [9], and

is also described in Chapter 10 of the book [10]. These constructions used cruder
information, namely that one could arrange

(2.9) ζ
∣∣∣
∂Ω
− ζ0 = O

(∣∣∣ξn

ξ1

∣∣∣
∞)

, h
∣∣∣
∂Ω

= O
(∣∣∣ξn

ξ1

∣∣∣
∞)

.

That one can arrange the stronger conditions (2.7) and (2.8) follows from the equiv-
alence of glancing hypersurfaces [5], as shown in the unpublished manuscript [6] and
also sketched in [11]; full details are given in [8], for both grazing and gliding ray
parametrices. The gliding ray construction of [1] is similar to (2.3)–(2.9) in a num-
ber of respects, though different in detail.

The distribution F in (2.2) or (2.3) is related to the boundary condition Bu = f
on ∂Ω. For example, take the Dirichlet boundary condition u|∂Ω = f ; P scalar and
second order, say in the gliding case. From (2.3), (2.7), and (2.8), we obtain

(2.10)
u
∣∣∣
∂Ω

=
∫

g0e
iθ0Ai(ζ0)A(ζ0)F̂ (ξ) dξ

= J(AiAF ),

where AiA is the Fourier multiplier

(2.11) ÂiAF (ξ) = Ai(ζ0)A(ζ0)F̂ (ξ),

and J is an elliptic Fourier integral operator:

(2.12) Jv =
∫

g0e
iθ0 v̂(ξ) dξ;
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here θ0 = θ|∂Ω and g0 = g|∂Ω. In solving the transport equations, one can arrange
g0 nonvanishing, along with (2.8), and this makes J elliptic. Thus, the Dirichlet
problem is solved provided

(2.13) F = (AiA)−1J−1f.

Here, J−1 is a Fourier integral operator giving a parametrix for J . The operator
(AiA)−1 also obeys Proposition 1.1, as shown in [8].

In solving the transport equations, one is not forced to arrange (2.8). The
following result shows what sort of freedom one has to choose convenient solutions
to the transport equations.

Proposition 2.1. For second order scalar P , one can obtain solutions (g, h) to
the transport equations so that, either

(2.14) h = αg + β on ∂Ω,

with α ∈ S−1/3, β ∈ S−1/3, given arbitrary, or

(2.15) g = g0 on ∂Ω,

with g0 ∈ S0 given arbitrary. In case (2.14) we can also arange that g|∂Ω be elliptic.

This result is proved in [8]. We remark that it is useful to allow α, β, g, and h
to be k × k matrix valued, not necessarily scalar. In that case, we can generalize
(2.14) to

(2.14′) h = α1g + gα2 + β on ∂Ω.

If one does not arrange (2.8) but still wants to solve the Dirichlet problem, the
computation (2.10) is changed to

(2.16) u
∣∣∣
∂Ω

=
∫

[g0 + ih0Φi(ζ0)]eiθAi(ζ0)F̂ (ξ) dξ,

where h0 = h|∂Ω. We get

(2.17) u
∣∣∣
∂Ω

= J(I + RΦi)(AiAF ),

where R ∈ OPS−1/3 has principal symbol ig−1
0 h0. Thus we must solve for F , via

(2.18) F = (AiA)−1(I + RΦi)−1J−1f.

This is the first example of an Airy operator whose inversion requires some work.
The following result is given in [8], (2.19) via a careful analysis of the formal ex-
pansion I −RΦi + (RΦi)2 − · · · , and (2.20) via some energy estimates.
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Proposition 2.2. Let R ∈ OPS−1/3. Then, microlocally near ξn = 0, the Airy
operator I +RΦi has a parametrix (I +RΦi)−1, satisfying the following conditions:

(2.19) u ∈ E ′, u = 0 for xn < A =⇒ (I + RΦi)−1u is C∞ for xn < A,

and

(2.20) WF((I + RΦi)−1u) satisfies conditions (1.7)–(1.9) of Proposition 1.1.

The assertion (2.19) is a fairly straightforward consequence of a sufficiently de-
tailed knowledge of the operator Φi. It is enough to allow one to construct a
parametrix for the Dirichlet problem in the gliding case; one would exploit (2.20)
to analyze the singularities of the solution. In §4 we will obtain very precise infor-
mation on (I +RΦi)−1, which will show that (2.20) is a consequence of Proposition
1.1. For this argument, we will need only (2.19).

