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Function Space and Operator
Theory for Nonlinear Analysis

Introduction

This chapter examines a number of analytical techiques, which will be ap-
plied to diverse nonlinear problems in the remaining chapters. For example,
we study Sobolev spaces based on Lp, rather than just L2. Sections 1 and
2 discuss the definition of Sobolev spaces Hk,p, for k ∈ Z

+, and inclusions
of the form Hk,p ⊂ Lq. Estimates based on such inclusions have refined
forms, due to E. Gagliardo and L. Nirenberg. We discuss these in §3, to-
gether with results of J. Moser on estimates on nonlinear functions of an
element of a Sobolev space, and on commutators of differential operators
and multiplication operators. In §4 we establish some integral estimates
of N. Trudinger, on functions in Sobolev spaces for which L∞-bounds just
fail. In these sections we use such basic tools as Hölder’s inequality and
integration by parts.

The Fourier transform is not as effective for analysis on Lp as on L2. One
result that does often serve when, in the L2-theory, one could appeal to the
Plancherel theorem, is Mikhlin’s Fourier multiplier theorem, established in
§5. This enables interpolation theory to be applied to the study of the
spaces Hs,p, for noninteger s, in §6. In §7 we apply some of this material
to the study of Lp-spectral theory of the Laplace operator, on compact
manifolds, possibly with boundary.

In §8 we study spaces Cr of Hölder continuous functions, and their re-
lation with Zygmund spaces Cr

∗ . We derive estimates in these spaces for
solutions to elliptic boundary problems.

The next two sections extend results on pseudodifferential operators,
introduced in Chapter 7. Section 9 considers symbols p(x, ξ) with minimal
regularity in x. We derive both Lp- and Hölder estimates. Section 10
considers paradifferential operators, a variant of pseudodifferential operator
calculus particularly well suited to nonlinear analysis. Sections 9 and 10
are largely taken from [T2].
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In §11 we consider “fuzzy functions,” consisting of a pair (f, λ), where f is
a function on a space Ω and λ is a measure on Ω×R, with the property that∫∫

yϕ(x) dλ(x, y) =
∫

ϕ(x)f(x) dx. The measure λ is known as a Young
measure. It incorporates information on how f may have arisen as a weak
limit of smooth (“sharply defined”) functions, and it is useful for analyses
of nonlinear maps that do not generally preserve weak convergence.

In §12 there is a brief discussion of Hardy spaces, subspaces of L1(Rn)
with many desirable properties, only a few of which are discussed here.
Much more on this topic can be found in [S3], but material covered here
will be useful for some elliptic regularity results in §12B of Chapter 14.

We end this chapter with Appendix A, discussing variants of the com-
plex interpolation method introduced in Chapter 4 and used a lot in the
early sections of this chapter. It turns out that slightly different complex
interpolation functors are better suited to the scale of Zygmund spaces.

1. Lp-Sobolev spaces

Let p ∈ [1,∞). In analogy with the definition of the Sobolev spaces in
Chapter 4, we set, for k = 0, 1, 2, . . . ,

(1.1) Hk,p(Rn) =
{
u ∈ Lp(Rn) : Dαu ∈ Lp(Rn) for |α| ≤ k

}
.

It is easy to see that S(Rn) is dense in each space Hk,p(Rn), with its natural
norm

(1.2) ‖u‖Hk,p =
∑

|α|≤k

‖Dαu‖Lp .

For p 6= 2, we cannot characterize the spaces Hk,p(Rn) conveniently in
terms of the Fourier transform. It is still possible to define spaces Hs,p(Rn)
by interpolation; we will examine this in §6. Here we will consider only the
spaces Hk,p(Rn) with k a nonnegative integer.

The chain rule allows us to say that if χ : R
n → R

n is a diffeomorphism
that is linear outside a compact set, then χ∗ : Hk,p(Rn) → Hk,p(Rn). Also
multiplication by an element ϕ ∈ C∞

0 (Rn) maps Hk,p(Rn) to itself. This
allows us to define Hk,p(M) for a compact manifold M via a partition of
unity subordinate to a coordinate chart. Also, for compact M , if we define
Diffk(M) to be the set of differential operators of order ≤ k on M , with
smooth coefficients, then

(1.3) Hk,p(M) = {u ∈ Lp(M) : Pu ∈ Lp(M) for all P ∈ Diffk(M)}.
We can define Hk,p(Rn

+) as in (1.1), with R
n replaced by R

n
+. The ex-

tension operator defined by (4.2)–(4.4) of Chapter 4 also works to produce
extension maps E : Hk,p(Rn

+) → Hk,p(Rn). Similarly, if M is a compact
manifold with smooth boundary, with double N , we can define Hk,p(M)
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via coordinate charts and the notion of Hk,p(Rn
+), or by (1.3), and we have

extension operators E : Hk,p(M) → Hk,p(N).
We also note the obvious fact that

(1.4) Dα : Hk,p(Rn) −→ Hk−|α|,p(Rn),

for |α| ≤ k, and

(1.5) P : Hk,p(M) −→ Hk−ℓ,p(M) if P ∈ Diffℓ(M),

provided ℓ ≤ k.

Exercises

1. A Friedrichs mollifier on R
n is a family of smoothing operators Jεu(x) =

jε ∗ u(x) where

jε(x) = ε−nj(ε−1x),

Z
j(x)dx = 1, j ∈ S(Rn).

