
Airy functions and Airy quotients

Michael Taylor

Airy functions play important roles in the study of wave motion, particularly in
diffraction theory. Here we establish basic properties of such functions, particularly
Ai(z) amd A±(z), and also results on various quotients of these functions and
their derivatives. This material is taken from Appendix A of my monograph with
R. Melrose, Boundary Problems for Wave Equations on Domains with Grazing and
Gliding Rays.

For s ∈ R, Ai(s) is defined by:

(A.0.1) Ai(s) =
1
2π

∫ ∞

−∞
ei(st+t3/3) dt.

This integral is not absolutely convergent, but is well-defined as the Fourier trans-
form of a tempered distribution. It follows directly that Ai satisfies the second
order differential equation (Airy’s equation)

(A.0.2) Ai′′(s)− sAi(s) = 0.

From (A.0.2) it follows that Ai(z) extends to an entire holomorphic function on C.
Set

(A.0.3) A±(z) = Ai(e∓2πi/3z).

Thus, A±(z) also satisfy the differential equation (A.0.2). In fact we have

(A.0.4) Ai(z) = eπi/3A+(z) + e−πi/3A−(z),

as we proceed to show.
Note that Ai(z) is real for real z, so (A.0.3) implies that:

(A.0.5) A−(z) = A+(z̄).

Thus we must have

(A.0.6) Ai(z) = cA+(z) + c̄A−(z).

Evaluating Ai(0) and Ai′(0) in two ways each, using (A.0.6) and (A.0.3), gives

c + c̄ = 1, cω−2 + c̄ω2 = 1,

where

(A.0.7) ω = eπi/3,

and this in turn implies that c = ω2/(1+ω2) = 1/(1−ω) = ω, which proves (A.0.4).
1
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§A.1: Asymptotic expansion

An integral formula for Ai(z) which is convergent for all z ∈ C can easily be
obtained. Replace t in (A.0.1) by iv and deform the contour so that for real z,

(A.1.1) Ai(z) =
1

2πi

∫

L

ev3/3−zv dv,

where L is any contour that begins at a point at infinity in the sector −π/2 ≤
arg(v) ≤ −π/6, and ends at infinity in the sector π/6 ≤ arg(v) ≤ π/2. Since both
sides of (A.1.1) are entire analytic, we have the identity for all z ∈ C.

From (A.1.1) we can obtain a formula, valid in the region

(A.1.2) {z ∈ C; | arg(z)| ≤ (1− δ)π}, δ > 0,

i.e., in the complex plane C with a small conic neighborhood of the closed negative
real axis removed. Indeed, for z ∈ R+, set v = z1/2 + it1/2 on the upper half of the
path L in (A.1.1) and v = z1/2 − it1/2 on the lower half to obtain:

(A.1.3)
Ai(z) =

1
2π

e−(2/3)z3/2
∫ ∞

0

cos
(1

3
t3/2

)
exp(−tz1/2)t−1/2 dt

= Ψ(z) e−(2/3)z3/2
.

Since the right side is clearly holomorphic in the region (A.1.2), there is identity
in that region. Well-known asymptotic methods can now be applied, in particular
the method of steepest descents, to the integral defining Ψ(z), giving

(A.1.4) Ψ(z) ∼ z−1/4
∞∑

j=0

ajz
−3j/2, a0 =

1
4
π−3/2,

as |z| → ∞ within the region (A.1.2). Formal term by term differentiation yields
valid asymptotic expansions in this region for the derivatives of Ψ(z), see [Ol2].

The asymptotic expansion (A.1.3), (A.1.4) implies

(A.1.5) A±(z) = Ψ(ω∓2z) exp
(
∓2

3
i(−z)3/2

)

in the regions

(A.1.6)
{

z ∈ C;
∣∣∣arg(z)∓ 2

3
π
∣∣∣ ≤ (1− δ)π

}
, δ > 0,

and in these regions Ψ(ω∓2z) has the same sort of asymptotic expansion as (A.1.4).
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Another useful integral formula for Ai(s), s > 0, is obtained by writing the
integral (A.0.1) as

Ai(s) =
1
π

∫ ∞

0

cos
(
st +

1
3
t3

)
dt,

and making the change of variable t = 2s1/2 sinh(v/3). Since

4 sinh3
(v

3

)
+ 3 sinh

(v

3

)
= sinh v,

it follows that:

(A.1.7) Ai(z) =
2√
3π

(z

3

)1/2
∫ ∞

0

cos
(2

3
z3/2 sinh v

)
cosh

(1
3
v
)

dv.

The integral on the right is a modified Hankel function. Generally, if ξ > 0 and
0 < ν < 1,

(A.1.8)
Kν(ξ) =

1
cos(πν/2)

∫ ∞

0

cos(ξ sinh t) cosh(νt) dt

=
∫ ∞

0

e−ξ cosh t cosh(νt) dt,

the latter integral being convergent and holomorphic for Re(ξ) > 0; see Erdelyi et
al. [Er], Vol. 2, p. 82, or Lebedev, [Leb], pp. 119–140. Thus

(A.1.9) Ai(z) =
1
π

(z

3

)1/2

K1/3

(2
3
z3/2

)
, | arg(z)| < 1

3
π.

Since Kν(z) solves the modified Bessel equation

(A.1.10)
d2w

dz2
+

1
z

dw

dz
−

(
1 +

ν2

z2

)
w = 0,

it follows that Kν(z) is holomorphic in | arg(z)| < π, and (A.1.9) therefore holds in
the larger region | arg(z)| < 2π/3. In fact Kν(z) can be continued to the logarithmic
plane covering C\0, and then (A.1.9) is valid globally.

The formula (A.1.8) implies that, for fixed ν > 0, as ξ → 0, | arg ξ| < π,

(A.1.11) Kν(ξ) ∼ 1
2

∫ ∞

0

e−(1/2)ξet

eνt dt ∼ 1
2

∫ ∞

1

e−ξs/2 sν−1 ds ∼ 1
2
Γ(ν)

(2
ξ

)ν

,

and hence the identity (A.1.9) implies

(A.1.12) Ai(0) =
1
2π

3−1/6 Γ
(1

3

)
=

3−2/3

Γ(2/3)
,



4

Figure A.1

the last identity in (A.1.12) following from Γ(1/3)Γ(2/3) = π/(sinπ/3) = 2π/
√

3.
Further computation (cf. (A.2.12)) gives

(A.1.13) Ai′(0) = − 1
2π

31/6 Γ
(2

3

)
= − 3−1/3

Γ(1/3)
.

Figure A.1 is a graph of y = Ai(s), s ∈ R, produced by numerically integrating
(A.0.2), using the initial data (A.1.12)–(A.1.13).

§A.2: Zeroes of Ai

The formulæ (A.1.3), (A.1.4) show that for any δ > 0, there is some finite R(δ)
such that Ai(z) has no zeroes in (A.1.2) for |z| > R(δ). In this section we show that
all the zeroes of Ai(z) and all those of Ai′(z) are real and negative. First we give
a proof of an important special case of this.

Proposition A.2.1. A±(s), A′±(s) are not zero for any s ∈ R.

Proof. This is a simple consequence of the Wronskian relation:

(A.2.2) A′+(z)A−(z)−A+(z)A′−(z) = c0i =
1

2πi
.

By (A.0.5) and the same equation for the derivatives, the real zeroes of A+ and
A−, or of their derivatives, must coincide. The existence of one such common zero
would imply c0 = 0 in (A.2.2). Disregarding our explicit computation of c0, we
see that this would imply A+(z) = c′A−(z). This is not possible, since it would
contradict (A.1.5).

The next result implies that

(A.2.3) Ai(z) 6= 0, | arg(z)| ≤ 1
3
π.
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Proposition A.2.4. Kν(z) 6= 0 for | arg(z)| ≤ π/2, if ν ∈ R+.

Proof. By (A.1.8) Kν(z) is real for real z, so it is enough to consider z in the
fourth quadrant. We use the argument principle, and compute the change in the
argument of Kν(z) along a closed curve ABCD as pictured in Fig. A.2. Along
the piece AB the change in argument can be computed approximately from the
asymptotic expansion:

Kν(z) ∼
( π

2z

)1/2

e−z
∞∑

k=0

ak(ν)z−k, |z| → ∞,

which can be obtained from (A.1.8). Thus:

(A.2.5) arg(Kν(B))− arg(Kν(A)) = −1
4
π − iA + o(1) as |A| = |B| → ∞.

On BC there is no change of argument since Kν(z) is real and positive, by (A.1.8).
On CD, we use the asymptotic expansion (A.1.11) for Kν(z), as z → 0, and con-
clude

(A.2.6) arg(Kν(D))− arg(Kν(C)) =
1
2
νπ + o(1), |C| = |D| → 0.

Figure A.2

To find the change in argument from D to A we need to study Kν(z) further.
Consider the identity:

(A.2.7) Kν(−it) =
πi

2
eπνi/2

[
Jν(t) + iYν(t)

]
,
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which can be obtained from (A.1.8) by transformation of the integrals (see Olver
[Ol2]). The Bessel functions Jν(t) and Yν(t) satisfy Bessel’s equation:

(A.2.8)
d2w

dt2
+

1
t

dw

dt
+

(
1− ν2

t2

)
w = 0.

Both are real for t > 0 real. Hence their positive real zeroes intertwine:

0 < yν,1 < jν,1 < yν,2 < jν,2 < . . . .

Now we need to show that the kth positive zero of Jν(t) is given by:

(A.2.9) jν,k = π(k + 1
2ν − 1

4 ) + o(1) as k →∞ (ν fixed).

In fact the asymptotic expansion:

(A.2.10)

Jν(t) ∼
(

2
πt

)1/2 [
cos

(
z − 1

2
πν − 1

4
π
) ∞∑

l=0

al(ν)t−2l

− sin
(
z − 1

2
πν − 1

4
π
) ∞∑

l=0

bl(ν)t−2l−1
]
, t →∞,

which is readily obtained from an integral formula such as:

(A.2.11) Jν(z) =
(z/2)ν

Γ(1/2)Γ(ν + 1/2)

∫ 1

−1

(1− t2)ν−1/2 cos(zt) dt, | arg(z)| < π,

shows that Jν(t) does have zeroes with the asymptotic behaviour (A.2.9), for large
k. That the appropriate one is exactly the kth can be decided easily. For ν =
1/2, J1/2(t) =

√
(2/πt) sin t, so (A.2.9) holds exactly in that case. For general

ν, (A.2.9) follows from the analyticity in ν and and the argument principle, there
being no zeroes near t = 0.

Returning to the analysis of Kν(z) on DA, we see from (A.2.9) that, if A = −iyν,k

then the change of argument of Kν(z) on DA cancels out the change along the rest
of the curve, up to a term which is o(1) as |A|, |B| → ∞, |C|, |D| → 0. This
proves Proposition A.2.4 and hence (A.2.3), since the change of argument must be
an integer, hence zero.

In a fashion similar to (A.1.9) it can be shown that:

(A.2.12) Ai′(z) = − z√
3π

K2/3

(2
3
z3/2

)
,

so Proposition A.2.4 also implies that:

(A.2.13) Ai′(z) 6= 0, | arg(z)| ≤ 1
3
π.
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In order to show that all the zeroes of Ai(z) and of Ai′(z) are real it remains to
demonstrate that

(A.2.14) Ai(z), Ai′(z) 6= 0, |π − arg(z)| < 2
3
π, z /∈ R−.

To do this we follow the method of Lommel, as described by Olver [Ol2].
Pick a, b ∈ C, a3 6= b3. From the identity:

d

dz

[
bAi(az)Ai′(bz)− aAi(bz)Ai′(az)

]
= z(b3 − a3)Ai(az)Ai(bz),

we conclude that:
∫ 1

0

tAi(at)Ai(bt) dt

=
1

a3 − b3

[
bAi(a)Ai′(b)− aAi(b)Ai′(a)

]
− b− a

a3 − b3
Ai(0)Ai′(0).

Similarly,

∫ 1

0

Ai′(at)Ai′(bt) dt

=
1

a3 − b3

[
a2Ai(a)Ai′(b)− b2Ai(b)Ai′(a)

]
− a2 − b2

a3 − b3
Ai(0)Ai′(0).

Suppose that a = reiθ is a nonreal zero of Ai(z) or of Ai′(z). Then so is b = re−iθ

and from these formulæ, we get:

(A.2.15)
∫ 1

0

tAi(at)Ai(bt) dt = −r−2 sin θ

sin 3θ
Ai(0)Ai′(0),

(A.2.16)
∫ 1

0

Ai′(at)Ai′(bt) dt = −r−1 sin 2θ

sin 3θ
Ai(0)Ai′(0).

The integrals on the left are positive and Ai(0)Ai′(0) is negative. This implies that
both sin θ/ sin 3θ and sin 2θ/ sin 3θ must be positive and finite. This is not possible
in the range |π− arg(a)| < 2π/3, a /∈ R−, so (A.2.14) holds. Together with (A.2.3)
this gives:

Theorem A.2.17. All the zeroes of Ai(z) and Ai′(z) are real and negative.

Given that all the zeroes of Ai(z) are real and negative, say:

(A.2.18) Ai(sj) = 0, 0 > s0 > s1 · · · → −∞,
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Figure A.3

we can write:

(A.2.19) χ(z) = (1/2i) log
(

A+(z)
A−(z)

)

for z in the plane C slit along the two rays starting from e±2πi/3s0; see Figure A.3.
Also we shall denote by K the region:

K =
{

z ∈ C; Re(z) ≤ 1
2

Re(e2πi/3s0)
}

.

Now, with

(A.2.20) F (z) = [A+(z)A−(z)]1/2,

we have

(A.2.21) A±(z) = F (z)e±iχ(z)

The asymptotic expansion (A.1.4), (A.1.5) gives:

(A.2.22) F (z) ∼ (−z)−1/4
∞∑

j=0

fj(−z)−3j/2, z ∈ K, |z| → ∞, f0 =
1

2
√

π

and also for z ∈ K,

(A.2.23) χ(z) ∼ 2
3
(−z)3/2

∞∑

j=0

ej(−z)−3j/2, e0 = 1.
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Thus (A.2.21), (A.2.22), (A.2.23) can be thought of as an asymptotic expansion
for A±(z) which is in many ways more convenient than (A.1.4), (A.1.5). Note that
(A.0.5) implies that

(A.2.24) F (z) and χ(z) are real for z ∈ R ∩ K.

The definition (A.2.19) is equivalent to:

(A.2.25)
A+(z)
A−(z)

= e2iχ(z).

Differentiating and using the Wronskian relation (A.2.2) gives

(A.2.26) 2χ′(z) =
c0

F (z)2
.

In terms of (A.2.21) a very convenient formula can be obtained for Ai(z) for
z ∈ K from (A.0.4). Namely,

(A.2.27) Ai(z) = 2F (z) cos
(
χ(z)− 1

3
π
)

= 2F (z) sin
(
χ(z) +

1
6
π
)
.

Since F is non-vanishing in K the zeroes of Ai(z) must occur at the points where
χ(sj) + π/6 is an integral multiple of π. In view of (A.2.23) and (A.2.24) this
gives good asymptotic control over the behaviour of the zeroes of Ai(z). Also, the
asymptotic behaviour of Ai(z) as |z| → ∞ is elucidated by (A.2.27).

§A.3: Airy quotients

Next we record certain identities for Airy quotients. Formula (A.2.21) gives

(A.3.1)
Φ±(z) =

A′±(z)
A±(z)

=
F ′(z)
F (z)

± iχ′(z)

=
F ′(z)
F (z)

± i

2
c0

F (z)2
.

where the first equation is the definition of Φ±(z). By (A.2.24) for real z this
decomposes Φ±(z) into its real and imaginary parts. Differentiating (A.2.27) leads
to:

(A.3.2)
Φi(z) =

Ai′(z)
Ai(z)

=
F ′(z)
F (z)

+ χ′(z) cot
(
χ(z) +

1
6
π
)

=
F ′(z)
F (z)

+
1
2

c0

F (z)2
cot

(
χ(z) +

1
6
π
)
.
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Using the Wronskian relation

(A.3.3) A′±(z)Ai(z)−Ai′(z)A±(z) = c±,

one obtains

(A.3.4) Φ±(z)− Φi(z) = c±[A±(z)Ai(z)]−1.

From the formulæ above

(A.3.5)
A±(z)Ai(z) = ω∓1F (z)2

[
e±2iχ(z) + ω±2

]

= ω±1F (z)2
[
e±2i(χ(z)−π/3) + 1

]
.

Directly from Airy’s equation the Airy quotients satisfy a nonlinear differential
equation of first order:

(A.3.6) Φ′(z) = z − Φ(z)2,

for Φ(z) = Φi(z) or Φ±(z). Note that

(A.3.7) Φ±(z) = ω∓2Φi(ω∓2z).

The poles of Φ+(z) lie on the ray e−iπ/3[−s0,∞) which is contained in the fourth
quadrant. The poles of Φ−(z) lie on the ray eiπ/3[−s0,∞) in the first quadrant.
Outside any conic neighborhood of the respective rays there are asymptotic expan-
sions:

(A.3.8) Φ±(z) ∼ z1/2
∞∑

j=0

b±j z−3j/2, |z| → ∞.

In particular, (A.3.8) holds for Φ+(z) for z in the upper half plane {Im z ≥ 0}, and
a similar expansion holds for Φ−(z) in the lower half plane since

(A.3.9) Φ+(z) = Φ−(z).

The first constant is:

(A.3.10) b±0 = 1.

We wish to consider the manner in which Φ+(z) maps the upper half plane into
itself. The asymptotic expansion (A.3.8) shows that for |z| large, and Im z ≥
0, Φ+(z) lies in an arbitrarily small conic neighborhood of the first quadrant,
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ReΦ+ ≥ 0, ImΦ+ ≥ 0. In fact examination of (A.3.1) shows that for |z| large,
Im z ≥ 0, ReΦ+, ImΦ+ > 0. Indeed as |z| → ∞ in a conic neighborhood of R−,

(A.3.11)
F ′(z)
F (z)

∼ z−1
∞∑

j=0

αjz
−3j/2, F (z)−2 ∼ (−z)1/2

∞∑

j=0

gjz
−3j/2,

and as |z| → ∞ in a conic neighborhood of R+,
(A.3.12)

F ′(z)
F (z)

∼ z1/2
∞∑

j=0

α̃jz
−3j/2, F (z)−2 ∼ z−1/2 exp

(
−4

3
z3/2

) ∞∑

j=0

g̃jz
−3j/2,

where all the coefficients are real.
Next it will be shown that the closed upper half plane

C+ = {z ∈ C; Im(z) ≥ 0}

is mapped by Φ+ into the open first quadrant

Q1 = {0 < arg(Φ) <
1
2
π; |Φ| > 0}.

Since F (s) is real for real s, (A.3.1) implies that Im Φ+(s) > 0 for s ∈ R. Thus,
Im(Φ+(z)) is positive for z ∈ R and near infinity in C+. Hence it must be strictly
positive for z ∈ C+ by the maximum principle, i.e.,

(A.3.13) ImΦ+(z) > 0, z ∈ C+.

Next consider the real part of Φ+(z). Certainly Re Φ+(z) > 0 outside a compact
subset K ⊂ C+. Let z0 = x0 + iy0 be a point with maximal imaginary part at
which ReΦ+(z) vanishes. From the differential equation (A.3.6), Im Φ′+(z0) = y0,
so if y0 > 0,

ReΦ+(z0 + it) = −y0t + O(t2) < 0,

if t > 0 is small. This contradicts the maximality of y0, so the only possibility left
is y0 = 0. At such a point, Φ′+(z0) would be real, by (A.3.6) but since were have
already shown Re Φ+(z) ≥ 0 this implies that Φ′+(z0) = 0. Near such a zero of
order two or higher the image of a half disc in C+ cannot satisfy ReΦ+(z) ≥ 0, so
this possibility is eliminated; we have proved that:

(A.3.14) ReΦ+(z) > 0, z ∈ C+.

One consequence of (A.3.14) and (A.3.1) is:

(A.3.15) F ′(s) > 0, s ∈ R,
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which is equivalent to

(A.3.16) A+(s)A−(s) = |A(s)|2 is monotone increasing for s ∈ R.

From (A.2.26) it is clear that χ(s) is monotone for s ∈ R. Again by (A.3.1)

(A.3.17)
d ImΦ+(s)

ds
< 0, s ∈ R,

so

(A.3.18) ImΦ+(s) is monotone decreasing for s ∈ R.

This shows that the curve R 3 s −→ Φ+(s), has no self-intersections and that its
image in the Riemann sphere has winding number one about an interior point of
Φ+(C+). This completes the proof of:

Theorem A.3.19. Φ+ : C+ −→ Q1 is a biholomorphism onto its image, which is
contained in the open first quadrant.

Assertions (A.3.13) and (A.3.14) were proved in [MeS2]. The fact that Re Φ+(s) >
0, ImΦ+(s) > 0 for s ∈ R was used by Imai and Shirota [ImSh], who show that
this is equivalent to the monotonicity (A.3.16) of |A+(s)|2 and refer to Miller [Mil]
for this result. Since |A+(s)|2 = Ai(s)2 + Bi(s)2, the graph on [Mi1], page B16
is consistent with (A.3.16) but an explicit proof does not seem to be given there.
We present here a graph of the curve Φ+(s) in C, as s runs over R. See Fig. A.4.
This graph was produced by numerically integrating the ODE (A.3.6) for Φ+, with
initial data

Φ+(0) = −e−2πi/3 31/3 Γ(2/3)
Γ(1/3)

= −e−2πi/3

√
π22/331/3

Γ(1/6)
.

Note how rapidly the curve approaches the x-axis, which is to be expected, given
(A.3.1) and the behavior (A.3.12) of F (s)−2 = |A+(s)|−2 as s → +∞. Of course,
these formulas make it clear that Φ+(s) has positive imaginary part for s ∈ R; this
is the simplest part of Theorem A.3.19.

We next consider how close Φ+(z) is to z1/2 by examining the difference between
Φ+(z)2 and z. From (A.3.6)

(A.3.20) Φ+(z)2 = z − Φ′+(z),

so

(A.3.21) Φ+(z)2 ∼ z +
∞∑

j=0

γjz
−1/2−3j/2, as |z| → ∞.

Combining (A.3.13), (A.3.14) with this and Theorem A.3.19 we have:
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Figure A.4

Corollary A.3.22. Φ2
+ is biholomorphic from C+ to its image, which is contained

in the interior of C+.

Note from (A.3.12) that for some positive constant C,

ImΦ+(s)2 ≥
{

C(1 + |s|)−3/2, s ≤ 0,

C exp(−(4/3)s3/2), s ≥ 0.

Together with Corollary (A.3.22) this implies:

(A.3.23) ImΦi(x + iy)2 ≥
{

C(1 + |x|)−3/2 + Cy, y ≥ 0, x ≤ 0,

C exp(−(4/3)x3/2) + Cy, y ≥ 0, x ≥ 0.

Since ReΦi(x + iy)2 = x + O((1 + |x|2 + |y|2)−1/4) we therefore have:

(A.3.24) Re Φ+(x + iy) ≥ C(1 + |x|)−1/2
(
y + (1 + |x|)−3/2

)
, if y ≥ 0, x ≤ 0,

and

(A.3.25) ImΦ+(x + iy) ≥ C(1 + |x|)−1/2
(
y + exp(−(4/3)x3/2)

)
if y ≥ 0, x ≥ 0.

We next turn to the examination of Φi(z) = Ai′(z)/Ai(z). Note that Φi(s) is
real for real s. In fact, Φi(s) > 0 for s > σ0, where

(A.3.26) {σj ; j = 0, 1, 2, . . . } = {σ; Ai′(σ) = 0}.
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Thus, Φi(σj) = 0 and Φi(z) has a simple pole at each of the zeroes, z = sj , of
Ai(z). Note that

(A.3.27) 0 > σ0 > s0 > σ1 > s1 > · · · .

For any fixed δ > 0, the behaviour of Φi(z) on the set

(A.3.28) Aδ = {z ∈ C; | arg(z)| ≤ π − δ}
is rather obvious. From the expansion (A.1.3), (A.1.4)

(A.3.29) Φi(z) ∼ z1/2
∞∑

j=0

γjz
−3j/2, |z| → ∞ in Aδ.

Since Φi(s) is real and positive for s ∈ R+, all the γj in (A.3.29) are real with
γ0 > 0. From (A.3.7) and Theorem A.3.19 we obtain:

Proposition A.3.30. Φi maps Aπ/3 biholomorphically onto a domain in {| arg(z)| <
π/3}.

§A.4: Behaviour of Φi near (−∞, 0]

It remains to examine Φi(z) in detail in a conic neighborhood of the negative
real axis. To do so it is useful to obtain formulae parallel to (A.2.21) and (A.2.27),
using the functions:

(A.4.1) G(z) = [A′+(z)A′−(z)]1/2, ψ(z) =
1
2i

log
[
A′+(z)
A′−(z)

]
,

for z in the complex plane slit along two rays connecting, respectively, the zeroes
of A′+(z) and those of A′−(z); cf. Figure A.3. Then

(A.4.2) A′±(z) = G(z)e±iψ(z),

and

(A.4.3) Ai′(z) = 2G(z) sin
(
ψ(z) +

1
6
π
)
.

Since A′+(z) = A′−
(
z
)
,

(A.4.4) G, ψ : R −→ R.

Differentiating the asymptotic expansion (A.1.3), (A.1.4), rotated to apply to
A′±(z) we deduce that:

(A.4.5) G(z) ∼ (−z)1/4
∞∑

j=0

gj(−z)−3j/2
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and

(A.4.6) ψ(z) ∼ 2
3
(−z)3/2

∞∑

j=0

ej(−z)−3j/2

as |z| → ∞ in Re z ≤ 0; cf. (A.2.22), (A.2.23).
In place of (A.2.26) we obtain

(A.4.7) 2ψ′(z) = −c0
z

G(z)2
.

Unlike χ(s), which is monotonic on the real line, ψ(s) is monotonic increasing for
s < 0 and monotonic decreasing for s > 0. In fact in s < 0, ψ(s) is closely related to
χ(s). From (A.2.27) and (A.4.3) and noting that the zeroes of Ai(s) and Ai′(s) are
interlaced, it follows that χ(s)+π/6 and ψ(s)+π/6 alternately assume values which
are integer multiples of π, so the difference must be bounded. In fact, (A.2.23),
(A.4.6) together give:

(A.4.8) χ(z)− ψ(z) ∼ 1
2
π −

∞∑

j=1

σjz
−3j/2,

as |z| → ∞ in {Re z ≤ 0}.
Differentiating (A.4.2) and proceeding as in the derivation of (A.3.1) yields

(A.4.9) Φ±(z)−1 =
1
z

G′(z)
G(z)

∓ c0i

2
G(z)2.

Then, (A.3.14) and (A.3.15) imply that Φ−1
+ (s) lies in the first quadrant, so:

(A.4.10) G′(s) has the same sign as s, s ∈ R.

Comparison of (A.3.1) and (A.4.9) also gives

(A.4.11) G2 =
(

1
2c0

)2
F−2 + (F ′)2.

To resume the discussion of the behaviour of Φi(z) for z in a conic neighborhood
of R−, consider (A.2.27) and (A.4.3), which show:

(A.4.12) Φi(z) =
G sin(ψ + π/6)
F sin(χ + π/6)

.

From the definitions of F and G,

(A.4.13)
G

F
(z) = [Φ+(z)Φ−(z)]1/2.
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Figure A.5

The formula (A.4.12) can be used to describe Φi(z) in the set

(A.4.14) D =
{
z ∈ C; Re(z) ≤ −C, 0 ≤ Im(z) ≤ C(1 + |z|)−1/2

}
.

Divide D as follows. Pick the half-way points between the zeroes and the poles
of Φi(z),

αj =
1
2
(σj + sj), βj =

1
2
(sj + σj+1), j ≥ 0.

Then consider the parts:

(A.4.15)
Ej = {z ∈ D; βj ≤ Re z ≤ αj}, j ≥ 0,

Fj = {z ∈ D; αj ≤ Re z ≤ αj−1}, j ≥ 1,

as illustrated in Figure A.5.
The lower boundary of Ej is roughly centered at sj , that of Fj at σj . Note that

sj − sj+1 ∼ σj − σj+1 ∼ c(−sj)−1/2.

By (A.2.27) and (A.4.3), χ + π/6 maps [sj+1, sj ] to [−(j + 1)π,−jπ]. Thus the
map:

χj = χ +
1
6
π + jπ

maps sj to the origin. From the asymptotic expansion for χ, it follows that

χj(Ej) ⊂ R,
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where R is a rectangle in the upper half plane with base on the real axis centered at
the origin. In fact for large j each χj has inverse, κj , holomorphic in a neighborhood
of R with range containing Ej . Set

(A.4.16) vj(z) = j−1/3Φi
(
κj(z)

)
.

From (A.4.12), (A.4.13), the asymptotic expansions (A.4.6) and (A.4.8), it follows
that as j →∞, for some constant v,

(A.4.17) vj(z) → v tan(z)

uniformly on R. Similar arguments apply to the function ψ defined on Fj , their
normalizations ψ + (1/6 + j)π with inverses λj so that the functions:

(A.4.18) wj(z) =
j1/3

Φi
(
λj(z)

) → w tan(z),

uniformly on R for some constant w.
From (A.4.16) it follows that, for large j,

(A.4.19) |Φi(z)| ≤ cj1/3 ≤ C(1 + |z|)1/2, z ∈ Fj ,

and

(A.4.20) Im Φi(z) ≥ cj1/3 Im(j1/3z) ≥ C(1 + |z|) Im z, z ∈ Fj ,

with the constants positive and independent of j. Simlarly from (A.4.17),

(A.4.21) |Φi(z)|−1 ≤ cj−1/3 ≤ C(1 + |z|)−1/2, z ∈ Ej

and

(A.4.22) ImΦi(z)−1 ≥ cj−1/3 Im(j1/3z) = C Im z, z ∈ Ej .

These last inequalities give in particular:

(A.4.23) |Φi(z)| ≤ C| Im(z)|−1, z ∈ Ej ,

and

(A.4.24) Im Φi(z) ≥ Cj1/3 ≥ C(1 + |z|)1/2, z ∈ Ej .

These inequalities have been proved uniformly for large j, but of course are simple
to demonstrate for any finite value of j so hold uniformly, with different constants,
for all j.
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Combining (A.4.19) and (A.4.23) gives

(A.4.25) |Φi(z)| ≤ C| Im(z)|−1, z ∈ D,

and combining (A.4.20) and (A.4.24) gives:

(A.4.26) ImΦi(z) ≥ C
(
1 + |z|) | Im(z)|, z ∈ D.

Note also that

(A.4.27) Im{Φi(z)−1} ≥ C Im z, z ∈ D.

It is useful to get similar bounds for the Airy function Ai(z) and its derivative
Ai′(z), for z ∈ D. Indeed, starting from (A.2.27) and using reasoning similar to
that in the derivation of (A.4.25) and (A.14.26) one finds that:

(A.4.28) Im Ai(z) ≥ C(1 + |z|)1/4 Im z, z ∈ D,

and

(A.4.29) |Ai(z)−1| ≤ C(1 + |z|)−1/4| Im(z)|−1, z ∈ D.

Further estimation of the same type leads to

(A.4.30) Im Ai′(z) ≥ C(1 + |z|)3/4 Im z, z ∈ D,

and

(A.4.31) |Ai′(z)−1| ≤ C(1 + |z|)−3/4| Im(z)|−1, z ∈ D.

The region D used above is particularly convenient for such estimates but there
is in fact no difficulty in extending the same type of argument to a larger region
such as:

(A.4.32) D# = {z ∈ C; Re z ≤ 0, 0 ≤ Im z ≤ C}.

We leave to the reader the details, and only note that the estimate Im z ≤ C(1 +
|z|)−1/2 valid in D can no longer be used, so one arrives at estimates such as:

(A.4.33) |Φi(z)| ≤ C
(| Im(z)|−1 + |z|1/2

)
, z ∈ D#.

Finally, we mention estimates of Φi(z) and Φi(z)−1 on

(A.4.34) U# = {z ∈ C : Im z ≥ B},
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given B > 0, which follow from (A.3.29) for z ∈ U# ∩ Aδ and from (A.4.12) and
the analysis of its ingredients, via (A.4.13) and (A.4.6)–(A.4.8), for z ∈ U# \ Aδ.
We have

(A.4.35) |Φi(z)| ≤ C|z|1/2, |Φi(z)−1| ≤ C|z|−1/2, z ∈ U#.
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