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Abstract

We examine distributions on T1 = R/(2πZ) whose Fourier coeffi-
cients are of the form (log n)−1, and variants. These distributions are
smooth except at θ = 0, and the nature of their singularities at θ = 0
turns out to be much more complex than those of their counterparts
that involve positive powers of log n. We also study related Fourier
transforms. We move from one dimension to higher dimensions, where
a wider variety of phenomena arise, and more subtle analytical tech-
niques are called for.
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1 Introduction

The series ∞∑

n=2

1
log n

sinnθ (1.1)

appears in [3] as an example of a trigonometric series that converges point-
wise for each θ ∈ T1 = R/(2πZ) but is not the Fourier series of an L1

function. The convergence can be demonstrated using the Dirichlet test for
convergence of an infinite series (cf. [11], §2.31), and also as a special case
of Riemann localization (given (1.2) below, cf. [9]). In the parlance of that
time, it was said that (1.1) was not a Fourier series, a conclusion repeated
in [11] and in [14]. Since the work of L. Schwartz, we say (1.1) is the Fourier
series of a distribution, call it uL, and we can say quite a bit about this
distribution. For example, as we will see below,

uL ∈ C∞(T1 \ 0). (1.2)

Furthermore, methods from Chapter 5 of [14] yield that, for small |θ|,

uL(θ) = − 1
θ log |θ| + O

( 1
|θ|(log |θ|)2

)
. (1.3)

The principal term on the right side of (1.3) is not in L1, but it defines a
principal value distribution, and we can say of the distribution uL that

uL + PV
1

θ log |θ| ∈ L1
([
−1

2
,
1
2

])
. (1.4)

Our primary goal in this paper centers about obtaining a much more
precise description of the asymptotic behavior of uL(θ) as θ → 0, as well
as that of related distributions. We will see that the behavior is quite com-
plex, much more complex than the behavior of the slightly more singular
distribution

vL =
∞∑

n=2

(log n) sin nθ, (1.5)

which also belongs to C∞(T1 \ 0).
To describe the behavior of uL(θ) as θ → 0, we use the following class of

special functions, of a sort introduced by B. Ziemian (cf. [12], [13], and also
[6]), whose work was brought to our attention by R. Mazzeo. We set

KΦ(z) =
∫ 1

0
Φ(s)zs ds, for Re z > 0, Φ ∈ C∞([0, 1]), (1.6)
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and, more generally, for b ∈ (0,∞),

KΦ,b(z) =
∫ b

0
Φ(s)zs ds, Re z > 0, Φ ∈ C∞([0, b]). (1.7)

As this introduction proceeds, we will discuss successive further generaliza-
tions, from integrating along paths in the complex domain to allowing Φ(s)
to take values in a topological vector space. Integration by parts in (1.6)
yields

KΦ(z) = − 1
log z

(
Φ(0)− Φ(1)z

)
− 1

log z
KΦ′(z), (1.8)

and more generally

KΦ,b(z) = − 1
log z

(
Φ(0)− Φ(b)zb

)
− 1

log z
KΦ′,b(z). (1.9)

These operations can be iterated, producing asymptotic expansions involv-
ing powers of (log z)−1, as z → 0.

Our first improvement of (1.3) is

uL(θ) =
1
θ
Kψ(|θ|) + O

(
(log |θ|)−1

)
, (1.10)

where
ψ(s) = Γ(1− s) sin

π

2
(1− s) = Γ(1− s) cos

πs

2
. (1.11)

Note that ψ ∈ C∞([0, 1]). Further improvements will be described below.
We find it convenient to work with Fourier integrals instead of Fourier

series, so take

a ∈ C∞(R), a(ξ) = −a(−ξ), a(ξ) =
1

log ξ
for ξ ≥ 2,

a(ξ) = 0 for |ξ| ≤ 1,

(1.12)

and consider
UL(x) =

∫ ∞

0
a(ξ) sin xξ dξ, (1.13)

i.e.,

UL(x) =
1
2i

∫ ∞

−∞
a(ξ)eixξ dξ. (1.14)

This integral is not absolutely convergent, but it exists as an oscillatory in-
tegral. In more detail, the function a(ξ) in (1.12) is a tempered distribution,
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i.e., a ∈ S ′(R), and the Fourier transform maps S ′(R) to itself, so (1.14)
defines UL ∈ S ′(R). Further structure follows from the fact that

|a(k)(ξ)| ≤ Ck(1 + |ξ|)−k, (1.15)

and

xkUL(x) =
ik

2i

∫ ∞

−∞
a(k)(ξ)eixξ dξ, (1.16)

and more generally

( d

dx

)`
xkUL(x) =

ik+`

2i

∫ ∞

−∞
ξ`a(k)(ξ)eixξ dξ, (1.17)

so
k ≥ ` + 2 =⇒

∣∣∣
( d

dx

)`
xkUL(x)

∣∣∣ ≤ Ck` < ∞. (1.18)

It follows that UL is C∞ on R \ 0 and rapidly decreasing, with all its deriva-
tives, as |x| → ∞.

With these estimates in hand, we can use the Poisson summation formula
to write

uL(θ) =
∞∑

k=−∞
UL(θ + 2πk), (1.19)

and see that(1.2) holds and that the singularity of uL at θ = 0 coincides
with that of UL. In particular, (1.10) is equivalent to

UL(x) =
1
x

Kψ(|x|) + O
(
(log |x|)−1

)
, (1.20)

as x → 0, with ψ as in (1.11).
A key ingredient in the proof of (1.20) is the identity

∫ ∞

0

1
log ξ

(
1− 1

ξ

)
sinxξ dξ =

1
x

Kψ(|x|), (1.21)

with ψ as in (1.11), which we prove in §2. A tempting approach from here
is to replace 1− ξ−1 by 1 − ξ−k for large k. A difficulty arises because the
resulting integrand is then not Lebesgue integrable on [0, 1].

One way around this difficulty is to integrate over ξ ∈ [1,∞). It is of
interest to consider more generally, for 0 ≤ a < b,

Fab(x) =
∫ ∞

1

1
log ξ

(
ξ−a − ξ−b

)
e−ixξ dξ

= Cab(x)− iSab(x),
(1.22)
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where
Cab(x) =

∫ ∞

1

1
log ξ

(
ξ−a − ξ−b

)
cosxξ dξ,

Sab(x) =
∫ ∞

1

1
log ξ

(
ξ−a − ξ−b

)
sinxξ dξ.

(1.23)

As with (1.13), these integrals exist as oscillatory integrals, which are C∞

on R \ 0. Note that S01(x) differs from (1.21) by the Fourier transform of a
distribution with compact support, hence by a C∞ function. We also replace
(1.7) by

KΦ,a,b(z) =
∫ b

a
Φ(s)zs ds, (1.24)

for Re z > 0, Φ ∈ C∞([a, b]). In such a case, integration by parts yields

KΦ,a,b(z) = − 1
log z

(
Φ(a)za − Φ(b)zb

)
− 1

log z
KΦ′,a,b(z), (1.25)

and this can be iterated, producing asymptotic expansions involving powers
of (log z)−1, as z → 0. We will show the following.

Theorem 1.1 Assume 0 ≤ a < b and a, b /∈ {1, 2, 3, . . . }. Then

Fab(x) ≡ 1
|x|

∫ b

a
Γ(1− s)e−πi(sgn x)(1−s)/2|x|s ds, (1.26)

i.e.,

Sab(x) ≡ 1
x

Kψ,a,b(|x|),

Cab(x) ≡ 1
|x|Kϕ,a,b(|x|),

(1.27)

with ψ as in (1.11) and

ϕ(s) = Γ(1− s) cos
π(1− s)

2
= Γ(1− s) sin

πs

2
. (1.28)

Here we use the notation

f(x) ≡ g(x) (1.29)

to mean that f − g is C∞ on a neighborhood of x = 0.
Note the following complication. Namely ψ and ϕ are not smooth on

[a, b] in general. In fact, ψ and ϕ are meromorphic in s, with simple poles
at

{2, 4, 6, 8, . . . } and {1, 3, 5, 7, . . . }, (1.30)
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respectively. In light of this, we take (1.24) to mean we integrate from a to
b along a path γab from a to b in C that avoids these poles. If γ̃ab is another
such path, a residue calculation shows that the two integrals differ by a
function that is a polynomial in x. In this more general setting, integration
by parts still works to produce (1.25), with Φ given by ϕ or ψ.

Recalling our initial interest in (1.1) and its associate (1.13), we see that
an analysis of

Fa(x) =
∫ ∞

2

1
log ξ

ξ−ae−ixξ dξ

= Ca(x)− iSa(x)
(1.31)

is of primary interest, so of course it is useful to realize that

Fa − Fab ∈ Ck(R), provided b > k + 1. (1.32)

Hence (1.27) for large b captures the behavior of the singularities of Sa(x)
and Ca(x) near x = 0. Clearly UL in (1.13) satisfies

UL(x) ≡ S0(x). (1.33)

Thus the result for S0b(x) in (1.27) refines (1.20). Also, (1.27) with a = 0
complements this with

∫ ∞

1

1
log ξ

(
1− ξ−b

)
cosxξ dξ = C0b(x)

≡ 1
|x|Kϕ,b(|x|),

(1.34)

with ϕ as in (1.28) and Kϕ,b as in (1.7), again interpreted as an integral over
a path from 0 to b in C that avoids the poles of ϕ(s). Note that ϕ(0) = 0,
while

ϕ′(0) = −π

2
, (1.35)

so an iteration of (1.9) gives

C0b(x) =
π/2

|x|(log |x|)2 + O
( 1
|x|(log |x|)3

)
, (1.36)

accompanied by a further asymptotic expansion involving higher powers of
(log |x|)−1.

The reason for the restriction on a and b in Theorem 1.1 is that since
the path γab needs to avoid the poles of ψ(s) and ϕ(s), given by (1.11) and
(1.28), its endpoints must also avoid these poles. More precisely, the result
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(1.27) for Sab(x) requires a and b to avoid {2, 4, 6, 8, . . . }, and its counterpart
for Cab(x) requires a and b to avoid {1, 3, 5, 7, . . . }. For this reason, (1.21)
fits into (1.27), but the analysis for C01(x) needs more work. Of course, in
view of our discussion about (1.31)–(1.32), we generally envision taking b
large, and do not care about whether it is an integer.

On the other hand, we do care about Skb(x) and Ckb(x), for positive
integers k (and b > k). To get useful information on these functions, we can
use the identities

S′a+1,b+1(x) = Cab(x), C ′
a+1,b+1(x) = −Sab(x), (1.37)

integrate, and then proceed iteratively from C0b(x) and S0b(x) to Ck,b+k(x)
and Sk,b+k(x), where b > 0 (and is not an integer). Examples start with

S1,b+1(x) ≡ (sgn x)Kϕ1,b(|x|),
C1,b+1(x) ≡ log

∣∣log |x|∣∣−Kψ1,b(|x|)− li(|x|b), (1.38)

where

ϕ1(s) =
ϕ(s)

s
, ψ1(s) =

ψ(s)− 1
s

, li(x) =
∫ x

0

dt

log t
, (1.39)

and ψ and ϕ are as in (1.11) and (1.28). See §6 for more on this. We mention
parenthetically that if a ≥ 0 and ` > a is a positive integer, one can analyze
Ca`(x) and Sa`(x) by picking a non-integer b > ` and using

Fa`(x) = Fab(x)− F`b(x). (1.40)

As advertized, we establish the identity (1.21) in §2. More generally, we
show that

∫ ∞

0

1
log ξ

(
1− ξ−b

)
sinxξ dξ =

1
x

Kψ,b(|x|) if 0 < b < 2, (1.41)

and that
∫ ∞

0

1
log ξ

(
1− ξ−b

)
cosxξ dξ =

1
|x|Kϕ,b(|x|) if 0 < b < 1, (1.42)

where ψ and ϕ are as in (1.11) and (1.28). We also show that (1.41) implies
(1.10).

Methods of §2 need to be modified for larger b, since then the integrands
in (1.41) and (1.42) are not Lebesgue integrable on [0, 1]. As mentioned, this
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motivates us to switch attention to the functions in (1.22)–(1.23), obtained
by integrating over ξ ∈ [1,∞).

One approach to extending (1.41)–(1.42) is to work with the identities

Cab(x) =
1
|x|

∫ b

a
Γ(1− s, ix) cos

π

2
(1− s) |x|s ds,

Sab(x) =
1
x

∫ b

a
Γ(1− s, ix) sin

π

2
(1− s) |x|s ds,

(1.43)

where Γ(z, ix) is the complementary incomplete gamma function, given by

Γ(z, ix) =
∫ ∞

ix
e−ttz−1 dt, (1.44)

which is an entire holomorphic function of z for each x ∈ R \ 0. In this
approach, the major task is to pass from (1.43) to (1.27). The approach via
(1.43) can be made to work, but it is not the approach we take here.

One reason we do not use (1.43) is that this approach seems not to
generalize beyond one dimension, while, as described below, we also aim for
higher dimensional results in this paper. The approach we take is amenable
to higher dimensional extensions. The key is to make use of the fact that
the functions

|ξ|−s and (sgn ξ)|ξ|−s, (1.45)

which belong to L1
loc(R) for Re s < 1, have meromorphic extensions to func-

tions of s with values in S ′(R), with a discrete set of poles, namely

|ξ|−s holomorphic for s /∈ {1, 3, 5, . . . },
(sgn ξ)|ξ|−s holomorphic for s /∈ {2, 4, 6, . . . }. (1.46)

These results are discussed in §3, together with higher dimensional ex-
tensions, including the following, with r(x) = |x|, x ∈ Rn. Namely, given
a ∈ C∞(Sn−1), ω = x/|x|, a(ω)r−s, which is in L1

loc for Re s < n, has a
meromorphic extnsion. We have

r−s holomorphic for s /∈ {n, n + 2, n + 4, . . . },
xj

r
r−s holomorphic for s /∈ {n + 1, n + 3, n + 5, . . . }. (1.47)

More generaly, if h`(x) is a harmonic polynomial on Rn, homogeneous of
degree `, then we have a meromorphic extension of h`(ω)r−s:

h`(ω)r−s holomorphic for s /∈ {n + `, n + ` + 2, n + ` + 4, . . . }, (1.48)
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in the sense that s 7→ h`(ω)r−s is a meromorphic function of s with values
in S ′(Rn), with such poles. It follows that the Fourier transform F , defined
on S(Rn) by

Fu(ξ) = (2π)−n/2

∫

Rn

u(x)e−ix·ξ dx, (1.49)

and extended by duality to F : S ′(Rn) → S ′(Rn), yields a meromorphic
family of tempered distributions F(h`(ω)r−s), with poles as in (1.48). Fur-
ther results, established in §3, yield that, for each a ∈ C∞(Sn−1), a(ω)r−s

is meromorphic in s with values in S ′(Rn), and with the exception of such
poles (and another technical exception),

F(a(ω)r−s) = An(s)a(ω) rs−n, (1.50)

where An(s) is a meromorphic function of s with values in the space of
linear operators on C∞(Sn−1), of a sort given a rather precise analysis in
§3. We present An(s) as a product of a unitary Fourier integral operator
(independent of s) and a pseudodifferential operator on Sn−1 of order −s +
n/2.

In §3 we also consider cut-offs,

(1− ϕ(x))a(ω)r−s, (1.51)

with ϕ ∈ C∞
0 (Rn), ϕ(x) = 1 for |x| small. Then (1.51) is an entire holo-

morphic function of s with values in S ′(Rn), and so is its Fourier transform.
Away from the poles that arise for a(ω)r−s, this Fourier transform has the
same singularity at the origin as (1.50), and at the poles log r factors arise.
We derive a uniform analysis of the singularity for F((1 − ϕ(x))a(ω)r−s),
for s in a neighborhood of such a pole, bringing in

qσ =
rσ − 1

σ
, (1.52)

an entire function of σ with values in S ′(Rn), satisfying q0 = log r, which
will be useful in §8.

Results of §§2–3 are used in §4 to prove Theorem 1.1. We continue to
obtain one dimensional results in §§5–7. In §5 we derive a number of useful
properties of the functions KΦ,b, in preparation for §6, which extends the
analysis of Fab to include the cases a = k ∈ N, bringing in additional special
functions, such as seen in (1.38). In §7 we extend the scope of our study of
Fa to

F[k]a(x) =
∫ ∞

2

1
(log ξ)k

ξ−ae−ixξ dξ, (1.53)
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for k ∈ N. The techniques brought to bear in §§6–7 strongly use the one-
dimensional structure, and different techniques are developed in the follow-
ing sections to handle higher dimensions.

Section 8 provides higher dimensional extensions of Theorem 1.1 and
subsequent results, such as (1.38). Theorem 8.1 establishes a formula that
reveals the small |x| behavior of

(2π)−n/2

∫

Rn

h`(ξ̂)
log |ξ|

(
|ξ|−a − |ξ|−b

)
e−ix·ξ dξ, (1.54)

where ξ̂ = ξ/|ξ|, in terms of a function of the form (1.24), provided a and b
avoid the poles described in (1.48). A key ingredient is the identity of (1.54)
with ∫ b

a
An(s)p(x̂)|x|s−n ds, (1.55)

with An(s) as in (1.50), p = h`, and the integral taken along a path in C that
avoids such poles. The behavior of (1.54), with a cut-off 1 − ϕ(ξ) thrown
in, for a = n + ` + 2k, k ∈ {0, 1, 2, . . . }, is given in Theorem 8.2, and, as
in (1.38), brings in also log

∣∣log |x|
∣∣ and li(|x|β), this time with β = b − a.

Whereas (1.38) was derived from Theorem 1.1 by integrating in x, the proof
of Theorem 8.2 requires a different technique. We use the uniform analysis
of the Fourier transform of (1.51) for s near a pole of (1.50), mentioned
above.

More generally than (1.54), we analyze

(2π)−n/2

∫

Rn

p(ξ̂)
log |ξ|

(
|ξ|−a − |ξ|−b

)
e−ix·ξ dξ, (1.56)

for general p ∈ C∞(Sn−1), in §8. This is also given by (1.55), assuming a
and b are not poles of An(s)p and we integrate over a path from a to b in
C that avoids such poles. This leads to one further expansion of the notion
of KΦ,a,b(z), from that given in (1.24). Namely, Φ(s) can be a meromorphic
function of s with values in some Frechet space, in this case C∞(Sn−1) (one
might imagine other classes of complete, locally convex, topological vector
spaces), assuming a and b are not poles of Φ, and we integrate from a to b
along a path in C that avoids these poles. In this setting, (1.56) is equal to

|x|−nKΦ,a,b(|x|), Φ(s) = An(s)p. (1.57)

Making use of Theorem 8.2, we also treat the case when a is a pole of An(s)p,
in Proposition 8.3. This involves throwing a factor of 1− ϕ(ξ) into (1.56).
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In §9 we move from (1.56) to

(2π)−n/2

∫

Rn

(1− ϕ(ξ))
p(ξ̂)

(log |ξ|)k

(
|ξ|−a − |ξ|−b

)
e−ix·ξ dξ, (1.58)

with k ≥ 2. We show that this has the form

|x|−n

(k − 1)!
KΨk,a,b(|x|), mod Cm(Rn), (1.59)

with
Ψk(s) = (s− a)k−1An(s)p, (1.60)

provided b > n+m and b /∈ Z. Here KΨk,a,b(|x|) is treated in the framework
of (1.57).

In §10 we replace log |ξ| by log λ(ξ), where λ is smooth, positive, and
homogeneous of degree one on Rn \ 0, so λ(ξ) = q(ξ̂)|ξ| for a positive q ∈
C∞(Sn−1). We analyze

(2π)−n/2

∫

Rn

p(ξ̂)
log λ(ξ)

(
λ(ξ)−a − λ(ξ)−b

)
e−ix·ξ dξ, (1.61)

and show this is

|x|−nKΨ,a,b(|x|), Ψ(s) = An(s)(pq−s), (1.62)

for a, b /∈ Ep,q, the set of poles of An(s)(pq−s), which is a subset of {n, n +
1, n + 2, . . . }. Methods of §9 can be extended to replace (log λ(ξ))−1 by
(1− ϕ(ξ))(log λ(ξ))−k in (1.61), but we omit the details.

Results of this paper put one in a position to treat variable coefficients,
allowing p(ξ̂) and λ(ξ) to be replaced by p(x, ξ̂) and λ(x, ξ) in (1.56), (1.58),
and (1.61). From here, we can envisage deriving precise asymptotics near
the diagonal for the Schwartz kernels of operators such as

(
log

√
2−∆M

)−1
, (1.63)

and related operators, where ∆M is the Laplace-Beltrami operator on a
compact Riemannian manifold M . We expect to be able to derive from
such analysis results such as the following. Let L denote the operator in
(1.63). We claim that

L : M(M) −→ L1(M), (1.64)
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where M(M) denotes the space of finite Borel measures on M . For general
A ∈ OPS0(M), AL fails to have such a mapping property, but we claim
that AL2 does have it. In case M = Tn is a flat torus, and A is translation-
invariant, such assertions follow from results of §§8–10. We plan to take
these issues up in a future work.

This paper ends with some appendices. Appendix A gives a direct proof
of the weak asymptotic result (1.3), using an argument adapted from Chap-
ter 5 of [14].

Appendix B derives the asymptotic behavior of (1.5) for θ → 0. We
show that

vL −
(
PV

1
θ

log |θ| − γ PV
1
θ

)
∈ C∞((−π, π)), (1.65)

where γ is Euler’s constant.
Appendix C provides some technical analysis of the operators An(s),

introduced in (1.50), of use in the proof of the results in §8.
We make some further comments about how (1.65) contrasts with the

behavior of uL. Such vL as in (1.65) belongs to a space of polyhomogeneous
distributions, which can be defined as follows. We will work on R and use
the variable x. First, if α ∈ C and Reα > −1, we denote by Hα(R) the
space of finite linear combinations of functions of the form

(x+)α(log |x|)`, ((−x)+)α(log |x|)`, ` ∈ Z+ = {0, 1, 2, . . . }, (1.66)

where x+ = x for x > 0, 0 for x < 0. We then say u ∈ Hα−k(R) if
u = dkv/dxk for some v ∈ Hα(R). We say u ∈ S ′(R) is polyhomogeneous if

u ∼
∑

j≥0

uj , uj ∈ Hαj (R), (1.67)

where Reαj ↗ +∞ as j →∞. (We might require αj = α0 + j.) Here “∼”
means that, for each k, there exists n such that

u−
n∑

j=0

uj ∈ Ck(R). (1.68)

The two terms in (1.65) belong to H−1(R), since

PV
1
x

=
d

dx
log |x|, PV

1
x

log |x| = 1
2

d

dx
(log |x|)2. (1.69)

The phrase “polyhomogeneous symbol” appears in §18.1 of [1]. These
symbols have the form

a(x, ξ) ∼
∑

j≥0

aj(x, ξ), (1.70)
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with aj(x, ξ) smooth on Rn × Rn, and homogeneous of degree m − j/k for
|ξ| ≥ 1, for some m ∈ C, k ∈ N. These have also been called “classical
symbols,” especially when k = 1. Note that log terms do not appear here.
However, log terms can appear in the Schwartz kernels of the associated
pseudodifferential operators, i.e., in the Fourier transforms of such a(ξ),
considered as elements of S ′(Rn), in the x-independent case. This occurs,
for example, is P (ξ) is an elliptic polynomial on Rn, of order m ≤ n, and
a(ξ) = (1 − ϕ(ξ))P (ξ)−1, for an appropriate cut-off ϕ(ξ). Then one has
(cf. [8], Chapter 3, Proposition 9.2)

E = â(x) ∼
∑

`≥0

(E` + p`(x) log |x|), (1.71)

with E` ∈ S ′(Rn) ∩ C∞(Rn \ 0) homogeneous of degree m − n + ` and
p`(x) a polynomial homogeneous of degree m− n + `, the latter making an
appearance only for ` ≥ n −m. The extended notion of polyhomogeneous
cononormal distributions appears in [4].

Distributions such as uL, UL, Fa, Ca, and Sa are not polyhomogeneous.
The analysis of their singularities, discussed above, requires expansions much
different from (1.67). An appropriate parallel to (1.67) is

Sa(x) ∼ 1
x

Kψ,a,b(|x|), b →∞. (1.72)

In this formulation, the special function (1/x)Kψ,a,b(|x|) is analogous to∑n
j=0 uj in (1.68). On the other hand, the asymptotic expansion of Kψ,a,b(|x|)

derivable from (1.25), when substituted in, leads to a relatively weak result,
for example

UL(x) ∼ − 1
x log |x| +

∑

j≥2

aj

x(log |x|)j
. (1.73)

in this case, one has a result about the difference between UL and

− 1
x log |x| +

n∑

j=2

aj

x(log |x|)j
(1.74)

that is much weaker than (1.68), even much weaker than (1.20). In light of
this, we recognize (1.72) as a different paradigm for the sort of asymptotic
expansion relevant to our study of such a “nonclassical” conormal distribu-
tion.

13



2 First key identities, and proof of (1.10)

We start with the elementary identity
∫ b

a
ξ−s ds =

∫ b

a
e−s log ξ ds

=
ξ−a − ξ−b

log ξ
,

(2.1)

valid for a < b, ξ > 0 (suitably interpreted for ξ = 1), and insert it into the
identity ∫ ∞

0
ξ−se−εξe−ixξ dξ =

∫ ∞

0
e−(ε+ix)ξξ−s dξ

= (ε + ix)s−1Γ(1− s),
(2.2)

valid for ε > 0, s < 1, to get
∫ ∞

0

1
log ξ

(
ξ−a − ξ−b

)
e−εξe−ixξ dξ =

∫ b

a
Γ(1− s)(ε + ix)s−1 ds, (2.3)

provided also b < 1. We next pass to the limit ε ↘ 0. Note that, for
x ∈ R \ 0,

(ε + ix)s−1 = (ε2 + x2)(s−1)/2ei(s−1) tan−1(x/ε), (2.4)

so
lim
ε↘0

(ε + ix)s−1 = (ix + 0)s−1 = |x|s−1eπi(sgn x)(s−1)/2, (2.5)

and hence
∫ ∞

0

1
log ξ

(
ξ−a − ξ−b

)
e−ixξ dξ

=
1
|x|

∫ b

a
Γ(1− s)eπi(sgn x)(1−s)/2|x|s ds,

(2.6)

for 0 ≤ a < b < 1, the left side being a priori a tempered distribution on R.
Taking real and imaginary parts yields

∫ ∞

0

1
log ξ

(
ξ−a − ξ−b

)
cosxξ dξ

=
1
|x|

∫ b

a
Γ(1− s) cos

π

2
(1− s) |x|s ds

=
1
|x|Kϕ,a,b(|x|),

(2.7)
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and ∫ ∞

0

1
log ξ

(
ξ−a − ξ−b

)
sinxξ dξ

=
1
x

∫ b

a
Γ(1− s) sin

π

2
(1− s) |x|s ds

=
1
x

Kψ,a,b(|x|),

(2.8)

for 0 ≤ a < b < 1, with ψ and ϕ as in (1.11) and (1.28). Taking a = 0 yields
(1.41)–(1.42). We can pass to the limit b ↗ 1 in (2.8), obtaining (1.21).
However, when b ↗ 1 in (2.7), both sides diverge.

Taking a closer look at (2.8), we note that both the first and the second
integrals there are convergent, near ξ = 0 and on s ∈ [a, b], respectively, as
long as 0 ≤ a < b < 2. To pass from our demonstration of their equality
when 0 ≤ a < b ≤ 1, to equality in this more general case, we can note that
both integrals are well defined for complex b, with a < Re b < 2, and are
holomorphic in b, so the identity (2.8) analytically continues. Specializing
to real b, we have it for 0 ≤ a < b < 2.

Using this, we can establish (1.20) (hence (1.10)) and some refinements,
as follows. The function UL(x), defined by (1.14), differs by a smooth, odd
function of x from ∫ ∞

2

1
log ξ

sinxξ dξ, (2.9)

and (2.8), (with a = 0) differs by a smooth, odd function from
∫ ∞

2

1
log ξ

(
1− ξ−b

)
sinxξ dξ, (2.10)

whenever 0 < b < 2. Hence

UL(x) =
1
x

Kψ,b(|x|) +
∫ ∞

2

ξ−b

log ξ
sinxξ dξ + O(|x|), (2.11)

for each b ∈ (1, 2). Meanwhile, taking b = 1 + β, 0 < β < 1, and using
| sinxξ| ≤ |xξ| for |xξ| ≤ 1, we have

∣∣∣
∫ ∞

2

ξ−b

log ξ
sinxξ dξ

∣∣∣

≤ |x|
∫ 1/|x|

2

ξ−β

log ξ
dξ +

∫ ∞

1/|x|

ξ−1−β

log ξ
dξ

≤ C|x|β,

(2.12)

15



for |x| ≤ 1/2. Consequently, for |x| ≤ 1/2,
∣∣∣UL(x)− 1

x
Kψ,b(|x|)

∣∣∣ ≤ Cb|x|b−1, for 1 < b < 2. (2.13)

To go from here to (1.20), we merely note that, for 1 < b < 2,

Kψ,b(|x|) = Kψ(|x|) + Kψ,1,b(|x|), (2.14)

and, by (1.25),
∣∣Kψ,1,b(|x|)

∣∣ ≤ C|x|∣∣log |x|∣∣ . (2.15)

3 Meromorphic families of tempered distributions

Here we study some classes of functions u(s), taking values in the Schwartz
space S ′(Rn) of tempered distributions, that depend holomorphically on s,
except for some poles. We start with some families that are homogeneous,
of a degree that varies with s.

We recall some well known facts about homogeneous distributions, which
can be found, for example, in Chapter 3 of [8].

The dilation group D(t)f(x) = f(tx) (t > 0) extends to distributions,
and we say u ∈ D′(Rn) is homogeneous of degree m if D(t)u = tmu for all
t > 0. Here, m ∈ C. We set

Hm(Rn) = {u ∈ D′(Rn) : u is homogeneous of degree m},
H#

m(Rn) = {u ∈ Hm(Rn) : u ∈ C∞(Rn \ 0)}. (3.1)

We have Hm(Rn) ⊂ S ′(Rn), and

F : Hm(Rn) −→ H−m−n(Rn),

F : H#
m(Rn) −→ H#

−m−n(Rn).
(3.2)

If we set r−s(x) = |x|−s, then r−s ∈ L1
loc(Rn) for Re s < n defines

a holomorphic function from {s ∈ C : Re s < n} to S ′(Rn), satisfying
r−s ∈ H#

−s(Rn) for such s. By (3.2), F(r−s) ∈ H#
s−n(Rn) for such s. The

fact that F commutes with the natural action of the orthogonal group O(n)
on S ′(Rn) inplies F(r−s) = c(s)rn−n provided Re s < n and Re(n− s) < n,
and a computation that involves testing against a Gaussian (cf. [8], Chapter
3, (8.32)–(8.35)) yields

F(r−s) = 2n/2−sΓ
(n− s

2

)
Γ
(s

2

)−1
rs−n, (3.3)
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for 0 < Re s < n. Equivalently,

2s/2Γ
(n− s

2

)−1
F(r−s) = 2(n−s)/2Γ

(s

2

)−1
rs−n, (3.4)

for such s. Now Γ(z) is meromorphic in z, with poles at {0,−1,−2, . . . } and
no zeros, so Γ(z)−1 is entire, with zeros at {0,−1,−2, . . . }. It follows that the
left side of (3.4) is holomorhic in {Re s < n} and the right side is holomorphic
in {Re s > 0}. Thus both sides have entire analytic continuations, and this
defines

r−s ∈ H#
−s(R

n), for s /∈ {n, n + 2, n + 4, . . . }, (3.5)

as a meromorphic function of s with values in S ′(Rn). We note paren-
thetically that if s = −2k is an even, non-positive integer, then r−s is a
polynomial, so the left side of (3.4) is a linear combination of derivatives
of the delta function δ and consequently so is the limit as s → −2k of
Γ(s/2)−1rs−n.

Turning to the case n = 1, we note that (2.2), (2.4), and (2.5) yield
∫

R

|ξ|−se−ixξ dξ = 2
(
sin

πs

2

)
Γ(1− s)|x|s−1, (3.6)

and
∫

R

(sgn ξ)|ξ|−se−ixξ dξ = −2
(
cos

πs

2

)
Γ(1− s)(sgnx)|x|s−1, (3.7)

for 0 < Re s < 1. The equivalence of (3.6) to (3.3) when n = 1 (and Re s <
1) follows from standard identities for the gamma function. As for (3.7),
the left side is holomorphic for Re s < 1, and the right side is holomorphic
for Re s > 0, except for poles of (cosπs/2)Γ(1 − s) at s = 2, 4, 6, . . . (the
poles of Γ(1−s) at s = 1, 3, 5, . . . being cancelled by zeros of cosπs/2). The
upshot is that we get a meromorphic continuation of (sgn ξ)|ξ|−s, yielding

(sgn ξ)|ξ|−s ∈ H#
−s(R), for s /∈ {2, 4, 6, . . . }. (3.8)

This result can also be deduced from

d

dξ
|ξ|−s+1 = (1− s)(sgn ξ)|ξ|−s, (3.9)

and the n = 1 case of (3.5) (with s replaced by s − 1), except for the case
s = 1, where we have instead that (d/dξ) log |ξ| = (sgn ξ)|ξ|−1 = PV 1/ξ.
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Moving to higher dimensions, we claim that (xj/r)r−s, which is in L1
loc(Rn)

for Re s < n, has a meromorphic continuation satisfying

xj

r
r−s ∈ H#

−s(R
n), for s /∈ {n + 1, n + 3, n + 5, . . . }. (3.10)

In fact, parallel to (3.9), we have

∂jr
−s+1 = (1− s)

xj

r
r−s, (3.11)

which yields (3.10) as a consequence of (3.5), except for s = 1 and s = n−1,
and both of these cases are elementary since then (xj/r)r−s ∈ L1

loc(Rn)
(given n > 1). Note that

F(xjr
−s−1) = i∂jF(r−s−1), (3.12)

and if we apply ∂j to (3.3), with s replaced by s + 1, we get

F
(xj

r
r−s

)
= i2n/2−s−1Γ

(n− s− 1
2

)
Γ
(s + 1

2

)−1
∂jr

s+1−n, (3.13)

and, since

(s + 1− n)Γ
(n− s− 1

2

)
= −2Γ

(n− s + 1
2

)
, (3.14)

we get

F
(xj

r
r−s

)
= −i2n/2−sΓ

(n− s + 1
2

)
Γ
(s + 1

2

)−1 xj

r
rs−n. (3.15)

As a check, (3.10) implies the left side of (3.15) has poles at {s = n +
1, n + 3, n + 5, . . . }. As for the right side, the numerator in the quotient of
gamma functions has poles at {s = n + 1, n + 3, n + 5, . . . }, and the factor
(xj/r)rs−n has poles at {s = −1,−3,−5, . . . }, which are cancelled by the
poles of Γ((s + 1)/2).

Without using (3.10), we see that it is elementary that both sides of
(3.15) are holomorphic in s for 0 < Re s < n, that the left side is holomorphic
on Re s < n, and the right side is holomorphic for Re s > 0, except for the
poles at {s = n + 1, n + 3, n + 5, . . . }, so we are again led to (3.10).

One can continue along this line, using

∂j∂kr
−s+2 = (2− s)(1− s)

xjxk

r2
r−s, j 6= k. (3.16)

The left side is holomorphic on s /∈ {n + 2, n + 4, n + 6, . . . }, so if j 6= k

xjxk

r2
r−s ∈ H#

−s(Rn) for s /∈ {n + 2, n + 4, n + 6, . . . }, (3.17)
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except possibly for s = 1 and s = 2. However (xjxk/r2)r−s is in L1
loc(Rn)

for s = 1 if n > 1 and for s = 2 if n > 2. The case s = n = 2 will be taken
care of below. One can also compute the Fourier transform of (3.17) using a
device parallel to that applied to compute (3.15). Rather than pursue this,
we will move up to a greater level of generality.

Namely, we let h`(x) be a harmonic polynomial, homogeneous of degree
`, and consider

h`(x)
r`

r−s = h`(ω)r−s, ω =
x

|x| . (3.18)

This is in L1
loc(Rn) for Re s < n, and it is a holomorphic function of s with

values in S ′(Rn), and we have

h`(ω)r−s ∈ H#
−s(R

n), (3.19)

for such s. If also Re s > 0, then its Fourier transform, which is inH#
s−n(Rn),

is in L1
loc(Rn). In particular, it has the form

a`(ω)rn−s, (3.20)

for some a` ∈ C∞(Sn−1). We may as well assume n ≥ 2, since the case
n = 1 is thoroughly covered by (3.6)–(3.8).

Let us denote by H#
−s,`(R

n) the space of elements of H#
−s(Rn) of the

form (3.19), where h` is some harmonic polynomial, homogeneous of degree
`. For Re s < n, we have a direct sum decomposition

H#
−s(R

n) =
⊕

`≥0

H#
−s,`(R

n), (3.21)

coming from
C∞(Sn−1) =

⊕

`≥0

En,`, (3.22)

where En,` is the eigenspace of the Laplace-Beltrami operator ∆S on Sn−1

with eigenvalue λ` = −`(` + n − 2) (cf. [8], Chapter 8). Now the orthog-
onal group O(n) acts on C∞(Sn−1), commuting with ∆S and hence pre-
serving each eigenspace En,`, so it acts on H#

−s(Rn), preserving each space
H#
−s,`(R

n). Furthermore, as we have noted before, F commutes with the
action of O(n). Therefore

F : H#
−s,`(R

n) −→ H#
s−n,`(R

n). (3.23)
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In addition, O(n) acts irreducibly on each eigenspace En,`, provided n ≥ 2.
It follows via Schur’s lemma (at least for 0 < Re s < n, for now) that

F(h`(ω)r−s) = cn,`(s)h`(ω)rs−n, ∀h` ∈ En,`. (3.24)

To compute the coefficients cn,`(s), we take

h`(x) = (x1 + ix2)`, (3.25)

and use the identity

F(h`(ω)r−s) = F(h`(x)r−s−`)

= i`(∂1 + i∂2)`F(r−s−`),
(3.26)

together with (3.3) with s replaced by s + `, i.e.,

F(r−s−`) = 2n/2−s−`Γ
(n− s− `

2

)
Γ
(s + `

2

)−1
rs+`−n. (3.27)

Note that
(∂1 + i∂2)rσ = σ(x1 + ix2)rσ−2, (3.28)

and (∂1 + i∂2)(x1 + ix2)j = 0, so, inductively,

(∂1 + i∂2)krσ = σ(σ − 2) · · · (σ − 2(k − 1))(x1 + ix2)krσ−2k. (3.29)

Hence

(∂1 + i∂2)`rs+`−n

= (s + `− n)(s + `− n− 2) · · · (s + `− 2− 2(`− 1))
(x1 + ix2

r

)`
rs−n.

(3.30)
We can use this to apply (∂1 + i∂2)` to (3.27). Note that

Γ
(n− s− `

2

)(n− `− s

2

)(n− `− s

2
+ 1

)
· · ·

(n− `− s

2
+ `− 1

)

= Γ
(n− s + `

2

)
.

(3.31)

It follows that

cn,`(s) = (−i)`2n/2−sΓ
(n− s + `

2

)
Γ
(s + `

2

)−1
. (3.32)

To summarize, for all h` ∈ En,`, we have

F(h`(ω)r−s) = (−i)`2n/2−sΓ
(n− s + `

2

)
Γ
(s + `

2

)−1
h`(ω)rs−n, (3.33)
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at least for 0 < Re s < n. Now the left side of (3.33) is holomorphic
in Re s < n. As for the right side, h`(ω)rs−n is clearly holomorphic in
Re s > 0. The factor Γ((n − s + `)/2) is meromorphic in s with poles at
{s = n + `, n + ` + 2, n + ` + 4, . . . }. It follows that h`(ω)r−s analytically
continues to be meromorphic in s, and

h`(ω)r−s ∈ H#
−s,`(R

n), for s /∈ {n + `, n + ` + 2, n + ` + 4, . . . }. (3.34)

Also the identity (3.33) analytically continues (with the standard adjustment
when s+` is an even non-positive integer). These results contain (3.3)–(3.5)
for ` = 0, (3.10) and (3.15) for ` = 1, and (3.17) for ` = 2 (also treating the
case n = s = 2).

For each n and s, as ` → +∞, Stirling’s formula gives

Γ
(n− s + `

2

)
Γ
(s + `

2

)−1
∼

( `

2

)n/2−s
. (3.35)

See Appendix C for a proof. Consequently, if we have

a(ω)r−s ∈ H#
−s(R

n), (3.36)

so a ∈ C∞(Sn−1), we get

F(a(ω)r−s) = bs(ω)rs−n, (3.37)

with

bs(ω) = An(s)a(ω) ∈ C∞(Sn−1),
for s /∈ {n, n + 1, n + 2, . . . } ∪ {0,−1,−2, . . . }, (3.38)

where

An(s) : C∞(Sn−1) −→ C∞(Sn−1), for s /∈ {n, n + 1, n + 2, . . . } (3.39)

is defined by
An(s)h`(ω) = cn,`(s)h`(ω). (3.40)

In fact, by (3.35), if Hk,2(Sn−1) denotes the L2-Sobolev space of functions
on Sn−1, of regularity degree k,

An(s) : Hk,2(Sn−1) −→ Hk+s−n/2(Sn−1), s /∈ {n, n+1, n+2, . . . }. (3.41)

Parenthetically, we note that (3.32) implies

An(n− s)An(s)h`(ω) = (−1)`h`(ω), (3.42)
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for s as in (3.38), which is consistent with the identity

F2u(x) = u(−x). (3.43)

For another perspective on the family of operators An(s), let us set

Λ =
(
−∆S +

(n− 2)2

4

)1/2
− n− 2

2
∈ OPS1(Sn−1), (3.44)

an elliptic, self-adjoint, pseudodifferential operator satisfying

Λh` = `h`, ∀h` ∈ En,`. (3.45)

Then
An(s) = 2n/2−se−πiΛ/2Φn,s(Λ), (3.46)

with
Φn,s(`) = Γ

(n− s + `

2

)
Γ
(s + `

2

)−1
, (3.47)

which, by (3.35), or more precisely (C.17), (cf. [7], Chapter 12) yields

Φn,s(Λ) ∈ OPS−s+n/2(Sn−1), for s /∈ {n, n + 1, n + 2, . . . }, (3.48)

elliptic, and invertible if also s /∈ {0,−1,−2, . . . }. Also, e−πiΛ/2 is an elliptic,
unitary, Fourier integral operator, of order 0.

We return to (3.37)–(3.38) and discuss what can happen when s =
−k, k ∈ {0, 1, 2, . . . }. Of course, the left side of (3.37) converges as s → −k

to an element of H#
k (Rn), and the right side converges to an element of

H#
−k−n(Rn), equal to F(a(ω)rk). Also, as s → −k, it follows from (3.46)–

(3.47) that An(s)a(ω) → An(−k)a(ω) in C∞(Sn−1). Furthermore, taking
into account the analysis behind (3.33)–(3.34), we have An(−k)a(ω)r−k−n ∈
H#
−k−n(Rn). However, instead of equality, we can in general just conclude

that

F(a(ω)rk)−An(−k)a(ω)r−k−n is supported on {0}, (3.49)

i.e., it is a linear combination of derivatives of the delta function. The case
k = 0 is of particular interest for developments in §8, so we mention that
the analysis in (3.33)–(3.48) yields for a ∈ C∞(Sn−1) that

∫

Sn−1

a(ω) dS(ω) = 0 =⇒ F(a(ω)) = An(0)a(ω)r−n. (3.50)
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In this case, (3.46) holds with s = 0, and

Φn,0(`) = Γ
(n + `

2

)
Γ
( `

2

)−1
. (3.51)

The hypothesis of (3.50) implies that b(ω) = An(0)a(ω) integrates to 0, and
the conclusion can be written

F(a(ω)) = PV b(ω)r−n, b = An(0)a. (3.52)

For another perspective on the right side of (3.52), take

b ∈ C∞(Sn−1),
∫

Sn−1

b(ω) dS(ω) = 0, (3.53)

and consider b(ω)r−s, which is in L1
loc(Rn) for Re s < n. If we take ϕ ∈ S(Rn)

to be radial, with ϕ(0) = 1, then, for f ∈ S(Rn),
∫

Rn

b(ω)r−sf(x) dx =
∫

Rn

b(ω)r−s[f(x)− f(0)ϕ(x)] dx, (3.54)

for Re s < n. However, the right side of (3.54) is absolutely integrable for
Re s < n + 1, hence extends b(ω)r−s to being holomorphic on Re s < n + 1.
This is independent of the choice of such ϕ as described above, and from
this one gets b(ω)r−s ∈ H#

−s(Rn), for Re s < n + 1, given that b satisfies
(3.53). Compare (3.10) for the case b(ω) = ωj .

This is part of the ` = 0 case of the following result, which follows from
(3.34) and the analysis of An(ω). Assume

a ∈ C∞(Sn−1), a ⊥ En,j for 0 ≤ j ≤ `. (3.55)

Then
An(s)a ∈ C∞(Sn−1) is holomorphic for

s /∈ {n + ` + 1, n + ` + 2, n + ` + 3, . . . }. (3.56)

Furthermore,

a(ω)r−s is holomorphic for s /∈ {n+ `+1, n+ `+2, n+ `+3, . . . }, (3.57)

and

F(a(ω)r−s) = An(s)a(ω)rs−n

for s /∈ {n + ` + 1, n + ` + 2, . . . } ∪ {−`− 1,−`− 2,−`− 3, . . . }. (3.58)
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Having studied various meromorphic families of homogeneous distribu-
tions, we now introduce cut-offs. Take

ϕ ∈ C∞
0 (Rn), ϕ(x) = ϕ(−x), ϕ(x) = 1 for |x| ≤ 1, (3.59)

and consider
(1− ϕ(x))a(ω)r−s, (3.60)

with a ∈ C∞(Sn−1). This is clearly an entire holomorphic function of s, with
values in S ′(Rn). In fact, at each s ∈ C, we get a symbol in S−Re s

1,0 (Rn). It
follows that applying F to (3.60) yields an entire function of s with values in
S ′(Rn), and standard arguments, parallel to (1.15)–(1.18), imply that these
are all C∞ on Rn \ 0, and rapidly decreasing as |x| → ∞. We have

F(
(1− ϕ(x))a(ω)r−s

)
= (I − ϕ(D))An(s)a(ω)rs−n, (3.61)

whenever s satisfies (3.38). Now we want to see how applying I − ϕ(D)
removes the poles of An(s)a(ω)rs−n that might arise at s ∈ {n, n + 1, n +
2, . . . } (depending on the nature of a(ω)).

We start with the case a(ω) = 1, for which (3.67) specializes to

F(
(1− ϕ(x))r−s

)
= 2n/2−sΓ

(n− s

2

)
Γ
(s

2

)−1
(I − ϕ(D))rs−n, (3.62)

for s /∈ {n, n + 2, n + 4, . . . }. To see what happens near s = n, let us set
s = n + σ, so (3.62) becomes

F(
(1− ϕ(x))r−n−σ

)
= 2−n/2−σΓ

(
−σ

2

)
Γ
(n + σ

2

)−1
(I − ϕ(D))rσ. (3.63)

Now ϕ(D)1 = 1 (in fact ϕ(D)p(x) = p(x) for every polynomial p(x)), so

1
σ

(I − ϕ(D))rσ = (I − ϕ(D))
rσ − 1

σ
. (3.64)

We see that
qσ =

rσ − 1
σ

(3.65)

is an entire holomorphic function of σ, with values in S ′(Rn), having the
convergent power series

qσ(x) = log r +
∞∑

k=1

σk

(k + 1)!
(log r)k+1. (3.66)
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Hence we can rewrite (3.63) as

F(
(1− ϕ(x))r−n−σ

)
= 2−n/2−σσΓ

(
−σ

2

)
Γ
(n + σ

2

)−1
(I − ϕ(D))qσ, (3.67)

manifestly without a pole at σ = 0. Also ϕ(D)qσ is an entire holomorphic
function of σ with values in C∞(Rn).

More generally, to examine (3.62) near s = n+2k, we set s = n+2k+σ,
and rewrite (3.62) as

F(
(1− ϕ(x))r−n−2k−σ

)

= 2−n/2−2k−σΓ
(
−k − σ

2

)
Γ
(n + 2k + σ

2

)−1
(I − ϕ(D))r2k+σ.

(3.68)

We have ϕ(D)r2k = r2k, so

1
σ

(I − ϕ(D))r2k+σ = (I − ϕ(D))
(
r2k rσ − 1

σ

)

= (I − ϕ(D))(r2kqσ),
(3.69)

again with qσ as in (3.65)–(3.66). Thus, parallel to (3.67), we have

F(
(1− ϕ(x))r−n−2k−σ

)

= 2−n/2−2k−σσΓ
(
−k − σ

2

)
Γ
(n + 2k + σ

2

)−1
(I − ϕ(D))(r2kqσ),

(3.70)

again manifestly without a pole at σ = 0. As with (3.67), ϕ(D)(r2kqσ) is an
entire function of σ with values in C∞(Rn).

We move on to the case a(ω) = h`(ω), where h` is a harmonic polynomial,
homogeneous of degree `. Then (3.61) specializes to

F(
(1− ϕ(x))h`(ω)r−s

)

= (−i)`2n/2−sΓ
(n− s + `

2

)
Γ
(s + `

2

)−1
(I − ϕ(D))h`(ω)rs−n,

(3.71)

for s /∈ {n + `, n + ` + 2, n + ` + 4, . . . }. To see what happens for s near
n + ` + 2k, we set s = n + ` + 2k + σ, and rewrite (3.71) as

F(
(1− ϕ(x))h`(ω)r−n−`−2k−σ

)

= (−i)`2−n/2−`−2k−σΓ
(
−k − σ

2

)
Γ
(n + ` + 2k + σ

2

)−1

× (I − ϕ(D))(h`(ω)r`+2k+σ).

(3.72)
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Note that

h`(ω)r`+2k+σ = h`(x)r2k+σ, and (I − ϕ(D))(h`(x)r2k) = 0, (3.73)

hence

1
σ

(I − ϕ(D))(h`(ω)r`+2k+σ) = (I − ϕ(D))(h`(x)r2kqσ). (3.74)

Thus, parallel to (3.67) and (3.70), we have

F(
(1− ϕ(x))h`(ω)r−n−`−2k−σ

)

= (−i)`2−n/2−`−2k−σσΓ
(
−k − σ

2

)
Γ
(n + ` + 2k + σ

2

)−1

× (I − ϕ(D))(h`(x)r2kqσ),

(3.75)

yet again manifestly without a pole at σ = 0. As in (3.67) and (3.70),
ϕ(D)(h`(x)r2kqσ) is an entire function of σ with values in C∞(Rn). Con-
sequently we have an explicit description of the singularity at x = 0 of the
left side of (3.75), valid uniformly for σ near 0:

(−i)`2−n/2−`−2k−σσΓ
(
−k − σ

2

)
Γ
(n + ` + 2k + σ

2

)−1
h`(x)r2kqσ. (3.76)

We return to the general setting (3.60), with a ∈ C∞(Sn−1), take M ∈
(0,∞), and we want to obtain a precise analysis of the singularity of F((1−
ϕ(x))a(ω)r−s), valid locally uniformly for 0 ≤ Re s ≤ M . To get this, pick
` ∈ Z, ` > M , and write

a(ω) = h1(ω) + · · ·+ h`(ω) + a`(ω),
hj ∈ En,j , a` ⊥ En,j , for 0 ≤ j ≤ `.

(3.77)

Then (3.56)–(3.58) hold for a`, and, as in (3.61),

F(
(1− ϕ(x))a`(ω)r−s) = (I − ϕ(D))An(s)a`(ω)rs−n, (3.78)

for 0 ≤ Re s ≤ M , and ϕ(D)An(s)a`(ω)rs−n is holomorphic in s with values
in C∞(Rn) for such s, so the singularity of the left side of (3.78) is given by

An(s)a`(ω)rs−n, (3.79)

locally uniformly for 0 ≤ Re s ≤ M . On the other hand, for 0 ≤ j ≤ `,
F(hj(ω)r−s) is meromorphic in s, with poles in {n+j, n+j+2, n+j+4, . . . },
and we have (3.33), with j in place of `. We have

F(
(1− ϕ(x))hj(ω)r−s

)
= (I − ϕ(D))An(s)hj(ω)rs−n, (3.80)
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away from these poles, and, away from such poles, ϕ(D)An(s)hj(ω)rs−n is
holomorphic in s with values in C∞(Rn), so again the singulary of F((1 −
ϕ(x))hj(ω)r−s) is given by

An(s)hj(ω)rs−n, (3.81)

locally uniformly in s, away from these poles. Meanwhile, the behavior near
each such pole n + j + 2k is given by (3.75)–(3.76), with ` replaced by j.

4 Proof of Theorem 1.1

Our first order of business is to extend the scope of the identities (2.7)–(2.8),
beyond 0 ≤ a < b < 1, and 0 ≤ a < b < 2, respectively. To do this, we
use material from §3, including the facts that |ξ|−s and (sgn ξ)|ξ|−s have
meromorphic continuations, yielding

|ξ|−s holomorphic for s /∈ {1, 3, 5, . . . },
(sgn ξ)|ξ|−s holomorphic for s /∈ {2, 4, 6, . . . }. (4.1)

Thus we can define tempered distributions

1
log |ξ|

(
|ξ|−a − |ξ|−b

)
=

∫ b

a
|ξ|−s ds,

a, b /∈ {1, 3, 5, . . . },
(4.2)

and
sgn ξ

log |ξ|
(
|ξ|−a − |ξ|−b

)
=

∫ b

a
(sgn ξ)|ξ|−s ds,

a, b /∈ {2, 4, 6, . . . }.
(4.3)

The integral in (4.2) is taken along any path γab from a to b in C that avoids
{1, 3, 5, . . . }, and the integral in (4.3) is taken along any path σab from a
to b that avoids {2, 4, 6, . . . }. If γ̃ab and σ̃ab are two other such paths, the
resulting integrals differ by distributions supported at {0}, i.e., by finite
linear combinations of derivatives of δ. Thus (4.2) and (4.3) are defined
and holomorphic on the universal covering spaces of C \ {1, 3, 5, . . . } and
C \ {2, 4, 6, . . . }, respectively.

While it would suffice to work with these compound objects, it is natural
to take a = 0 and use the resulting identity to define

1
log |ξ| |ξ|

−b =
1

log |ξ| −
∫ b

0
|ξ|−s ds, (4.4)
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for b /∈ {1, 3, 5, . . . }, and

sgn ξ

log |ξ| |ξ|
−b =

sgn ξ

log |ξ| −
∫ b

0
(sgn ξ)|ξ|−s ds, (4.5)

for b /∈ {2, 4, 6, . . . }. Both sides of (4.4) and (4.5) have classical PV singu-
larities at ξ = ±1.

Now we apply the Fourier transform F : S ′(R) → S ′(R) to both sides
of (4.2) and to both sides of (4.3), using (3.6)–(3.7), which, as noted in
§3, are valid for s /∈ {1, 3, 5, . . . } and for s /∈ {2, 4, 6, . . . }, respectively,
with due attention to taking the limit of (sinπs/2)|x|s−1 as s → −2k ∈
{0,−2,−4, . . . } and taking the limit of (cosπs/2)(sgnx)|x|s−1 as s → −2k−
1 ∈ {−1,−3,−5, . . . }. Applying F to (4.2) yields

∫

R

1
log |ξ|

(
|ξ|−a − |ξ|−b

)
e−ixξ dξ

= 2
∫ b

a

(
sin

πs

2

)
Γ(1− s)|x|s−1 ds

=
2
|x|Kϕ,a,b(|x|),

(4.6)

with ϕ(s) = Γ(1− s) sinπs/2, as in (1.28), provided

a, b /∈ {1, 3, 5, . . . }. (4.7)

Meanwhile, applying F to (4.3) yields
∫

R

sgn ξ

log |ξ|
(
|ξ|−a − |ξ|−b

)
e−ixξ dξ

= −2
sgnx

|x|
∫ b

a

(
cos

πs

2

)
Γ(1− s)|x|s ds

= −2
x

Kψ,a,b(|x|),

(4.8)

with ψ(s) = Γ(1− s) cos πs/2, as in (1.11), provided

a, b /∈ {2, 4, 6, . . . }. (4.9)

Now the left sides of (4.6) and (4.8) differ from 2Cab(x) and 2Sab(x), respec-
tively, by Fourier transforms of compactly supported distributions on R, so
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the respective differences are C∞. Consequently the results (4.6)–(4.9) give
(1.27) and hence prove Theorem 1.1.

In fact, we have extended Theorem 1.1 a bit. The conditions (4.7) and
(4.9) on a and b are more precise than the conditions stated in Theorem 1.1.
Also, here we do not require 0 ≤ a < b; in fact a and b can be complex. As
is natural, the definition (1.24) of KΦ,a,b(z) extends to the case of complex
a and b, provided Φ is meromorphic on C and the integral is taken along a
path from a to b that avoids its poles. As long as these poles are contained in
N = {1, 2, 3, . . . }, results of choosing two different such paths give versions of
KΦ,a,b(z) that differ by a polynomial in z. In the case (4.4), this difference is
an odd polynomial in |x|, which when multiplied by |x|−1 yields a polynomial
in x2. In the case (4.6), the difference is an even polynomial in |x|, i.e., a
polynomial in x2 (with no constant term).

5 Useful properties of KΦ,b

Recall that for b > 0, KΦ,b(z) is defined by

KΦ,b(z) =
∫ b

0
Φ(s)zs ds, Re z > 0. (5.1)

We work in the following setting, to accomodate the functions ψ and ϕ
given by (1.11) and (1.28). We assume Φ is meromorphic on some complex
neighborhood O of [0, b], with a finite number of poles, all contained in (0, b),
and the integral is taken along a path γ0b in O from 0 to b that avoids these
poles. If Φ has no poles in [0, b], we can simply integrate over the interval
[0, b]. As mentioned in §1, asymptotic behavior as z → 0 is derived from

KΦ,b(z) = − 1
log z

(
Φ(0)− Φ(b)zb

)
− 1

log z
KΦ′,b(z) (5.2)

and iterations. Here we record some further results, which will prove useful
in §6.

First, applying d/dz to (5.1) gives

d

dz
KΦ,b(z) =

1
z
KsΦ,b(z). (5.3)

Thus integrating gives
∫ x

0

1
r
KsΦ,b(r) dr = KΦ,b(x), x > 0. (5.4)
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Note that, by (5.2), with Φ(s) replaced by sΦ(s), we have

KsΦ,b(r) = − 1
log r

KΦ+sΦ′,b(r) +
Φ(b)
log r

rb

=
Φ(0)

(log r)2
+ O

( 1
(log r)3

)
, r ∈

(
0,

1
2

)
,

(5.5)

guaranteeing integrability of the left side of (5.4).
A useful companion to (5.4) is

∫ x

0
KΦ,b(r) dr =

∫ x

0

∫ b

0
Φ(s)rs ds dr

=
∫ b

0
Φ(s)

xs+1

s + 1
ds

= xKΦ/(s+1),b(x),

(5.6)

for x > 0. Going further, for j ∈ N,
∫ x

0
rjKΦ,b(r) dr =

∫ x

0

∫ b

0
Φ(s)rs+j ds dr

=
∫ b

0
Φ(s)

xs+j+1

s + j + 1
ds

= xj+1KΦ/(s+j+1),b(x),

(5.7)

for x > 0.

6 Analysis of Fab for a = k ∈ N
As mentioned in §1, to analyze Fkb(x) = Ckb(x) − iSkb(x) for k ∈ N, we
make use of the identities

C ′
k+1,b+1(x) = −Skb(x), S′k+1,b+1(x) = Ckb(x), (6.1)

and then integrate, working up from the formulas for C0b(x) and S0b(x)
established in Theorem 1.1, to wit

S0b(x) ≡ 1
x

Kψ,b(|x|), C0b(x) ≡ 1
|x|Kϕ,b(|x|), (6.2)

with ψ and ϕ as in (1.11) and (1.28), i.e.,

ψ(s) = Γ(1− s) sin
π

2
(1− s), ϕ(s) = Γ(1− s) cos

π

2
(1− s). (6.3)
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As noted in (1.36), thanks to the fact that ϕ(0) = 0, C0b is absolutely
integrable on a neighborhood of x = 0, so

S1,b+1(x) =
∫ x

0
C0b(r) dr

≡
∫ x

0

1
r
Kϕ,b(r) dr

= (sgnx)Kϕ1,b(|x|),

(6.4)

the last identity by (5.4) and the oddness of S1,b+1(x). Here

ϕ1(s) =
ϕ(s)

s
= Γ(1− s)

sinπs/2
s

. (6.5)

This establishes the first part of (1.38). For the other half, since S0b is not
integrable near x = 0, we pick a small x0 > 0 and write, for x > 0,

C1,b+1(x) ≡ −
∫ x

x0

S0,b(r) dr

≡ −
∫ x

x0

1
r
Kψ,b(r) dr.

(6.6)

Now ψ(0) = 1, so we can write

ψ(s) = 1 + sψ1(s), ψ1(0) = Γ′(1). (6.7)

Then
Kψ,b(r) = K1+sψ1(s),b(r)

=
rb − 1
log r

+ Ksψ1,b(r),
(6.8)

so, for small x > 0,

C1,b+1(x) ≡
∫ x

x0

dr

r log r
−

∫ x

x0

rb−1

log r
dr −Kψ1,b(x). (6.9)

Now, ∫ x

x0

dr

r log r
= log | log x| − log | log x0|. (6.10)

As for the second integral on the right side of (6.9), we have, for b > 0,
∫ x

x0

rb−1

log r
dr = λb(x)− λb(x0), (6.11)
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where

λb(x) =
∫ x

0

rb−1

log r
dr

=
∫ xb

0

dt

log t

= li(xb),

(6.12)

where li(x) is the logarithmic integral:

li(x) =
∫ x

0

dt

log t
. (6.13)

Putting these results together, and keeping in mind that C1,b+1(x) is even,
we have

C1,b+1(x) ≡ log
∣∣log |x|∣∣−Kψ1,b(|x|)− li(|x|b), (6.14)

which is the second half of (1.38).
Note that, for small |x|,

li(|x|) = −
∫ ∞

log 1/|x|
t−1e−t dt. (6.15)

Integration by parts yields
∫ ∞

u
t−1e−t dt =

e−u

u
−

∫ ∞

u
t−2e−t dt, (6.16)

and iterating shows that, as x → 0, li(|x|) has an asymptotic expansion of
the form

li(|x|) ∼ |x|
log |x|

(
1 +

∑

j≥1

αj(log |x|)−j
)
. (6.17)

Having taken care of k = 1, we proceed to k = 2, again using (6.1). We
have, for x > 0,

C2,b+2(x) ≡ −
∫ x

0
Kϕ1,b(r) dr

= −xKϕ1/(s+1),b(x),
(6.18)

by (5.6). Recalling that C2,b+2(x) is even in x, we get

C2,b+2(x) ≡ −|x|Kϕ1/(s+1),b(|x|). (6.19)

Next,

S2,b+2(x) =
∫ x

0
C1,b+1(r) dr, (6.20)
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which leads us to integrate each term on the right side of (6.14). First, for
small x > 0,

∫ x

0
log | log r| dr =

∫ ∞

log 1/x
(log t)e−t dt

= x log | log x|+
∫ ∞

log 1/x
t−1e−t dt

= x log | log x| − li(x),

(6.21)

the second identity by integration by parts. Next, by (5.6),
∫ x

0
Kψ1,b(r) dr = xKψ1/(s+1),b(x). (6.22)

Finally, ∫ x

0
li(rb) dr =

∫ x

0

∫ r

0

yb−1

log y
dy dr

=
∫ x

0

∫ x

y

yb−1

log y
dr dy

=
∫ x

0

(x− y)yb−1

log y
dy

= x

∫ x

0

yb−1

log y
dy −

∫ x

0

yb

log y
dy

= x li(xb)− li(xb+1),

(6.23)

the first and last identities by (6.12). Putting together ((6.21)–(6.23) and
recalling that S2,b+1(x) is odd, we have

S2,b+2(x) ≡ x log
∣∣log |x|∣∣− (sgnx) li(|x|)− xKψ1/(s+1),b(|x|)

− x li(|x|b) + (sgnx) li(|x|b+1).
(6.24)

Proceeding to the case k = 3, we see that (6.19) gives, for small x > 0,

S3,b+3(x) ≡ −
∫ x

0
rKϕ1/(s+1),b(r) dr, (6.25)

and hence, by (5.7) and oddness,

S3,b+3(x) ≡ (sgn x)x2Kϕ1/(s+1)(s+2),b(|x|). (6.26)

Meanwhile
C3,b+3(x) ≡ −

∫ x

0
S2,b+2(r) dr, (6.27)
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leading to integrating the terms in (6.24). The primary term is (for small
x > 0)

∫ x

0
r log | log r| dr =

∫ ∞

log 1/x
(log t)e−2t dt

= −1
2
(log t)e−2t

∣∣∣
∞

t=log 1/x
+

1
2

∫ ∞

log 1/x
t−1e−2t dt

=
1
2
x2 log | log x|+ 1

2

∫ x

0

r

| log r| dr

=
1
2
x2 log | log x| − 1

2
li(x2),

(6.28)

leading to

C3,b+3(x) ∼ 1
2
x2 log

∣∣log |x|∣∣− 1
2

li(x2) + · · · . (6.29)

Another approach to the asymptotics of Ckb(x) and Skb(x) for small x is
contained in the analysis in §8; see Theorem 8.2.

7 Replacing (log ξ)−1 by (log ξ)−k

The analysis of Fa(x), given by (1.31), can be extended to

F[k]a(x) =
∫ ∞

2

1
(log ξ)k

ξ−ae−ixξ dξ. (7.1)

Here we concentrate on the case k = 2, and for notational simplicity we set

Ga(x) = F[2]a(x) =
∫ ∞

2

1
(log ξ)2

ξ−ae−ixξ dξ. (7.2)

To start, we see that Fa(x) = F[1]a(x) satifsies

ixFa(x) = −
∫ ∞

2

1
log ξ

ξ−a d

dξ
e−ixξ dξ

=
∫ ∞

2

d

dξ

( 1
log ξ

ξ−a
)
e−ixξ dξ − 2−a

log 2
e−2ix.

(7.3)

Now
d

dξ

1
log ξ

= − 1
ξ(log ξ)2

, (7.4)
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so
ixFa(x) ≡ −

∫ ∞

2

1
(log ξ)2

ξ−a−1e−ixξ dξ

− a

∫ ∞

2

1
log ξ

ξ−a−1e−ixξ dξ.

(7.5)

In other words,
Ga+1(x) ≡ −ixFa(x)− aFa+1(x). (7.6)

On the other hand,
G′

a+1(x) = −iGa(x), (7.7)

so we can differentiate (7.6) and get

Ga(x) ≡ Fa(x) + xF ′
a(x)− iaF ′

a+1(x). (7.8)

Recall from (1.32) that Fa(x) differs from Fab(x) by a fairly smooth
function if b is large. Meanwhile, by Theorem 1.1,

Fab(x) ≡ 1
|x|Kϕ,a,b(|x|)− i

x
Kψ,a,b(|x|). (7.9)

Hence
F ′

ab(x) ≡ 1
x

K ′
ϕ,a,b(|x|)−

1
x|x|Kϕ,a,b(|x|)

− i

|x|K
′
ψ,a,b(|x|) +

i

x2
Kψ,a,b(|x|),

(7.10)

so
xF ′

ab(x) ≡ K ′
ϕ,a,b(|x|)−

1
|x|Kϕ,a,b(|x|)

− i(sgnx)K ′
ψ,a,b(|x|) +

i

x
Kψ,a,b(|x|),

(7.11)

and therefore

Fab(x) + xF ′
ab(x) ≡ K ′

ϕ,a,b(|x|)− i(sgn x)K ′
ψ,a,b(|x|). (7.12)

Now (5.3) generalizes to

d

dz
KΦ,a,b(z) =

1
z
KsΦ,a,b(z), (7.13)

so
Fab(x) + xF ′

ab(x) ≡ 1
|x|Ksϕ,a,b(|x|)− i

x
Ksψ,a,b(|x|). (7.14)
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Note that the right side of (7.14) is obtained from the right side of (7.9)
simply by taking ϕ 7→ sϕ and ψ 7→ sψ.

If we specialize to a = 0, we get, for

G0(x) =
∫ ∞

2

1
(log ξ)2

e−ixξ dξ, (7.15)

the result
G0(x) ≈ 1

|x|Ksϕ,b(|x|)− i

x
Ksψ,b(|x|), (7.16)

where we use
f(x) ≈ gb(x) (7.17)

to indicate that the difference is as smooth as one likes near x = 0, provided
b is sufficiently large. Note that the factor s in sϕ and sψ makes G0(x) more
regular at x = 0, by a factor of (log |x|)−1, than F0(x).

One can continue along these lines. For example,

ixG0(x) = −
∫ ∞

2

1
(log ξ)2

d

dξ
e−ixξ dξ

≡ −2
∫ ∞

2

1
ξ(log ξ)3

e−ixξ dξ,

(7.18)

so
2

∫ ∞

2

1
(log ξ)3

e−ixξ dξ ≡ G0(x) + xG′
0(x)

≈ 1
|x|Ks2ϕ,b(|x|)−

i

x
Ks2ψ,b(|x|).

(7.19)

Inductively,

k!
∫ ∞

2

1
(log ξ)k+1

e−ixξ dξ ≈ 1
|x|Kskϕ,b(|x|)−

i

x
Kskψ,b(|x|). (7.20)

See §9 for another approach to this asymptotic analysis, valid in higher
dimension.

8 Asymptotics in higher dimensions

To begin, we recall from §3 that, parallel to (4.1), if p ∈ C∞(Sn−1), then
p(ω)r−s, which is in L1

loc(Rn) for Re s < n, has a meromorphic continuation,

p(ω)r−s holomorphic for s /∈ Ep, (8.1)
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with values in S ′(Rn), where Ep ⊂ N depends on the choice of p. Specific
examples include (3.5), (3.10), and (3.34), with further results described in
(3.55)–(3.58). We can then define tempered distributions on Rn,

p(ω)
log r

(r−a − r−b) =
∫ b

a
p(ω)r−s ds, a, b /∈ Ep. (8.2)

The integral in (8.2) is taken along a path γab from a to b in C that avoids
Ep. If γ̃ab is another such path, the resulting integrals differ by a distribution
supported at {0}, i.e., by a finite linear combination of derivatives of δ. Thus
(8.2) is defined and holomorphic on the universal covering surface of C \ Ep,
with values in S ′(Rn). We can take a = 0 and define

p(ω)
log r

r−b =
p(ω)
log r

−
∫ b

0
p(ω)r−s ds, b /∈ Ep. (8.3)

Both sides of (8.3) have a classical PV singularity on Sn−1 = {r = 1}.
Now we can apply the Fourier transform F : S ′(Rn) → S ′(Rn) to both

sides of (8.2), using (3.37)–(3.40). We get

(2π)−n/2

∫

Rn

p(ξ̂)
log |ξ|

(
|ξ|−a − |ξ|−b

)
e−ix·ξ dξ

=
∫ b

a
An(s)p(x̂)|x|s−n ds,

(8.4)

for a, b /∈ Ep, where An(s) : C∞(Sn−1) → C∞(Sn−1) is given by (3.43)–
(3.47). Here,

ξ̂ =
ξ

|ξ| , x̂ =
x

|x| . (8.5)

In (8.4), the integral on the right side is taken over any path γab from a to
b in C that avoids Ep.

If we specialize (8.4) to p(ω) = h`(ω), where h`(x) is a harmonic poly-
nomial on Rn, homogeneous of degree `, then, by (3.40) and (3.32),

An(s)h`(ω) = (−i)`2n/2−sΓ
(n− s + `

2

)
Γ
(s + `

2

)−1
h`(ω), (8.6)

for
s /∈ Eh`

= {n + `, n + ` + 2, n + ` + 4, . . . }. (8.7)

We have the following.
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Theorem 8.1 If h` is a harmonic polynomial on Rn, homogeneous of degree
`, then

(2π)−n/2

∫

Rn

h`(ξ̂)
log |ξ|

(
|ξ|−a − |ξ|−b

)
e−ix·ξ dξ

= (−i)`2n/2

∫ b

a
2−sΓ

(n− s + `

2

)
Γ
(s + `

2

)−1
h`(x̂)|x|s−n ds

= (−i)`2n/2h`(x̂)|x|−nKψn,`,a,b(|x|),

(8.8)

where
ψn,`(s) = 2−sΓ

(n− s + `

2

)
Γ
(s + `

2

)−1
, (8.9)

and we assume
a, b /∈ Eh`

. (8.10)

In case ` = 0, we can take h0(x) = 1, and then the result of (8.8) is

2n/2|x|−nKψn,0,a,b(|x|), (8.11)

where
ψn,0(s) = 2−sΓ

(n− s

2

)
Γ
(s

2

)−1
. (8.12)

We see that ψn,0(0) = 0, so if a = 0, we get (via (1.25))

2n/2|x|−nKψn,0,b(|x|) =
Cn

|x|n(log |x|)2 + O
( 1
|x|n(log |x|)3

)
, (8.13)

which is therefore in L1
loc(Rn). Compare (1.36) for the case n = 1.

In case ` = 1, we can take h1(x) = xj , and then the result of (8.8) is

−i2n/2 xj

|x| |x|
−nKψn,1,a,b(|x|), (8.14)

where
ψn,1(s) = 2−sΓ

(n− s + 1
2

)
Γ
(s + 1

2

)−1
. (8.15)

This time ψn,1(0) = π−1/2Γ((n + 1)/2) 6= 0, so, if a = 0, we get

−i2n/2 xj

|x| |x|
−nKψn,1,b(|x|) = C ′

n

xj

|x|
1

|x|n log |x|+O
( 1
|x|n(log |x|)2

)
. (8.16)

The remainder term belongs to L1
loc, but the principal term does not. The

left side (which, recall, is in C∞(Rn\0)) is a PV distribution near the origin.
Compare (1.3) for the case n = 1.
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We now bring in cut-offs. Take ϕ ∈ C∞
0 (Rn) as in (3.59). Then, given

p ∈ C∞(Sn−1),

(1− ϕ(x))
p(ω)
log r

r−s (8.17)

is an entire holomorphic function of s, with values in S ′(Rn), and

(1− ϕ(x))
p(ω)
log r

(r−a − r−b) =
∫ b

a
(1− ϕ(x))p(ω)r−s ds, (8.18)

for all a, b ∈ C. We can apply the Fourier transform F to both sides of this
identity. If a, b /∈ Ep and the integral on the right side of (8.18) is taken
along a path that avoids Ep, then we can deduce from Theorem 8.1 that

(2π)−n/2

∫

Rn

(1− ϕ(ξ))
h`(ξ̂)
log |ξ|

(
|ξ|−a − |ξ|−b

)
e−ix·ξ dξ

= (−i)`2n/2(I − ϕ(D))h`(x̂)|x|−nKψn,`,a,b(|x|).
(8.19)

Furthermore, ϕ(D)h`(x̂)|x|−nKψn,`,a,b(|x|) is holomorphic in a, b ∈ C \ Eh`
,

with values in C∞(Rn), which retrieves the elementary fact that the left side
of (8.19) has the same singularity as the left side of (8.8), for such a and b.

We now want to focus on the situation that

a = n + ` + 2k ∈ Eh`
, k ∈ {0, 1, 2, . . . }. (8.20)

We also assume
b > a, b /∈ Eh`

, (8.21)

and that the path γab from a to b over which we integrate in (8.18) avoids
Eh`

, except at its initial point a. Setting s = n + ` + 2k + σ, we have (8.18)
(with p = h`) equal to

∫ β

0
(1− ϕ(x))h`(ω)r−n−`−2k−σ dσ, β = b− a. (8.22)

By (8.21), β > 0. Now applying (3.75)–(3.76) gives

(2π)−n/2

∫

Rn

(1− ϕ(ξ))
h`(ξ̂)
log |ξ|

(
|ξ|−a − |ξ|−b

)
e−ix·ξ dξ

≡ (−i)`2−n/2−`−2kh`(x)|x|2k

∫ β

0
σΓ

(
−k − σ

2

)
Γ
(n + ` + 2k + σ

2

)−1
qσ dσ,

(8.23)
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where, recall, f ≡ g means f − g is C∞ on a neighborhood of 0 ∈ Rn, and

qσ(x) =
|x|σ − 1

σ
, q0(x) = log |x|, (8.24)

is an entire holomorphic function of σ with values in S ′(Rn). The change of
variable from s to σ takes a path γab that avoids Eh`

(except at s = a) to
a path from 0 to β in C that avoids the poles of the integrand on the right
side of (8.23). To analyze (8.23) further, we look at

Ψn,k,`(σ) = σΓ
(
−k − σ

2

)
Γ
(n + ` + 2k + σ

2

)−1
, (8.25)

which has poles at

σ = 2k − 2j, j ∈ {0, 1, 2, . . . }, j 6= k. (8.26)

Note that

Ψn,k,`(0) = αn,k,` = −1
2
Γ
(n + ` + 2k

2

)−1 d

dz

1
Γ(z)

∣∣∣
z=−k

(8.27)

is nonzero. We can write

Ψn,k,`(s) = αn,k,` + sζn,k,`(s), (8.28)

where ζn,k,` has the same poles as Ψn,k,`. Then (8.23) is

≡ (−i)`2−n/2−`−2kh`(x)|x|2k

×
[
αn,k,`

∫ β

0
qs ds +

∫ β

0
ζn,k,`(s)(rs − 1) ds

]
.

(8.29)

The quantity in square brackets is a sum of two terms, the second of which
is

≡ Kζn,k,`,β(|x|). (8.30)

The first is αn,k,` times

Qβ(r) =
∫ β

0

rs − 1
s

ds. (8.31)

Note that

Q′
β(r) =

∫ β

0
rs−1 ds =

rβ − 1
r log r

, (8.32)
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and Qβ(1) = 0, so

Qβ(r) =
∫ r

1

ρβ − 1
ρ log ρ

dρ. (8.33)

As in (6.12), ∫ r

0

ρβ−1

log ρ
dρ = li(rβ), (8.34)

given β > 0, r < 1. Also
∫ r

1/e

dρ

ρ log ρ
=

∫ log 1/r

1

du

u
= log | log r|, (8.35)

so
Qβ(r) = − log | log r|+ li(rβ) + τ(β), (8.36)

with τ(β) independent of r. We have established the following.

Theorem 8.2 If h` is a harmonic polynomial on Rn, homogeneous of degree
`, and

a = n + ` + 2k ∈ Eh`
, b /∈ Eh`

, b > a, (8.37)

and ϕ(ξ) is as in (3.59), then

(2π)−n/2

∫

Rn

(1− ϕ(ξ))
h`(ξ̂)
log |ξ|

(
|ξ|−a − |ξ|−b

)
e−ix·ξ dξ

≡ (−i)`2−n/2−`−2kh`(x)|x|2k

×
[
αn,k,`

(− log
∣∣log |x|∣∣ + li(|x|b−a)

)
+ Kζn,k,`,b−a(|x|)

]
,

(8.38)

with αn,k,` given by (8.27) and ζn,k,`(s) given by (8.28).

For ` = k = 0 and n = 1, (8.38) has the same form as (6.14). For ` = 1,
k = 0, and n = 1, (6.24) appears to have two terms of a form different from
those in (8.38). These sum to

−(sgn x)
(
li(|x|)− li(|x|β+1)

)
, β = b− a. (8.39)

Note, however, that

li(|x|)− li(|x|β+1) =
∫ |x|

0

1− ρβ

log ρ
dρ

= −
∫ |x|

0

∫ β

0
ρs ds dρ

= −
∫ β

0

|x|s+1

s + 1
ds

= −|x|K1/(s+1),β(|x|),

(8.40)
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and (sgnx)|x| = x, so (8.39) can be absorbed into the last term in square
brackets in (8.38).

Let us return to the general formula (8.4), under the hypothesis that
a, b /∈ Ep. Then there is a path from a to b in C such that

An(s)p has no poles on γab. (8.41)

where we treat An(s)p as a meromorphic function of s with values in C∞(Sn−1).
In such a case, (8.4) can be written as

(2π)−n/2

∫

Rn

p(ξ̂)
log |ξ|

(
|ξ|−a − |ξ|−b

)
e−ix·ξ dξ = |x|−nKΦ,a,b(|x|), (8.42)

where Φ is a meromorphic function of s with values in C∞(Sn−1), namely

Φ(s)(ω) = An(s)p(ω). (8.43)

As in §1, we define

KΦ,a,b(z) =
∫ b

a
Φ(s)zs ds, Re z > 0, (8.44)

the integral over a path γab that avoids the poles of Φ(s), this time taking
this as the integral of a function with values in a Frechet space (namely
C∞(Sn−1)). As in §1, we can integrate by parts in (8.44), obtaining

KΦ,a,b(z) = − 1
log z

(
Φ(a)za − Φ(b)zb

)
− 1

log z
KΦ′,a,b(z), (8.45)

and iterate this, to produce an asymptotic expansion involving powers of
(log z)−1, as z → 0. For example, if a = 0 and b ∈ R+ \ Ep in (8.41), we get

− 1
|x|n log |x|An(0)p(x̂) + O

( 1
|x|n(log |x|)2

)
, (8.46)

as the leading part of an expansion in powers of (log |x|)−1. By (8.6), An(0)
annihilates the constant term in the spherical harmonic expansion of p, but
not the higher terms.

We now turn to a treatment of

(2π)−n/2

∫

Rn

(1− ϕ(ξ))
p(ξ̂)

log |ξ|
(
|ξ|−a − |ξ|−b

)
e−ix·ξ dξ, (8.47)
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with ϕ as in (3.59), when a ∈ Ep (still assuming b /∈ Ep), say

a = n + `, ` ∈ {0, 1, 2, . . . }. (8.48)

We can write

p = p# +
∑̀

j=0

hj , hj ∈ En,j , p# ⊥ En,j for 0 ≤ j ≤ `. (8.49)

We can apply Theorem 8.2 to each term arising from (8.47) with p replaced
by hj , 0 ≤ j ≤ `. As for what one gets with p# in place of p in (8.47), we
can apply the following (with p# in place of p).

Proposition 8.3 Assume p ∈ C∞(Sn−1) satisfies

p ⊥ En,j for 0 ≤ j ≤ `. (8.50)

Then (8.42) holds for

a, b /∈ {n + ` + 1, n + ` + 2, n + ` + 3, . . . }. (8.51)

Proof. The argument used to prove Theorem 8.1 applies, suplemented by
(3.55)–(3.58). ¤

9 Passing to (log |ξ|)−k in multi-D

We start with the identity

∫ β

α

p(ξ̂)
log |ξ|

(
|ξ|−a − |ξ|−β

)
da

=
p(ξ̂)

log |ξ|
(∫ β

α
|ξ|−a da− (β − α)|ξ|−β

)

=
p(ξ̂)

(log |ξ|)2
(
|ξ|−α − |ξ|−β

)
− (β − α)

p(ξ̂)
log |ξ| |ξ|

−β.

(9.1)

On the last line, each term has a classical PV singularity at |ξ| = 1, which
could be erased by multiplying by 1− ϕ(ξ), with ϕ as in (3.59) and (8.17).
Here, as usual, p ∈ C∞(Sn−1). We assume

α, β /∈ Ep, (9.2)
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parallel to (8.2), and the integral in (9.1) is taken along a path from α to β
in C that avoids Ep. By (8.4), the Fourier transform of the left side of (9.1)
is ∫ β

α

∫ β

a
An(s)p(x̂)|x|s−n ds da

=
∫ β

α

∫ s

α
An(s)p(x̂)|x|s−n da ds

=
∫ β

α
(s− a)An(s)p(x̂)|x|s−n ds.

(9.3)

It follows that

(2π)−n/2

∫

Rn

p(ξ̂)
(log |ξ|)2

(
|ξ|−α − |ξ|−β

)
e−ix·ξ dξ

=
∫ β

α
(s− α)An(s)p(x̂)|x|s−n ds

+ (β − α)F
(p(ω)

log r
r−β

)
(x),

(9.4)

when (9.2) holds. As for the last term, we have, by (8.3),

F
(p(ω)

log r
r−β

)
∈ Ck(Rn), for β > n + k, β /∈ Ep. (9.5)

so the first term on the right side of (9.4) reveals the nature of the singularity
of the left side of (9.4), if β is taken large enough, assuming (9.2).

In fact, we can loosen the hypothesis (9.2) on α. Of the two terms on
the right side of (9.4), the second is holomorphic in β /∈ Ep and linear in
α. We know the first term (the integral) is holomorphic in α /∈ Ep for each
β /∈ Ep. Now suppose α ∈ Ep, and the integral from α to β is taken along a
path from α to β that avoids Ep except at s = α. Then the pole of An(s) at
s = α is cancelled by the factor s − α in the integrand, so in fact this is a
removable singularity.

One can iterate this process. To do this, it is convenient to bring in the
factor 1− ϕ(ξ). Extending (9.1), we have

(1− ϕ(ξ))
∫ β

α

p(ξ̂)
(log |ξ|)k−1

(
|ξ|−a − |ξ|−β

)
da

= (1− ϕ(ξ))
p(ξ̂)

(log |ξ|)k

(
|ξ|−α − |ξ|−β

)

− (1− ϕ(ξ))
(β − α)p(ξ̂)
(log |ξ|)k−1

|ξ|−β,

(9.6)
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and, from here, inductively,

(2π)−n/2

∫

Rn

(1− ϕ(ξ))
p(ξ̂)

(log |ξ|)k

(
|ξ|−α − |ξ|−β

)
e−ix·ξ dξ

=
1

(k − 1)!
(I − ϕ(D))

∫ β

α
(s− α)k−1An(s)p(x̂)|x|s−n ds + (β − α)Rk,β(x),

(9.7)
with

Rk,β = F
(
(1− ϕ)

p(ω)
(log r)k−1

r−β
)

(9.8)

as smooth as one likes, if β ∈ R+ is sufficiently large, provided (9.2) holds.
As in our analysis of (9.4), the singularities at points α ∈ Ep are removable
in the integral from α to β on the right side of (9.7), as long as k ≥ 2.

In case p(ω) = h`(ω), where h` is a harmonic polynomial, homogeneous
of degree `, by (8.6) the integral in the right side of (9.7) is equal to

(−i)`2n/2

∫ β

α
(s− α)k−12−sΓ

(n− s + `

2

)
Γ
(s + `

2

)−1
h`(x̂)|x|s−n ds

= (−i)`2n/2h`(x̂)|x|−nKΨn,`,k,α,β(|x|),
(9.9)

where
Ψn,`,k(s) = (s− α)k−1ψn,`(s), (9.10)

with ψn,`(s) as in (8.9).
Generally, for p ∈ C∞(Sn−1), we can represent the integral on the right

side of (9.7) as
|x|−nKΦk,α,β(|x|), (9.11)

where
Φk(s) = (s− α)k−1An(s)p (9.12)

is a meromorphic function of s with values in C∞(Sn−1), and results parallel
to (8.45) apply.

10 Replacing log |ξ| by log λ(ξ)

Let λ ∈ C∞(Rn \ 0) be > 0 and homogeneous of degree 1. Then there exists
q ∈ C∞(Sn−1) such that q > 0 on Sn−1 and

λ = q(ω)r. (10.1)
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Hence log λ = log r + log q, so if log λ were in the numerator of a symbol,
there would be no additional problem. Since for us it is in the denominator,
we need to work a little harder. Parallel to (2.1), we can take

1
log λ(ξ)

(
λ(ξ)−a − λ(ξ)−b

)
=

∫ b

a
λ(ξ)−s ds, (10.2)

for Re a, Re b < n. We want to extend the scope of this, since we partic-
ularly want to take b large, so we need to extend results of §3, obtaining a
meromorphic continuation of λ−s from Re s < n. Clearly λ−s = q−sr−s for
Re s < n, and, as in (3.37)–(3.40),

F(
q(ω)−sr−s

)
= An(s)q(ω)−srs−n, (10.3)

first for 0 < Re s < n. Now the left side of (10.3) is holomorphic for
Re s < n, and the right side is holomorphic for Re s > 0, except for the poles
of An(s)q(ω)−s, which is a subset of {n, n + 1, n + 2, . . . }. More generally,
if p ∈ C∞(Sn−1),

F(
p(ω)λ−s) = An(s)(pq−s)rs−n, (10.4)

first for 0 < Re s < n, and then both sides analytically continue to

s ∈ C \ Ep,q, (10.5)

where Ep,q is the set of poles of An(s)(pq−s), a subset of {n, n+1, n+2, . . . }.
In particular, we have a meromorphic continuation of p(ω)λ−s, holomor-

phic for s as in (10.5), all of whose poles are simple, and we can define

p(ω)
log λ

(
λ−a − λ−b

)
=

∫ b

a
p(ω)λ−s ds, a, b /∈ Ep,q, (10.6)

for λ as in (10.1). As in (8.2), the integral in (10.6) is taken along a path
γab from a to b in C that avoids Ep,q, and if γ̃ab is another such path, the
resulting integrals differ by a distribution supported at {0}. Thus (10.6)
is defined and holomorphic for a and b in the universal covering surface of
C \ Ep,q, with values in S ′(Rn). Parallel to (8.3), we can take a = 0 and
define

p(ω)
log λ

λ−b =
p(ω)
log λ

−
∫ b

0
p(ω)λ−s ds, b /∈ Ep,q. (10.7)

Both sides have a classical PV singularity on {λ = 1}.
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Now we can apply the Fourier transform to both sides of (10.6), using
(10.4). We get

(2π)−n/2

∫

Rn

p(ξ̂)
log λ(ξ)

(
λ(ξ)−a − λ(ξ)−b

)
e−ix·ξ dξ

=
∫ b

a
An(s)

(
p(x̂)q(x̂)−s

)|x|s−n ds,

(10.8)

for a, b /∈ Ep,q, again the last integral taken over a path γab from a to b that
omits Ep,q.

Remark. The left side of (10.8) can be written

(2π)−n/2

∫

Rn

p(ξ̂)q(ξ̂)−a

log λ(ξ)

(
|ξ|−a − q(ξ̂)a−b|ξ|−b

)
e−ix·ξ dξ. (10.9)

Note that a /∈ Ep,q provided that An(s)(pq−a) does not have a pole at s = a.

Now, given a, b /∈ Ep,q, we can write the right side of (10.8) as

|x|−nKΨ,a,b(|x|), (10.10)

where Ψ is a meromorphic function with values in C∞(Sn−1), given by

Ψ(s) = An(s)(pq−s), (10.11)

and results parallel to (8.45) apply. For example, if a = 0 and b ∈ R+ \ Ep,q,
we get

− 1
|x|n log |x|An(0)p(x̂) +

1
|x|n(log |x|)2

(
A′n(0)p(x̂)−An(0)

(
p(x̂) log q(x̂)

))

+ O
( 1
|x|n(log |x|)3

)
,

(10.12)
The leading term is just as in (8.46). The behavior of q ∈ C∞(Sn−1) figures
into the next term in the asymptotic expansion.

A Alternative proof of (1.3)

Here we provide a direct proof of (1.3). The argument we use is parallel to
that used for the proof of Theorem 2.17 in Chapter 5 of [14], except that
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we deal with Fourier integrals, rather than Fourier series, which allows for
some simplifications of the details.

In fact, the comparison of uL with UL in (1.13)–(1.19) readily implies
that (1.3) is equivalent to the result

S0(x) = − 1
x log |x| + O

( 1
|x|(log |x|)2

)
, (A.1)

as x → 0, with

S0(x) =
∫ ∞

2

1
log ξ

sinxξ dξ, (A.2)

introduced in (1.31). Since S0(x) is odd, it suffices to treat it for x > 0.
Note that

xS0(x) = −
∫ ∞

2

1
log ξ

d

dξ
cosxξ dξ

= −
∫ ∞

2

1
ξ(log ξ)2

cosxξ dξ +
cos 2x

log 2
,

(A.3)

the latter identity by integration by parts. Compare (7.5), with a = 0. Now,
for u > 1, ∫ ∞

u

dξ

ξ(log ξ)2
= −

∫ ∞

u

d

dξ

1
log ξ

dξ =
1

log u
, (A.4)

so (A.3) yields

xS0(x) =
∫ ∞

2

1
ξ(log ξ)2

(1− cosxξ) dξ − 1− cos 2x

log 2
. (A.5)

Assuming 0 < x < 1/2, we break this integral into an integral over [2, 1/x]
and an integral over [1/x,∞), and we separate out the terms in the integrand
of the latter integral, obtaining

xS0(x) +
1− cos 2x

log 2

=
∫ 1/x

2

1
ξ(log ξ)2

(1− cosxξ) dξ

+
∫ ∞

1/x

1
ξ(log ξ)2

dξ

−
∫ ∞

1/x

1
ξ(log ξ)2

cosxξ dξ

= r1(x) + v(x)− r2(x).

(A.6)
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By (A.4), for 0 < x < 1,

v(x) =
1

log 1/x
. (A.7)

Next, since
|1− cosxξ| ≤ x2ξ2 for |xξ| ≤ 1, (A.8)

we have

|r1(x)| ≤ x2

∫ 1/x

2

ξ

(log ξ)2
dξ

≤ Cx2 · 1
x
· 1/x

(log 1/x)2

=
C

(log 1/x)2
,

(A.9)

the second inequality because the integrand is monotonically increasing for
large ξ. It remains to treat

r2(x) =
1
x

∫ ∞

1/x

1
ξ(log ξ)2

d

dξ
sinxξ dξ

= −1
x

∫ ∞

1/x

d

dξ

1
ξ(log ξ)2

sinxξ dξ +
sin 1

(log 1/x)2
,

(A.10)

the latter identity by integration by parts. A computation gives
∣∣∣ d

dξ

1
ξ(log ξ)2

∣∣∣ ≤ C

ξ2(log ξ)2
, (A.11)

which readily yields

|r2(x)| ≤ C

(log 1/x)2
. (A.12)

This proves (A.1), so we have (1.3).
Similar analysis can be done on

S1(x) =
∫ ∞

2

1
ξ log ξ

sinxξ dξ

=
1
x

∫ ∞

2

1
ξ log ξ

d

dξ
(1− cosxξ) dξ

=
1
x

∫ ∞

2

[ 1
ξ2 log ξ

+
1

ξ2(log ξ)2
]
(1− cosxξ) dξ

− 1
x

1− cos 2x

2 log 2
.

(A.13)
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If we split the last integral into an integral over [2, 1/|x|] and an integral
over [1/|x|,∞), and apply (A.8) to the first integral, we get

|S1(x)| ≤ C

log 1/|x| . (A.14)

From this and (1.21) one readily deduces (1.20), hence (1.10). (This argu-
ment is different from the one in §2, using (2.9)–(2.15).) One can go further,
splitting the integral over [1/|x|,∞) into two terms by splitting 1− cosxξ,
obtaining for S1(x) the first term in the asymptotic expansion in powers of
(log |x|)−1 arising from (1.38). We leave the pursuit of this to the reader.
Of course, results obtained in this way are less precise than those given in
(1.27) and (1.38).

B Asymptotics for (1.5)

By similar reasoning as used in (1.12)–(1.19), the distribution vL on T1 given
by (1.5) belongs to C∞(T1 \ 0) and has the same singular behavior at θ = 0
as does ∫ ∞

0
(log ξ) sinxξ dξ (B.1)

at x = 0. This is minus the imaginary part of

W (x) =
∫ ∞

0
(log ξ)e−ixξ dξ, (B.2)

which is seen to satisfy

d

dx
(xW ) = lim

ε↘0

∫ ∞

0
e−(ε+ix)ξ dξ

= lim
ε↘0

1
i

1
x− iε

,

(B.3)

hence
xW = lim

ε↘0

1
i

log(x− iε) + const. (B.4)

Note that ReW is even and ImW is odd, so RexW is odd and ImxW
is even. Consequently, up to a purely imaginary additive constant, xW is
given by

1
i

log |x|+ π

2
sgnx. (B.5)
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To evaluate the constant, we use

ImW (1) = −
∫ ∞

0
(log ξ) sin ξ dξ

= −
∫ 1

0
(log ξ)

d

dξ
(1− cos ξ) dξ +

∫ ∞

1
(log ξ)

d

dξ
cos ξ dξ

=
∫ 1

0

1− cos ξ

ξ
dξ −

∫ ∞

1

cos ξ

ξ
dξ

= γ,

(B.6)

where γ is Euler’s constant. See p. 41 of [2] for the last identity here. It
follows that

xW =
1
i
(log |x| − γ) +

π

2
sgn x, (B.7)

so ∫ ∞

0
(log ξ) cosxξ dξ =

π

2
PF

1
|x| , (B.8)

and ∫ ∞

0
(log ξ) sin xξ dξ = PV

1
x

log |x| − γ PV
1
x

. (B.9)

C The family of operators An(s)

In §3 we produced the family of operators An(s), acting on C∞(Sn−1) as
follows:

An(s)h`(ω) = (−i)`2n/2−sΓ
(n− s + `

2

)
Γ
(s + `

2

)−1
h`(ω),

for s /∈ {n + `, n + ` + 2, n + ` + 4, . . . },
(C.1)

when h` is a harmonic polynomial on Rn, homogeneous of degree `. Equiv-
alently, with Λ ∈ OPS1(Sn−1) as in (3.44), an elliptic pseudodifferential
operator satisfying Λh` = `h`,

An(s) = 2n/2−se−πiΛ/2Φn,s(Λ). (C.2)

See (3.46)–(3.47). From the asymptotic relation (3.35), i.e.,

Γ
(n− s + `

2

)
Γ
(s + `

2

)−1
∼

( `

2

)n/2−s
, (C.3)

as ` → +∞, given s ∈ C, we have

An(s) : C∞(Sn−1) −→ C∞(Sn−1),
holomorphic for s /∈ {n, n + 1, n + 2, . . . }. (C.4)
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Our goal here is to prove (C.3), and also to derive a more precise result,
needed to estabish (3.48), i.e.,

Φn,s(Λ) ∈ OPS−s+n/2(Sn−1), for s /∈ {n, n + 1, n + 2, . . . }. (C.5)

Before getting to this, we mention some refinements of (C.4), which follow
from (C.1) and (C.3). Namely, if C∞

even(S
n−1) and C∞

odd(S
n−1) denote the

spaces of smooth functions p(ω) satisfying, respectively p(−ω) = p(ω) and
p(−ω) = −p(ω), we have

An(s) : C∞
even(S

n−1) −→ C∞
even(S

n−1),
holomorphic for s /∈ {n, n + 2, n + 4, . . . }, (C.6)

and
An(s) : C∞

odd(S
n−1) −→ C∞

odd(S
n−1),

holomorphic for s /∈ {n + 1, n + 3, n + 5, . . . }. (C.7)

Also (for k = 0, 1, 2, . . . ), if

C∞
[k](S

n−1) = {p ∈ C∞(Sn−1) : p ⊥ En,`, ∀ ` ≤ k}, (C.8)

with En,` as in (3.22), then

An(s) : C∞
[k](S

n−1) −→ C∞
[k](S

n−1),

holomorphic for s /∈ {n + k + 1, n + k + 2, . . . }.
(C.9)

To establish (C.3) and refinements, we use Stirling’s formula, in the
following form:

log Γ(z) =
(
z − 1

2

)
log z − z +

1
2

log 2π + ω(z), (C.10)

for Re z ≥ 0, where

ω(z) =
∫ ∞

0

(1
2
− 1

t
+

1
et − 1

)1
t
e−tz dt, (C.11)

the Laplace transform of a smooth, bounded function on [0,∞), which has
an asymptotic expansion

ω(z) ∼
∑

k≥0

βkz
−2k−1, z →∞, Re z ≥ 0. (C.12)
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See [2], §1.4 for a derivation, and [11], §12.33 for a related derivation, with
a different formula for (C.11). See also [10]. Applying (C.10) to the left side
of (C.3) yields, for ` ≥ Re s− n and ` ≥ Re(−s),

log
(
Γ
(n− s + `

2

)
Γ
(s + `

2

)−1)

=
n− s + `− 1

2
log

(n− s + `

2

)
− s + `− 1

2
log

(s + `

2

)

− n− s + `

2
+

s + `

2
+ ω

(n− s + `

2

)
− ω

(s + `

2

)

=
n− 2`

2
log

(n− s + `

2

)
+

s + `− 1
2

log
(
1 +

n− 2s

` + s

)

+
2s− n

2
+ ω

(n− s + `

2

)
− ω

(s + `

2

)
.

(C.13)

Now, for ` such that |` + s| > |n− 2s|,
s + `− 1

2
log

(
1 +

n− 2s

` + s

)
=

` + s− 1
2

∞∑

k=1

(−1)k−1

k

(n− 2s

` + s

)k

=
∞∑

k=0

αk(s)(` + s)−k, α0(s) =
n

2
− s.

(C.14)

Hence, for ` sufficiently large,

Γ
(n− s + `

2

)
Γ
(s + `

2

)−1

=
(` + n− s

2

)n/2−s
exp

( ∞∑

k=1

αk(s)(` + s)−k + ω
(n− s + `

2

)
− ω

(s + `

2

))
.

(C.15)
By (C.12),

ω
(n− s + `

2

)
− ω

(s + `

2

)

∼
∑

k≥0

βk

[( 2
` + n− s

)2k+1
−

( 2
` + s

)2k+1]
.

(C.16)

We deduce that, as ` → +∞,

Γ
(n− s + `

2

)
Γ
(s + `

2

)−1
∼

( `

2

)n/2−s(
1 +

∑

k≥0

γk,n(s)`−k
)
, (C.17)

for certain γk,n(s) ∈ C. This is a more precise version of (C.3). It implies
that the left side of (C.17) is a classical symbol (in `) of order n/2 − s, as
long as either s ∈ C\ [n,∞) or ` > s−n. The expansion (C.17) yields (C.5).
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[1] L. Hörmander, The Analysis of Linear Partial Differential Operators
I, Springer-Verlag, New York, 1983; III, 1985.

[2] N. Lebedev, Special Functions and Their Applications, Dover, New
York, 1965.
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