Of course, we do not want to pick solutions (g, h) of the transport equations,
not satisfying (2.8), just to get a clumsy solution to the Dirichlet problem. Nor
is this our only source of interest in studying parametrices for such operators as
I +RΦi, or more generally PΦi+Q as in (1.14). These operators naturally arise to
be inverted in the study of various general classes of boundary problems, both for
scalar second order P and other sorts of operators, like first order systems. In [11]
it is shown how boundary problems satisfying the Lopatinsky condition for strong
well posedness, in the diffractive case, give rise to operators

(2.21) PΦ + Q, Q ∈ OPS1/3 elliptic, P ∈ OPS0,

to invert. Note that, microlocally near ξn = 0, (2.21) is an elliptic operator in
OPS

1/3
1/3,0, and hence (PΦ+Q)−1 ∈ OPS

1/3
1/3,0 in this case. A finer analysis is given

in §3. The same sort of calculations in the gliding case lead to the operators

(2.22) PΦi + Q, Q ∈ OPS1/3 elliptic, P ∈ OPS0,

to invert. Their inversion will be done in §4. Also, as shown in [11], in the diffrac-
tive case, for a class of boundary problems satisfying a variant of the Lopatinsky
condition, analogous to the Neumann problem, one wants to invert PΦ + Q with

(2.23)
Q ∈ OPS1/3 with vanishing principal symbol on ξn = 0,

P ∈ OPS0 elliptic.

The same calculations in the gliding case lead one to invert PΦi + Q, under the
conditions (2.23). We will also study this in §4.



7

3. Airy operators, the diffractive case

As we have stated, the operator Φ is a pseudodifferential operator in OPS
1/3
1/3,0.

This follows from the fact that, as a function of one variable ζ, in a strip about the
real axis in C, A′(ζ)/A(ζ) satisfies the symbol estimates

∣∣∣Dj A′

A
(ζ)

∣∣∣ ≤ Cj(1 + |ζ|)1/2−j .

In fact, well known asymptotic expansions of A(ζ) and A′(ζ) imply

(3.1)
A′

A
(ζ) ∼

∑

j≥0

a±j ζ1/2−3j/2, as Re ζ → ±∞,

on a strip (even a pair of sectors) containing R. It follows easily that, if

(3.2) T = PΦ + Q,

with

(3.3) P ∈ OPSm−1/3, Q ∈ OPSm, Q elliptic,

then, microlocally near ξn = 0,

(3.4) T ∈ OPSm
1/3,0 is elliptic.

The usual pseudodifferential calculus gives a parametrix

(3.5) T−1 ∈ OPS−m
1/3,0

in the case (3.2)–(3.3). Applying the usual symbol calculus provides an asymptotic
expansion for the complete symbol of T−1. A general term in such an expansion
may involve products of a classical symbol and numerous factors of Φ(ζ0) and
its derivatives Φ(i)(ζ0). We will show that such an expression can be simplified
considerably, using the differential equation

(3.6) Φ′(ζ) = Φ(ζ)2 − ζ,

which follows from the Airy equation A′′(ζ) − ζA(ζ) = 0. We will be brief in our
discussion of this, as most of these results have been given in [4]; the discussion
here contains a few simplifications.

We introduce the following class of operators. We say

(3.7) T ∈ A+,m
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provided T is a pseudodifferential operator with symbol expansion (microlocally
near ξn = 0)

(3.8) T (x, ξ) ∼ B +
∑

j≥0

Aj(x, ξ)ξ−j/3
1 Φ(j)(ξ−1/3

1 ξn),

with

(3.9) B ∈ Sm, Aj ∈ Sm−1/3,

while T ∈ OPSm microlocally away from {ξn = 0}. Note that

(3.10) A+,m ⊂ OPSm
1/3,0.

We can represent elements of A+,m by multiple symbols in a fashion which provides
a characterization of A+,m even simpler than (3.8)–(3.9).

Proposition 3.1. A+,m consists precisely of operators of the form

(3.11) Tu(x) =
∫

[a(x, y, ξ)Φ(ξ−1/3
1 ξn) + b(x, y, ξ)]u(y)ei(x−y)·ξ dy dξ,

with

(3.12) a(x, y, ξ) ∈ Sm−1/3, b(x, y, ξ) ∈ Sm.

Proof. Suppose T has the form (3.8). Take a particular term

(3.13) Aj(x, ξ)ξ−j/3
1 Φ(j)(ξ−1/3

1 ξn) = Aj(x, ξ)∂j
ξn

Φ = T#
j (x, ξ),

which belongs to Sm
1/3,0 if j = 0, and to S

m−1/3−j/3
1/3,0 if j ≥ 1. We see that

(3.14)

T#
j u =

∫
Aj(x, ξ)∂j

ξn
Φ ei(x−y)·ξu(y) dy dξ

=
∫

(−∂ξn)j [Aj(x, ξ)ei(x−y)·ξ]Φu(y) dy dξ

= (−1)j

j∑

`=0

(
j

`

)
∂j−`

ξn
Aj(x, ξ)(xn − yn)`Φei(x−y)·ξu(y) dy dξ.

Now in (3.11) we just have to choose a(x, y, ξ) to have expansion at the diagonal
x = y dictated by (3.14). Note that we can take the leading term a0(x, y, ξ) of
a(x, y, ξ) to be

a0(x, y, ξ) = A0(x, ξ),

and we can set b(x, y, ξ) = B(x, ξ). This shows that every operator in A+,m is
of the form (3.11). The converse statement follows from the standard method of
obtaining the symbol of a pseudodifferential operator in OPSm

1/3,0, from a multiple
symbol representation such as (3.11), so the proposition is proved.