Equivalently, Jεu(x) = ϕ(εD)u(x), ϕ ∈ S(Rn), ϕ(0) = 1. Show that, for each
p ∈ [1,∞), k ∈ Z

+,

Jε : Hk,p(Rn) −→
\

ℓ<∞

Hℓ,p(Rn),

for each ε > 0, and

Jεu → u in Hk,p(Rn)

as ε → 0 if u ∈ Hk,p(Rn).
2. Suppose A ∈ C1(Rn), with ‖A‖C1 = sup|α|≤1 ‖D

αA‖L∞ . Show that when Jε

is a Friedrichs mollifier as above, then

‖[A, Jε]v‖H1,p ≤ C‖A‖C1‖v‖Lp ,

with C independent of ε ∈ (0, 1]. (Hint: Write A(x)−A(y) =
P

Bk(x, y)(xk−
yk), |Bk(x, y)| ≤ K, and, with qℓ(x) = ∂j/∂xℓ,

∂ℓ[A, Jε]v(x) =
X Z

Bk(x, y)

»
ε−nqℓ

„
x − y

ε

«
·
xk − yk

ε

–
v(y) dy,

with absolute value bounded by

K ε−n
X Z ˛̨

˛ϕkℓ

“
ε−1(x − y)

”˛̨
˛ · |v(y)| dy,

where ϕkℓ(x) = xkqℓ(x).)
3. Using Exercise 2, show that

‖[A, Jε]∂jv‖Lp ≤ C‖A‖C1‖v‖Lp .
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2. Sobolev imbedding theorems

We will derive various inclusions of the type Hk,p(M) ⊂ Hℓ,q(M). We will
concentrate on the case M = R

n. The discussion of §1 will give associated
results when M is a compact manifold, possibly with (smooth) boundary.

One technical tool useful for our estimates is the following generalized
Hölder inequality:

Lemma 2.1. If pj ∈ [1,∞],
∑

p−1
j = 1, then

(2.1)

∫

M

|u1 · · ·um| dx ≤ ‖u1‖Lp1 (M) · · · ‖um‖Lpm (M).

The proof follows by induction from the case m = 2, which is the usual
Hölder inequality.

Our first Sobolev imbedding theorem is the following:

Proposition 2.2. For p ∈ [1, n),

(2.2) H1,p(Rn) ⊂ Lnp/(n−p)(Rn).

In fact, there is an estimate

(2.3) ‖u‖Lnp/(n−p) ≤ C‖∇u‖Lp ,

for u ∈ H1,p(Rn), with C = C(p, n).

Proof. It suffices to establish (2.3) for u ∈ C∞
0 (Rn). Clearly,

(2.4) |u(x)| ≤
∫ ∞

−∞

|Dju| dxj ,

so

(2.5) |u(x)|n/(n−1) ≤
{ n∏

j=1

∫ ∞

−∞

|Dju| dxj

}1/(n−1)

.

We can integrate (2.5) successively over each variable xj , j = 1, . . . , n, and
apply the generalized Hölder inequality (2.1) with m = p1 = · · · = pm =
n − 1 after each integration. We get

(2.6) ‖u‖Ln/(n−1) ≤
{ n∏

j=1

∫

Rn

|Dju| dx
}1/n

≤ C‖∇u‖L1 .

This establishes (2.3) in the case p = 1. We can apply this to v = |u|γ , γ >
1, obtaining

(2.7)
∥∥|u|γ

∥∥
Ln/(n−1) ≤ C

∥∥|u|γ−1|∇u|
∥∥

L1 ≤ C
∥∥|u|γ−1

∥∥
Lp′

∥∥∇u
∥∥

Lp .

For p < n, pick γ = (n − 1)p/(n − p). Then (2.7) gives (2.3) and the
proposition is proved.



2. Sobolev imbedding theorems 5

Given u ∈ Hk,p(Rn), we can apply Proposition 2.2 to estimate the
Lnp/(n−p)-norm of Dk−1u in terms of ‖Dku‖Lp , where we use the nota-
tion

(2.8) Dku = {Dαu : |α| = k}, ‖Dku‖Lp =
∑

|α|=k

‖Dαu‖Lp ,

and proceed inductively, obtaining the following corollary.

Proposition 2.3. For kp < n,

(2.9) Hk,p(Rn) ⊂ Lnp/(n−kp)(Rn).

The same result holds with R
n replaced by a compact manifold of dimen-

sion n. If we take p = 2, then for the Sobolev spaces Hk(Rn) = Hk,2(Rn),
we have

(2.10) Hk(Rn) ⊂ L2n/(n−2k)(Rn), k <
n

2
.

Consequently, the interpolation theory developed in Chapter 4 implies

(2.11) Hs(Rn) ⊂ L2n/(n−2s)(Rn),

for any real s ∈ [0, k], k < n/2 an integer. Actually, (2.11) holds for any
real s ∈ [0, n/2), as will be shown in §6. We write down some particular
examples, for n = 2, 3, 4, which will play a role later in various nonlinear
evolution equations, such as the Navier-Stokes equations. The cases n =
3, 4 follow from the results proved above, while the case n = 2 follows from
the general case of (2.11) established in §6.
(2.12)

H1(R3) ⊂ L6(R3) H1(R4) ⊂ L4(R4)

H3/4(R3) ⊂ L4(R3)

H1/2(R2) ⊂ L4(R2) H1/2(R3) ⊂ L3(R3)

Note that interpolation of the R
2-result with L2(R2) = L2(R2) yields

H1/3(R2) ⊂ L3(R2).

The next result provides a partial generalization of the Sobolev imbed-
ding theorem,

Hs(Rn) ⊂ C(Rn), s >
n

2
,

proved in Chapter 4. A more complete generalization is given in §6.

Proposition 2.4. We have

(2.13) Hk,p(Rn) ⊂ C(Rn) ∩ L∞(Rn), for kp > n.
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Proof. It suffices to obtain a bound on ‖u‖L∞(Rn) for u ∈ Hk,p(Rn), if
kp > n. In turn, it suffices to bound u(0) appropriately, for u ∈ C∞

0 (Rn).
Use polar coordinates, x = rω, ω ∈ Sn−1. Let g ∈ C∞(R) have the
property that g(r) = 1 for r < 1/2 and g(r) = 0 for r > 3/4. Then, for
each ω, we have

u(0) = −
∫ 1

0

∂

∂r

[
g(r)u(r, ω)

]
dr

=
(−1)k

(k − 1)!

∫ 1

0

rk−n
{( ∂

∂r

)k[
g(r)u(r, ω)

]}
rn−1dr,

upon integrating by parts k − 1 times. Integrating over ω ∈ Sn−1 gives

|u(0)| ≤ C

∫

B

rk−n
∣∣∣
( ∂

∂r

)k[
g(r)u(x)

]∣∣∣ dx,

where B is the unit ball centered at 0. Hölder’s inequality gives

(2.14) |u(0)| ≤ C‖rk−n‖Lp′ (B)

∥∥∂k
r [g(r)u(x)]

∥∥
Lp(B)

,

with 1/p + 1/p′ = 1. We claim that (∂/∂r)k is a linear combination of
Dα, |α| = k, with L∞-coefficients. To see this, note that ∂k

r annihilates xα

for |α| < k, so we get

(2.15)
( ∂

∂r

)k

=
∑

|α|=k

aα(x)∂α,

with aα(x) = (1/α!)∂k
r xα, for |α| = k, or

aα(rω) =
k!

