Boundary Regularity
 For the Ricci Equation, Geometric Convergence, And Gelfand's Inverse Boundary Problem

Determining a Region By How Its Boundary Vibrates

Michael Anderson, Atsushi Katsuda, Yaroslav Kurylev, Matti Lassas, Michael Taylor

Boundary spectral data for compact Riemannian manifold (\bar{M}, g) :

$$
\left\{\lambda_{j},\left.\varphi_{j}\right|_{\partial M}\right\}_{j=1}^{\infty}
$$

Orthonormal basis of Neumann eigenfunctions φ_{j} :

$$
\Delta \varphi_{j}=-\lambda_{j} \varphi_{j},\left.\quad N \varphi_{j}\right|_{\partial M}=0
$$

Alternative data (equivalent): trace on $\mathbb{R} \times \partial M \times \partial M$ of

$$
\cos t \sqrt{-\Delta}
$$

Theorem. Given $g \in C^{2}(\bar{M})$, the boundary spectral data determine (\bar{M}, g) uniquely, up to isometry.

First step. Given f on $[0, T] \times \partial M$, define u^{f} on $[0, T] \times \bar{M}$ by

$$
\left(\partial_{t}^{2}-\Delta\right) u^{f}=0, \quad u(0)=\partial_{t} u(0)=0,\left.\quad N u\right|_{\partial M}=f .
$$

Claim: Gelfand data determines Fourier coefficients

$$
\begin{gathered}
u_{k}^{f}(t)=\left(u^{f}(t), \varphi_{k}\right) \\
1
\end{gathered}
$$

Proof: Derive ODE:

$$
\begin{aligned}
\partial_{t}^{2} u_{k}^{f}(t) & =\left(\Delta u^{f}(t), \varphi_{k}\right) \\
& =-\lambda_{k}\left(u^{f}(t), \varphi_{k}\right)+\int_{\partial M} f(t, x) \varphi_{k}(x) d S(x) \\
& =-\lambda_{k} u_{k}^{f}(t)+\text { KNOWN STUFF },
\end{aligned}
$$

while

$$
u_{k}^{f}(0)=\partial_{t} u_{k}^{f}(0)=0 .
$$

Solve ODE explicitly.

Second step. Take $\Gamma \subset \partial M$ and set

$$
M\left(\Gamma, t^{+}\right)=\left\{x \in M: \operatorname{dist}(x, \partial M) \leq t^{+}\right\} .
$$

See Figure 1. Claim: Image of $L^{2}\left(M\left(\Gamma, t^{+}\right)\right)$under Fourier transform

$$
\mathcal{F}: L^{2}(M) \longrightarrow \ell^{2}
$$

is determined by Gelfand data.
Proof uses Lemma:

$$
\left\{u^{f}\left(t^{+}\right): f \in \operatorname{Lip}\left(\left[0, t^{+}\right] \times \Gamma\right)\right\}
$$

is dense in $L^{2}\left(M\left(\Gamma, t^{+}\right)\right)$.
Proof of lemma uses unique continuation result of D. Tataru.

Third step. Hence image in ℓ^{2} of $L^{2}\left(M\left(\Gamma, t^{+}, t^{-}\right)\right)$under \mathcal{F} is determined, where

$$
M\left(\Gamma, t^{+}, t^{-}\right)=M\left(\Gamma, t^{+}\right) \backslash M\left(\Gamma, t^{-}\right) .
$$

See Figure 2.
Hence image of $L^{2}\left(M\left(\underline{\Gamma}, \underline{t}^{+}, \underline{t}^{-}\right)\right)$under \mathcal{F} is determined, where

$$
M\left(\underline{\Gamma}, \underline{t}^{+}, \underline{t}^{-}\right)=\bigcap_{j} M\left(\Gamma_{j}, t_{j}^{+}, t_{j}^{-}\right) .
$$

See Figure 3.

Fourth step. Gelfand data enable one to answer question:
Given $f \in C(\partial M)$, does there exist $x \in \bar{M}$ such that

$$
f(y)=\operatorname{dist}(x, y), \quad \forall y \in \partial M ?
$$

Thus the image in $C(\partial M)$ of the boundary distance representation of \bar{M} :

$$
R: \bar{M} \rightarrow C(\partial M), \quad R(x)(y)=\operatorname{dist}(x, y)
$$

is determined by the Gelfand data.
Hence \bar{M} is determined as a topological space, provided R can be proven to be one-to-one. This holds provided geodesics do not branch. See Figure 4.

