Airy functions and Airy quotients

MICHAEL TAYLOR

Airy functions play important roles in the study of wave motion, particularly in diffraction theory. Here we establish basic properties of such functions, particularly Ai(z) amd $A_{\pm}(z)$, and also results on various quotients of these functions and their derivatives. This material is taken from Appendix A of my monograph with R. Melrose, *Boundary Problems for Wave Equations on Domains with Grazing and Gliding Rays*.

For $s \in \mathbb{R}$, Ai(s) is defined by:

(A.0.1)
$$Ai(s) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i(st+t^3/3)} dt.$$

This integral is not absolutely convergent, but is well-defined as the Fourier transform of a tempered distribution. It follows directly that Ai satisfies the second order differential equation (Airy's equation)

(A.0.2)
$$Ai''(s) - sAi(s) = 0.$$

From (A.0.2) it follows that Ai(z) extends to an entire holomorphic function on \mathbb{C} . Set

(A.0.3)
$$A_{\pm}(z) = Ai(e^{\pm 2\pi i/3}z).$$

Thus, $A_{\pm}(z)$ also satisfy the differential equation (A.0.2). In fact we have

(A.0.4)
$$Ai(z) = e^{\pi i/3} A_{+}(z) + e^{-\pi i/3} A_{-}(z),$$

as we proceed to show.

Note that Ai(z) is real for real z, so (A.0.3) implies that:

(A.0.5)
$$A_{-}(z) = A_{+}(\bar{z}).$$

Thus we must have

(A.0.6)
$$Ai(z) = cA_+(z) + \bar{c}A_-(z).$$

Evaluating Ai(0) and Ai'(0) in two ways each, using (A.0.6) and (A.0.3), gives

$$c + \bar{c} = 1, \quad c\omega^{-2} + \bar{c}\omega^2 = 1,$$

where

(A.0.7)
$$\omega = e^{\pi i/3},$$

and this in turn implies that $c = \omega^2/(1+\omega^2) = 1/(1-\omega) = \omega$, which proves (A.0.4).

SA.1: Asymptotic expansion

An integral formula for Ai(z) which is convergent for all $z \in \mathbb{C}$ can easily be obtained. Replace t in (A.0.1) by iv and deform the contour so that for real z,

(A.1.1)
$$Ai(z) = \frac{1}{2\pi i} \int_{L} e^{v^3/3 - zv} dv,$$

where L is any contour that begins at a point at infinity in the sector $-\pi/2 \leq \arg(v) \leq -\pi/6$, and ends at infinity in the sector $\pi/6 \leq \arg(v) \leq \pi/2$. Since both sides of (A.1.1) are entire analytic, we have the identity for all $z \in \mathbb{C}$.

From (A.1.1) we can obtain a formula, valid in the region

(A.1.2)
$$\{z \in \mathbb{C}; |\arg(z)| \le (1-\delta)\pi\}, \quad \delta > 0,$$

i.e., in the complex plane C with a small conic neighborhood of the closed negative real axis removed. Indeed, for $z \in \mathbb{R}^+$, set $v = z^{1/2} + it^{1/2}$ on the upper half of the path L in (A.1.1) and $v = z^{1/2} - it^{1/2}$ on the lower half to obtain:

(A.1.3)
$$Ai(z) = \frac{1}{2\pi} e^{-(2/3)z^{3/2}} \int_0^\infty \cos\left(\frac{1}{3}t^{3/2}\right) \exp(-tz^{1/2})t^{-1/2} dt$$
$$= \Psi(z) e^{-(2/3)z^{3/2}}.$$

Since the right side is clearly holomorphic in the region (A.1.2), there is identity in that region. Well-known asymptotic methods can now be applied, in particular the method of steepest descents, to the integral defining $\Psi(z)$, giving

(A.1.4)
$$\Psi(z) \sim z^{-1/4} \sum_{j=0}^{\infty} a_j z^{-3j/2}, \quad a_0 = \frac{1}{4} \pi^{-3/2},$$

as $|z| \to \infty$ within the region (A.1.2). Formal term by term differentiation yields valid asymptotic expansions in this region for the derivatives of $\Psi(z)$, see [Ol2].

The asymptotic expansion (A.1.3), (A.1.4) implies

(A.1.5)
$$A_{\pm}(z) = \Psi(\omega^{\pm 2}z) \exp\left(\pm \frac{2}{3}i(-z)^{3/2}\right)$$

in the regions

(A.1.6)
$$\left\{ z \in \mathbb{C}; \left| \arg(z) \mp \frac{2}{3} \pi \right| \le (1-\delta)\pi \right\}, \quad \delta > 0,$$

and in these regions $\Psi(\omega^{\pm 2}z)$ has the same sort of asymptotic expansion as (A.1.4).

$$Ai(s) = \frac{1}{\pi} \int_0^\infty \cos\left(st + \frac{1}{3}t^3\right) dt,$$

and making the change of variable $t = 2s^{1/2}\sinh(v/3)$. Since

$$4\sinh^3\left(\frac{v}{3}\right) + 3\sinh\left(\frac{v}{3}\right) = \sinh v,$$

it follows that:

(A.1.7)
$$Ai(z) = \frac{2}{\sqrt{3\pi}} \left(\frac{z}{3}\right)^{1/2} \int_0^\infty \cos\left(\frac{2}{3}z^{3/2}\sinh v\right) \cosh\left(\frac{1}{3}v\right) dv.$$

The integral on the right is a modified Hankel function. Generally, if $\xi > 0$ and $0 < \nu < 1$,

(A.1.8)

$$K_{\nu}(\xi) = \frac{1}{\cos(\pi\nu/2)} \int_{0}^{\infty} \cos(\xi \sinh t) \cosh(\nu t) dt$$

$$= \int_{0}^{\infty} e^{-\xi \cosh t} \cosh(\nu t) dt,$$

the latter integral being convergent and holomorphic for $\text{Re}(\xi) > 0$; see Erdelyi et al. [Er], Vol. 2, p. 82, or Lebedev, [Leb], pp. 119–140. Thus