α!
ωα,

so aα(x) is homogeneous of degree 0 in x and smooth on R
n \ 0.

Returning to the estimate of (2.14), our information on (∂/∂r)k implies
that the last factor on the right side is bounded by the Hk,p-norm of u.
The factor ‖rk−n‖Lp′ (B) is finite provided kp > n, so the proposition is
proved.

To close this section, we note the following simple consequence of Propo-
sition 2.2, of occasional use in analysis. Let M(Rn) denote the space of
locally finite Borel measures (not necessarily positive) on R

n. Let us as-
sume that n ≥ 2.

Proposition 2.5. If we have u ∈ M(Rn) and ∇u ∈ M(Rn), then it
follows that u ∈ L

n/(n−1)
loc (Rn).

Proof. Using a cut-off in C∞
0 , we can assume u has compact support.

Applying a mollifier, we get uj = χj ∗ u ∈ C∞
0 (Rn) such that uj → u and
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∇uj → ∇u in M(Rn). In particular, we have a uniform L1-norm estimate
on ∇uj . By (2.3) we have a uniform Ln/(n−1)-norm estimate on uj , which
gives the result, since Ln/(n−1)(Rn) is reflexive.

Exercises

1. If pj ∈ [1,∞] and uj ∈ Lpj , show that u1u2 ∈ Lr provided r−1 = p1
−1+p2

−1 ∈
[0, 1]. Show that this implies Lemma 2.1.

2. Use the containment (which follows from Proposition 2.2)

Hk,p(Rn) ⊂ H1,np/(n−(k−1)p)(Rn) if (k − 1)p < n

to show that if Proposition 2.4 is proved in the case k = 1, then it follows in
general. Note that the proof in the text of Proposition 2.4 is slightly simpler
in the case k = 1 than for k ≥ 2.

3. Suppose k = 2ℓ is even. Suppose u ∈ S ′(Rn) and

(−∆ + 1)ℓu = f ∈ Lp(Rn).

Show that

u = Jk ∗ f, bJk(ξ) = 〈ξ〉−k.

Using estimates on Jk(x) established in Chapter 3, §8, show that

kp > n =⇒ u ∈ C(Rn) ∩ L∞(Rn).

Show that this gives an alternative proof of Proposition 2.4 in case k is even.
4. Suppose k = 2ℓ + 1 is odd, kp > 1. Use the containment

Hk,p(Rn) ⊂ Hk−1,np/(n−p)(Rn) if p < n,

which follows from Proposition 2.2, to deduce from Exercise 3 that Proposition
2.4 holds for all integers k ≥ 2.

5. Establish the following variant of the k = 1 case of (2.14):

(2.16) |u(0) − u(x)| ≤ C‖∇u‖Lp(B), p > n, x ∈ ∂B.

(Hint: Suppose x = e1. If γz is the line segment from 0 to z, followed by the
line segment from z to e1, write

u(e1) − u(0) =

Z

Σ

„Z

γz

du

«
dS(z), Σ =

n
x ∈ B : x1 =

1

2

o
.

Show that this gives u(e1)−u(0) =
R

B
∇u(z) ·ϕ(z) dz, with ϕ ∈ Lq(B), ∀ q <

n/(n − 1).)
6. Show that Hn,1(Rn) ⊂ C(Rn) ∩ L∞(Rn).

(Hint: u(x) =
R 0

−∞
· · ·

R 0

−∞
D1 · · ·Dnu(x + y) dy1 · · · dyn.)

3. Gagliardo-Nirenberg-Moser estimates

In this section we establish further estimates on various Lp-norms of deriva-
tives of functions, which are very useful in nonlinear PDE. Estimates of this
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sort arose in work of Gagliardo [Gag], Nirenberg [Ni], and Moser [Mos]. Our
first such estimate is the following. We keep the convention (2.8).

Proposition 3.1. For real k ≥ 1, 1 ≤ p ≤ k, we have

(3.1) ‖Dju‖2
L2k/p ≤ C‖u‖L2k/(p−1) · ‖D2

j u‖L2k/(p+1) ,

for all u ∈ C∞
0 (Rn), hence for all u ∈ Lq2(Rn) ∩ H2,q1 , where

(3.2) q1 =
2k

p + 1
, q2 =

2k

p − 1
.

Proof. Given v ∈ C∞
0 (Rn), q ≥ 2, we have v|v|q−2 ∈ C1

0 (Rn) and

Dj(v|v|q−2) = (q − 1)(Djv)|v|q−2.

Letting v = Dju, we have

|Dju|q = Dj(u Dju|Dju|q−2) − (q − 1)u D2
j u|Dju|q−2.

Integrating this, we have, by the generalized Hölder inequality (2.1),

(3.3) ‖Dju‖q
Lq ≤ |q − 1| · ‖u‖Lq2 ‖D2

j u‖Lq1 ‖Dju‖q−2
Lq ,

where q = 2k/p and q1 and q2 are given by (3.2). Dividing by ‖Dju‖q−2
Lq

gives the estimate (3.1) for u ∈ C∞
0 (Rn), and the proposition follows.

If we apply (3.1) to Dℓ−1u, we get

(3.4) ‖Dℓu‖2
L2k/p ≤ C‖Dℓ−1u‖L2k/(p−1)‖Dℓ+1u‖L2k/(p+1) ,

for real k ≥ 1, p ∈ [1, k], ℓ ≥ 1. Consequently, for any ε > 0,

(3.5) ‖Dℓu‖L2k/p ≤ Cε‖Dℓ−1‖L2k/(p−1) + C(ε)‖Dℓ+1u‖L2k/(p+1) .