We now obtain a key result on the algebraic nature of A+,m.
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Proposition 3.2. If Tj ∈ A+,mj for j = 1, 2, then

(3.15) T1T2 ∈ A+,m1+m2 .

Proof. We have

(3.16) T1T1 ∼
∑

AjΦ(j)BkΦ(k) + E ∼
∑

CjkΦ(j)Φ(k) + E,

with
E ∈ A+,m1+m2 , Aj ∈ OPSm1−j/3−1/3, Bk ∈ OPSm2−k/3−1/3,

Cjk ∈ OPSm1+m2−(j+k)/3−2/3.

We want to show that T1T2 can be asymptotically represented in the form

(3.17) T1T2 ∼
∑

DjΦ(j) + F, Dj ∈ OPSm1+m2−1/3−j/3, F ∈ OPSm1+m2 .

In order to achieve this, we use the identity (3.6), which implies (by induction)

(3.18) Φ(j−1)(ζ) = Pj0(ζ)Φ + · · ·+ PjjΦj ,

where Pjj is a nonzero constant and more generally Pjk(ζ) is a polynomial belonging
to the vector space Pj−k, where P` is the space of polynomials in ζ spanned by
monomials ζν , where

(3.19) ν ≤ `

2
, 2ν ≡ ` (mod 3).

Thus we can invert the triangular system (3.18) to get

(3.20) Φ(ζ)j = rj0(ζ) +
j∑

k=1

rjk(ζ)Φ(k−1), rjk ∈ Pj−k.

Passing to (3.18) and back via (3.20) enables us to write

(3.21) Φ(j)Φ(k) = α0jk(ζ) +
j+k+2∑

`=1

α`jk(ζ)Φ(`−1),

where αjk(ζ) is a polynomial in ζ readily computible from (3.18), (3.20). We have

α0jk(ζ) =
j+k+2∑

λ=0

∑

µ+ν=λ

rλ0(ζ)Pj+1,µ(ζ)Pk+1,ν(ζ),
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and, for ` ≥ 1,

α`jk(ζ) =
j+k+2∑

λ=`

∑

µ+ν=λ

rλ`(ζ)Pj+1,µ(ζ)Pk+1,ν(ζ).

Note that, even though Φ(j)Φ(k) is of order 1− j − k in ζ, terms on the right side
of (3.21) can have any order up to (j + k + 2)/2 in ζ. Particular examples of (3.21)
are

(3.22)
ΦΦ = ζ − Φ′, ΦΦ′ =

1
2

+
1
2
Φ′′, Φ′Φ′ =

1
6
(2Φ− 4ζΦ′ + Φ′′′),

ΦΦ′′ =
1
3
(−Φ + 2ζΦ′ + Φ′′′).

If we substitute (3.21) into (3.16), rearrangement produces a formal sum

(3.23)
∑

j,k

FjkΦ(j) + E′,

with
E′ ∈ A+,m1+m2 , Fjk ∈ OPSm1+m2−1/3−j/3.

However, for each j, there are infinitely many terms Fjk, and
∑

k Fjk is not asymp-
totic in the usual sense. But as k →∞, terms homogeneous of a fixed degree vanish
to increasingly high order at ξn = 0. Thus we can find Fj ∈ OPSm1+m2−1/3−j/3

such that
∑N

k=1 Fjk − Fj vanishes to arbitrarily high order at ξn = 0 for N large.
Now form

(3.24) S ∼
∑

j≥0

FjΦ(j).

We see that S ∈ A+,m1+m2 and

(3.25) T1T2 − S ∈ OPSm1+m2 .

This proves the proposition.

It follows from (3.15) and the symbol calculus that

(3.26) [T1, T2] ∈ A+,m1+m2 ∩OPS
m1+m2−2/3
1/3,0 .

The following gives a useful alternative characterization of this operator class.
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Proposition 3.3. An operator T belongs to A+,m ∩ OPS
m−2/3
1/3,0 if and only if its

symbol has an expansion of the form (3.8) with

(3.27) B ∈ Sm−1, A0 ∈ Sm−4/3.

Proof. Let b0 ∈ Sm and a00 ∈ Sm−1/3 be the principal symbols of B and A0 in
(3.8). Due to the asymptotic expansion

Φ(ζ) ∼ c
√

ζ + · · · ,

we see that T ∈ OPS
m−2/3
1/3,0 implies the identity (on a conic neighborhood of ξn = 0)

(3.28) b0 = Cξ
1/3
1 a00

(ξn

ξ1

)1/2

.