(A.1.9)
$$Ai(z) = \frac{1}{\pi} \left(\frac{z}{3}\right)^{1/2} K_{1/3} \left(\frac{2}{3} z^{3/2}\right), \quad |\arg(z)| < \frac{1}{3} \pi$$

Since $K_{\nu}(z)$ solves the modified Bessel equation

(A.1.10)
$$\frac{d^2w}{dz^2} + \frac{1}{z}\frac{dw}{dz} - \left(1 + \frac{\nu^2}{z^2}\right)w = 0.$$

it follows that $K_{\nu}(z)$ is holomorphic in $|\arg(z)| < \pi$, and (A.1.9) therefore holds in the larger region $|\arg(z)| < 2\pi/3$. In fact $K_{\nu}(z)$ can be continued to the logarithmic plane covering $\mathbb{C}\setminus 0$, and then (A.1.9) is valid globally.

The formula (A.1.8) implies that, for fixed $\nu > 0$, as $\xi \to 0$, $|\arg \xi| < \pi$,

(A.1.11)
$$K_{\nu}(\xi) \sim \frac{1}{2} \int_{0}^{\infty} e^{-(1/2)\xi e^{t}} e^{\nu t} dt \sim \frac{1}{2} \int_{1}^{\infty} e^{-\xi s/2} s^{\nu-1} ds \sim \frac{1}{2} \Gamma(\nu) \left(\frac{2}{\xi}\right)^{\nu},$$

and hence the identity (A.1.9) implies

(A.1.12)
$$Ai(0) = \frac{1}{2\pi} \ 3^{-1/6} \ \Gamma\left(\frac{1}{3}\right) = \frac{3^{-2/3}}{\Gamma(2/3)},$$

the last identity in (A.1.12) following from $\Gamma(1/3)\Gamma(2/3) = \pi/(\sin \pi/3) = 2\pi/\sqrt{3}$. Further computation (cf. (A.2.12)) gives

(A.1.13)
$$Ai'(0) = -\frac{1}{2\pi} 3^{1/6} \Gamma\left(\frac{2}{3}\right) = -\frac{3^{-1/3}}{\Gamma(1/3)}$$

Figure A.1 is a graph of y = Ai(s), $s \in \mathbb{R}$, produced by numerically integrating (A.0.2), using the initial data (A.1.12)–(A.1.13).

A.2: Zeroes of Ai

The formulæ (A.1.3), (A.1.4) show that for any $\delta > 0$, there is some finite $R(\delta)$ such that Ai(z) has no zeroes in (A.1.2) for $|z| > R(\delta)$. In this section we show that all the zeroes of Ai(z) and all those of Ai'(z) are real and negative. First we give a proof of an important special case of this.

Proposition A.2.1. $A_{\pm}(s)$, $A'_{\pm}(s)$ are not zero for any $s \in \mathbb{R}$.

Proof. This is a simple consequence of the Wronskian relation:

(A.2.2)
$$A'_{+}(z)A_{-}(z) - A_{+}(z)A'_{-}(z) = c_{0}i = \frac{1}{2\pi i}$$

By (A.0.5) and the same equation for the derivatives, the real zeroes of A_+ and A_- , or of their derivatives, must coincide. The existence of one such common zero would imply $c_0 = 0$ in (A.2.2). Disregarding our explicit computation of c_0 , we see that this would imply $A_+(z) = c'A_-(z)$. This is not possible, since it would contradict (A.1.5).

The next result implies that

(A.2.3)
$$Ai(z) \neq 0, \quad |\arg(z)| \le \frac{1}{3}\pi.$$

Proposition A.2.4. $K_{\nu}(z) \neq 0$ for $|\arg(z)| \leq \pi/2$, if $\nu \in \mathbb{R}^+$.

Proof. By (A.1.8) $K_{\nu}(z)$ is real for real z, so it is enough to consider z in the fourth quadrant. We use the argument principle, and compute the change in the argument of $K_{\nu}(z)$ along a closed curve *ABCD* as pictured in Fig. A.2. Along the piece *AB* the change in argument can be computed approximately from the asymptotic expansion:

$$K_{\nu}(z) \sim \left(\frac{\pi}{2z}\right)^{1/2} e^{-z} \sum_{k=0}^{\infty} a_k(\nu) z^{-k}, \quad |z| \to \infty,$$

which can be obtained from (A.1.8). Thus:

(A.2.5)
$$\arg(K_{\nu}(B)) - \arg(K_{\nu}(A)) = -\frac{1}{4}\pi - iA + o(1) \text{ as } |A| = |B| \to \infty.$$

On *BC* there is no change of argument since $K_{\nu}(z)$ is real and positive, by (A.1.8). On *CD*, we use the asymptotic expansion (A.1.11) for $K_{\nu}(z)$, as $z \to 0$, and conclude

(A.2.6)
$$\arg(K_{\nu}(D)) - \arg(K_{\nu}(C)) = \frac{1}{2}\nu\pi + o(1), \quad |C| = |D| \to 0.$$

FIGURE A.2

To find the change in argument from D to A we need to study $K_{\nu}(z)$ further. Consider the identity:

(A.2.7)
$$K_{\nu}(-it) = \frac{\pi i}{2} e^{\pi \nu i/2} \left[J_{\nu}(t) + iY_{\nu}(t) \right],$$

which can be obtained from (A.1.8) by transformation of the integrals (see Olver [Ol2]). The Bessel functions $J_{\nu}(t)$ and $Y_{\nu}(t)$ satisfy Bessel's equation:

(A.2.8)
$$\frac{d^2w}{dt^2} + \frac{1}{t}\frac{dw}{dt} + \left(1 - \frac{\nu^2}{t^2}\right)w = 0.$$

