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Abstract. We establish variants of stability estimates in norms somewhat stronger than
the H1-norm, under Arnold’s stability hypotheses on steady solutions to the Euler equa-
tions for fluid flow on planar domains.

1. Introduction

Let Ω be a smoothly bounded planar region and uε(t, x) solutions to Euler equations
on R× Ω,

(1.1) ∂tu
ε +∇uεuε = ∇qε, div uε = 0, uε ‖ ∂Ω,

with initial data uε(0) = uε
0. Assume u0(t, x) ≡ us(x) is a smooth, steady solution to (1.1).

V. Arnold found conditions on us guaranteeing the stability estimate

(1.2) ‖uε(t)− us‖H1(Ω) ≤ C‖uε
0 − us‖H1(Ω), ∀ t ∈ R,

at least as long as the right side of (1.2) is sufficiently small. The analysis was based on
use of conserved quantities of the form

(1.3) H(u) =
∫

Ω

[1
2
|u|2 + ϕ(ω)

]
dA +

∑
aj

∫

Γj

u · dx.

Here ω = rot u and Γj are the connected components of ∂Ω. The function ϕ is obtained
as follows. Set ωs = rot us and let ψs denote the stream function of us, satisfying

(1.4) us = J∇ψs,

where J represents counterclockwise rotation by 90◦. Assume

(1.5) ψs = Φ(ωs),

with Φ smooth and monotone, and take ϕ such that

(1.6) ϕ′(λ) = Φ(λ).
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We can assume ϕ′ linear for λ large (positive or negative). It is then possible to specify
aj ∈ R such that us is a critical point of H. A calculation gives

(1.7) D2H(us)(v, v) =
∫

Ω

[|v|2 + (rot v)2ϕ′′(ωs)
]
dA,

or equivalently D2H(us)(v, v) = Q(v, v), with

(1.8) Q(v, v) = ‖v‖2L2 + (rot v, Φ′(ωs) rot v)L2 .

For more details, see pp. 89–94 of [AK] or pp. 106–111 of [MP].
The form D2H(us) = Q is positive definite on

(1.9) V 1(Ω) = {v ∈ H1(Ω,R2) : div v = 0, v‖∂Ω},

provided

(1.10) Φ′(ωs) ≥ K > 0 on Ω.

On the other hand, D2H(us) is negative definite provided Ω is simply connected,

(1.11) −Φ′(ωs) ≥ K > 0,

and, for some δ > 0,

(1.12) ‖∇ψ‖2L2 ≤ (K − δ)‖∆ψ‖2L2 , ∀ ψ ∈ H2(Ω) ∩H1
0 (Ω).

In either such case, we have

(1.13) |H(uε)−H(us)| ≈ ‖uε − us‖2H1 ,

provided the right side of (1.13) is sufficiently small, and one has the stability result (1.2).
(We mention that J∇ψs = −∇⊥ψs, as defined in (2.12) of [MP], which accounts for an
apparent sign difference between (1.10)–(1.11) and the results stated there.)

Our goal in this paper is to estimate uε(t)− us in stronger norms, under hypotheses on
us that imply (1.2). In §2 we first establish a stability estimate for ‖uε(t)−us‖L∞ , valid for
all t, and then a slow growth estimate on ‖ rotuε(t)−rot us‖L∞ , i.e., growth at most linear
in |t|, with rate roughly proportional to ‖uε

0 − us‖H1 (cf. (2.12)). We then deduce such a
slow growth estimate for uε(t) − us, in the norm of the Zygmund space C1

∗(Ω), and also
in a bmo1-norm. These are slightly weaker than the C1(Ω)-norm, but nevertheless have
implications for the flow generated by uε(t). Going from estimates in these slightly weaker
norms to a C1(Ω)-estimate seems to involve a “phase shift” in the stability estimates, which
shoot up to exponentially increasing in time, and further shoot up to doubly exponentially
increasing for higher norm estimates. These matters are discussed in §3.
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One ingredient in the analysis in §2 is an estimate similar in flavor to estimates of Brezis,
Gallouet, and Wainger ([BG], [BW]). We discuss such variants in Appendix A.

Acknowledgment. Thanks to an anonymous referee for insightful comments.

2. Stability/slow growth in stronger norms

As in §1, we assume that Ω is a smoothly bounded planar region and us ∈ C∞(Ω,R2) is
a stationary solution to (1.1), satisfying stability hypotheses that lead to (1.2). We assume
uε

0 has additional smoothness, and we desire to obtain long time estimates on uε(t) − us

in other norms. Let us set ωs = rot us and

(2.1)
vε(t) = uε(t)− us, vε

0 = uε
0 − us,

ωε(t) = rot uε(t), Ωε(t) = ωε(t)− ωs.