This identity implies that both b0 and a00 must vanish to infinite order at ξn = 0.
This implies

(3.29) B + A0Φ ∈ OPSm,

so we can replace B in (3.8) by B + A0Φ and suppose without loss of generality
that a00 = 0. Then (3.28) implies b0 = 0, which proves our contention.

We now want to construct a parametrix for I + AΦ, given A ∈ OPS−1/3. We
begin with the following simple result.

Lemma 3.4. We have

(3.30) (I + AΦ)(I −AΦ) = B1(I + C),

with

(3.31) B1 ∈ OPS0 elliptic at ξn = 0 C ∈ A+,0 ∩OPS
−2/3
1/3,0 .

Proof. We have

(3.32) (I + AΦ)(I −AΦ) = I −AΦAΦ = I −A2Φ2 + A[A, Φ]Φ.

Now by the identity (3.6) we have the right side of (3.32) equal to

(3.33) I + A2(D−1/3
1 Dn)−A2Φ′ + A[A, Φ]Φ = (I + B0) + C0,

where

(3.34) B0 = A2(D−1/3
1 DN ) ∈ OPS0,

has symbol vanishing at ξn = 0 and

(3.35) C0 ∈ A+,0 ∩OPS
−2/3
1/3,0 ,

by Proposition 3.2 and (3.26). Thus we have the lemma, with B1 = I + B0 and
C = B−1

1 C0.

We can now invert elliptic elements in A+,m.
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Proposition 3.5. If T ∈ A+,m has the form (3.8) with B ∈ OPSm elliptic, then
T has a parametrix T−1 ∈ A+,−m, microlocally near ξn = 0.

Proof. We know T ∈ OPSm
1/3,0 is elliptic, so T−1 ∈ OPS−m

1/3,0. To verify the
proposition, factor out B and write

(3.36) T = B(I + AΦ + R),

with

(3.37) A ∈ OPS−1/3, R ∈ A+,0 ∩OPS
−2/3
1/3,0 .

By Lemma 3.4 we can write

(3.38) (I + AΦ + R)(I −AΦ) = B1(I + C),

with
B1 ∈ OPS0 elliptic, C ∈ A+,0 ∩OPS

−2/3
1/3,0 ,

and then the reasoning proving Proposition 3.2 shows that the Neumann series

(3.39) (I + C)−1 ∼
∑

k≥0

(−C)k

produces an element

(3.40) (I + C)−1 ∈ A+,0.

From here, the proposition follows from Proposition 3.2, since

(3.41) T−1 = (I −AΦ)(I + C)−1B−1
1 B−1.

As mentioned in §2, it is also important to invert operators of the form

(3.42) T = PΦ + Q,

with

(3.43)
P ∈ OPSm elliptic,

Q ∈ OPS
m+1/3
1/3,0 , principal symbol vanishing on ξn = 0.

We can write
T = PΦ(I + Φ−1P−1Q) = PΦ(I + Φ−1A),
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with A ∈ OPS1/3, having principal symbol vanishing on ξn = 0. Now since

ζΦ(ζ)−1 ∼
∑

j≥0

b±j ζ1/2−3j/2, ζ → ±∞,

we have Φ−1A ∈ OPS0
1/3,0, and furthermore I + Φ−1A is elliptic in OPS0

1/3,0,
microlocally near ξn = 0. Thus we obtain

(3.44) T−1 = (I + Φ−1A)−1Φ−1P−1 ∈ OPS−m
1/3,0.

One can also produce a more precise class of Airy operators to which T−1 belongs
in this case. We refer to [4] for details on this. We note that the construction of a
parametrix for PΦi+Q, under the hypothesis (3.43), which we will make in §4, has
an analogue for (3.42). If S ∈ OPS1/3 has principal symbol vanishing on ξn = 0,
we have

(3.45)
(Φ + S)−1 = (I + RΦ)−1D(Φ + C)−1D1

= (I + RΦ)−1DΦ−1(I + CΦ−1)−1D1,

where

(3.46) R ∈ OPS−1/3, D ∈ OPS0, D1 ∈ OPS0,

and

(3.47) C ∈ OPS−2/3.

Compare (4.52). Proposition 3.5 gives (I +RΦ)−1 ∈ A+,0. The term (I +CΦ−1)−1

is better behaved than the factor (I + Φ−1A)−1 in (3.44). Indeed, (3.47) implies

(3.48) CΦ−1 ∈ OPS
−2/3
1/3,0 ,

so we have the Neumann series expansion

(3.49) (I + CΦ−1)−1 ∼
∑

j≥0

(−CΦ−1)j

in this case.
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4. Airy operators, the gliding case

Here we want to study operators of the form PΦi+Q, P ∈ OPS0, Q ∈ OPS1/3,
and their inverses, and various generalizations. In case Q is elliptic, we would hope
to obtain inverses in Ai+,−1/3, where, in analogy with (3.11), we set Ai+,m equal
to the set of operators of the form

(4.1) Cu(u) =
∫

[a(x, y, ξ)Φi(ζ0) + b(x, y, ξ)]u(y)ei(x−y)·ξ dy dξ,

with

(4.2) a(x, y, ξ) ∈ Sm−1/3, b(x, y, ξ) ∈ Sm.