If p ∈ [2, k] and ℓ ≥ 2, we can apply (3.5) with p replaced by p − 1 and
Dℓ−1u replaced by Dℓ−2u, to get, for any ε1 > 0,

(3.6) ‖Dℓ−1u‖L2k/(p−1) ≤ Cε1‖Dℓ−2u‖L2k/(p−2) + C(ε1)‖Dℓu‖L2k/p .

Now we can plug (3.6) into (3.5); fix ε1 (e.g., ε1 = 1), and pick ε so small
that CεC(ε1) ≤ 1/2, so the term CεC(ε1)‖Dℓu‖L2k/p can be absorbed on
the left, to yield

(3.7) ‖Dℓu‖L2k/p ≤ Cε‖Dℓ−2u‖L2k/(p−2) + C(ε)‖Dℓ+1u‖L2k/(p+1) ,

for real k ≥ 2, p ∈ [2, k], ℓ ≥ 2. Continuing in this fashion, we get

(3.8) ‖Dℓu‖L2k/p ≤ Cε‖Dℓ−ju‖L2k/(p−j) + C(ε)‖Dℓ+1u‖L2k/(p+1) ,

for j ≤ p ≤ k, ℓ ≥ j. Similarly working on the last term in (3.8), we have
the following:
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Proposition 3.2. If j ≤ p ≤ k + 1−m, ℓ ≥ j, then (for sufficiently small
ε > 0)

(3.9) ‖Dℓu‖L2k/p ≤ Cε‖Dℓ−ju‖L2k/(p−j) + C(ε)‖Dℓ+mu‖L2k/(p+m) .

Here, j, ℓ, and m must be positive integers, but p and k are real. Of
course, the full content of (3.9) is represented by the case ℓ = j, which
reads

(3.10) ‖Dℓu‖L2k/p ≤ Cε‖u‖L2k/(p−ℓ) + C(ε)‖Dℓ+mu‖L2k/(p+m) ,

for ℓ ≤ p ≤ k + 1−m. Taking p + m = k, we note the following important
special case.

Corollary 3.3. If ℓ, p, and k are positive integers satisfying ℓ ≤ p ≤ k−1,
then

(3.11) ‖Dℓu‖L2k/p ≤ Cε‖u‖L2k/(p−ℓ) + C(ε)‖Dk+ℓ−pu‖L2 .

In particular, taking p = ℓ, if ℓ < k, then

(3.12) ‖Dℓu‖L2k/ℓ ≤ Cε‖u‖L∞ + C(ε)‖Dku‖L2 ,

for all u ∈ C∞
0 (Rn).

We want estimates for the left sides of (3.11) and (3.12) which involve
products, as in (3.1), rather than sums. The following simple general result
produces such estimates.

Proposition 3.4. Let ℓ, µ, and m be nonnegative integers satisfying ℓ ≤
max (µ,m), and let q, r, and ρ belong to [1,∞]. Suppose the estimate

(3.13) ‖Dℓu‖Lq ≤ C1‖Dµu‖Lr + C2‖Dmu‖Lρ

is valid for all u ∈ C∞
0 (Rn). Then

(3.14) ‖Dℓu‖Lq ≤ (C1 + C2)‖Dµu‖β/(α+β)
Lr · ‖Dmu‖α/(α+β)

Lρ ,

with

(3.15) α =
n

q
− n

r
+ µ − ℓ, β = −n

q
+

n

ρ
− m + ℓ,

provided these quantities are not both zero. If (3.13) is valid and the
quantities (3.15) are both nonzero, then they have the same sign.

Proof. Replacing u(x) in (3.13) by u(sx) produces from (3.13), which we
write schematically as Q ≤ C1R + C2P , the estimate

sℓ−n/qQ ≤ C1s
µ−n/rR + C2s

m−n/ρP, for all s > 0,

or equivalently,

Q ≤ C1s
αR + C2s

−βP, for all s > 0,
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with α and β given by (3.15). If α and β have opposite signs, one can take
s → 0 or s → ∞ to produce the absurd conclusion Q = 0. If they have the
same sign, one can take s so that sαR = s−βP = P aRb, which can be done
with a = α/(α + β), b = β/(α + β), and the estimate (3.14) results.

Applying Proposition 3.4 to the estimate (3.11), we find α = (n −
2k)ℓ/2k, β = (n − 2k)(k − p)/2k, which gives the following:

Proposition 3.5. If ℓ, p, and k are positive integers satisfying ℓ ≤ p ≤
k − 1, then

(3.16) ‖Dℓu‖L2k/p ≤ C‖u‖(k−p)/(k+ℓ−p)

L2k/(p−ℓ) · ‖Dk+ℓ−pu‖ℓ/(k+ℓ−p)
L2 .

In particular, taking p = ℓ, if ℓ < k, then

(3.17) ‖Dℓu‖L2k/ℓ ≤ C‖u‖1−ℓ/k
L∞ · ‖Dku‖ℓ/k

L2 .

One of the principal applications of such an inequality as (3.17) is to
bilinear estimates, such as the following.

Proposition 3.6. If |β| + |γ| = k, then

(3.18) ‖(Dβf)(Dγg)‖L2 ≤ C‖f‖L∞‖g‖Hk + C‖f‖Hk‖g‖L∞ ,

for all f, g ∈ Co(R
n) ∩ Hk(Rn).

Proof. With |β| = ℓ, |γ| = m, and ℓ + m = k, we have

(3.19)
‖(Dβf)(Dγg)‖L2 ≤ ‖Dβf‖L2k/ℓ · ‖Dγg‖L2k/m

≤ C‖f‖1−ℓ/k
L∞ · ‖f‖ℓ/k

Hk · ‖g‖1−m/k
L∞ · ‖g‖m/k

Hk ,

using Hölder’s inequality and (3.17). We can write the right side of (3.19)
as

(3.20) C
(
‖f‖L∞‖g‖Hk

)m/k(
‖f‖Hk‖g‖L∞

)ℓ/k
,

and this is readily dominated by the right side of (3.18).

The two estimates of the next proposition are major implications of
(3.18).