Fifth step. Let $P\left(\underline{\Gamma}, \underline{t}^{+}, \underline{t}^{-}\right)$denote the orthogonal projection of ℓ^{2} onto the image $\mathcal{F} L^{2}\left(M\left(\underline{\Gamma}, \underline{t}^{+}, \underline{t}^{-}\right)\right)$. Then

$$
\left(P\left(\underline{\Gamma}, \underline{t}^{+}, \underline{t}^{-}\right) e_{i}, e_{j}\right)_{\ell^{2}}=\int_{M\left(\underline{\Gamma}, \underline{t}^{+}, \underline{t}^{-}\right)} \varphi_{i}(x) \varphi_{j}(x) d V(x) .
$$

Note $\varphi_{1} \equiv(\operatorname{Vol} M)^{-1 / 2}$. Taking $e_{i}=e_{j}=e_{1}$ determines $\operatorname{Vol} M\left(\underline{\Gamma}, \underline{t}^{+}, \underline{t}^{-}\right)$. Then taking $e_{i}=e_{1}$ determines

$$
\int_{M\left(\underline{\Gamma}, \underline{t}^{+}, \underline{t}^{-}\right)} \varphi_{j}(x) d V(x) .
$$

So we recover $\varphi_{j}(x)$ on M, for each $x \in M$. This determines the differentiable structure and metric tensor on M.

Interior Regularity

Assume

$$
\begin{align*}
g_{j k} & \in C^{r}(\Omega) \cap H^{1,2}(\Omega), \quad r>0 . \tag{1}\\
\operatorname{Ric}_{j k} & \in L^{\infty}(\Omega) . \tag{2}
\end{align*}
$$

Then, in local harmonic coordinates,

$$
\begin{equation*}
\partial^{2} g_{j k} \in \mathrm{bmo} . \tag{3}
\end{equation*}
$$

Note: $g_{j k} \in C^{r}, r>0 \Rightarrow \exists$ local harmonic coordinates.

Ricci Equation

$$
\begin{equation*}
\Delta g_{\ell m}+B_{\ell m}\left(g_{j k}, \nabla g_{j k}\right)=-2 \operatorname{Ric}_{\ell m} \tag{4}
\end{equation*}
$$

Holds in local harmonic coordinates. Laplace-Beltrami operator Δ acts componentwise.

Early work by DeTurk and Kazdan:

$$
g_{j k} \in C^{2}, \quad \operatorname{Ric}_{j k} \in C^{r} \Rightarrow g_{j k} \in C^{r+2}
$$

in local harmonic coordinates, $r \in \mathbb{R}^{+} \backslash \mathbb{Z}^{+}$.

Example

$$
M \subset \mathbb{R}^{n}, \quad C^{2} \text { surface, dimension } k
$$

In graph coordinates, $g_{j k} \in C^{1}$.
Gauss map is C^{1}, curvature is continuous.
Hence, in harmonic coordinates, $\partial^{2} g_{j k} \in$ bmo.

Existence of curvature

Connection 1-form

$$
\Gamma^{a}{ }_{b j}=\frac{1}{2} g^{a m}\left(\partial_{j} g_{b m}+\partial_{b} g_{j m}-\partial_{m} g_{j b}\right) .
$$

Curvature 2-form

$$
\mathcal{R}=d \Gamma+\Gamma \wedge \Gamma .
$$

Have

$$
\begin{aligned}
g_{j k} \in C(\Omega) \cap H^{1,2}(\Omega) & \Rightarrow \Gamma^{a}{ }_{b j} \in L^{2}(\Omega) \\
& \Rightarrow R^{a}{ }_{b j k} \in H^{-1,2}(\Omega)+L^{1}(\Omega) \\
& \Rightarrow \operatorname{Ric}_{j k} \in H^{-1,2}(\Omega)+L^{1}(\Omega) \\
& \Rightarrow \operatorname{Ric}^{j}{ }_{k}, S \in H^{-1, p^{\prime}}(\Omega),
\end{aligned}
$$

where

$$
p^{\prime}<\frac{n}{n-1}, \quad n=\operatorname{dim} \Omega
$$

Also,

$$
\begin{aligned}
g_{j k} & \in H^{1, p}(\Omega), \quad p>n \\
& \Rightarrow R^{a}{ }_{b j k}, \operatorname{Ric}_{j k}, \operatorname{Ric}^{j}{ }_{k}, S \in H^{-1, p}(\Omega) .
\end{aligned}
$$