In fact, we have not obtained algebraic properties of Ai+,m analogous to those
obtained for A+,m in Proposition 3.2. However, we will obtain such properties for
a subclass Ai+,m

σ , which we will define shortly, and we will be fortunate to obtain
parametrices for PΦi+Q in this subclass, when Q is elliptic. Let us note one simple
property of Ai+,m:

(4.3) P ∈ OPSµ, C ∈ Ai+,m =⇒ PC, CP ∈ Ai+,m+µ.

That PC belongs to Ai+,m+µ follows directly from (4.1), and one can analyze CP
as (P ∗C∗)∗, noting that adjoints of elements of Ai+,m are precisely characterized
by (4.1) with Φi(ζ0) replaced by Φi(ζ0).

We define the class Ai+,m
σ to consist of all T of the form

(4.4) T ∼ P +
∑

j≥0

Qj Φi Rj ,

where

(4.5) P ∈ OPSm, Qj ∈ OPSµj , Rj ∈ OPSνj , µj + νj +
1
3

= m− `j ,

and

(4.6) `j ≥ 0 is an integer, and `j →∞ as j →∞.

From (4.3) it is clear that

(4.7) Ai+,m
σ ⊂ Ai+,m.

The following two results will be among the principal results of this section.
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Theorem 4.1. If Tj ∈ Ai
+,mj
σ , then

(4.8) T1T2 ∈ Ai+,m1+m2
σ .

Theorem 4.2. Let T ∈ Ai+,m
σ have the form (4.4) with P ∈ OPSm elliptic. Then,

microlocally near ξn = 0, T has a parametrix

(4.9) T−1 ∈ Ai+,−m
σ .

A special case of Theorem 4.2 is that if T = P + QΦi with P ∈ OPSm elliptic,
Q ∈ OPSm−1/3, then, microlocally near ξn = 0, T has a parametrix T−1 ∈ Ai+,−m

σ .
Actually, we will establish this result first, and deduce Theorem 4.2 from it, by a
simple trick.

Now for any ε > 0, on ξn ≤ −εξ1 < 0, the operator Φi is locally a sum of
a number N(ε) of Fourier integral operators of order 1/3, with disjoint canonical
relations, and as ε → 0, N(ε) increases without bound. Thus the methods of §3
cannot work to analyze these Airy operators; the expansions used there would not
be asymptotic in this situation. We will take an entirely different approach; we will
deduce these theorems from certain identities among Airy operators.

The source of these Airy operator identities is the use of the gliding ray parametrix
(2.3) for a scalar, second order operator P , with different choices of solutions (g, h)
to the transport equations. We will obtain representations of the Neumann oper-
ator (i.e., the Dirichlet-to-Neumann map) for different such choices, and since the
Neumann operator is unique, comparing these different representations will yield
Airy operator identities. The operator P need have nothing to do with whatever
boundary problem (P1, B1) gave rise to the Airy operator (4.4) one wants to invert;
typically P1 need not be scalar and not necessarily second order. One may as well
take for P the model operator of Friedlander:

(4.10) P = ∂2
n+1 − xn+1∂

2
1 + ∂1∂n, on {x : xn+1 ≥ 0}.

This simplifies the symplectic geometry, and one can immediately write out the
phase functions θ, ζ of (2.3) in this case:

(4.11) θ(x, ξ) = x′ · ξ, ζ(x, ξ) = ξ
−1/3
1 (ξn + iT )− xn+1ξ

2/3
1 ,

where x′ = (x1, . . . , xn).
The Neumann operator is defined as follows. For f ∈ E ′(∂Ω), take the outgoing

solution to the problem Pu = 0, u|∂Ω = f , and set

(4.12) Nf =
∂u

∂ν

∣∣
∂Ω

.

Here, ∂/∂ν is a vector field normal to ∂Ω, with respect to the (Lorentz) metric on
Ω induced by the principal symbol of P . For (4.10), ∂/∂ν = ∂/∂xn+1 on ∂Ω. For
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a solution (g, h) of the transport equations, with g 6= 0 on ∂Ω, h = 0 on ∂Ω, near
ξn = 0, a straightforward calculation from (2.3) gives

(4.13) N = J(AΦi + B)J−1,

where J is the zero order elliptic Fourier integral operator (2.12), and

(4.14) A ∈ OPS2/3 has principal symbol ζν , B ∈ OPS0.

By construction, ζν 6= 0 on ∂Ω, near ξn = 0, ξ1 > 0, so A is elliptic; note that in
case (4.11), we have ζν = ξ

2/3
1 on ∂Ω.