Proposition 3.7. We have the estimates

(3.21) ‖f · g‖Hk ≤ C‖f‖L∞‖g‖Hk + C‖f‖Hk‖g‖L∞

and, for |α| ≤ k,

(3.22) ‖Dα(f · g) − fDαg‖L2 ≤ C‖f‖Hk‖g‖L∞ + C‖∇f‖L∞‖g‖Hk−1 .
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Proof. The estimate (3.21) is an immediate consequence of (3.18). To
prove (3.22), write

(3.23) Dα(f · g) =
∑

β+γ=α

(
α
β

)(
Dβf

)(
Dγg

)
,

so, if |α| = k,

(3.24)

Dα(f · g) − fDαg =
∑

β+γ=α,β>0

(
α
β

)(
Dβf

)(
Dγg

)

=
∑

|β|+|γ|=k−1

Cjβγ(DβDjf)(Dγg).

Hence, with uj = Djf ,

(3.25) ‖Dα(fg) − fDαg‖L2 ≤ C
∑

|β|+|γ|=k−1

‖(Dβuj)(D
γg)‖L2 .

From here, the estimate (3.22) follows immediately from (3.18), and Propo-
sition 3.7 is proved. Note that on the right side of (3.22), we can replace
‖f‖Hk by ‖∇f‖Hk−1 .

From Proposition 3.4 there follow further estimates involving products
of norms, which can be quite useful. We record a few here.

Proposition 3.8. We have the estimates

(3.26) ‖u‖L∞ ≤ C‖Dm+1u‖1/2
L2 · ‖Dm−1u‖1/2

L2 , for u ∈ C∞
0 (R2m),

and

(3.27) ‖u‖L∞ ≤ C‖Dm+1u‖1/2
L2 · ‖Dmu‖1/2

L2 , for u ∈ C∞
0 (R2m+1).

Proof. It is easy to see that

(3.28) ‖u‖2
L∞ ≤ C‖Dm+1u‖2

L2 + C‖Dm−1u‖2
L2 , for u ∈ C∞

0 (R2m),

and

(3.29) ‖u‖2
L∞ ≤ C‖Dm+1u‖2

L2 + C‖Dmu‖2
L2 , for u ∈ C∞

0 (R2m+1).

Proposition 3.4 then yields α = β = 1 in case (3.28) and α = β = 1/2 in
case (3.29), proving (3.26) and (3.27).

A more delicate L∞-estimate will be proved in §8.
It is also useful to have the following estimates on compositions.

Proposition 3.9. Let F be smooth, and assume F (0) = 0. Then, for
u ∈ Hk ∩ L∞,

(3.30) ‖F (u)‖Hk ≤ Ck(‖u‖L∞) (1 + ‖u‖Hk).
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Proof. The chain rule gives

DαF (u) =
∑

β1+···βµ=α

Cβu(β1) · · ·u(βµ)F (µ)(u),

hence

(3.31) ‖DkF (u)‖L2 ≤ Ck(‖u‖L∞)
∑∥∥u(β1) · · ·u(βµ)

∥∥
L2 .

From here, (3.30) is obtained via the following simple generalization of
Proposition 3.6:

Lemma 3.10. If |β1| + · · · + |βµ| = k, then

(3.32) ‖f (β1)
1 · · · f (βµ)

µ ‖L2 ≤ C
∑

ν

[
‖f1‖L∞ · · · ‖̂fν‖L∞ · · · ‖fµ‖L∞

]
‖f‖Hk .

Proof. The generalized Hölder inequality dominates the left side of (3.32)
by

(3.33) ‖f (β1)
1 ‖L2k/|β1| · · · ‖f (βµ)

µ ‖L2k/|βµ| .

Then applying (3.17) dominates this by

(3.34) C‖f1‖1−|β1|/k
L∞ · ‖f1‖|β1|/k

Hk · · · ‖fµ‖1−|βµ|/k
L∞ · ‖fµ‖|βµ|/k

Hk ,

which in turn is easily bounded by the right side of (3.32) (with f =
(f1, . . . , fµ)).

We remark that Proposition 3.9 also works if u takes values in R
L. The

estimates in Propositions 3.7 and 3.8 are called Moser estimates, and are
very useful in nonlinear PDE. Some extensions will be given in (10.20) and
(10.52).

Exercises

1. Show that the proof of Proposition 3.1 yields

(3.35) ‖Dju‖
2
Lq ≤ C‖u‖Lq1 · ‖D2u‖Lq2

whenever 2 ≤ q < ∞, 1 ≤ qj ≤ ∞, and 1/q1 + 1/q2 = 2/q. Show that
if q2 < q < q1, then (3.35) and (3.1) are equivalent. Is (3.35) valid if the
hypothesis q ≥ 2 is relaxed to q ≥ 1?

2. Show directly that (3.35) holds with q1 = q2 = q ∈ [1,∞]. (Hint: Do the next
exercise.)

3. Let A generate a contraction semigroup on a Banach space B. Show that

(3.36) ‖Au‖2 ≤ 8‖u‖ · ‖A2u‖, for u ∈ D(A2).

(Hint: Use the identity −tAu = t(t−A)−1A2u + t2u− t2t(t−A)−1u together
with the estimate ‖t(t−A)−1‖ ≤ 1, for t > 0, to obtain the estimate t‖Au‖ ≤
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‖A2u‖+ 2t2‖u‖, for t > 0.) Try to improve the 8 to a 4 in (3.36), in case B is
a Hilbert space.

4. Show that (3.10) implies

(3.37) ‖Dℓu‖Lq ≤ C1‖u‖Lr + C2‖D
ℓ+mu‖Lρ

when ρ < q < r are related by

(3.38)
1

q
=

m

m + ℓ

1

r
+

ℓ

m + ℓ

1

ρ
,

as long as we require furthermore that q > 2, in order to satisfy the hypothesis
p/k ≤ 1 − (m − 1)/k used for (3.10). In how much greater generality can you
establish (3.37)? Note that if Proposition 3.4 is applied to (3.37), one gets

(3.39) ‖Dℓu‖Lq ≤ C‖u‖
m/(m+ℓ)
Lr · ‖Dℓ+mu‖

ℓ/(m+ℓ)
Lρ ,

provided (3.38) holds.
5. Generalize Propositions 3.6 and 3.7, replacing L2 and Hk by Lp and Hk,p.