Boundary Regularity

Take $\bar{\Omega}=\Omega \cup \Sigma$, with

$$
\begin{aligned}
\Omega & =\left\{x \in \mathbb{R}^{n}:|x|<1, x_{n}>0\right\}, \\
\Sigma & =\left\{x \in \mathbb{R}^{n}:|x|<1, x_{n}=0\right\} .
\end{aligned}
$$

Assume

$$
\begin{aligned}
g_{j k} & \in H^{1, p}(\Omega), \quad p>n, \\
h_{j k} & \in H^{1,2}(\Sigma), \quad 1 \leq j, k \leq n-1, \\
\operatorname{Ric}^{\Omega} & \in L^{\infty}(\Omega), \\
\operatorname{Ric}^{\Sigma} & \in L^{\infty}(\Sigma), \\
H & \in \operatorname{Lip}(\Sigma) .
\end{aligned}
$$

Here $h_{j k}=\left.g_{j k}\right|_{\Sigma}$, and

$$
H=\text { mean curvature of } \Sigma \hookrightarrow \bar{\Omega} .
$$

Theorem. In local boundary harmonic coordinates,

$$
g_{j k} \in C_{*}^{2}(\bar{\Omega})
$$

Hence $\nabla g_{j k}$ has a log-Lipschitz modulus of continuity, so there is no branching of geodesics.

Boundary Conditions for Ricci Equation

In boundary harmonic coordinates, for $1 \leq j, k \leq n-1$,

$$
\begin{align*}
\Delta g_{j k} & =B_{j k}(g, \nabla g)-2 \operatorname{Ric}_{j k}^{\Omega}, \\
\left.g_{j k}\right|_{\Sigma} & =h_{j k} \in \mathfrak{h}^{2, \infty}(\Sigma) . \tag{1}
\end{align*}
$$

Regularity of $\left(h_{j k}\right)$ from previous result.
Results on Dirichlet problem due to Morrey apply.
Need to treat $g_{j n}, 1 \leq j \leq n$. Actually, we directly treat $g^{j n}$, via Neumann boundary problems:

$$
\begin{align*}
\Delta g^{j n} & =B^{j n}(g, \nabla g)+2\left(\operatorname{Ric}^{\Omega}\right)^{j n}, \tag{2}\\
N g^{n n} & =-2(n-1) H g^{n n}, \tag{3}
\end{align*}
$$

on Σ, and, for $1 \leq j \leq n-1$,

$$
\begin{equation*}
N g^{j n}=-(n-1) H g^{j n}+\frac{1}{2} \frac{1}{\sqrt{g^{n n}}} g^{j k} \partial_{k} g^{n n} \tag{4}
\end{equation*}
$$

The boundary conditions (3)-(4) make straightforward sense provided

$$
g_{j k} \in C^{1+s}(\bar{\Omega}), \quad \text { for some } s>0
$$

Otherwise, we must deal with a weak formulation of

$$
\Delta w=F,\left.\quad N w\right|_{\Sigma}=G
$$

namely

$$
\begin{aligned}
& \int_{\Omega}\langle\nabla w, \nabla \psi\rangle d V \\
& \quad=-\int_{\Omega} F \psi d V-\int_{\Sigma} G \psi d S
\end{aligned}
$$

for all $\psi \in C^{\infty}(\bar{\Omega})$ with compact support (intersecting Σ but not the rest of $\partial \Omega$).

Another boundary regularity result:
Assume

$$
\begin{aligned}
g_{j k} & \in H^{1, p}(\Omega), \quad p>n, \\
h_{j k} & \in H^{1,2}(\Sigma), \quad 1 \leq j, k \leq n-1, \\
\operatorname{Ric}^{\Omega} & \in L^{p_{1}}(\Omega), \quad p_{1}>n, \\
\operatorname{Ric}^{\Sigma} & \in L^{p_{2}}(\Sigma), \quad p_{2}>n-1, \\
H & \in C^{\sigma}(\Sigma), \quad \sigma>0 .
\end{aligned}
$$

Then, in boundary harmonic coordinates,

$$
g_{j k} \in C^{1+s}(\bar{\Omega}),
$$

for some $s>0$.

Weak Solutions to Neumann Problem

Assume

$$
\begin{gathered}
g_{j k} \in C^{r}(\bar{\Omega}), \quad \partial \Omega \quad \text { class } C^{1+r}, \quad 0<r<1 \\
u \in H^{1,2}(\Omega), \quad \text { weak solution to } \\
\Delta u=f,\left.\quad N u\right|_{\partial \Omega}=g
\end{gathered}
$$

Proposition. Given $s \in(0, r), p \geq n /(1-s)$,

$$
f \in L^{p}(\Omega), g \in C^{s}(\partial \Omega) \Rightarrow u \in C^{1+s}(\bar{\Omega})
$$

First reduce to $f=0$. Then use single layer potential

$$
\mathcal{S h}(x)=\int_{\partial \Omega} E(x, y) h(y) d S(y)
$$

One obtains

$$
u=\mathcal{S} h, \quad h \in C^{s}(\partial \Omega),
$$

with h solving

$$
\left(-\frac{1}{2} I+K^{*}\right) h=g
$$

Geometric Convergence

Class of compact Riemannian manifolds with boundary,

$$
\mathcal{M}\left(R_{0}, i_{0}, S_{0}, d_{0}\right):
$$

Ricci tensor bounds:

$$
\begin{equation*}
\left\|\operatorname{Ric}_{M}\right\|_{L^{\infty}(M)} \leq R_{0}, \quad\left\|\operatorname{Ric}_{\partial M}\right\|_{L^{\infty}(\partial M)} \leq R_{0} \tag{1}
\end{equation*}
$$

Injectivity radius bounds:

$$
\begin{equation*}
i_{M} \geq i_{0}, \quad i_{\partial M} \geq i_{0}, \quad i_{b} \geq 2 i_{0} . \tag{2}
\end{equation*}
$$

Mean curvature bound:

$$
\begin{equation*}
\|H\|_{\operatorname{Lip}(\partial M)} \leq S_{0} \tag{3}
\end{equation*}
$$

Diameter bound:

$$
\begin{equation*}
\operatorname{diam}(\bar{M}, g) \leq d_{0} \tag{4}
\end{equation*}
$$

Fix the dimension n.

Theorem. Given $n \in \mathbb{N}, R_{0}, i_{0}, S_{0}, d_{0} \in(0, \infty)$,

$$
\mathcal{M}\left(R_{0}, i_{0}, S_{0}, d_{0}\right) \text { is precompact }
$$

in the C^{r} topology, for each $r<2$, i.e., any sequence has a convergent subsequence

$$
\begin{equation*}
\left(\bar{M}_{k}, g_{k}\right) \longrightarrow(\bar{M}, g), \tag{5}
\end{equation*}
$$

in the C^{r} topology. Furthermore,

$$
\begin{equation*}
g \in C_{*}^{2}(\bar{M}) . \tag{6}
\end{equation*}
$$

Meaning of C^{r}-convergence in (5):
For k large, have diffeomorphisms

$$
F_{k}: \bar{M} \longrightarrow \bar{M}_{k}
$$

such that

$$
F_{k}^{*} g_{k} \rightarrow g \text { in } C^{r} \text {-topology. }
$$

Key to proof of theorem:
Find lower bound on harmonic radius, i.e., size of balls on which there are harmonic coordinates, in which the metric tensor satisfies good bounds.

Harmonic radius estimate has following ingredients:
(*) Blow-up argument
$\left.{ }^{*}\right)$ Fundamental equations of surface theory
(*) Cheeger-Gromoll splitting theorem
(*) Boundary regularity result

Stabilization of Inverse Problems

Direct problem (general set-up)

$$
\begin{equation*}
\mathcal{D}: \mathcal{M} \longrightarrow \mathcal{B} . \tag{1}
\end{equation*}
$$

Task: Identify object $M \in \mathcal{M}$ by measurement of data $\mathcal{D}(M)$.
Common case: \mathcal{D} continuous in (1).

First task: uniqueness.
Success: \mathcal{D} is one-to one.
Ill posedness of inverse problem: no continuous inverse.
Key to stabilization:
A priori knowledge that $M \in \mathcal{M}_{0}$, with

$$
\begin{equation*}
\overline{\mathcal{M}}_{0} \subset \mathcal{M} \text { compact. } \tag{2}
\end{equation*}
$$

Then \mathcal{D} maps $\overline{\mathcal{M}}_{0}$ homeomorphically onto its image.
Stabilization of inverse boundary spectral problem:

$$
\mathcal{M}_{0}=\mathcal{M}\left(R_{0}, i_{0}, S_{0}, d_{0}\right) .
$$