Now, for some other solution (g′, h′) of the transport equations, with g′ 6= 0, a
similar calculation gives

(4.15) N = JD(A′Φi + B′)(I + RΦi)−1D−1J−1,

where J is the same Fourier integral operator as in (4.13). In analogy with (4.14),
we have

(4.16) A′ ∈ OPS2/3 has principal symbol ζν ,

and

(4.17) B′ ∈ OPS1 has principal symbol i(g′)−1h′ζνζ on ∂Ω.

Furthermore,

(4.18) D ∈ OPS0 has principal symbol g−1g′,

and

(4.19) R ∈ OPS−1/3 has principal symbol (g′)−1h′.

In the Friedlander case, we can take g = 1 on ∂Ω along with h|∂Ω = 0; let us
do this. If we compare (4.13) and (4.15), cancel the Js, and multiply through by
D(I + RΦi), we obtain

(4.20) (AΦi + B)D(I + RΦi) = D(A′Φi + B′).

If we keep only the term quadratic in Φi on the left, we can rewrite this identity as

(4.21) Φi E Φi = (D + δ1)Φi− Φi D + C.

Here, D ∈ OPS0 is as in (4.18), δ1 ∈ OPS−1, and we have

(4.22) E ∈ OPS−1/3, principal symbol h′ on ∂Ω,

and

(4.23) C ∈ OPS1/3, principal symbol ih′ζ0.

Now, if we make use of Proposition 2.1, we see that the principal symbol of E can
be specified arbitrarily on ∂Ω, and one has the identity (4.21). Inductively, we can
do the same with lower order terms in the expansion of any E ∈ OPS−1/3. Since
all Fourier multipliers commute with Φi, we have established the following.
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Proposition 4.3. Given any E ∈ OPSm, there exist D ∈ OPSm+1/3, δ1 ∈
OPSm−2/3, and C ∈ OPSm+2/3, such that the identity (4.21) holds.

Proof of Theorem 4.1. Immediate from Proposition 4.3.

The following is an explicit special case of (4.21):

(4.24) Φi2 = D
1/3
1 xnΦi− ΦiD

1/3
1 xn −D

−1/3
1 (Dn + iT ).

This special case is equivalent to the differential equation

(4.25) Φi′(ζ) = Φi(ζ)2 − ζ,

analogous to (3.6).
We now prove the following special case of Theorem 4.2.

Proposition 4.4. If T = P + QΦi with P ∈ OPSm elliptic and Q ∈ OPSm−1/3,
then, microlocally near ξn = 0, T has a parametrix T−1 ∈ Ai+,−m

σ .

Proof. Factoring out P , we can suppose

(4.26) T = I + SΦi, S ∈ OPS−1/3.

Now, using Proposition 2.1, let (g′, h′) be a solution to the transport equations
such that h′(g′)−1 is equal to the principal symbol of S on ∂Ω, g′ invertible. Let
D ∈ OPS0 have principal symbol g′, as in (4.18). Then, with E = −SD, we obtain
the identity (4.21), with perhaps the lower order terms of D altered. Consequently,
we have

(4.27)

(I + SΦi)(I − SDΦiD−1) = I + SΦi− SDΦiD−1 − SΦiSDΦiD−1

= I + SCD−1 + Sδ1ΦiD−1

= P0(I + K),

where

(4.28) P0 = I + SCD−1 ∈ OPS0

is elliptic at ξn = 0, by virtue of (4.23), and

(4.29) K = P−1
0 Sδ1 Φ D−1 ∈ Ai+,−1

σ .

Thus K : Hs → Hs+1 and so the Neumann series is asymptotic. By virtue of
Theorem 4.1,

(4.30) (I + K)−1 ∼ I −K + K2 − · · · ∈ Ai+,0
σ .
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Thus, microlocally near ξn = 0,

(4.31) (I + SΦi)−1 = (I − SD ΦiD−1)P−1
0 (I + K)−1 ∈ Ai+,0

σ .

This proves the proposition.

In Proposition 4.5, S could be a k × k matrix of operators. We can also invert

(4.32) I + S1ΦiS2,

with

(4.33) Sj ∈ OPSmj , m1 + m2 = −1
3
,

and A1 a k × ` matrix and S2 an ` × k matrix. In fact, a simple calculation gives
the parametrix

(4.34) (I + S1ΦiS2)−1 = I − S1Φi(I + S2S1Φi)−1S2,

where, by Proposition 4.4, (I +S2S1Φi)−1 exists in Ai+,0
σ , microlocally near ξn = 0.

By Theorem 4.1, we deduce that (4.34) belongs to Ai+,0
σ .