Both are real for t > 0 real. Hence their positive real zeroes intertwine:

$$0 < y_{\nu,1} < j_{\nu,1} < y_{\nu,2} < j_{\nu,2} < \dots$$

Now we need to show that the kth positive zero of $J_{\nu}(t)$ is given by:

(A.2.9)
$$j_{\nu,k} = \pi (k + \frac{1}{2}\nu - \frac{1}{4}) + o(1) \text{ as } k \to \infty \quad (\nu \text{ fixed}).$$

In fact the asymptotic expansion:

(A.2.10)
$$J_{\nu}(t) \sim \left(\frac{2}{\pi t}\right)^{1/2} \left[\cos\left(z - \frac{1}{2}\pi\nu - \frac{1}{4}\pi\right)\sum_{l=0}^{\infty} a_{l}(\nu)t^{-2l} - \sin\left(z - \frac{1}{2}\pi\nu - \frac{1}{4}\pi\right)\sum_{l=0}^{\infty} b_{l}(\nu)t^{-2l-1}\right], \quad t \to \infty,$$

which is readily obtained from an integral formula such as:

(A.2.11)
$$J_{\nu}(z) = \frac{(z/2)^{\nu}}{\Gamma(1/2)\Gamma(\nu+1/2)} \int_{-1}^{1} (1-t^2)^{\nu-1/2} \cos(zt) dt, \quad |\arg(z)| < \pi,$$

shows that $J_{\nu}(t)$ does have zeroes with the asymptotic behaviour (A.2.9), for large k. That the appropriate one is exactly the kth can be decided easily. For $\nu = 1/2$, $J_{1/2}(t) = \sqrt{(2/\pi t)} \sin t$, so (A.2.9) holds exactly in that case. For general ν , (A.2.9) follows from the analyticity in ν and and the argument principle, there being no zeroes near t = 0.

Returning to the analysis of $K_{\nu}(z)$ on DA, we see from (A.2.9) that, if $A = -iy_{\nu,k}$ then the change of argument of $K_{\nu}(z)$ on DA cancels out the change along the rest of the curve, up to a term which is o(1) as $|A|, |B| \to \infty$, $|C|, |D| \to 0$. This proves Proposition A.2.4 and hence (A.2.3), since the change of argument must be an integer, hence zero.

In a fashion similar to (A.1.9) it can be shown that:

(A.2.12)
$$Ai'(z) = -\frac{z}{\sqrt{3\pi}} K_{2/3}\left(\frac{2}{3}z^{3/2}\right),$$

so Proposition A.2.4 also implies that:

(A.2.13)
$$Ai'(z) \neq 0, \quad |\arg(z)| \le \frac{1}{3}\pi.$$

In order to show that all the zeroes of Ai(z) and of Ai'(z) are real it remains to demonstrate that

(A.2.14)
$$Ai(z), Ai'(z) \neq 0, \quad |\pi - \arg(z)| < \frac{2}{3}\pi, \quad z \notin \mathbb{R}^-.$$

To do this we follow the method of Lommel, as described by Olver [Ol2].

Pick $a, b \in \mathbb{C}$, $a^3 \neq b^3$. From the identity:

$$\frac{d}{dz}\Big[bAi(az)Ai'(bz) - aAi(bz)Ai'(az)\Big] = z(b^3 - a^3)Ai(az)Ai(bz),$$

we conclude that:

$$\int_0^1 tAi(at)Ai(bt) dt$$

= $\frac{1}{a^3 - b^3} \Big[bAi(a)Ai'(b) - aAi(b)Ai'(a) \Big] - \frac{b - a}{a^3 - b^3} Ai(0)Ai'(0).$

Similarly,

$$\int_0^1 Ai'(at)Ai'(bt) dt$$

= $\frac{1}{a^3 - b^3} \Big[a^2 Ai(a)Ai'(b) - b^2 Ai(b)Ai'(a) \Big] - \frac{a^2 - b^2}{a^3 - b^3} Ai(0)Ai'(0).$

Suppose that $a = re^{i\theta}$ is a nonreal zero of Ai(z) or of Ai'(z). Then so is $b = re^{-i\theta}$ and from these formulæ, we get:

(A.2.15)
$$\int_0^1 tAi(at)Ai(bt) dt = -r^{-2} \frac{\sin \theta}{\sin 3\theta} Ai(0)Ai'(0),$$

(A.2.16)
$$\int_0^1 Ai'(at)Ai'(bt) dt = -r^{-1} \frac{\sin 2\theta}{\sin 3\theta} Ai(0)Ai'(0).$$

The integrals on the left are positive and Ai(0)Ai'(0) is negative. This implies that both $\sin \theta / \sin 3\theta$ and $\sin 2\theta / \sin 3\theta$ must be positive and finite. This is not possible in the range $|\pi - \arg(a)| < 2\pi/3$, $a \notin \mathbb{R}^-$, so (A.2.14) holds. Together with (A.2.3) this gives:

Theorem A.2.17. All the zeroes of Ai(z) and Ai'(z) are real and negative.

Given that all the zeroes of Ai(z) are real and negative, say:

(A.2.18)
$$Ai(s_j) = 0, \quad 0 > s_0 > s_1 \cdots \to -\infty,$$

we can write:

(A.2.19)
$$\chi(z) = (1/2i) \log\left(\frac{A_+(z)}{A_-(z)}\right)$$

for z in the plane \mathbb{C} slit along the two rays starting from $e^{\pm 2\pi i/3}s_0$; see Figure A.3. Also we shall denote by \mathcal{K} the region:

$$\mathcal{K} = \left\{ z \in \mathbb{C}; \operatorname{Re}(z) \le \frac{1}{2} \operatorname{Re}(e^{2\pi i/3} s_0) \right\}.$$

Now, with

(A.2.20)
$$F(z) = [A_+(z)A_-(z)]^{1/2},$$

we have

(A.2.21)
$$A_{\pm}(z) = F(z)e^{\pm i\chi(z)}$$

The asymptotic expansion (A.1.4), (A.1.5) gives:

(A.2.22)
$$F(z) \sim (-z)^{-1/4} \sum_{j=0}^{\infty} f_j(-z)^{-3j/2}, \quad z \in \mathcal{K}, \ |z| \to \infty, \quad f_0 = \frac{1}{2\sqrt{\pi}}$$

and also for $z \in \mathcal{K}$,

(A.2.23)
$$\chi(z) \sim \frac{2}{3} (-z)^{3/2} \sum_{j=0}^{\infty} e_j (-z)^{-3j/2}, \quad e_0 = 1.$$

Thus (A.2.21), (A.2.22), (A.2.23) can be thought of as an asymptotic expansion for $A_{\pm}(z)$ which is in many ways more convenient than (A.1.4), (A.1.5). Note that (A.0.5) implies that

(A.2.24)
$$F(z)$$
 and $\chi(z)$ are real for $z \in \mathbb{R} \cap \mathcal{K}$.

The definition (A.2.19) is equivalent to:

(A.2.25)
$$\frac{A_+(z)}{A_-(z)} = e^{2i\chi(z)}.$$

Differentiating and using the Wronskian relation (A.2.2) gives

(A.2.26)
$$2\chi'(z) = \frac{c_0}{F(z)^2}.$$

In terms of (A.2.21) a very convenient formula can be obtained for Ai(z) for $z \in \mathcal{K}$ from (A.0.4). Namely,

(A.2.27)
$$Ai(z) = 2F(z)\cos\left(\chi(z) - \frac{1}{3}\pi\right) = 2F(z)\sin\left(\chi(z) + \frac{1}{6}\pi\right).$$

Since F is non-vanishing in \mathcal{K} the zeroes of Ai(z) must occur at the points where $\chi(s_j) + \pi/6$ is an integral multiple of π . In view of (A.2.23) and (A.2.24) this gives good asymptotic control over the behaviour of the zeroes of Ai(z). Also, the asymptotic behaviour of Ai(z) as $|z| \to \infty$ is elucidated by (A.2.27).

§A.3: AIRY QUOTIENTS

Next we record certain identities for Airy quotients. Formula (A.2.21) gives

(A.3.1)

$$\Phi_{\pm}(z) = \frac{A'_{\pm}(z)}{A_{\pm}(z)} = \frac{F'(z)}{F(z)} \pm i\chi'(z)$$

$$= \frac{F'(z)}{F(z)} \pm \frac{i}{2}\frac{c_0}{F(z)^2}.$$

where the first equation is the definition of $\Phi_{\pm}(z)$. By (A.2.24) for real z this decomposes $\Phi_{\pm}(z)$ into its real and imaginary parts. Differentiating (A.2.27) leads to:

(A.3.2)
$$\Phi i(z) = \frac{Ai'(z)}{Ai(z)} = \frac{F'(z)}{F(z)} + \chi'(z)\cot\left(\chi(z) + \frac{1}{6}\pi\right)$$
$$= \frac{F'(z)}{F(z)} + \frac{1}{2}\frac{c_0}{F(z)^2}\cot\left(\chi(z) + \frac{1}{6}\pi\right).$$

Using the Wronskian relation

(A.3.3)
$$A'_{\pm}(z)Ai(z) - Ai'(z)A_{\pm}(z) = c_{\pm},$$

one obtains

(A.3.4)
$$\Phi_{\pm}(z) - \Phi i(z) = c_{\pm} [A_{\pm}(z) A i(z)]^{-1}.$$

From the formulæ above

(A.3.5)
$$A_{\pm}(z)Ai(z) = \omega^{\pm 1}F(z)^{2} \left[e^{\pm 2i\chi(z)} + \omega^{\pm 2} \right] \\ = \omega^{\pm 1}F(z)^{2} \left[e^{\pm 2i(\chi(z) - \pi/3)} + 1 \right].$$

Directly from Airy's equation the Airy quotients satisfy a nonlinear differential equation of first order:

(A.3.6)
$$\Phi'(z) = z - \Phi(z)^2,$$

for $\Phi(z) = \Phi i(z)$ or $\Phi_{\pm}(z)$. Note that

(A.3.7)
$$\Phi_{\pm}(z) = \omega^{\pm 2} \Phi i(\omega^{\pm 2} z).$$

The poles of $\Phi_+(z)$ lie on the ray $e^{-i\pi/3}[-s_0,\infty)$ which is contained in the fourth quadrant. The poles of $\Phi_-(z)$ lie on the ray $e^{i\pi/3}[-s_0,\infty)$ in the first quadrant. Outside any conic neighborhood of the respective rays there are asymptotic expansions:

(A.3.8)
$$\Phi_{\pm}(z) \sim z^{1/2} \sum_{j=0}^{\infty} b_j^{\pm} z^{-3j/2}, \quad |z| \to \infty.$$

In particular, (A.3.8) holds for $\Phi_+(z)$ for z in the upper half plane {Im $z \ge 0$ }, and a similar expansion holds for $\Phi_-(z)$ in the lower half plane since

(A.3.9)
$$\Phi_+(z) = \overline{\Phi_-(\overline{z})}.$$

The first constant is:

(A.3.10)
$$b_0^{\pm} = 1.$$

We wish to consider the manner in which $\Phi_+(z)$ maps the upper half plane into itself. The asymptotic expansion (A.3.8) shows that for |z| large, and $\text{Im } z \ge 0$, $\Phi_+(z)$ lies in an arbitrarily small conic neighborhood of the first quadrant, $\operatorname{Re} \Phi_+ \geq 0$, $\operatorname{Im} \Phi_+ \geq 0$. In fact examination of (A.3.1) shows that for |z| large, $\operatorname{Im} z \geq 0$, $\operatorname{Re} \Phi_+, \operatorname{Im} \Phi_+ > 0$. Indeed as $|z| \to \infty$ in a conic neighborhood of \mathbb{R}^- ,

(A.3.11)
$$\frac{F'(z)}{F(z)} \sim z^{-1} \sum_{j=0}^{\infty} \alpha_j z^{-3j/2}, \quad F(z)^{-2} \sim (-z)^{1/2} \sum_{j=0}^{\infty} g_j z^{-3j/2},$$

and as $|z| \to \infty$ in a conic neighborhood of \mathbb{R}^+ , (A.3.12)

$$\frac{F'(z)}{F(z)} \sim z^{1/2} \sum_{j=0}^{\infty} \tilde{\alpha}_j z^{-3j/2}, \quad F(z)^{-2} \sim z^{-1/2} \exp\left(-\frac{4}{3} z^{3/2}\right) \sum_{j=0}^{\infty} \tilde{g}_j z^{-3j/2},$$

where all the coefficients are real.

