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Boundary spectral data for compact Riemannian manifold (M, g):

{λj , ϕj |∂M}∞j=1.

Orthonormal basis of Neumann eigenfunctions ϕj :

∆ϕj = −λjϕj , Nϕj

∣∣
∂M

= 0.

Alternative data (equivalent): trace on R× ∂M × ∂M of

cos t
√
−∆.

Theorem. Given g ∈ C2(M), the boundary spectral data determine (M, g) uniquely,
up to isometry.

First step. Given f on [0, T ]× ∂M , define uf on [0, T ]×M by

(∂2
t −∆)uf = 0, u(0) = ∂tu(0) = 0, Nu

∣∣
∂M

= f.

Claim: Gelfand data determines Fourier coefficients

uf
k(t) = (uf (t), ϕk).
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Proof: Derive ODE:

∂2
t uf

k(t) = (∆uf (t), ϕk)

= −λk(uf (t), ϕk) +
∫

∂M

f(t, x)ϕk(x) dS(x)

= −λkuf
k(t) + KNOWN STUFF,

while
uf

k(0) = ∂tu
f
k(0) = 0.

Solve ODE explicitly.

Second step. Take Γ ⊂ ∂M and set

M(Γ, t+) = {x ∈ M : dist(x, ∂M) ≤ t+}.

See Figure 1. Claim: Image of L2(M(Γ, t+)) under Fourier transform

F : L2(M) −→ `2

is determined by Gelfand data.

Proof uses Lemma:
{uf (t+) : f ∈ Lip([0, t+]× Γ)}

is dense in L2(M(Γ, t+)).
Proof of lemma uses unique continuation result of D. Tataru.

Third step. Hence image in `2 of L2(M(Γ, t+, t−)) under F is determined, where

M(Γ, t+, t−) = M(Γ, t+) \M(Γ, t−).

See Figure 2.
Hence image of L2(M(Γ, t+, t−)) under F is determined, where

M(Γ, t+, t−) =
⋂

j

M(Γj , t
+
j , t−j ).

See Figure 3.
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Fourth step. Gelfand data enable one to answer question:
Given f ∈ C(∂M), does there exist x ∈ M such that

f(y) = dist(x, y), ∀ y ∈ ∂M?

Thus the image in C(∂M) of the boundary distance representation of M :

R : M → C(∂M), R(x)(y) = dist(x, y),

is determined by the Gelfand data.
Hence M is determined as a topological space, provided R can be proven to be
one-to-one. This holds provided geodesics do not branch. See Figure 4.

Fifth step. Let P (Γ, t+, t−) denote the orthogonal projection of `2 onto the image
F L2(M(Γ, t+, t−)). Then

(P (Γ, t+, t−)ei, ej)`2 =
∫

M(Γ,t+,t−)

ϕi(x)ϕj(x) dV (x).

Note ϕ1 ≡ (Vol M)−1/2. Taking ei = ej = e1 determines Vol M(Γ, t+, t−). Then
taking ei = e1 determines

∫

M(Γ,t+,t−)

ϕj(x) dV (x).

So we recover ϕj(x) on M , for each x ∈ M . This determines the differentiable
structure and metric tensor on M .

Interior Regularity

Assume

gjk ∈ Cr(Ω) ∩H1,2(Ω), r > 0.(1)

Ricjk ∈ L∞(Ω).(2)

Then, in local harmonic coordinates,

(3) ∂2gjk ∈ bmo.

Note: gjk ∈ Cr, r > 0 ⇒ ∃ local harmonic coordinates.
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Ricci Equation

(4) ∆g`m + B`m(gjk,∇gjk) = −2Ric`m .

Holds in local harmonic coordinates. Laplace-Beltrami operator ∆ acts component-
wise.

Early work by DeTurk and Kazdan:

gjk ∈ C2, Ricjk ∈ Cr ⇒ gjk ∈ Cr+2,

in local harmonic coordinates, r ∈ R+ \ Z+.

Example
M ⊂ Rn, C2 surface, dimension k.

In graph coordinates, gjk ∈ C1.

Gauss map is C1, curvature is continuous.

Hence, in harmonic coordinates, ∂2gjk ∈ bmo.

Existence of curvature

Connection 1-form

Γa
bj =

1
2
gam(∂jgbm + ∂bgjm − ∂mgjb).

Curvature 2-form
R = dΓ + Γ ∧ Γ.

Have
gjk ∈ C(Ω) ∩H1,2(Ω) ⇒ Γa

bj ∈ L2(Ω)

⇒ Ra
bjk ∈ H−1,2(Ω) + L1(Ω)

⇒ Ricjk ∈ H−1,2(Ω) + L1(Ω)

⇒ Ricj
k, S ∈ H−1,p′(Ω),
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where
p′ <

n

n− 1
, n = dim Ω.

Also,
gjk ∈ H1,p(Ω), p > n

⇒ Ra
bjk, Ricjk, Ricj

k, S ∈ H−1,p(Ω).

Boundary Regularity

Take Ω = Ω ∪ Σ, with

Ω = {x ∈ Rn : |x| < 1, xn > 0},
Σ = {x ∈ Rn : |x| < 1, xn = 0}.

Assume
gjk ∈ H1,p(Ω), p > n,

hjk ∈ H1,2(Σ), 1 ≤ j, k ≤ n− 1,

RicΩ ∈ L∞(Ω),

RicΣ ∈ L∞(Σ),

H ∈ Lip(Σ).

Here hjk = gjk|Σ, and

H = mean curvature of Σ ↪→ Ω.

Theorem. In local boundary harmonic coordinates,

gjk ∈ C2
∗(Ω).

Hence ∇gjk has a log-Lipschitz modulus of continuity, so there is no branching of
geodesics.

Boundary Conditions for Ricci Equation

In boundary harmonic coordinates, for 1 ≤ j, k ≤ n− 1,

(1)
∆gjk = Bjk(g,∇g)− 2RicΩ

jk,

gjk

∣∣
Σ

= hjk ∈ h2,∞(Σ).
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Regularity of (hjk) from previous result.
Results on Dirichlet problem due to Morrey apply.

Need to treat gjn, 1 ≤ j ≤ n. Actually, we directly treat gjn, via Neumann
boundary problems:

∆gjn = Bjn(g,∇g) + 2(RicΩ)jn,(2)

Ngnn = −2(n− 1)H gnn,(3)

on Σ, and, for 1 ≤ j ≤ n− 1,

(4) Ngjn = −(n− 1)H gjn +
1
2

1√
gnn

gjk ∂kgnn.

The boundary conditions (3)–(4) make straightforward sense provided

gjk ∈ C1+s(Ω), for some s > 0.

Otherwise, we must deal with a weak formulation of

∆w = F, Nw
∣∣
Σ

= G,

namely ∫

Ω

〈∇w,∇ψ〉 dV

= −
∫

Ω

Fψ dV −
∫

Σ

Gψ dS,

for all ψ ∈ C∞(Ω) with compact support (intersecting Σ but not the rest of ∂Ω).

Another boundary regularity result:
Assume

gjk ∈ H1,p(Ω), p > n,

hjk ∈ H1,2(Σ), 1 ≤ j, k ≤ n− 1,

RicΩ ∈ Lp1(Ω), p1 > n,

RicΣ ∈ Lp2(Σ), p2 > n− 1,

H ∈ Cσ(Σ), σ > 0.

Then, in boundary harmonic coordinates,

gjk ∈ C1+s(Ω),
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for some s > 0.

Weak Solutions to Neumann Problem

Assume
gjk ∈ Cr(Ω), ∂Ω class C1+r, 0 < r < 1.

u ∈ H1,2(Ω), weak solution to

∆u = f, Nu
∣∣
∂Ω

= g.

Proposition. Given s ∈ (0, r), p ≥ n/(1− s),

f ∈ Lp(Ω), g ∈ Cs(∂Ω) ⇒ u ∈ C1+s(Ω).

First reduce to f = 0. Then use single layer potential

Sh(x) =
∫

∂Ω

E(x, y)h(y) dS(y).

One obtains
u = Sh, h ∈ Cs(∂Ω),

with h solving (
−1

2
I + K∗

)
h = g.

Geometric Convergence

Class of compact Riemannian manifolds with boundary,

M(R0, i0, S0, d0) :

Ricci tensor bounds:

(1) ‖RicM ‖L∞(M) ≤ R0, ‖Ric∂M ‖L∞(∂M) ≤ R0,

Injectivity radius bounds:

(2) iM ≥ i0, i∂M ≥ i0, ib ≥ 2i0.

Mean curvature bound:

(3) ‖H‖Lip(∂M) ≤ S0,

Diameter bound:

(4) diam(M, g) ≤ d0.

Fix the dimension n.
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Theorem. Given n ∈ N, R0, i0, S0, d0 ∈ (0,∞),

M(R0, i0, S0, d0) is precompact

in the Cr topology, for each r < 2, i.e., any sequence has a convergent subsequence

(5) (Mk, gk) −→ (M, g),

in the Cr topology. Furthermore,

(6) g ∈ C2
∗(M).

Meaning of Cr-convergence in (5):
For k large, have diffeomorphisms

Fk : M −→ Mk

such that
F ∗k gk → g in Cr-topology.

Key to proof of theorem:
Find lower bound on harmonic radius, i.e., size of balls on which there are har-
monic coordinates, in which the metric tensor satisfies good bounds.

Harmonic radius estimate has following ingredients:
(*) Blow-up argument
(*) Fundamental equations of surface theory
(*) Cheeger-Gromoll splitting theorem
(*) Boundary regularity result

Stabilization of Inverse Problems

Direct problem (general set-up)

(1) D : M−→ B.

Task: Identify object M ∈M by measurement of data D(M).
Common case: D continuous in (1).
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First task: uniqueness.
Success: D is one-to one.
Ill posedness of inverse problem: no continuous inverse.

Key to stabilization:
A priori knowledge that M ∈M0, with

(2) M0 ⊂M compact.

Then D maps M0 homeomorphically onto its image.

Stabilization of inverse boundary spectral problem:

M0 = M(R0, i0, S0, d0).