We are now in a position to prove Theorem 4.2. If we factor out P , it suffices to
invert

(4.35) T0 ∼ I +
∑

j≥0

QjΦiRj ,

with Qj ∈ OPSµj , Rj ∈ OPSνj , µj + νj = −1/3 − `j , where `j are nonnegative
integers and `j → ∞ as j → ∞. Suppose `j ≥ 1 for j ≥ K, and that Qj and Rj

are all k × k matrices of operators. We can write

(4.36) T0 = I + S1ΦiS2 +K,

where

(4.37) S2 : C∞(∂Ω,Ck) → C∞(∂Ω,CkK), S1 : C∞(∂Ω,CkK) → C∞(∂Ω,Ck)

are given by

(4.38) S2u = (R1u, . . . , RKu), S1(v1, . . . , vk) = Q1v1 + · · ·+ QKvK ,

and

(4.39) K ∈ Ai+,−1
σ .
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Now (4.34) gives (I + S1ΦiS2)−1 ∈ Ai+,0, and then

(4.40)
T0(I + S1ΦiS2)−1 = I +K(I + S1ΦiS2)−1

= I +K1,

with K1 ∈ Ai+,−1
σ . Again the Neumann expansion gives a parametrix

(I +K1)−1 ∼ I −K1 +K2
1 − · · · ∈ Ai+,0

σ ,

and so

(4.41) T−1
0 = (I + S1ΦiS2)−1(I +K1)−1 ∈ Ai+,0

σ .

The proof of Theorem 4.2 is complete.

It is useful to note the following result, complementary to Proposition 4.3.
Rewrite (4.21) as

(4.42) DΦi− ΦiD = ΦiEΦi− C − δ1Φi.

Now, by Proposition 2.1, especially (2.15), we can take the principal symbol of D
to be arbitrary. By induction, we can let D ∈ OPSm be arbitrary, and there will
exist E ∈ OPSm−1/3, C ∈ OPSm+1/3, and δ1 ∈ OPSm−1 such that (4.42) holds.
Another way we can write (4.42) is

(4.43) Φi−1DΦi = D + EΦi− Φi−1C − Φi−1δ1Φi.

We can obtain such a formula for Φi−1δ1Φi, and by an iterative process absorb the
last term into the rest of the right side of (4.43), not affecting the principal symbols.
Thus we have:

Proposition 4.5. For any D ∈ OPSm, there exist E ∈ OPSm−1/3 and C ∈
OPSm+1/3 such that

(4.44) Φi−1DΦi = D1 + EΦi− Φi−1C,

where D1 has the same principal symbol as D. By (4.23), the principal symbol of
C vanishes on ξn = 0.

This proposition leads to the following boundedness result.

Proposition 4.6. For any D ∈ OPS0, we have the continuous map on Sobolev
spaces

(4.45) Φi−1DΦi : Hs −→ Hs.
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Proof. In light of (4.44) and (1.5), this is follows from the assertion that

(4.46) Φi−1C : Hs −→ Hs,

for any C ∈ OPS1/3 whose principal symbol vanishes on ξn = 0. This in turn
follows from a uniform bound on the Fourier multiplier:

(4.47) |〈ξ〉−1/3ζ0Φi(ζ0)−1| ≤ M,

with ζ0 = ξ
−1/3
1 (ξn + iT ). This follows from the estimate (1.13), which implies

(4.48)
|Φi(ζ0)−1| ≤ CT 〈ξ〉1/3(1 + |ζ0|)−1, for ξn ≤ 0,

CT (1 + |ζ0|)−1/2, for ξn ≥ 0.

This completes the proof.

Our next goal is to invert operators like PΦi + Q under the hypothesis (2.23),
or more generally

(4.49)
Q ∈ OPSm, with vanishing principal symbol on ξn = 0,

P ∈ OPSm−1/3, elliptic.

Factoring out P , we may as well consider

(4.50) Φi + S, S ∈ OPS1/3 with vanishing principal symbol on ξn = 0.

Now, utilizing Proposition 2.1, solve the transport equation so that

(4.51) i(g′)−1h′ = ζ−1
00 σ(S), on ∂Ω,

where we set ζ00 = ξ
−1/3
1 ξn, i.e., the value at T = 0 of (1.3); make sure g′ is elliptic.

In that case, the identity (4.20) holds with B′ = AS mod OPS0, which implies

(4.52) (A′)−1D−1A(Φi + A−1B)D(I + RΦi) = Φi + S.

Thus inverting Φi + S is reduced to inverting all the factors on the left side of
(4.52). All the pseudodifferential factors are elliptic. The inversion of I + RΦi, in
the operator class Ai+,0

σ , was accomplished in Proposition 4.4. It remains to invert

(4.53) Φi + A−1B = (I + A−1BΦi−1)Φi.

This is easy because, recall, B ∈ OPS0, so A−1B ∈ OPS−2/3. It follows from
(1.12) that

(4.54) A−1BΦi−1 : Hs −→ Hs+1/3,

for all s, so the expansion

(4.55) (I + A−1BΦi−1)−1 ∼ I +
∑

k≥1

(−A−1BΦi−1)k

is asymptotic and gives a parametrix. Thus we have

(4.56) (Φi + A−1B)−1 ∼ Φi−1
[
I +

∑

k≥1

(−A−1BΦi−1)k
]
.

From this and (4.52), we have the following conclusion.
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Proposition 4.7. Given Φi + S as in (4.50),

(4.57) (Φi + S)−1 ∼
[
I +

∑

j≥0

RjΦiR′j
]
D−1Φi−1

[
I +

∑

k≥1

(CΦi−1)k
]
E,

with

(4.58)

Rj ∈ OPS0, R′j ∈ OPS−1/3−`j , `j ∈ Z+, `j →∞,

D, E ∈ OPS0, both elliptic,

C ∈ OPS−2/3.

While the microlocal behavior of the right side of (4.57) is clear, the expression
itself is complicated. Some simplification is possible, via a variant of Proposition
4.5. It would be desirable to determine if further simplification is possible.

A. Remark on Egorov’s theorem

Our exploitation of different choices of solutions to transport equations in §4 is
not the unique instance of exploiting such freedom to obtain operator identities.
We will sketch here a proof of Egorov’s theorem, based on this method; such a
proof is a variant of a proof given in §3, Chapter 7, of [10].

Recall the method of geometrical optics applied to give a solution for small t to
the equation

(A.1)
∂u

∂t
= iλ(t, x,D)u, u(0) = f,

where λ(t, x, D) ∈ OPS1 has real principal symbol. Call the solution operator U(t),
so u(t) = U(t)f . The method of geometrical optics writes, for small |t|,

(A.2) U(t)f =
∫

a(t, x, ξ)eiϕ(t,x,ξ)f̂(ξ) dξ.

Here ϕ solves the eikonal equation

(A.3)
∂ϕ

∂t
= λ1(t, x,∇xϕ),

where λ1 is the principal symbol of λ(t, x, D) and a ∼ ∑
j≥0 aj , with aj ∈ S−j . We

have the first transport equation for a0:

(A.4)
( ∂

∂t
−

∑ ∂λ1

∂ξj

∂

∂xj

)
a0 −

(
iλ0 +

∑

|α|=2

1
α!

λ
(α)
1 ϕ(α)

)
a0 = 0,
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and analogous higher transport equations for other aj ; see, e.g., Chapter 8 of [10].
A typical choice of initial conditions to take for the eikonal and transport equations
is

(A.5) ϕ(0, x, ξ) = x · ξ, a(0, x, ξ) = 1,

so at t = 0, (A.2) is just the Fourier inversion formula.
Egorov’s theorem says that for each p(x,D) ∈ OPSm there is a q(x,D) ∈ OPSm

such that (with t fixed)

(A.6) p(x, D)U(t) = U(t)q(x, D),

and the principal symbols of p(x,D) and q(x,D) are related by a canonical trans-
formation. The most general form of Egorov’s theorem replaces U(t) by a general
elliptic Fourier integral operator, but this can be deduced from the special case
proved here by a few tricks, discussed in Chapter 8 of [10].

To evaluate the left side of (A.6), we can apply p(x,D) under the integral sign in
(A.2), utilizing the fundamental asymptotic lemma for pseudodifferential operators,
which gives

(A.7) p(x,D)
(
a(t, x, ξ)eiϕ

)
= b(t, x, ξ)eiϕ,

with

(A.8) b ∈ Sm, bm(t, x, ξ) = a0(t, x, ξ)pm(x,∇xϕ).

Now to evaluate the right side of (A.6), we may write

U(t)q(x,D)f =
∫

c(t, x, ξ)eiϕ(t,x,ξ)f̂(ξ) dξ,

where the phase function ϕ is as above, the amplitude c(t, x, ξ) satisfies the trans-
port equation (A.4) and analogous higher transport equations, but we choose the
initial condition

(A.9) c(0, x, ξ) = q(x, ξ)

on the amplitude. Comparing the process of obtaining a(t, x, ξ) in (A.2), we see
that

(A.10) cm(t, x, ξ) = a0(t, x, ξ)qm(κt(x, ξ), ξ),

where the point κt(x, ξ) is defined by the property that (κt(x, ξ), 0) is on the same
integral curve as (x, t) for the (ξ-dependent) vector field ∂/∂t−∑

(∂λ1/∂ξj)∂/∂xj .
A few simple manipulations show that

(A.11) κt(x, ξ) = ∇ξϕ(t, x, ξ).
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(Compare the derivation of (3.30) in [10], p. 161.) Thus we have (A.6) to top order
provided qm(x, ξ) is chosen so that

(A.12) qm(∇ξϕ, ξ) = pm(x,∇xϕ).

The transformation

(A.13) (∇ξϕ, ξ) 7→ (x,∇xϕ)

is the canonical transformation associated with the Fourier integral operator (A.2)
at a given t. With (A.6) arranged to top order, it is routine to continue the ar-
gument, choosing lower order terms of q(x, ξ) to obtain (A.6) to all orders. We
have shown that Egorov’s theorem follows from the freedom to make an arbitrary
choice in the initial condition (A.9) for the amplitude in the geometrical optics
construction.
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