We assume ‖uε
0 − us‖H1 = ‖vε

0‖H1 is small enough that (1.2) holds. This implies

(2.2) ‖Ωε(t)‖L2 ≤ C0‖vε
0‖H1 , ∀ t ∈ R.

We next want to estimate the L∞-norm of vε(t). We use the following inequality:

(2.3) ‖vε(t)‖L∞ ≤ C
(
log

A‖Ωε‖L∞

‖Ωε‖L2

)1/2

‖Ωε(t)‖L2 + C‖vε(t)‖L2 .

This is similar to estimates arising in [BG] and [BW]. See Appendix A for a discussion of
this estimate. Note that conservation of vorticity implies

(2.4) ‖Ωε(t)‖L∞ ≤ ‖ωε(t)‖L∞ + ‖ωs‖L∞ = ‖ωε
0‖L∞ + ‖ωs‖L∞ .

Note also that

(2.5) 0 < β < α, β ≤ 1 ⇒
(
log

α

β

)1/2

β ≤ (log α)1/2
+ β +

(
log

1
β

)1/2

β.

Hence we have

(2.6)
‖vε(t)‖L∞ ≤ C

(
log A

[‖ωε
0‖L∞ + ‖ωs‖L∞

])1/2

+
‖Ωε(t)‖L2

+ C
(
log

1
‖Ωε(t)‖L2

)1/2

‖Ωε(t)‖L2 + C‖vε(t)‖L2 ,

provided ‖Ωε(t)‖L2 ≤ 1. We now assume

(2.7) C0‖vε
0‖H1 ≤ e−1/2,



4

which then fits into (2.2). Noting that

(2.8)
(
log

1
y

)1/2

y ↗, for 0 < y < e−1/2,

we deduce that

(2.9)
‖vε(t)‖L∞ ≤ C

(
log A

[‖ωε
0‖L∞ + ‖ωs‖L∞

])1/2

+
‖vε

0‖H1

+ C
(
log

1
‖vε

0‖H1

)1/2

‖vε
0‖H1 ,

for all t ∈ R, noting that the term C‖vε(t)‖L2 in (2.6) can be absorbed.
The estimate (2.9) is complementary to but not stronger than (1.2). An advantage of

(2.9) is that it gives us the ability to exploit the vorticity equation ∂tω
ε +∇uεωε = 0 as

follows. We have

(2.10) ∂tΩε +∇uεΩε = −∇vεωs, Ωε(0) = ωε
0 − ωs,

so Ωε(t, x) is obtained by integrating −∇vεωs along integral curves of ∂t +∇uε . Hence

(2.11) ‖Ωε(t)‖L∞ ≤ ‖Ωε(0)‖L∞ + C sup
0≤s≤t

‖vε(s)‖L∞ · t,

for t > 0, with an analogous estimate for t < 0, so bringing in (2.9) gives the following
conclusion:

Proposition 2.1. Under hypotheses such as (1.10) or (1.11)–(1.12), and assuming the
right side of (1.2) is sufficiently small, one has

(2.12) ‖Ωε(t)‖L∞ ≤ ‖ωε
0 − ωs‖L∞ + CK(uε

0, us)‖vε
0‖H1 · |t|, t ∈ R,

where

(2.13) K(uε
0, us) =

(
log A

[‖ωε
0‖L∞ + ‖ωs‖L∞

])1/2

+
+

(
log

1
‖vε

0‖H1

)1/2

.

Remark. Of course, for large |t| one has the bound ‖Ωε(t)‖L∞ ≤ ‖ωε(t)‖L∞ + ‖ωs‖L∞ =
‖ωε

0‖L∞+‖ωs‖L∞ . The content of (2.12) is that for given (small) δ > 0, if ‖ωε
0−ωs‖L∞ ≤ δ,

then ‖Ωε(t)‖L∞ ≤ 2δ for a time interval of length

≈ C
δ

ρ
, ρ = ‖uε

0 − us‖H1

(
log

1
‖uε

0 − us‖H1

)1/2

.
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To proceed with further estimates on vε(t) = uε(t) − us, we use the fact that since
vε(t) ∈ V 1(Ω) and rot vε(t) = Ωε(t), we have

(2.14) vε(t) = J∇∆−1Ωε(t) + Pvε(t),

where ∆−1 solves the Dirichlet problem and P is the orthogonal projection of L2(Ω,R2)
onto a finite dimensional space of harmonic vector fields in C∞(Ω,R2). Cf. [T], Chapter
17, Lemma 3.5. (P = 0 if Ω is simply connected.) Given the estimate (1.2) on ‖vε‖H1 , we
have global control on Pvε(t) in quite strong norms. To estimate J∇∆−1Ωε(t) via (2.12),
we note the following mapping property of ∆−1:

(2.15) ∆−1 : L∞(Ω) −→ C2
∗(Ω),

where C2
∗(Ω) is a Zygmund space; cf. [T], Chapter 13, §9. Combining (2.12)–(2.15), we

have:

Proposition 2.2. In the setting of Proposition 2.1,

(2.16) ‖vε(t)‖C1∗(Ω) ≤ C‖ωε
0 − ωs‖L∞ + C‖vε

0‖H1 + CK(uε
0, us)‖vε

0‖H1 · |t|.

One significant aspect of such an estimate as (2.16) is the log-Lipschitz modulus of
continuity possessed by elements of C1

∗(Ω):

(2.17) |v(x)− v(y)| ≤ C log
1

|x− y| |x− y| · ‖v‖C1∗ , |x− y| ≤ 1
2
.

Because of this modulus of continuity, Osgood’s theorem applies to show that the t-
dependent vector field uε(t) generates a uniquely defined flow, though estimates on such a
flow are not as good as they would be if the C1

∗(Ω) estimate could be replaced by an equally
strong C1(Ω) estimate. In §3 we will obtain C1(Ω) estimates, but the upper bounds will
be larger than they are in (2.16).

Work of [CDS] produces a result a bit sharper than (2.16). By Theorem 5.8 of that
paper,

(2.18) |α| ≤ 2 =⇒ EDα∆−1 : L∞(Ω) → bmo(R2),

where for a function f on Ω, one sets Ef(x) = f(x) for x ∈ Ω, 0 for x ∈ R2 \ Ω.
Consequently, (2.16) is sharpened to

(2.19) ‖E∇vε(t)‖bmo(R2) ≤ C‖ωε
0 − ωs‖L∞ + C‖vε

0‖H1 + CK(uε
0, us)‖vε

0‖H1 · |t|.

While (2.19) is stronger than (2.16), it does not yield a modulus of continuity estimate
stronger than (2.17).

Remark. In addition to applicability to results on flows generated by the velocity field uε,
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another advantage of the estimates in Proposition 2.1 over the H1-estimate (1.2) arises from
the following consideration (pointed out by the referee). One does not have a uniqueness
result for weak solutions to the Euler equation (1.1) with initial data uε

0 in V 1(Ω), defined
by (1.9). However, under the additional condition that rotuε

0 belong to L∞(Ω), one does
have global existence and uniqueness; cf. [K], [Y].

3. C1 and Hk estimates

We desire to complement the estimates in §2 on vε(t) = uε(t)−us with estimates in the
C1 norm and in Hk norm. A major ingredient will be estimates in these norms of uε(t),
given as in (1.1). A crucial connection between these estimates is given by the estimate of
[BKM] type:

(3.1) ‖∇uε‖L∞ ≤ C
(
1 + log

A‖uε‖H3

‖ωε‖L∞

)
‖ωε‖L∞ + C‖∇uε‖L2 ,

established in the context of bounded regions in §3, Chapter 17, of [T]. As we have seen,
conservation of vorticity gives

(3.2) ‖ωε(t)‖L∞ ≤ C.

A standard attack on estimating ‖uε(t)‖Hk starts with

(3.3)
d

dt
‖uε‖2Hk = −2(P∇uεuε, uε)Hk ,

where P is the Helmholtz projection. Then an integration by parts and use of Gagliardo-
Nirenberg-Moser estimates gives

(3.4) |(P∇uεuε, uε)Hk | ≤ C‖uε‖C1‖uε‖2Hk ;

cf. (3.24) in [T], Chapter 17. It follows that

(3.5)
d

dt
‖uε‖2Hk ≤ C‖uε‖C1‖uε‖2Hk .

Let us set Gε
k(t) = ‖uε(t)‖2Hk . Using (3.1)–(3.2) we see that, if k ≥ 3,

(3.6)
d

dt
Gε

k(t) ≤ C
(
1 + log+ Gε

k(t)
)
Gε

k(t).

Gronwall’s inequality then yields an estimate

(3.7) ‖uε(t)‖Hk ≤ eCeCt

, 0 ≤ t.
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Taking k = 3 and using (3.1)–(3.2) again, we have

(3.8) ‖∇uε(t)‖L∞ ≤ CeCt, 0 ≤ t.

Remark. The estimates (3.1)–(3.8) are valid for any smooth initial data uε(0, x) = u0(x),
not necessarily producing a stationary solution at ε = 0.

Now assume u0(t, x) ≡ us(x) is a stationary solution satisfying either the hypotheses
(1.10) or (1.11)–(1.12), so we have estimates on vε = uε − us and on Ωε = rot vε given in
(1.2), (2.9), and (2.12). Parallel to (3.1), we have

(3.9) ‖∇vε‖L∞ ≤ C
(
1 + log

A‖vε‖H3

‖Ωε‖L∞

)
‖Ωε‖L∞ + C‖∇vε‖L2 .