Next it will be shown that the closed upper half plane

$$\mathbb{C}^+ = \{ z \in \mathbb{C}; \operatorname{Im}(z) \ge 0 \}$$

is mapped by Φ_+ into the open first quadrant

$$Q_1 = \{ 0 < \arg(\Phi) < \frac{1}{2}\pi; |\Phi| > 0 \}.$$

Since F(s) is real for real s, (A.3.1) implies that $\operatorname{Im} \Phi_+(s) > 0$ for $s \in \mathbb{R}$. Thus, $\operatorname{Im}(\Phi_+(z))$ is positive for $z \in \mathbb{R}$ and near infinity in $\mathbb{C}+$. Hence it must be strictly positive for $z \in \mathbb{C}^+$ by the maximum principle, i.e.,

(A.3.13)
$$\operatorname{Im} \Phi_+(z) > 0, \quad z \in \mathbb{C}^+.$$

Next consider the real part of $\Phi_+(z)$. Certainly $\operatorname{Re} \Phi_+(z) > 0$ outside a compact subset $K \subset \mathbb{C}^+$. Let $z_0 = x_0 + iy_0$ be a point with maximal imaginary part at which $\operatorname{Re} \Phi_+(z)$ vanishes. From the differential equation (A.3.6), $\operatorname{Im} \Phi'_+(z_0) = y_0$, so if $y_0 > 0$,

$$\operatorname{Re} \Phi_+(z_0 + it) = -y_0 t + O(t^2) < 0,$$

if t > 0 is small. This contradicts the maximality of y_0 , so the only possibility left is $y_0 = 0$. At such a point, $\Phi'_+(z_0)$ would be real, by (A.3.6) but since were have already shown $\operatorname{Re} \Phi_+(z) \ge 0$ this implies that $\Phi'_+(z_0) = 0$. Near such a zero of order two or higher the image of a half disc in \mathbb{C}^+ cannot satisfy $\operatorname{Re} \Phi_+(z) \ge 0$, so this possibility is eliminated; we have proved that:

(A.3.14)
$$\operatorname{Re} \Phi_+(z) > 0, \quad z \in \mathbb{C}^+.$$

One consequence of (A.3.14) and (A.3.1) is:

(A.3.15)
$$F'(s) > 0, \quad s \in \mathbb{R},$$

which is equivalent to

(A.3.16)
$$A_+(s)A_-(s) = |A(s)|^2$$
 is monotone increasing for $s \in \mathbb{R}$.

From (A.2.26) it is clear that $\chi(s)$ is monotone for $s \in \mathbb{R}$. Again by (A.3.1)

(A.3.17)
$$\frac{d\operatorname{Im}\Phi_+(s)}{ds} < 0, \quad s \in \mathbb{R}$$

 \mathbf{SO}

(A.3.18)
$$\operatorname{Im} \Phi_+(s)$$
 is monotone decreasing for $s \in \mathbb{R}$.

This shows that the curve $\mathbb{R} \ni s \longrightarrow \Phi_+(s)$, has no self-intersections and that its image in the Riemann sphere has winding number one about an interior point of $\Phi_+(\mathbb{C}^+)$. This completes the proof of:

Theorem A.3.19. $\Phi_+ : \mathbb{C}^+ \longrightarrow \mathcal{Q}_1$ is a biholomorphism onto its image, which is contained in the open first quadrant.

Assertions (A.3.13) and (A.3.14) were proved in [MeS2]. The fact that $\operatorname{Re} \Phi_+(s) > 0$, $\operatorname{Im} \Phi_+(s) > 0$ for $s \in \mathbb{R}$ was used by Imai and Shirota [ImSh], who show that this is equivalent to the monotonicity (A.3.16) of $|A_+(s)|^2$ and refer to Miller [Mil] for this result. Since $|A_+(s)|^2 = Ai(s)^2 + Bi(s)^2$, the graph on [Mi1], page B16 is consistent with (A.3.16) but an explicit proof does not seem to be given there. We present here a graph of the curve $\Phi_+(s)$ in \mathbb{C} , as s runs over \mathbb{R} . See Fig. A.4. This graph was produced by numerically integrating the ODE (A.3.6) for Φ_+ , with initial data

$$\Phi_{+}(0) = -e^{-2\pi i/3} \ 3^{1/3} \ \frac{\Gamma(2/3)}{\Gamma(1/3)} = -e^{-2\pi i/3} \ \frac{\sqrt{\pi} 2^{2/3} 3^{1/3}}{\Gamma(1/6)}.$$

Note how rapidly the curve approaches the x-axis, which is to be expected, given (A.3.1) and the behavior (A.3.12) of $F(s)^{-2} = |A_+(s)|^{-2}$ as $s \to +\infty$. Of course, these formulas make it clear that $\Phi_+(s)$ has positive imaginary part for $s \in \mathbb{R}$; this is the simplest part of Theorem A.3.19.

