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1. Introduction

Here we consider solutions to the Bessel equation

(1.1) u′′(t) +
1
t
u′(t) +

(
1− ν2

t2

)
u(t) = 0,

for ν ∈ R. This equation arises in the study of partial differential equations on
regions with special shapes in n-dimensional Euclidean space, and in cases n = 2
and n = 3 such PDE are very important in mathematical physics. See Appendix
A of these notes for material on this.

The equation (1.1) has a regular singular point at t = 0. In §2 we convert (1.1)
to a first order 2× 2 system, of the form

(1.2) t
dx

dt
= A(t)x,

with a regular singular point at t = 0. This allows us to take advantage of material
developed in §11, Chapter 3 of [T1], though our presentation in §2 is actually self
contained.
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In §3 we study a certain Bessel function Jν(t) solving (1.1). Results of §2 guaran-
tee that Jν(t) = t−νJν(t) has a convergent power series

∑∞
k=0 akt2k, and we derive

a recursion formula for the coefficients ak. We produce a solution to this recursion,
and hence define Jν(t). The solution involves the gamma function Γ(z), and we
make use of results on Γ(z) given in Appendix B. We see that, for ν ∈ R, both
Jν(t) and J−ν(t) solve (1.1). If ν is not an integer, we show that these solutions are
linearly independent, and hence form a basis for solutions to (1.1) on t ∈ (0,∞). If
ν = n is an integer, we show J−n(t) = (−1)nJn(t). Section 4 produces a solution
Yν(t) to (1.1), having the property that the Wronskian

(1.3) W (Jν , Yν)(t) =
2
πt

,

for all ν ∈ R, t ∈ (0,∞), so {Jν , Yν} forms a basis of solutions to (1.1) for each
ν ∈ R.

In §5 we give some identities connecting Jν(t) with Jν±1(t). In §6 we discuss
Jn+1/2(t), which is an elementary function when n is an integer. In §7 we establish
an integral formula for Jν(t).

In §8 we introduce the Hankel functions H
(1)
ν and H

(2)
ν . In §9 we produce results

on the asymptotic behavior of Jν(t), H(1)
ν (t), and Yν(t) as t → +∞. In §10 we

apply results of §9 to show that, for each ν ∈ R, real valued solutions to (1.1) have
infinitely many zeros (say, ϑkν) on (0,∞), and give their approximate values, for
large k. Material in §§8–9 is less self-contained than in other sections. We refer
to [W] for a derivation of the integral formula (8.1) for H

(1)
ν (t), and to Chapter 3

of [T3] for the methods of asymptotic analysis that apply to the integral formula
(7.1) for Jν(t).

As already indicated, Appendix A explains why Bessel functions are so important
for certain PDEs, and Appendix B introduces the gamma function, which is a useful
tool in the analysis of Bessel functions. Appendix C evaluates the derivative of
1/Γ(z) for integer z, of use in the formula for Yn(t) derived in §4.
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2. Conversion to first order systems

To begin our treatment of Bessel’s equation

(2.1) u′′(t) +
1
t
u′(t) +

(
1− ν2

t2

)
u(t) = 0,

we convert it to a first-order 2× 2 system for

(2.2) x(t) =
(

u(t)
v(t)

)
, v(t) = tu′(t),

obtaining

(2.3)
dx

dt
=

(
u′

u′ + tu′′

)
,

hence

(2.4) t
dx

dt
=

(
0 −1

ν2 − t2 0

)
x.

This has the form

(2.5) t
dx

dt
= A(t)x, A(t) = A0 + A2t

2,

with

(2.6) A0 =
(

0 1
ν2 0

)
, A2 =

(
0 0
−1 0

)
.

Generally, (2.5) has a solution given as a convergent power series

(2.7) x(t) = x0 + x1t + x2t
2 + · · · ,

as long as A0x0 = 0, provided also A0 has no eigenvalues that are positive integers.
This is established in Lemma 11.1, Chapter 3, of [T1]. (A proof that works in the
cases we consider here is given in (2.16)–(2.24) below.) In case (2.6), A0 has a
nonzero null space only for ν = 0. To treat the more general cases, we set

(2.8) x(t) = tνy(t).
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This is motivated by the model Euler equation

(2.9) t
dx

dt
= A0x,

whose solution for t > 0 is

(2.10) x(t) = e(log t)A0 = tA0 ,

upon noting that A0 in (1.6) has eigenvalues ±ν.
From (2.8) we have x′ = tνy′ + νtν−1y, so

(2.11) A(t)x = t
dx

dt
= tνt

dy

dt
+ νtνy,

so (2.5) is equivalent to

(2.12) t
dy

dt
=

(
A(t)− νI

)
y(t).

In case (2.5)–(2.6), we have

(2.13) A(t)− νI = (A0 − νI) + A2t
2, A0 − νI =

(−ν 1
ν2 −ν

)
.

Since

(2.14) (A0 − νI)
(

1
ν

)
=

(
0
0

)
,

Lemma 11.1 (Chapter 3) of [T1] (which, we recall, is proved in the case needed here
below) implies (2.12) has a solution given by a convergent power series

(2.15) y(t) = y0 + y1t + y2t
2 + · · · , y0 =

(
1
ν

)
,

provided A0 − νI has no positive integers as eigenvalues. Since Spec(A0 − νI) =
{0,−2ν}, this works as long as 2ν is not a negative integer.

Actually, the fact that only even powers of t appear on the right side of (2.13)
allows us to improve this a bit. Let us rewrite (2.12)–(2.13) as

(2.16) t
dy

dt
= B(t2)y,

with

(2.17) B(s) = B0 + B1s, B0 = A0 − νI, B1 = A2.
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Set

(2.18) y(t) = z(t2), t > 0.

Thus ty′(t) = 2t2z′(t2) = B(t2)y(t), so

(2.19) s
dz

ds
=

1
2
B(s)z(s),

and since

(2.20)
1
2
B0 =

1
2

(−ν 1
ν2 −ν

)
, Spec

1
2
B0 = {0,−ν},

Lemma 11.1 mentioned above applies, to yield a solution to (2.19)

(2.21) z(s) =
∞∑

k=0

zksk, z0 =
(

1
ν

)
,

as long as ν is not a negative integer. In fact, plugging this power series into (2.19)
gives the recursion

(2.22) kzk =
1
2
B0zk +

1
2
B1zk−1,

i.e.,

(2.23) zk = (2kI −B0)−1B1zk−1,

starting with z0 = (1, ν)t, and then inductively specifying zk for k ∈ {1, 2, 3, . . . }, as
long as 2k /∈ Spec B0 for each such k, i.e., as long as Spec B0 contains no positive
even integer, hence as long as ν is not a negative integer. Note that (2.23) implies

(2.24) ‖zk‖ ≤ C

k
‖B1‖ · ‖zk−1‖,

for k sufficiently large, and this implies convergence of (2.21) for all s ∈ R. This
argument proves the special case of Lemma 11.1 (Chapter 3) of [T1] that we have
been citing.
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3. The Bessel functions Jν

Here we construct a solution to (1.1), for t > 0, called the Bessel function Jν(t).
In this case, (2.2) becomes

(3.1) x(t) =
(

Jν(t)
tJ ′ν(t)

)
,

and (2.8) becomes

(3.2) y(t) =
(

t−νJν(t)
t1−νJ ′ν(t)

)
.

Thus we are motivated to set

(3.3) Jν(t) = t−νJν(t),

so Jν(t) = tνJν(t), hence

(3.4) J ′ν(t) = tνJ ′ν(t) + νtν−1Jν(t),

so

(3.5) y(t) =
( Jν(t)

tJ ′ν(t) + νJν(t)

)
.

The equation (2.12), i.e.,

(3.6) t
dy

dt
=

(
A(t)− νI

)
y(t),

becomes

(3.7) t
d

dt

( Jν

tJ ′ν + νJν

)
=

[(−ν 1
ν2 −ν

)
+

(
0 0
−1 0

)
t2

]( Jν

tJ ′ν + νJν

)
.

Comparing the first components, we get

tJ ′ν = −νJν + tJ ′ν + νJν ,

which is a tautology, and comparing the second components, we get

(3.8) t
(
tJ ′′ν + (ν + 1)J ′ν

)
= ν2Jν − ν(tJ ′ν + νJν)− t2Jν ,
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which we rewrite as

(3.9) J ′′ν (t) +
2ν + 1

t
J ′ν(t) + Jν(t) = 0.

The material developed in (2.16)–(2.24) applies to (3.7), and guarantees that
(3.9) has a solution given as a convergent power series of the form

(3.10) Jν(t) =
∞∑

k=0

akt2k, ∀ t ∈ R,

as long as ν is not a negative integer. Here we give an iterative construction of such
coefficients. Given (3.10), the left side of (3.9) is

(3.11)
∞∑

k=0

{
(2k + 2)(2k + 2ν + 2)ak+1 + ak

}
t2k.

As long as ν /∈ {−1,−2,−3, . . . }, one can fix a0 = a0(ν) and solve recursively for
ak+1, for each k ≥ 0:

(3.12) ak+1 = −1
4

ak

(k + 1)(k + ν + 1)
.

We now establish an explicit solution to (3.12), making use of the Euler gamma
function Γ(z). See Appendix B of these notes for a definition of Γ(z) and a deriva-
tion of some of its basic properties. For our present purposes, we mention that Γ(z)
is well defined for z /∈ {0,−1,−2,−3, . . . }, and satisfies

(3.13) Γ(z + 1) = zΓ(z).

Also, Γ(1) = 1, so, if k is a positive integer,

(3.14) Γ(k + 1) = k!

Moreover,

(3.15)

1
Γ(z)

is well defined for all z ∈ R,

1
Γ(z)

= 0 for z ∈ {0,−1,−2,−3, . . . }.

In light of these results, we see that a solution to (3.12) is given by

(3.16) ak =
(
−1

4

)k 1
Γ(k + 1)Γ(k + ν + 1)

.
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Furthermore, though (3.12) seems to break down for ν ∈ {−1,−2,−3, . . . }, (3.16)
is well defined for all ν ∈ R, and all k ∈ Z+, and we have

(3.17) 4(k + 1)(k + ν + 1)ak+1 + ak = 0,

so (3.11) vanishes. Thus a solution to (3.9) is given by

(3.18) Jν(t) =
1
2ν

∞∑

k=0

(−1)k

Γ(k + 1)Γ(k + ν + 1)

( t

2

)2k

.

(We have multiplied the coefficients ak in (3.16) by 2−ν , for consistency with stan-
dard conventions.) This is valid for all ν, t ∈ R. Convergence of (3.18) follows from
the result

1
Γ(k + 1)Γ(k + ν + 1)

≤ 1
k!

, for k ≥ 0, k + ν sufficiently large,

which follows from the fact that Γ(z) → +∞ as z → +∞, itself a direct consequence
of the definition (B.1).

Returning to (3.3), we have the Bessel function

(3.19) Jν(t) = tνJν(t) =
∞∑

k=0

(−1)k

Γ(k + 1)Γ(k + ν + 1)

( t

2

)2k+ν

,

solving (1.1), for ν ∈ R, t ∈ (0,∞).
Note that (1.1) for ν coincides with (1.1) for −ν. Thus, both Jν(t) and J−ν(t)

solve (1.1). Now the leading term in (3.19) is

(3.20) Jν(t) =
1

Γ(ν + 1)

( t

2

)ν

+ · · · .

As long as ν is not a negative integer, this leading term is nonvanishing, so

(3.21) ν /∈ Z =⇒ Jν(t) and J−ν(t) are linearly independent solutions of (1.1).

However, if ν is a negative integer, 1/Γ(ν +1) = 0, so (3.20) does not establish such
linear independence. Also, clearly Jν = J−ν when ν = 0. Moreover, when ν = −n
is a negative integer, we have

(3.22)

J−n(t) =
∞∑

k=n

(−1)k

Γ(k + 1)Γ(k − n + 1)

( t

2

)2k−n

=
∞∑

`=0

(−1)`+n

Γ(` + 1)Γ(` + n + 1)

( t

2

)2`+n

= (−1)nJn(t).

Thus we have not constructed two linearly independent solutions to (1.1) when ν
is an integer. We turn to this task in §4.
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4. The Bessel functions Yν

We have seen that Jν(t) and J−ν(t) are linearly independent solutions to Bessel’s
equation

(4.1) u′′(t) +
1
t
u′(t) +

(
1− ν2

t2

)
u(t) = 0,

as long as ν is not an integer, while if n ∈ Z, then J−n(t) = (−1)nJn(t). We want to
construct a basis of solutions to (4.1), uniformly good for all ν. This construction
can be motivated by a calculation of the Wronskian.

Generally, for a pair of solutions u1 and u2 to a second order ODE

(4.2) a(t)u′′ + b(t)u′ + c(t)u = 0,

u1 and u2 are linearly independent if and only if the Wronskian

(4.3) W (t) = W (u1, u2)(t) = det
(

u1 u2

u′1 u′2

)

is nonvanishing. Now W (t) satisfies the first order ODE

(4.4) W ′(t) = − b(t)
a(t)

W (t).

In the case of Bessel’s equation (4.1), this becomes

(4.5) W ′(t) = −W (t)
t

,

so

(4.6) W (t) =
K

t
,

for some K, independent of t, but perhaps depending on ν.
To be specific,

(4.7) W (Jν , J−ν)(t) =
K(ν)

t
.

We turn to the task of evaluating K(ν). Using the relations Jν(t) = tνJν(t) and
J−ν(t) = t−νJ−ν(t), we have

(4.8) W (Jν , J−ν)(t) = W (Jν ,J−ν)(t)− 2ν

t
Jν(t)J−ν(t).
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Since Jν and J−ν are smooth on R, we get

(4.9) W (Jν , J−ν)(t) = −2ν
Jν(0)J−ν(0)

t
+ g(t),

where g(t) is smooth on [0,∞). Comparison with (4.7) gives

(4.10) W (Jν , J−ν)(t) = −2
νJν(0)J−ν(0)

t
,

so, in (4.7), K(ν) = −2νJν(0)J−ν(0). Now (3.18) yields

(4.11) Jν(0) =
1

2νΓ(ν + 1)
, J−ν(0) =

1
2−νΓ(1− ν)

,

so

(4.10) K(ν) = − 2ν

Γ(ν + 1)Γ(1− ν)
.

By (3.13) (cf. (B.3)), Γ(ν + 1) = νΓ(ν). Furthermore (cf. (B.8)),

(4.13) Γ(ν)Γ(1− ν) =
π

sin πν
.

Hence

(4.14) W (Jν , J−ν)(t) = − 2
π

sinπν

t
.

In particular, this recovers our previous observation that Jν and J−ν are linearly
independent if and only if ν /∈ Z.

Taking a cue from (4.14), we set

(4.15) Yν(t) =
Jν(t) cos πν − J−ν(t)

sinπν
,

when ν is not an integer. Then, for n ∈ Z, we define

(4.16) Yn(t) = lim
ν→n

Yν(t) =
1
π

[ ∂

∂ν
Jν(t)− (−1)n ∂

∂ν
J−ν(t)

]∣∣∣
ν=n

.

Then we have

(4.17) W (Jν , Yν)(t) =
2
πt

,

for all ν.



11

We now produce a series representation for Yn(t), when n ∈ Z+. Recall that, for
ν ∈ R,

(4.18) Jν(t) =
∞∑

k=0

αk(ν)
( t

2

)2k+ν

, αk(ν) =
(−1)k

k!Γ(k + ν + 1)
.

Hence

(4.19)
∂

∂ν
Jν(t) =

∞∑

k=0

α′k(ν)
( t

2

)2k+ν

+
(
log

t

2

) ∞∑

k=0

αk(ν)
( t

2

)2k+ν

,

Note that the last sum is equal to Jν(t). Hence

(4.20)
∂

∂ν
Jν(t)

∣∣∣
ν=n

=
∞∑

k=0

α′k(n)
( t

2

)2k+n

+
(
log

t

2

)
Jn(t).

Similarly,

(4.21)
∂

∂ν
J−ν(t) = −

∞∑

k=0

α′k(−ν)
( t

2

)2k−ν

−
(
log

t

2

)
J−ν(t).

Recalling from (3.13) that αk(−n) = 0 for k < n, we have

(4.22)
∂

∂ν
J−ν(t)

∣∣∣
ν=n

= −
∞∑

k=0

α′k(−n)
( t

2

)2k−n

−
(
log

t

2

)
J−n(t).

Plugging (4.20) and (4.22) into (4.16) then yields the series for Yn(t), convergent
for t ∈ (0,∞).

In detail, if n is a positive integer,

(4.23)

Yn(t) =
2
π

(
log

t

2

)
Jn(t) +

(−1)n

π

∞∑

k=0

α′k(−n)
( t

2

)2k−n

+
1
π

∞∑

k=0

α′k(n)
( t

2

)2k+n

,

and

(4.24) Y0(t) =
2
π

(
log

t

2

)
J0(t) +

2
π

∞∑

k=0

α′k(0)
( t

2

)2k

.

The evaluation of α′k(±n) is discussed in Appendix C. We see that

(4.25) Y0(t) ∼ 2
π

log t, as t ↘ 0,

while, if n is a positive integer,

(4.26) Yn(t) ∼ (−1)n

π
α′0(−n)

( t

2

)−n

, as t ↘ 0.

As seen in Appendix C, when n is a positive integer,

(4.27) α′0(−n) = β′(−n + 1) = (−1)n−1(n− 1)!.
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5. Relations between Jν and Jν±1

The Bessel functions have the following remarkable relations:

Jν+1(t) = −J ′ν(t) +
ν

t
Jν(t),(5.1)

Jν−1(t) = J ′ν(t) +
ν

t
Jν(t).(5.2)

Putting these two identities together yields

(5.3)
( d

dt
− ν − 1

t

)( d

dt
+

ν

t

)
Jν(t) = Jν(t),

which is equivalent to the Bessel equation (1.1). The identities (5.1) and (5.2) are
equivalent, respectively, to

(5.4) Jν+1(t) = −1
t
J ′ν(t),

and

(5.5) Jν−1(t) = tJ ′ν(t) + 2νJν(t).

These follow readily from the power series

(5.6) Jν(t) =
1
2ν

∞∑

k=0

(−1)k

k!Γ(k + ν + 1)

( t

2

)2k

.

and its corollary

(5.7) J ′ν(t) =
1
2ν

∞∑

k=1

(−1)kk

k!Γ(k + ν + 1)

( t

2

)2k−1

.

The reader is invited to verify (5.4)–(5.5), and hence (5.1)–(5.2). We mention that
to establish (5.4) one uses Γ(k +1+1) = (k +1)Γ(k +1), and to establish (5.5) one
uses Γ(k + ν + 1) = (k + ν)Γ(k + ν).

We also have analogues of (5.1)–(5.2) for the functions Yν :

(5.8)
Yν+1(t) = −Y ′

ν(t) +
ν

t
Yν(t),

Yν−1(t) = Y ′
ν(t) +

ν

t
Yν(t).

We leave it to the reader to establish this, first for ν /∈ Z, via (4.15), and then for
ν ∈ Z, via a limiting argument.
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6. The functions Jn+1/2

Looking at (3.9), we see that J−1/2(t) solves

(6.1) u′′(t) + u(t) = 0,

whose solutions are C1 cos t + C2 sin t. Meanwhile, the power series

(6.2) Jν(t) =
1
2ν

∞∑

k=0

(−1)k

k!Γ(k + ν + 1)

( t

2

)2k

yields

(6.3) J−1/2(t) =
√

2
∞∑

k=0

(−1)k

k!Γ(k + 1/2)

( t

2

)2k

,

which has only even powers of t, so J−1/2(t) = C1 cos t. Furthermore, (6.3) implies

(6.4) J−1/2(0) =
√

2
Γ(1/2)

=

√
2
π

,

the latter identity by (B.9). Hence

(6.5) J−1/2(t) =

√
2
π

cos t,

and consequently

(6.6) J−1/2(t) =

√
2
πt

cos t.

Applying (5.1) with ν = −1/2 yields

(6.7) J1/2(t) =

√
2
πt

sin t.

Then repeated applications of (5.1)–(5.2) give, for n ∈ Z+,

(6.8) Jn+1/2(t) = (−1)k
{ n∏

j=1

( d

dt
− j − 1/2

t

)} sin t√
2πt

,
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and

(6.9) J−n−1/2(t) =
{ n∏

j=1

( d

dt
− j − 1/2

t

)} cos t√
2πt

.

Returning to the identity (6.5), we recall that

(6.10) cos t =
∞∑

k=0

(−1)k

(2k)!
t2k.

Comparison with (6.3) gives

(6.11)
√

π(2k)! = 22kk!Γ
(
k +

1
2

)
,

which can also be deduced from the identity Γ(1/2) =
√

π and, via Γ(z+1) = zΓ(z),

(6.12)

Γ
(
k +

1
2

)
=

(
k − 1

2

)
Γ
(
k − 1

2

)

= · · ·

=
2k − 1

2
2k − 3

2
· · · 1

2
Γ
(1

2

)
.
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7. Integral formula for Jν

Our goal in this section is to establish the following integral formula:

(7.1) Jν(t) =
(t/2)ν

Γ(1/2)Γ(ν + 1/2)

∫ 1

−1

(1− s2)ν−1/2eist ds,

for ν > −1/2. Motivation for this formula can be found in Chapter 3, §6, of [T3].
To verify (7.1), we replace eist by its power series, integrate term by term, and

use an identity from Appendix B. To begin, the integral on the right side of (7.1)
is equal to

(7.2)
∞∑

k=0

1
(2k)!

∫ 1

−1

(ist)2k(1− s2)ν−1/2 ds.

The identity (B.14) implies

(7.3)
∫ 1

−1

s2k(1− s2)ν−1/2 ds =
Γ(k + 1/2)Γ(ν + 1/2)

Γ(k + ν + 1)
,

so the right side of (7.1) equals

(7.4)
(t/2)ν

Γ(1/2)Γ(ν + 1/2)

∞∑

k=0

1
(2k)!

(it)2k Γ(k + 1/2)Γ(ν + 1/2)
Γ(k + ν + 1)

.

As seen in (6.11), we have

(7.5) Γ
(1

2

)
(2k)! = 22k k! Γ

(
k +

1
2

)
,

so the right side of (7.1) is equal to

(7.6)
( t

2

)ν ∞∑

k=0

(−1)k

k!Γ(k + ν + 1)

( t

2

)2k

,

which agrees with our formula (3.19) for Jν(t). This proves (7.1).
Note that the integral in (7.1) is easy to evaluate when ν = 1/2. We have

(7.7)

J1/2(t) =
1√
π

( t

2

)1/2
∫ 1

−1

eist ds

=
1√
π

( t

2

)1/2 2 sin t

t

=

√
2
πt

sin t,

recovering the formula (6.7).
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8. The Hankel functions H
(k)
ν

The Hankel functions H
(1)
ν and H

(2)
ν are defined by

(8.1)
H(1)

ν (t) = Jν(t) + iYν(t),

H(2)
ν (t) = Jν(t)− iYν(t).

The Wronskian relation (4.17) readily yields

(8.2) W (H(1)
ν ,H(2)

ν )(t) = − 4i

πt
.

Series expansions for H
(1)
ν (t) and H

(2)
ν (t) follow from (3.19) and (4.15) for ν /∈ Z,

and (4.23)–(4.24) for ν = n ∈ Z+.
Using (4.15), we have

(8.3)
H(1)

ν (t) =
J−ν(t)− e−πiνJν(t)

i sin πν
,

H(2)
ν (t) =

eπiνJν(t)− J−ν(t)
i sin πν

,

evaluated as usual by l’Hospital’s rule for ν ∈ Z. These formulas imply

(8.4) H
(1)
−ν (t) = eπiνH(1)

ν (t), H
(2)
−ν (t) = e−πiνH(2)

ν (t).

We mention the following useful integral formula:

(8.5) H(1)
ν (t) =

( 2
πt

)1/2 ei(t−πν/2−π/4)

Γ(ν + 1/2)

∫ ∞

0

e−ssν−1/2
(
1− s

2it

)ν−1/2

ds,

valid for t > 0, ν > −1/2. There is a similar formula for H
(2)
ν (t). We will not prove

(8.5) here. See [W], p. 168, for a derivation. See also [L], p. 139.
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9. Large t behavior

The integral formula (7.1) for Jν(t), valid for ν > −1/2, t > 0, represents Jν(t)
as (t/2)ν times the Fourier transform of a function supported on the line segment
I = [−1, 1], and smooth on the interior of this segment. Classical methods of
Fourier analysis (cf. [T3], Chapter 3) read off the asymptotic behavior of such a
Fourier integral from the nature of the singularities of χI(s)(1 − s2)ν−1/2 at the
endpoints s = ±1. The following results:

(9.1) Jν(t) =
( 2

πt

)1/2

cos
(
t− νπ

2
− π

4

)
+ O(t−3/2), t → +∞,

given ν > −1/2. We also have

(9.2) J ′ν(t) = −
( 2

πt

)1/2

sin
(
t− νπ

2
− π

4

)
+ O(t−3/2), t → +∞.

In fact, (9.2) follows from the identity (5.1), i.e.,

(9.3) J ′ν(t) = −Jν+1(t) +
ν

t
Jν(t),

and (9.1), applied both to Jν(t) and to Jν+1(t), and noting that

(9.4) cos
(
x− π

2

)
= sin x.

The integral formula (8.5) for H
(1)
ν (t), valid for ν > −1/2, t > 0, can be used to

obtain an analogous result on the asymptotic behavior of H
(1)
ν (t). In fact, one can

show that, if ν > −1/2,

(9.5)
∫ ∞

0

e−ssν−1/2
(
1− s

2it

)ν−1/2

ds = Γ
(
ν +

1
2

)
+ O(t−1),

as t → +∞. It follows that

(9.6) H(1)
ν (t) =

( 2
πt

)1/2

ei(t−νπ/2−π/4) + O(t−3/2), t → +∞,

given ν > −1/2. Since H
(1)
ν (t) = Jν(t) + iYν(t), comparison with (9.1) gives

(9.7) Yν(t) =
( 2

πt

)1/2

sin
(
t− νπ

2
− π

4

)
+ O(t−3/2), t → +∞,

for ν > −1/2. An argument parallel to that yielding (9.2), with (9.3) replaced by
(5.8), yields

(9.8) Y ′
ν(t) =

( 2
πt

)1/2

cos
(
t− νπ

2
− π

4

)
+ O(t−3/2), t → +∞,

for ν > −1/2. Note that a comparison with (9.1)–(9.2) gives

(9.9) Yν(t) = −J ′ν(t) + O(t−3/2), Y ′
ν(t) = Jν(t) + O(t−3/2),

as t → +∞, for ν > −1/2.
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10. Zeros of Jν and Yν

The functions Jν(t) and Yν(t) each have an infinite number of zeros on the half
line (0,∞). We show how this follows readily from the asymptotic formulas (9.1)
and (9.7), and consider how to approximate these zeros, at least for large t.

More generally, any real-valued solution uν to Bessel’s equation (1.1) is a linear
combination uν = aJν + bYν , with a, b ∈ R, and hence there exists ψ ∈ [0, 2π] and
A ∈ R such that

(10.1) uν(t) = A
( 2

πt

)1/2

cos
(
t− νπ

2
− π

4
− ψ

)
+ O(t−3/2),

as t → +∞. We assume uν is not identically zero, so A 6= 0. We can restrict
attention to ν ∈ [0,∞), and note that (10.1) applies also to uν = J−ν and uν = Y−ν .
We also have

(10.2) u′ν(t) = −A
( 2

πt

)1/2

sin
(
t− νπ

2
− π

4
− ψ

)
+ O(t−3/2).

Now set

(10.3)
αkν = kπ +

νπ

2
+

π

4
+ ψ,

βkν =
(
k +

1
2

)
π +

νπ

2
+

π

4
+ ψ = αkν +

π

2
.

We have, with t = αkν ,

(10.4)
uν(αkν) = (−1)kA

( 2
πt

)1/2

+ O(t−3/2),

uν(βkν) = O(t−3/2),

and (still with t = αkν)

(10.5)
u′ν(αkν) = O(t−3/2),

u′ν(βkν) = (−1)k+1A
( 2

πt

)1/2

+ O(t−3/2).

The first part of (10.4) guarantees that, for each ν ∈ [0,∞), there exists Tν < ∞
such that, whenever αkν ≥ Tν , uν(αkν) and u(α(k+1)ν) = uν(αkν +π) have opposite
signs, hence there exists

(10.6) ϑkν ∈ (αkν , αkν + π) such that uν(ϑkν) = 0.
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The second part of (10.4) suggests that ϑkν is close to βkν = αkν +π/2, and indeed
the second part of (10.5) yields

(10.7) ϑkν = βkν + O(k−1).

Remark. The Hankel functions have no zeros on the half line (0,∞). In fact, since
Jν(t) and Yν(t) are real valued for t ∈ (0,∞),

(10.8) t0 ∈ (0,∞), H(1)
ν (t0) = 0 =⇒ Jν(t0) = Yν(t0) = 0,

contradicting the fact that {Jν , Yν} is a basis of solutions to (1.1).



20

A. Where Bessel functions come from

Bessel functions arise in the natural generalization of the equation

(A.1)
d2u

dx2
+ k2u = 0,

with solutions sin kx and cos kx, to partial differential equations

(A.2) ∆u + k2u = 0,

where ∆ is the Laplace operator, acting on a function u on a domain Ω ⊂ Rn by

(A.3) ∆u =
∂2u

∂x2
1

+ · · ·+ ∂2u

∂x2
n

.

We can eliminate k2 from (A.2) by scaling. Set u(x) = v(kx). Then equation (A.2)
becomes

(A.4) (∆ + 1)v = 0.

We specialize to the case n = 2 and write

(A.5) ∆u =
∂2u

∂x2
+

∂2u

∂y2
.

For a number of special domains Ω ⊂ R2, such as circular domains, annular do-
mains, angular sectors, and pie-shaped domains, it is convenient to switch to polar
coordinates (r, θ), related to (x, y)-coordinates by

(A.6) x = r cos θ, y = r sin θ.

In such coordinates,

(A.7) ∆v =
( ∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂θ2

)
v.

A special class of solutions to (A.4) has the form

(A.8) v = w(r)eiνθ.

By (A.7), for such v,

(A.9) (∆ + 1)v =
[d2w

dr2
+

1
r

dw

dr
+

(
1− ν2

r2

)
w

]
eiνθ,
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so (A.4) holds if and only if

(A.10)
d2w

dr2
+

1
r

dw

dr
+

(
1− ν2

r2

)
w = 0.

This is Bessel’s equation (1.1) (with different variables).
Note that if v solves (A.4) on Ω ⊂ R2 and if Ω is a circular domain or an annular

domain, centered at the origin, then ν must be an integer. However, if Ω is an
angular sector or a pie-shaped domain, with vertex at the origin, ν need not be an
integer.

In n dimensions, the Laplace operator (A.3) can be written

(A.11) ∆v =
( ∂2

∂r2
+

n− 1
r

∂

∂r
+

1
r2

∆S

)
v,

where ∆S is a second-order differential operator acting on functions on the unit
sphere Sn−1 ⊂ Rn, called the Laplace-Beltrami operator. Generalizing (A.8), one
looks for solutions to (A.4) of the form

(A.12) v(x) = w(r)ψ(ω),

where x = rω, r ∈ (0,∞), ω ∈ Sn−1. Parallel to (A.9), for such v,

(A.13) (∆ + 1)v =
[d2w

dr2
+

n− 1
r

dw

dr
+

(
1− ν2

r2

)
w

]
ψ(ω),

provided

(A.14) ∆Sψ = −ν2ψ.

The equation

(A.15)
d2w

dr2
+

n− 1
r

dw

dr
+

(
1− ν2

r2

)
w = 0

is a variant of Bessel’s equation. If we set

(A.16) ϕ(r) = rn/2−1w(r),

then (A.15) is converted into the Bessel equation

(A.17)
d2ϕ

dr2
+

1
r

dϕ

dr
+

(
1− µ2

r2

)
ϕ = 0, µ2 = ν2 +

(n− 2
2

)2

.

The study of solutions to (A.14) gives rise to the study of spherical harmonics, and
from there to other special functions, such as Legendre functions.
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The search for solutions of the form (A.12) is a key example of the method of
separation of variables for partial differential equations. It arises in numerous other
contexts. Here are a couple of other examples:

(A.18) (∆− |x|2 + k2)u = 0,

and

(A.19)
(
∆ +

K

|x| + k2
)
u = 0.

The first describes the n-dimensional quantum harmonic oscillator. The second (for
n = 3) describes the quantum mechanical model of a hydrogen atom, according to
Schrödinger. Study of these equations leads to other special functions defined by
differential equations, such as Hermite functions and Whittaker functions.

Much further material on these topics can be found in books on partial differen-
tial equations, such as [T3] (particularly Chapters 3 and 8).
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B. The Euler gamma function Γ(z)

We define the gamma function by

(B.1) Γ(z) =
∫ ∞

0

e−ttz−1 dt, for z > 0.

Actually, we can take z to be complex, and (B.1) works for Re z > 0. In such a
case, (B.1) is absolutely convergent. There is the crucial identity

(B.2)

Γ(z + 1) =
∫ ∞

0

e−ttz dt

= −
∫ ∞

0

d

dt
(e−t) tz dt

=
∫ ∞

0

e−t d

dt
tz dt

= zΓ(z),

for Re z > 0, where we use integration by parts plus the identity (d/dt)tz = ztz−1.
In other words,

(B.3) Γ(z + 1) = zΓ(z),

for Re z > 0. The definition (B.1) readily gives Γ(1) = 1, so, for each positive
integer k, the relation (B.3) gives inductively

(B.4) Γ(k) = (k − 1)!

While Γ(z) is defined in (B.1) for Re z > 0, note that the left side of (B.3) is well
defined for Re z > −1, so this identity extends Γ(z) to {z ∈ C : Re z > −1},
with a pole at z = 0. Iterating this argument, we extend Γ(z) to {z ∈ C : z 6=
0,−1,−2, . . . }. Similarly,

(B.5) β(z) =
1

Γ(z)
,

initially defined for Re z > 0, satisfies

(B.6) β(z) = zβ(z + 1),

and then β extends to be well defined for all z ∈ C, with

(B.7) β(z) = 0 for z ∈ {0,−1,−2,−3, . . . }.
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For use in §4 (cf. (4.13)) we record the following identity:

(B.8) Γ(z)Γ(1− z) =
π

sinπz
.

A demonstration of this would take us far afield, so we refer to §18 of [T2] for a
proof, and for further material on the gamma function.

Note that setting z = 1/2 in (B.8) yields

(B.9) Γ
(1

2

)
=
√

π.

A direct proof of (B.9) can be given as follows. Taking t = s2 in (B.1) gives

(B.10) Γ(z) = 2
∫ ∞

0

e−s2
s2z−1 ds,

hence

(B.11) Γ
(1

2

)
= 2

∫ ∞

0

e−s2
ds =

∫ ∞

−∞
e−s2

ds.

Thus

(B.12)

Γ
(1

2

)2

=
(∫ ∞

−∞
e−x2

dx
)(∫ ∞

−∞
e−y2

dy
)

=
∫

R2

e−(x2+y2) dx dy

=
∫ 2π

0

∫ ∞

0

e−r2
r dr dθ = 2π

∫ ∞

0

e−r2
r dr

= π

∫ ∞

0

e−s ds = π.

The following identity will be useful in §7. Namely, the beta function, defined
for x, y > 0 by

(B.13) B(x, y) =
∫ 1

0

sx−1(1− s)y−1 ds =
∫ ∞

0

(1 + u)−x−yux−1 du

(with u = s/(1− s)), satisfies

(B.14) B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

.

To prove this, note that since

(B.15) Γ(z)p−z =
∫ ∞

0

e−pttz−1 dt,
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we have

(B.16) (1 + u)−x−y =
1

Γ(x + y)

∫ ∞

0

e−(1+u)ttx+y−1 dt,

so

(B.17)

B(x, y) =
1

Γ(x + y)

∫ ∞

0

e−ttx+y−1

∫ ∞

0

e−utux−1 du dt

=
Γ(x)

Γ(x + y)

∫ ∞

0

e−tty−1 dt

=
Γ(x)Γ(y)
Γ(x + y)

,

as asserted. For closer contact with (7.3), note that setting s = t2 in (B.13) gives

(B.18) B(x, y) = 2
∫ 1

0

t2x−1(1− t2)y−1 dt,

so, if k ∈ Z+ and ν > −1/2,

(B.19) B
(
k +

1
2
, ν +

1
2

)
=

∫ 1

−1

t2k(1− t2)ν−1/2 dt.
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C. Derivative of 1/Γ(z) at integer points

The formula for Yn(t), given by (4.16), (4.20), and (4.22), involves α′k(n) and
α′k(−n), where

(C.1) αk(ν) =
(−1)k

k!Γ(k + ν + 1)
.

Thus

(C.2) α′k(ν) =
(−1)k

k!
β′(k + ν + 1),

where, as in (B.5),

(C.3) β(z) =
1

Γ(z)
.

Thus we want to evaluate β′(k±n+1), or equivalently, evaluate β′(`) for all ` ∈ Z.
To start, we have from (B.1) that, for z > 1,

(C.4) Γ′(z) =
∫ ∞

0

e−ttz−1(log t) dt.

In particular,

(C.5) Γ′(1) =
∫ ∞

0

e−t log t dt = −γ,

where γ is Euler’s constant,

(C.6) γ ≈ 0.5772156649 · · · .

See §18 and Appendix J of [T2] for more on this constant. We deduce that

(C.7) β′(1) = γ.

To evaluate β′(`) for other ` ∈ Z, we can use

(C.8) β(z) = zβ(z + 1),

which implies

(C.9) β′(z) = β(z + 1) + zβ′(z + 1).
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Thus

(C.10) β′(0) = β(1) = 1.

For ` = −m, a negative integer, we have β(−m + 1) = 0, hence

(C.11) β′(−m) = −mβ′(−m + 1),

hence β′(−1) = −β′(0) = −1, β′(−2) = −2β′(−1) = 2, and, inductively,

(C.12) β′(−m) = (−1)mm!,

when m is a positive integer. To evaluate β(`) for an integer ` ≥ 2, we can turn
(C.9) around:

(C.13) β′(z + 1) =
β′(z)− β(z + 1)

z
.

Hence

(C.14) β′(2) = β′(1)− β(2) = γ − 1,

and generally

(C.15) β′(` + 1) =
β′(`)

`
− 1

` · `! .



28

References

[L] N. Lebedev, Special Functions and Their Applications, Dover, New York,
1972.

[O] F. Olver, Asymptotics and Special Functions, Academic Press, New York,
1974.

[T1] M. Taylor, Introduction to Differential Equations, American Mathematical
Society, Providence, RI, 2011.

[T2] M. Taylor, Introduction to Complex Analysis, Lecture Notes, available at
http://www.unc.edu/math/Faculty/met/complex.html

[T3] M. Taylor, Partial Differential Equations, Vols. 1–3, Springer-Verlag, New
York, 1996 (2nd ed. 2011).

[W] G. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ.
Press, Cambridge UK, 1944 (Library Ed. 1996).