Since ‖vε‖Hk ≤ ‖uε‖Hk + ‖us‖Hk we can use (3.7) to deduce that

(3.10) ‖∇vε(t)‖L∞ ≤ C
(
CeC|t| + log

1
‖Ωε(t)‖L∞

)
‖Ωε(t)‖L∞ + C‖∇vε(t)‖L2 .

We can insert (2.12) and (1.2) into this estimate, to obtain

(3.11) ‖∇vε(t)‖L∞ ≤ CeC|t|
(
‖ωε

0 − ωs‖L∞ + CK(uε
0, us)‖vε

0‖H1 · |t|
)
.

It would be interesting to know whether one could replace the exponential factor eC|t|

by something smaller. Such estimates are obtained in [GJRS], in a related setting, but
with dissipation (and small forcing) added to (1.1) (and with Ω replaced by a torus). For
estimates there, dissipation plays a crucial role.

A. Discussion of the BGW-type estimate (2.3)

We discuss the estimate (2.3), i.e.,

(A.1) ‖u‖L∞ ≤ C
(
1 + log

A‖ω‖L∞

‖ω‖L2

)1/2

‖ω‖L2 + C‖u‖L2 ,

and variants, which are similar to estimates arising in [BG] and [BW]. (The slight difference
in appearance between (2.3) and (A.1) can be accounted for by adjusting A.) Here ω ∈
L∞(Ω), where Ω is a smoothly bounded planar domain, and ω = rot u, with u ∈ V 1(Ω),
defined by (1.9). One has, as in (2.14),

(A.2) u = J ∇∆−1ω + Pu,
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where ∆−1 solves the Dirichlet problem and P is an orthogonal projection of L2(Ω,R2)
onto a finite dimensional space of harmonic vector fields, in C∞(Ω,R2). In particular,
‖u‖H1 ≈ ‖ω‖L2 + ‖u‖L2 , and for any given r ∈ (0, 1), ‖u‖Cr ≤ C‖ω‖L∞ + C‖u‖L2 . Hence
(A.1) follows from

(A.3) ‖u‖L∞ ≤ C
(
1 + log

A‖u‖Cr

‖u‖H1

)1/2

‖u‖H1 ,

given u ∈ H1(Ω) ∩ Cr(Ω), Ω a smoothly bounded planar domain. Standard extension
maps allow us to work instead on T2.

More generally, working on Tn, we claim that

(A.4) ‖u‖L∞ ≤ C
(
1 + log

A‖u‖Cr

‖u‖Hn/p,p

)1−1/p

‖u‖Hn/p,p ,

given 1 < p < ∞.
To get this, take Ψ ∈ C∞0 (R), with Ψ(s) = 1 for |s| ≤ 1, 0 for |s| ≥ 2, and write

(A.5) u = Ψ(εD)u + (I −Ψ(εD))u.

There is the elementary estimate

(A.6) ‖(I −Ψ(εD))u‖L∞ ≤ Cεr ‖u‖Cr .

We claim that

(A.7) ‖Ψ(εD)u‖L∞ ≤ C
(
log

1
ε

)1−1/p

‖u‖Hn/p,p .

Given this, picking ε such that

(A.8) εr =
‖u‖Hn/p,p

‖u‖Cr

then gives (A.4).
The estimate (A.7) is equivalent to

(A.9) ‖Ψ(εD)Λ−n/pv‖L∞ ≤ C
(
log

1
ε

)1−1/p

‖v‖Lp ,

where Λ = (1−∆)1/2. We have Λ−sv = Js ∗ v where, for 0 < s < n, Js ∈ C∞(Tn \ 0) and

(A.10) Js(x) ∼ C|x|s−n, |x| ≤ 1.

It follows that

(A.11) Ψ(εD)Λ−sv = Ks,εv,
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where

(A.12)
|Ks,ε(x)| ≤ Cεs−n, |x| ≤ ε,

C|x|s−n, |x| ≥ ε.

It then follows that

(A.13)
‖Ks,ε‖q

Lq ≤ Cεq(s−n)εn +
∫ 1

ε

rq(s−n)rn−1 dr

= C + C log
1
ε
, if qs− qn + n = 0.

Note that

(A.14) s =
n

p
,

1
p

+
1
q

= 1 =⇒ qs− qn + n = nq
(1

p
− 1 +

1
q

)
= 0.

Thus, with q = p′,

(A.15)
‖Ψ(εD)Λ−n/pv‖L∞ ≤ ‖Kn/p,ε‖Lq‖v‖Lp

≤ C
(
log

1
ε

)1/q

‖v‖Lp ,

which yields the asserted estimate (A.9). The proof of (A.4) is complete.
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