We next consider how close $\Phi_+(z)$ is to $z^{1/2}$ by examining the difference between $\Phi_+(z)^2$ and z. From (A.3.6)

(A.3.20)
$$\Phi_+(z)^2 = z - \Phi'_+(z),$$

 \mathbf{SO}

(A.3.21)
$$\Phi_+(z)^2 \sim z + \sum_{j=0}^{\infty} \gamma_j z^{-1/2 - 3j/2}, \text{ as } |z| \to \infty.$$

Combining (A.3.13), (A.3.14) with this and Theorem A.3.19 we have:

Corollary A.3.22. Φ^2_+ is biholomorphic from \mathbb{C}^+ to its image, which is contained in the interior of \mathbb{C}^+ .

Note from (A.3.12) that for some positive constant C,

Im
$$\Phi_+(s)^2 \ge \begin{cases} C(1+|s|)^{-3/2}, & s \le 0, \\ C\exp(-(4/3)s^{3/2}), s \ge 0. \end{cases}$$

Together with Corollary (A.3.22) this implies:

(A.3.23)
$$\operatorname{Im} \Phi i(x+iy)^2 \ge \begin{cases} C(1+|x|)^{-3/2} + Cy, & y \ge 0, x \le 0, \\ C\exp(-(4/3)x^{3/2}) + Cy, & y \ge 0, x \ge 0. \end{cases}$$

Since $\operatorname{Re} \Phi i (x + iy)^2 = x + O((1 + |x|^2 + |y|^2)^{-1/4})$ we therefore have:

(A.3.24) Re
$$\Phi_+(x+iy) \ge C(1+|x|)^{-1/2} \left(y + (1+|x|)^{-3/2} \right)$$
, if $y \ge 0, x \le 0$,

and

(A.3.25) Im
$$\Phi_+(x+iy) \ge C(1+|x|)^{-1/2} \left(y + \exp(-(4/3)x^{3/2})\right)$$
 if $y \ge 0, x \ge 0$.

We next turn to the examination of $\Phi i(z) = Ai'(z)/Ai(z)$. Note that $\Phi i(s)$ is real for real s. In fact, $\Phi i(s) > 0$ for $s > \sigma_0$, where

(A.3.26)
$$\{\sigma_j; j = 0, 1, 2, \dots\} = \{\sigma; Ai'(\sigma) = 0\}.$$

Thus, $\Phi i(\sigma_j) = 0$ and $\Phi i(z)$ has a simple pole at each of the zeroes, $z = s_j$, of Ai(z). Note that

(A.3.27)
$$0 > \sigma_0 > s_0 > \sigma_1 > s_1 > \cdots$$
.

For any fixed $\delta > 0$, the behaviour of $\Phi i(z)$ on the set

(A.3.28)
$$\mathfrak{A}_{\delta} = \{ z \in \mathbb{C}; |\arg(z)| \le \pi - \delta \}$$

is rather obvious. From the expansion (A.1.3), (A.1.4)

(A.3.29)
$$\Phi i(z) \sim z^{1/2} \sum_{j=0}^{\infty} \gamma_j z^{-3j/2}, \quad |z| \to \infty \text{ in } \mathfrak{A}_{\delta}.$$

Since $\Phi i(s)$ is real and positive for $s \in \mathbb{R}^+$, all the γ_j in (A.3.29) are real with $\gamma_0 > 0$. From (A.3.7) and Theorem A.3.19 we obtain:

Proposition A.3.30. $\Phi i \ maps \mathfrak{A}_{\pi/3}$ biholomorphically onto a domain in $\{| \arg(z) | < \pi/3\}$.

§A.4: Behaviour of Φi near $(-\infty, 0]$

It remains to examine $\Phi i(z)$ in detail in a conic neighborhood of the negative real axis. To do so it is useful to obtain formulae parallel to (A.2.21) and (A.2.27), using the functions:

(A.4.1)
$$G(z) = [A'_{+}(z)A'_{-}(z)]^{1/2}, \quad \psi(z) = \frac{1}{2i}\log\left[\frac{A'_{+}(z)}{A'_{-}(z)}\right],$$

for z in the complex plane slit along two rays connecting, respectively, the zeroes of $A'_{+}(z)$ and those of $A'_{-}(z)$; cf. Figure A.3. Then

(A.4.2)
$$A'_{+}(z) = G(z)e^{\pm i\psi(z)},$$

and

(A.4.3)
$$Ai'(z) = 2G(z)\sin\left(\psi(z) + \frac{1}{6}\pi\right).$$

Since $A'_+(z) = \overline{A'_-(\overline{z})}$,

$$(A.4.4) G, \ \psi: \mathbb{R} \longrightarrow \mathbb{R}.$$

Differentiating the asymptotic expansion (A.1.3), (A.1.4), rotated to apply to $A'_{\pm}(z)$ we deduce that:

(A.4.5)
$$G(z) \sim (-z)^{1/4} \sum_{j=0}^{\infty} g_j (-z)^{-3j/2}$$

and

(A.4.6)
$$\psi(z) \sim \frac{2}{3} (-z)^{3/2} \sum_{j=0}^{\infty} e_j (-z)^{-3j/2}$$

as $|z| \to \infty$ in Re $z \le 0$; cf. (A.2.22), (A.2.23).

In place of (A.2.26) we obtain

(A.4.7)
$$2\psi'(z) = -c_0 \frac{z}{G(z)^2}.$$

Unlike $\chi(s)$, which is monotonic on the real line, $\psi(s)$ is monotonic increasing for s < 0 and monotonic decreasing for s > 0. In fact in $s < 0, \psi(s)$ is closely related to $\chi(s)$. From (A.2.27) and (A.4.3) and noting that the zeroes of Ai(s) and Ai'(s) are interlaced, it follows that $\chi(s) + \pi/6$ and $\psi(s) + \pi/6$ alternately assume values which are integer multiples of π , so the difference must be bounded. In fact, (A.2.23), (A.4.6) together give:

(A.4.8)
$$\chi(z) - \psi(z) \sim \frac{1}{2}\pi - \sum_{j=1}^{\infty} \sigma_j z^{-3j/2},$$

as $|z| \to \infty$ in $\{\operatorname{Re} z \le 0\}$.