Use (3.10) to do this for p ≥ 2. Can you also treat the case 1 ≤ p < 2?
6. Show that in (3.30) you can use Ck(‖u‖L∞) with

(3.40) Ck(λ) = sup
|x|≤λ,µ≤k

|F (µ)(x)|.

7. Extend the Moser estimates in Propositions 3.7 and 3.9 to estimates in Hk,p-
norms.

4. Trudinger’s inequalities

The space Hn/2(Rn) does not quite belong to L∞(Rn), although Hn/2(Rn)
⊂ Lp(Rn) for all p ∈ [2,∞). In fact, quite a bit more is true; exponential
functions of u ∈ Hn/2(Rn) are locally integrable. The proof of this starts
with the following estimate of ‖u‖Lp(Rn) as p → ∞.

Proposition 4.1. If u ∈ Hn/2(Rn), then, for p ∈ [2,∞),

(4.1) ‖u‖Lp(Rn) ≤ Cnp1/2‖u‖Hn/2(Rn).

Proof. We have u = Λ−n/2v for v ∈ L2(Rn), where, recall,

(4.2)
(
Λ−sv

)
ˆ(ξ) = 〈ξ〉−sv̂(ξ).

Hence, with v ∈ L2(Rn),

(4.3) u = Jn/2 ∗ v,

where

(4.4) Ĵn/2(ξ) = 〈ξ〉−n/2.

The behavior of Jn/2(x) follows results of Chapter 3. By Proposition 8.2
of Chapter 3, Jn/2(x) is C∞ on R

n \ 0 and vanishes rapidly as |x| → ∞.
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By Proposition 9.2 of Chapter 3, we have

(4.5) Jn/2(x) ≤ C|x|−n/2, for |x| ≤ 1.

Consequently, Jn/2 just misses being in L2(Rn); we have, for δ ∈ (0, 1],

(4.6) ‖Jn/2‖2−δ
L2−δ(Rn)

≤ C + C

∫ 1

0

rnδ/2−1 dr ≤ Cn

δ
.

Now the map Kv defined by Kvf = v ∗ f , with v given in L2(Rn), satisfies

(4.7) Kv : L2 → L∞, Kv : L1 → L2,

both maps having operator norm ‖v‖L2 . By interpolation,

(4.8) ‖Kvf‖Lp(Rn) ≤ ‖f‖Lq(Rn) · ‖v‖L2(Rn), for q ∈ [1, 2],

where p is defined by 1/q − 1/p = 1/2. Taking f = Jn/2, q = 2 − δ, we
have, for v ∈ L2(Rn),

(4.9) ‖Jn/2 ∗ v‖Lp ≤
(Cn

δ

)1/(2−δ)

‖v‖L2 , p =
2(2 − δ)

δ
,

which gives (4.1).

The following result, known as Trudinger’s inequality, is a direct conse-
quence of (4.1):

Proposition 4.2. If u ∈ Hn/2(Rn), there is a constant γ = γ(u) > 0, of
the form

(4.10) γ(u) =
γn

‖u‖2
Hn/2

,

such that

(4.11)

∫

Rn

(
eγ|u(x)|2 − 1

)
dx < ∞.

If M is a compact manifold, possibly with boundary, of dimension n, and
if u ∈ Hn/2(M), then there exists γ = γ(M)/‖u‖2

Hn/2(M)
such that

(4.12)

∫

M

eγ|u(x)|2 dV (x) < ∞.

Proof. We have

eγ|u(x)|2 − 1 = γ|u(x)|2 +
γ2

2
|u(x)|4 + · · · + γm

m!
|u(x)|2m + · · · .

By (4.1),

(4.13)
γm

m!

∫
|u(x)|2m dV (x) ≤ C2m

n

γm

m!
(2m)m‖u‖2m

Hn/2 ,
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which is bounded by C ′κm, for some κ < 1, if γ has the form (4.10), with
γn < 1/(2eC2

n), as can be seen via Stirling’s formula for m!. This proves
the proposition.

We note that the same argument involving (4.2)–(4.8) also shows that,
for any p ∈ [2,∞), there is an ε > 0 such that

(4.14) Hn/2−ε(Rn) ⊂ Lp(Rn).

Similarly, we have Hn/2−ε(M) ⊂ Lp(M), when M is a compact manifold,
perhaps with boundary, of dimension n. By virtue of Rellich’s theorem, we
have for such M that the natural inclusion

(4.15) ι : Hn/2(M) →֒ Lp(M) is compact, for all p < ∞.

Using this, we obtain the following result:

Proposition 4.3. If M is a compact manifold (with boundary) of dimen-
sion n, α ∈ R, then

(4.16) uj → u weakly in Hn/2(M) =⇒ eαuj → eαu in L1(M)-norm.

Proof. We have

∣∣eαuj − eαu
∣∣ ≤

∑

m≥1

|α|m
m!

∣∣∣|uj(x)|m − |u(x)|m
∣∣∣.

If ‖uj‖Hn/2(M) ≤ A, we obtain

(4.17)

‖eαuj − eαu‖L1 ≤
∑

m≤k

|α|m
m!

‖uj − u‖Lm · m
[
‖uj‖m−1

Lm + ‖u‖m−1
Lm

]

+ C
∑

m>k

mm/2

m!
|ACnα|m,

where we use

∣∣|uj |m − |u|m
∣∣ ≤ m|uj − u|

(
|uj |m−1 + |u|m−1

)

to estimate the sum over m ≤ k, and we use (4.1) to estimate the sum over
m > k. By (4.15), for any k, the first sum on the right side of (4.17) goes
to 0 as j → ∞. Meanwhile the second sum vanishes as k → ∞, so (4.16)
follows.
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Exercises

1. Partially generalizing (4.10), let p ∈ (1,∞), and let u ∈ Hk,p(Rn), with kp =
n, k ∈ Z

+. Show that there exists γ = γp(u) such that

(4.18)

Z

|x|≤R

eγ|u(x)|p/(p−1)

dx ≤ CpR.

For a more complete generalization, see Exercise 5 of §6.
Note: Finding the best constant γ in (4.18) is subtle and has some important
uses; see [Mo2], [Au], particularly for the case k = 1, p = n.

5. Singular integral operators on Lp

One way the Fourier transform makes analysis on L2(Rn) easier than anal-
ysis on other Lp-spaces is by the definitive result the Plancherel theorem
gives as a condition that a convolution operator k ∗ u = P (D)u be L2-
bounded, namely that k̂(ξ) = P (ξ) be a bounded function of ξ. A re-
placement for this that advances our ability to pursue analysis on Lp is the
next result, established by S. Mikhlin, following related work for Lp(Tn)
by J. Marcinkiewicz.

Theorem 5.1. Suppose P (ξ) satisfies

(5.1) |DαP (ξ)| ≤ Cα〈ξ〉−|α|,

for |α| ≤ n + 1. Then

(5.2) P (D) : Lp(Rn) −→ Lp(Rn), for 1 < p < ∞.

Stronger results have been proved; one needs (5.1) only for |α| ≤ [n/2]+1,
and one can use certain L2-estimates on the derivatives of P (ξ). These
sharper results can be found in [H1] and [S1]. Note that the characterization
of P (ξ) ∈ S0

1(Rn) is that (5.1) hold for all α.
The theorem stated above is a special case of a result that applies to

pseudodifferential operators with symbols in S0
1,δ(R

n). As shown in §2 of
Chapter 7, if p(x, ξ) satisfies the estimates

(5.3) |Dβ
xDα

ξ p(x, ξ)| ≤ Cαβ〈ξ〉−|α|+|β|,

for

(5.4) |β| ≤ 1, |α| ≤ n + 1 + |β|,
then the Schwartz kernel K(x, y) of P = p(x,D) satisfies the estimates

(5.5) |K(x, y)| ≤ C|x − y|−n
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and

(5.6) |∇x,yK(x, y)| ≤ C|x − y|−n−1.

Furthermore, at least when δ < 1, we have an L2-bound:

(5.7) ‖Pu‖L2 ≤ K‖u‖L2 ,

and smoothings of such an operator have smooth Schwartz kernels satisfy-
ing (5.5)–(5.7) for fixed C,K. (Results in §9 of this chapter will contain
another proof of this L2-estimate. Note that when p(x, ξ) = p(ξ) the es-
timate (5.7) follows from the Plancherel theorem.) Our main goal here is
to give a proof of the following fundamental result of A. P. Calderon and
A. Zygmund:

Theorem 5.2. Suppose P : L2(Rn) → L2(Rn) is a weak limit of operators
with smooth Schwartz kernels satisfying (5.5)–(5.7) uniformly. Then

(5.8) P : Lp(Rn) −→ Lp(Rn), 1 < p < ∞.

In particular, this holds when P ∈ OPS0
1,δ(R

n), δ ∈ [0, 1).

The hypotheses do not imply boundedness on L1(Rn) or on L∞(Rn).
They will imply that P is of weak type (1, 1). By definition, an operator
P is of weak type (q, q) provided that, for any λ > 0,

(5.9) meas {x : |Pu(x)| > λ} ≤ Cλ−q‖u‖q
Lq .

Any bounded operator on Lq is a fortiori of weak type (q, q), in view of the
simple inequality

(5.10) meas {x : |u(x)| > λ} ≤ λ−1‖u‖L1 .

A key ingredient in proving Theorem 5.2 is the following result:

Proposition 5.3. Under the hypotheses of Theorem 5.2, P is of weak
type (1, 1).

Once this is established, Theorem 5.2 will then follow from the next
result, known as the Marcinkiewicz interpolation theorem.

Proposition 5.4. If r < p < q and if T is both of weak type (r, r) and of
weak type (q, q), then T : Lp → Lp.

Proof. Write u = u1 + u2, with u1(x) = u(x) for |u(x)| > λ and u2(x) =
u(x) for |u(x)| ≤ λ. With the notation

(5.11) µf (λ) = meas {x : |f(x)| ≥ λ},
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we have

(5.12)
µTu(2λ) ≤ µTu1

(λ) + µTu2
(λ)

≤ C1λ
−r‖u1‖r

Lr + C2λ
−q‖u2‖q

Lq .

Also, there is the formula
∫

|f(x)|p dx = p

∫ ∞

0

µf (λ)λp−1 dλ.

Hence

(5.13)

∫
|Tu(x)|p dx = p

∫ ∞

0

µTu(λ)λp−1 dλ

≤ C1p

∫ ∞

0

λp−1−r
( ∫

|u|>λ

|u(x)|r dx
)

dλ

+ C2p

∫ ∞

0

λp−1−q
( ∫

|u|≤λ

|u(x)|q dx
)

dλ.

Now

(5.14)

∫ ∞

0

λp−1−r
( ∫

|u|>λ

|u(x)|r dx
)

dλ =
1

p − r

∫
|u(x)|p dx

and, similarly,

(5.15)

∫ ∞

0

λp−1−q
( ∫

|u|≤λ

|u(x)|q dx
)

dλ =
1

q − p

∫
|u(x)|p dx.

Combining these gives the desired estimate on ‖Tu‖p
Lp .

We will apply Proposition 5.4 in conjunction with the following covering
lemma of Calderon and Zygmund:

Lemma 5.5. Let u ∈ L1(Rn) and λ > 0 be given. Then there exist
v, wk ∈ L1(Rn) and disjoint cubes Qk, 1 ≤ k < ∞, with centers xk, such
that

u = v +
∑

k

wk, ‖v‖L1 +
∑

k

‖wk‖L1 ≤ 3‖u‖L1 ,(5.16)

|v(x)| ≤ 2nλ,(5.17)
∫

Qk

wk(x) dx = 0 and supp wk ⊂ Qk,(5.18)

∑

k

meas(Qk) ≤ λ−1‖u‖L1 .(5.19)
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Proof. Tile R
n with cubes of volume greater than λ−1‖u‖L1 . The mean

value of |u(x)| over each such cube is < λ. Divide each of these cubes into
2n equal cubes, and let I11, I12, I13, . . . be those so obtained over which the
mean value of |u(x)| is ≥ λ. Note that

(5.20) λ meas(I1k) ≤
∫

I1k

|u(x)| dx ≤ 2nλ meas(I1k).

Now set

(5.21) v(x) =
1

meas(I1k)

∫

I1k

u(y) dy, for x ∈ I1k,

and

(5.22)
w1k(x) = u(x) − v(x), for x ∈ I1k,

0, for x /∈ I1k.

Next take all the cubes that are not among the I1k, subdivide each into 2n

equal parts, select those new cubes I21, I22, . . . , over which the mean value
of |u(x)| is ≥ λ, and extend the definitions (5.21)–(5.22) to these cubes,
in the natural fashion. Continue in this way, obtaining disjoint cubes Ijk

and functions wjk. Then reorder these cubes and functions as Q1, Q2, . . . ,
and w1, w2, . . . . Complete the definition of v by setting v(x) = u(x), for
x /∈ ∪Qk. Then we have the first part of (5.16). Since

(5.23)

∫

Qk

(
|v(x)| + |wk(x)|

)
dx ≤ 3

∫

Qk

|u(x)| dx,

and since the cubes are disjoint, wk is supported in Qk, and v = u on
R

n \ ∪Qk, we obtain the rest of (5.16).
Next, (5.17) follows from (5.20) if x ∈ ∪Qk. But if x /∈ ∪Qk, there are

arbitrarily small cubes containing x over which the mean value of |u(x)| is
< λ, so (5.17) holds almost everywhere on R

n \∪Qk as well. The assertion
(5.18) is obvious from the construction, and (5.19) follows by summing
(5.20). The lemma is proved.

One thinks of v as the “good” piece and w =
∑

wk as the “bad” piece.
What is “good” about v is that ‖v‖2

L2 ≤ 2nλ‖u‖L1 , so

(5.24) ‖Pv‖2
L2 ≤ K2‖v‖2

L2 ≤ 4nK2λ‖u‖L1 .

Hence

(5.25)
(λ

2

)2

meas
{

x : |Pv(x)| >
λ

2

}
≤ Cλ‖u‖L1 .

To treat the action of P on the “bad” term w, we make use of the
following essentially elementary estimate on the Schwartz kernel K. The
proof is an exercise.
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Lemma 5.6. There is a C0 < ∞ such that, for any t > 0, if |y| ≤ t, x0 ∈
R

n,

(5.26)

∫

|x−x0|≥2t

∣∣K(x, x0 + y) − K(x, x0)
∣∣ dx ≤ C0.

To estimate Pw, we have

(5.27)

Pwk(x) =

∫
K(x, y)wk(y) dy

=

∫

Qk

[
K(x, y) − K(x, xk)

]
wk(y) dy.

Before we make further use of this, a little notation: Let Q∗
k be the cube

concentric with Qk, enlarged by a linear factor of 2n1/2, so meas Q∗
k =

(4n)n/2 meas Qk. For some tk > 0, we can arrange that

(5.28)
Qk ⊂ {x : |x − xk| ≤ tk},
Yk = R

n \ Q∗
k ⊂ {x : |x − xk| > 2tk}.

Furthermore, set O = ∪Q∗
k, and note that

(5.29) meas O ≤ Lλ−1‖u‖L1 ,

with L = (4n)n/2. Now, from (5.27), we have

(5.30)

∫

Yk

|Pwk(x)| dx

≤
∫

|y|≤tk,

∫

|x|≥2tk

∣∣K(x + xk, xk + y) − K(x + xk, xk)
∣∣

· |wk(y + xk)| dx dy

≤ C0‖wk‖L1 ,

the last estimate using Lemma 5.6. Thus

(5.31)

∫

Rn\O

|Pw(x)| dx ≤ 3C0‖u‖L1 .

Together with (5.29), this gives

(5.32) meas
{

x : |Pw(x)| >
λ

2

}
≤ C1

λ
‖u‖L1 ,

and this estimate together with (5.25) yields the desired weak (1,1)-estimate:

(5.33) meas
{
x : |Pu(x)| > λ

}
≤ C2

λ
‖u‖L1 .
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This proves Proposition 5.3.
To complete the proof of Theorem 5.2, we apply Marcinkiewicz interpo-

lation to obtain (5.8) for p ∈ (1, 2]. Note that the Schwartz kernel of P ∗

also satisfies the hypotheses of Theorem 5.2, so we have P ∗ : Lp → Lp, for
1 < p ≤ 2. Thus the result (5.8) for p ∈ [2,∞) follows by duality.

We remark that if (5.6) is weakened to |∇yK(x, y)| ≤ C|x−y|−n−1, while
the hypotheses (5.5) and (5.7) are retained, then Lemma 5.6 still holds, and
hence so does Proposition 5.3. Thus, we still have P : Lp(Rn) → Lp(Rn)
for 1 < p ≤ 2, but the duality argument gives only P ∗ : Lp(Rn) → Lp(Rn)
for 2 ≤ p < ∞.

We next describe an important generalization to operators acting on
Hilbert space-valued functions. Let H1 and H2 be Hilbert spaces and
suppose

(5.34) P : L2(Rn,H1) −→ L2(Rn,H2).

Then P has an L(H1,H2)-operator-valued Schwartz kernel K. Let us im-
pose on K the hypotheses of Theorem 5.2, where now |K(x, y)| stands for
the L(H1,H2)-norm of K(x, y). Then all the steps in the proof of Theorem
5.2 extend to this case. Rather than formally state this general result, we
will concentrate on an important special case.

Proposition 5.7. Let P (ξ) ∈ C∞(Rn,L(H1,H2)) satisfy

(5.35) ‖Dα
ξ P (ξ)‖L(H1,H2) ≤ Cα〈ξ〉−|α|,

for all α ≥ 0. Then

(5.36) P (D) : Lp(Rn,H1) −→ Lp(Rn,H2), for 1 < p < ∞.

This leads to an important circle of results known as Littlewood-Paley

theory. To obtain this, start with a partition of unity

(5.37) 1 =

∞∑

j=0

ϕj(ξ)
2,

where ϕj ∈ C∞, ϕ0(ξ) is supported on |ξ| ≤ 1, ϕ1(ξ) is supported on
1/2 ≤ |ξ| ≤ 2, and ϕj(ξ) = ϕ1(2

1−jξ) for j ≥ 2. We take H1 = C, H2 = ