Boundary Regularity For the Ricci Equation, Geometric Convergence, And Gelfand's Inverse Boundary Problem

Determining a Region By How Its Boundary Vibrates

MICHAEL ANDERSON, ATSUSHI KATSUDA, YAROSLAV KURYLEV, MATTI LASSAS, MICHAEL TAYLOR

Boundary spectral data for compact Riemannian manifold (\overline{M}, g) :

$$\{\lambda_j, \varphi_j|_{\partial M}\}_{j=1}^{\infty}.$$

Orthonormal basis of Neumann eigenfunctions φ_j :

$$\Delta \varphi_j = -\lambda_j \varphi_j, \quad N \varphi_j \big|_{\partial M} = 0.$$

Alternative data (equivalent): trace on $\mathbb{R} \times \partial M \times \partial M$ of

$$\cos t \sqrt{-\Delta}$$
.

Theorem. Given $g \in C^2(\overline{M})$, the boundary spectral data determine (\overline{M}, g) uniquely, up to isometry.

First step. Given f on $[0,T] \times \partial M$, define u^f on $[0,T] \times \overline{M}$ by

$$(\partial_t^2 - \Delta)u^f = 0$$
, $u(0) = \partial_t u(0) = 0$, $Nu|_{\partial M} = f$.

Claim: Gelfand data determines Fourier coefficients

$$u_k^f(t) = (u^f(t), \varphi_k).$$

Proof: Derive ODE:

$$\begin{split} \partial_t^2 u_k^f(t) &= (\Delta u^f(t), \varphi_k) \\ &= -\lambda_k (u^f(t), \varphi_k) + \int\limits_{\partial M} f(t, x) \varphi_k(x) \, dS(x) \\ &= -\lambda_k u_k^f(t) + \text{ KNOWN STUFF}, \end{split}$$

while

$$u_k^f(0) = \partial_t u_k^f(0) = 0.$$

Solve ODE explicitly.

Second step. Take $\Gamma \subset \partial M$ and set

$$M(\Gamma, t^+) = \{ x \in M : \operatorname{dist}(x, \partial M) \le t^+ \}.$$

See Figure 1. Claim: Image of $L^2(M(\Gamma, t^+))$ under Fourier transform

$$\mathcal{F}:L^2(M)\longrightarrow \ell^2$$

is determined by Gelfand data.

Proof uses Lemma:

$$\{u^f(t^+): f \in \operatorname{Lip}([0, t^+] \times \Gamma)\}$$

is dense in $L^2(M(\Gamma, t^+))$.

Proof of lemma uses unique continuation result of D. Tataru.

Third step. Hence image in ℓ^2 of $L^2(M(\Gamma, t^+, t^-))$ under $\mathcal F$ is determined, where

$$M(\Gamma, t^+, t^-) = M(\Gamma, t^+) \setminus M(\Gamma, t^-).$$

See Figure 2.

Hence image of $L^2(M(\underline{\Gamma},\underline{t}^+,\underline{t}^-))$ under $\mathcal F$ is determined, where

$$M(\underline{\Gamma},\underline{t}^+,\underline{t}^-) = \bigcap_j M(\Gamma_j,t_j^+,t_j^-).$$

See Figure 3.

Fourth step. Gelfand data enable one to answer question: Given $f \in C(\partial M)$, does there exist $x \in \overline{M}$ such that

$$f(y) = \operatorname{dist}(x, y), \quad \forall \ y \in \partial M$$
?

Thus the image in $C(\partial M)$ of the boundary distance representation of \overline{M} :

$$R: \overline{M} \to C(\partial M), \quad R(x)(y) = \operatorname{dist}(x, y),$$

is determined by the Gelfand data.

Hence M is determined as a topological space, **provided** R can be proven to be one-to-one. This holds provided geodesics do not branch. See Figure 4.

Fifth step. Let $P(\underline{\Gamma}, \underline{t}^+, \underline{t}^-)$ denote the orthogonal projection of ℓ^2 onto the image $\mathcal{F}L^2(M(\underline{\Gamma}, \underline{t}^+, \underline{t}^-))$. Then

$$(P(\underline{\Gamma},\underline{t}^+,\underline{t}^-)e_i,e_j)_{\ell^2} = \int_{M(\underline{\Gamma},\underline{t}^+,\underline{t}^-)} \varphi_i(x)\varphi_j(x) dV(x).$$

Note $\varphi_1 \equiv (\text{Vol } M)^{-1/2}$. Taking $e_i = e_j = e_1$ determines $\text{Vol } M(\underline{\Gamma}, \underline{t}^+, \underline{t}^-)$. Then taking $e_i = e_1$ determines

$$\int_{M(\underline{\Gamma},\underline{t}^+,\underline{t}^-)} \varphi_j(x) \, dV(x).$$

So we recover $\varphi_j(x)$ on M, for each $x \in M$. This determines the differentiable structure and metric tensor on M.

Interior Regularity

Assume

(1)
$$g_{jk} \in C^r(\Omega) \cap H^{1,2}(\Omega), \quad r > 0.$$

(2)
$$\operatorname{Ric}_{jk} \in L^{\infty}(\Omega).$$

Then, in local harmonic coordinates,

(3)
$$\partial^2 g_{jk} \in \text{bmo.}$$

Note: $g_{jk} \in C^r$, $r > 0 \Rightarrow \exists$ local harmonic coordinates.

Ricci Equation

(4)
$$\Delta g_{\ell m} + B_{\ell m}(g_{jk}, \nabla g_{jk}) = -2 \operatorname{Ric}_{\ell m}.$$

Holds in local harmonic coordinates. Laplace-Beltrami operator Δ acts componentwise.

Early work by DeTurk and Kazdan:

$$g_{jk} \in C^2$$
, $\operatorname{Ric}_{jk} \in C^r \Rightarrow g_{jk} \in C^{r+2}$,

in local harmonic coordinates, $r \in \mathbb{R}^+ \setminus \mathbb{Z}^+$.

Example

$$M \subset \mathbb{R}^n$$
, C^2 surface, dimension k .

In graph coordinates, $g_{jk} \in C^1$.

Gauss map is C^1 , curvature is continuous.

Hence, in harmonic coordinates, $\partial^2 g_{jk} \in \text{bmo}$.

Existence of curvature

Connection 1-form

$$\Gamma^{a}{}_{bj} = \frac{1}{2}g^{am}(\partial_{j}g_{bm} + \partial_{b}g_{jm} - \partial_{m}g_{jb}).$$

Curvature 2-form

$$\mathcal{R} = d\Gamma + \Gamma \wedge \Gamma.$$

Have

$$g_{jk} \in C(\Omega) \cap H^{1,2}(\Omega) \Rightarrow \Gamma^{a}{}_{bj} \in L^{2}(\Omega)$$

$$\Rightarrow R^{a}{}_{bjk} \in H^{-1,2}(\Omega) + L^{1}(\Omega)$$

$$\Rightarrow \operatorname{Ric}_{jk} \in H^{-1,2}(\Omega) + L^{1}(\Omega)$$

$$\Rightarrow \operatorname{Ric}^{j}{}_{k}, S \in H^{-1,p'}(\Omega),$$

where

$$p' < \frac{n}{n-1}, \quad n = \dim \Omega.$$

Also,

$$g_{jk} \in H^{1,p}(\Omega), \quad p > n$$

 $\Rightarrow R^a{}_{bjk}, \operatorname{Ric}_{jk}, \operatorname{Ric}^j{}_k, S \in H^{-1,p}(\Omega).$

Boundary Regularity

Take $\overline{\Omega} = \Omega \cup \Sigma$, with

$$\Omega = \{ x \in \mathbb{R}^n : |x| < 1, \ x_n > 0 \},$$

$$\Sigma = \{ x \in \mathbb{R}^n : |x| < 1, \ x_n = 0 \}.$$

Assume

$$g_{jk} \in H^{1,p}(\Omega), \quad p > n,$$

 $h_{jk} \in H^{1,2}(\Sigma), \quad 1 \le j, k \le n - 1,$
 $\mathrm{Ric}^{\Omega} \in L^{\infty}(\Omega),$
 $\mathrm{Ric}^{\Sigma} \in L^{\infty}(\Sigma),$
 $H \in \mathrm{Lip}(\Sigma).$

Here $h_{jk} = g_{jk}|_{\Sigma}$, and

$$H = \text{ mean curvature of } \Sigma \hookrightarrow \overline{\Omega}.$$

Theorem. In local boundary harmonic coordinates,

$$g_{jk} \in C^2_*(\overline{\Omega}).$$

Hence ∇g_{jk} has a log-Lipschitz modulus of continuity, so there is no branching of geodesics.

Boundary Conditions for Ricci Equation

In boundary harmonic coordinates, for $1 \le j, k \le n-1$,

(1)
$$\Delta g_{jk} = B_{jk}(g, \nabla g) - 2 \operatorname{Ric}_{jk}^{\Omega},$$
$$g_{jk}|_{\Sigma} = h_{jk} \in \mathfrak{h}^{2,\infty}(\Sigma).$$

Regularity of (h_{jk}) from previous result. Results on Dirichlet problem due to Morrey apply.

Need to treat g_{jn} , $1 \leq j \leq n$. Actually, we directly treat g^{jn} , via Neumann boundary problems:

(2)
$$\Delta g^{jn} = B^{jn}(g, \nabla g) + 2(\operatorname{Ric}^{\Omega})^{jn},$$

(3)
$$Ng^{nn} = -2(n-1)H g^{nn},$$

on Σ , and, for $1 \leq j \leq n-1$,

(4)
$$Ng^{jn} = -(n-1)H g^{jn} + \frac{1}{2} \frac{1}{\sqrt{q^{nn}}} g^{jk} \partial_k g^{nn}.$$

The boundary conditions (3)–(4) make straightforward sense provided

$$g_{jk} \in C^{1+s}(\overline{\Omega})$$
, for some $s > 0$.

Otherwise, we must deal with a weak formulation of

$$\Delta w = F$$
, $Nw|_{\Sigma} = G$,

namely

$$\begin{split} \int\limits_{\Omega} \left\langle \nabla w, \nabla \psi \right\rangle dV \\ &= -\int\limits_{\Omega} F \psi \, dV - \int\limits_{\Sigma} G \psi \, dS, \end{split}$$

for all $\psi \in C^{\infty}(\overline{\Omega})$ with compact support (intersecting Σ but not the rest of $\partial\Omega$).

Another boundary regularity result:

Assume

$$g_{jk} \in H^{1,p}(\Omega), \quad p > n,$$

$$h_{jk} \in H^{1,2}(\Sigma), \quad 1 \le j, k \le n - 1,$$

$$\operatorname{Ric}^{\Omega} \in L^{p_1}(\Omega), \quad p_1 > n,$$

$$\operatorname{Ric}^{\Sigma} \in L^{p_2}(\Sigma), \quad p_2 > n - 1,$$

$$H \in C^{\sigma}(\Sigma), \quad \sigma > 0.$$

Then, in boundary harmonic coordinates,

$$g_{jk} \in C^{1+s}(\overline{\Omega}),$$

for some s > 0.

Weak Solutions to Neumann Problem

Assume

$$g_{jk} \in C^r(\overline{\Omega}), \quad \partial \Omega \text{ class } C^{1+r}, \quad 0 < r < 1.$$

 $u \in H^{1,2}(\Omega)$, weak solution to

$$\Delta u = f$$
, $Nu\big|_{\partial\Omega} = g$.

Proposition. Given $s \in (0, r), p \ge n/(1 - s),$

$$f \in L^p(\Omega), \ g \in C^s(\partial \Omega) \Rightarrow u \in C^{1+s}(\overline{\Omega}).$$

First reduce to f = 0. Then use single layer potential

$$Sh(x) = \int_{\partial\Omega} E(x, y)h(y) dS(y).$$

One obtains

$$u = \mathcal{S}h, \quad h \in C^s(\partial\Omega),$$

with h solving

$$\left(-\frac{1}{2}I + K^*\right)h = g.$$

Geometric Convergence

Class of compact Riemannian manifolds with boundary,

$$\mathcal{M}(R_0, i_0, S_0, d_0)$$
:

Ricci tensor bounds:

(1)
$$\|\operatorname{Ric}_{M}\|_{L^{\infty}(M)} \leq R_{0}, \quad \|\operatorname{Ric}_{\partial M}\|_{L^{\infty}(\partial M)} \leq R_{0},$$
 Injectivity radius bounds:

$$(2) i_M \ge i_0, \quad i_{\partial M} \ge i_0, \quad i_b \ge 2i_0.$$

Mean curvature bound:

$$||H||_{\operatorname{Lip}(\partial M)} \le S_0,$$

Diameter bound:

(4)
$$\operatorname{diam}(\overline{M}, g) \le d_0.$$

Fix the dimension n.

Theorem. Given $n \in \mathbb{N}$, $R_0, i_0, S_0, d_0 \in (0, \infty)$,

$$\mathcal{M}(R_0, i_0, S_0, d_0)$$
 is precompact

in the C^r topology, for each r < 2, i.e., any sequence has a convergent subsequence

$$(5) (\overline{M}_k, g_k) \longrightarrow (\overline{M}, g),$$

in the C^r topology. Furthermore,

(6)
$$g \in C^2_*(\overline{M}).$$

Meaning of C^r -convergence in (5): For k large, have diffeomorphisms

$$F_k: \overline{M} \longrightarrow \overline{M}_k$$

such that

$$F_k^* g_k \to g$$
 in C^r -topology.

Key to proof of theorem:

Find lower bound on **harmonic radius**, i.e., size of balls on which there are harmonic coordinates, in which the metric tensor satisfies good bounds.

Harmonic radius estimate has following ingredients:

- (*) Blow-up argument
- (*) Fundamental equations of surface theory
- (*) Cheeger-Gromoll splitting theorem
- (*) Boundary regularity result

Stabilization of Inverse Problems

Direct problem (general set-up)

$$\mathcal{D}: \mathcal{M} \longrightarrow \mathcal{B}.$$

Task: Identify object $M \in \mathcal{M}$ by measurement of data $\mathcal{D}(M)$. Common case: \mathcal{D} continuous in (1). First task: uniqueness. Success: \mathcal{D} is one-to one.

Ill posedness of inverse problem: no continuous inverse.

Key to stabilization:

A priori knowledge that $M \in \mathcal{M}_0$, with

(2)
$$\overline{\mathcal{M}}_0 \subset \mathcal{M}$$
 compact.

Then \mathcal{D} maps $\overline{\mathcal{M}}_0$ homeomorphically onto its image.

Stabilization of inverse boundary spectral problem:

$$\mathcal{M}_0 = \mathcal{M}(R_0, i_0, S_0, d_0).$$