Differentiating (A.4.2) and proceeding as in the derivation of (A.3.1) yields

(A.4.9)
$$\Phi_{\pm}(z)^{-1} = \frac{1}{z} \frac{G'(z)}{G(z)} \mp \frac{c_0 i}{2} G(z)^2.$$

Then, (A.3.14) and (A.3.15) imply that $\Phi_{+}^{-1}(s)$ lies in the first quadrant, so:

(A.4.10)
$$G'(s)$$
 has the same sign as $s, s \in \mathbb{R}$.

Comparison of (A.3.1) and (A.4.9) also gives

(A.4.11)
$$G^{2} = \left(\frac{1}{2}c_{0}\right)^{2}F^{-2} + (F')^{2}.$$

To resume the discussion of the behaviour of $\Phi i(z)$ for z in a conic neighborhood of \mathbb{R}^- , consider (A.2.27) and (A.4.3), which show:

(A.4.12)
$$\Phi i(z) = \frac{G\sin(\psi + \pi/6)}{F\sin(\chi + \pi/6)}.$$

From the definitions of F and G,

(A.4.13)
$$\frac{G}{F}(z) = [\Phi_+(z)\Phi_-(z)]^{1/2}.$$

The formula (A.4.12) can be used to describe $\Phi i(z)$ in the set

(A.4.14)
$$\mathcal{D} = \left\{ z \in \mathbb{C}; \operatorname{Re}(z) \le -C, 0 \le \operatorname{Im}(z) \le C(1+|z|)^{-1/2} \right\}.$$

Divide \mathcal{D} as follows. Pick the half-way points between the zeroes and the poles of $\Phi i(z)$,

$$\alpha_j = \frac{1}{2}(\sigma_j + s_j), \quad \beta_j = \frac{1}{2}(s_j + \sigma_{j+1}), \quad j \ge 0.$$

Then consider the parts:

(A.4.15)
$$\begin{aligned} \mathcal{E}_j &= \{ z \in \mathcal{D}; \beta_j \leq \operatorname{Re} z \leq \alpha_j \}, \quad j \geq 0, \\ \mathcal{F}_j &= \{ z \in \mathcal{D}; \alpha_j \leq \operatorname{Re} z \leq \alpha_{j-1} \}, \quad j \geq 1, \end{aligned}$$

as illustrated in Figure A.5.

The lower boundary of \mathcal{E}_j is roughly centered at s_j , that of \mathcal{F}_j at σ_j . Note that

$$s_j - s_{j+1} \sim \sigma_j - \sigma_{j+1} \sim c(-s_j)^{-1/2}.$$

By (A.2.27) and (A.4.3), $\chi + \pi/6$ maps $[s_{j+1}, s_j]$ to $[-(j+1)\pi, -j\pi]$. Thus the map:

$$\chi_j = \chi + \frac{1}{6}\pi + j\pi$$

maps s_j to the origin. From the asymptotic expansion for χ , it follows that

$$\chi_j(\mathcal{E}_j) \subset \mathcal{R},$$

where \mathcal{R} is a rectangle in the upper half plane with base on the real axis centered at the origin. In fact for large j each χ_j has inverse, κ_j , holomorphic in a neighborhood of \mathcal{R} with range containing \mathcal{E}_j . Set

(A.4.16)
$$v_j(z) = j^{-1/3} \Phi i (\kappa_j(z)).$$

From (A.4.12), (A.4.13), the asymptotic expansions (A.4.6) and (A.4.8), it follows that as $j \to \infty$, for some constant v,

(A.4.17)
$$v_j(z) \to v \tan(z)$$

uniformly on \mathcal{R} . Similar arguments apply to the function ψ defined on \mathcal{F}_j , their normalizations $\psi + (1/6 + j)\pi$ with inverses λ_j so that the functions:

(A.4.18)
$$w_j(z) = \frac{j^{1/3}}{\Phi i(\lambda_j(z))} \to w \tan(z),$$

uniformly on \mathcal{R} for some constant w.

From (A.4.16) it follows that, for large j,

(A.4.19)
$$|\Phi i(z)| \le cj^{1/3} \le C(1+|z|)^{1/2}, \quad z \in \mathcal{F}_j,$$

and

(A.4.20)
$$\operatorname{Im} \Phi i(z) \ge c j^{1/3} \operatorname{Im}(j^{1/3} z) \ge C(1+|z|) \operatorname{Im} z, \quad z \in \mathcal{F}_j,$$

with the constants positive and independent of j. Similarly from (A.4.17),

(A.4.21)
$$|\Phi i(z)|^{-1} \le cj^{-1/3} \le C(1+|z|)^{-1/2}, \quad z \in \mathcal{E}_j$$

and

(A.4.22)
$$\operatorname{Im} \Phi i(z)^{-1} \ge c j^{-1/3} \operatorname{Im}(j^{1/3} z) = C \operatorname{Im} z, \quad z \in \mathcal{E}_j.$$

These last inequalities give in particular:

(A.4.23)
$$|\Phi i(z)| \le C |\operatorname{Im}(z)|^{-1}, \quad z \in \mathcal{E}_j,$$

and

(A.4.24)
$$\operatorname{Im} \Phi i(z) \ge C j^{1/3} \ge C (1+|z|)^{1/2}, \quad z \in \mathcal{E}_j.$$

These inequalities have been proved uniformly for large j, but of course are simple to demonstrate for any finite value of j so hold uniformly, with different constants, for all j. Combining (A.4.19) and (A.4.23) gives

(A.4.25)
$$|\Phi i(z)| \le C |\operatorname{Im}(z)|^{-1}, \quad z \in \mathcal{D},$$

and combining (A.4.20) and (A.4.24) gives:

(A.4.26)
$$\operatorname{Im} \Phi i(z) \ge C(1+|z|) |\operatorname{Im}(z)|, \quad z \in \mathcal{D}.$$

Note also that

(A.4.27)
$$\operatorname{Im}\{\Phi i(z)^{-1}\} \ge C \operatorname{Im} z, \quad z \in \mathcal{D}.$$

It is useful to get similar bounds for the Airy function Ai(z) and its derivative Ai'(z), for $z \in \mathcal{D}$. Indeed, starting from (A.2.27) and using reasoning similar to that in the derivation of (A.4.25) and (A.14.26) one finds that:

(A.4.28)
$$\operatorname{Im} Ai(z) \ge C(1+|z|)^{1/4} \operatorname{Im} z, \quad z \in \mathcal{D},$$

and

(A.4.29)
$$|Ai(z)^{-1}| \le C(1+|z|)^{-1/4} |\operatorname{Im}(z)|^{-1}, \quad z \in \mathcal{D}.$$

Further estimation of the same type leads to

(A.4.30)
$$\operatorname{Im} Ai'(z) \ge C(1+|z|)^{3/4} \operatorname{Im} z, \quad z \in \mathcal{D},$$

and

(A.4.31)
$$|Ai'(z)^{-1}| \le C(1+|z|)^{-3/4} |\operatorname{Im}(z)|^{-1}, \quad z \in \mathcal{D}.$$

The region \mathcal{D} used above is particularly convenient for such estimates but there is in fact no difficulty in extending the same type of argument to a larger region such as:

(A.4.32)
$$\mathcal{D}^{\#} = \{ z \in \mathbb{C}; \operatorname{Re} z \le 0, \ 0 \le \operatorname{Im} z \le C \}.$$

We leave to the reader the details, and only note that the estimate $\text{Im } z \leq C(1 + |z|)^{-1/2}$ valid in \mathcal{D} can no longer be used, so one arrives at estimates such as:

(A.4.33)
$$|\Phi i(z)| \le C(|\operatorname{Im}(z)|^{-1} + |z|^{1/2}), \quad z \in \mathcal{D}^{\#}.$$

Finally, we mention estimates of $\Phi i(z)$ and $\Phi i(z)^{-1}$ on

(A.4.34)
$$\mathfrak{U}^{\#} = \{ z \in \mathbb{C} : \operatorname{Im} z \ge B \},$$

given B > 0, which follow from (A.3.29) for $z \in \mathfrak{U}^{\#} \cap \mathfrak{A}_{\delta}$ and from (A.4.12) and the analysis of its ingredients, via (A.4.13) and (A.4.6)–(A.4.8), for $z \in \mathfrak{U}^{\#} \setminus \mathfrak{A}_{\delta}$. We have

(A.4.35)
$$|\Phi i(z)| \le C|z|^{1/2}, \quad |\Phi i(z)^{-1}| \le C|z|^{-1/2}, \quad z \in \mathfrak{U}^{\#}.$$

References

- [AbSt] M. Abramowitz and I. Stegun, Mathematical Functions, Appl. Math. Ser. 55, National Bureau of Standards, 1964.
 - [Ai] G. Airy, On the intensity of light in a neighborhood of a caustic, Trans. Camb. Phil. Soc. 6 (1838), 379–402.
- [AVG] V. Arnold, A. Varchenko, and S. Gusein-Zade, Singularities of Differentiable Mappings, I, Classification of critical points, caustics, and wave fronts, Birkhauser, Boston, 1985; II, Monodromy and asymptotics of integrals, Nauka, Moscow 1984.
- [BoSU] J. Bowman, T. Senior, and P. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes, North-Holland, Amsterdam, 1969.
- [CFU] C. Chester, B. Friedman, and F. Ursell, An extension of the method of steepest descents, Proc. Camb. Phil. Soc. 53 (1957), 599–611.
- [Du1] J. J. Duistermaat, Oscillatory integrals, Lagrange immersions, and unfolding of singularities, Comm. Pure Appl. Math. 27 (1974), 207–281.
- [Er] A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, New York, 1953.
- [Fr1] F. G. Friedlander, Sound Pulses, Cambridge Univ. Press, London, 1958.
- [GoG] M. Golubitsky and V. Guillemin, Stable Mappings and their Singularities, Springer, New York, 1973.
 - [GS] V. Guillemin and S. Sternberg, Geometric Asymptotics, AMS, Providence, RI, 1977.
- [ImSh] M. Imai and T. Shirota, On a parametrix for the hyperbolic mixed problem with diffractive lateral boundary, Hokkaido Math. J. 7 (1978), 339–352.
 - [Lan] R. Langer, The asymptotic solutions of ordinary linear differential equations of the second order, with special reference to a turning point, Trans. AMS 67 (1949), 461–490.
- [Leb] N. Lebedev, Special Functions and their Applications, Dover, NY, 1972.
- [Lud1] D. Ludwig, Uniform asymptotic expansions at a caustic, Comm. Pure Appl. Math. 19 (1966), 215–250.
- [Mal] B. Malgrange, Ideals of Differentiable Functions, Oxford Univ. Press, Oxford, 1966.
- [Mil] J.C.P. Miller, The Airy Integral, British Assn. for Advancement of Science, Math. Tables, Cambridge Univ. Press, 1946.
- [Nus] H. Nussensweig, High frequency scattering by an impenetrable sphere, Ann. of Physics 34 (1965), 23–95.

- [O11] F. Olver, The asymptotic expansion of Bessel functions of large order, Phil. Trans. Roy. Soc. London Ser. A 247 (1954), 328–368.
- [Ol2] F. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974.
- [Tay9] M. Taylor, Airy operator calculus, Contemp. Math. 27 (1984), 169–192.
- [Wat1] G. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge Univ. Press, Cambridge, 1944.
- [Wat2] G. Watson, The diffraction of electrical waves by the earth, Proc. Roy. Soc. London 195 (1919), 83–99.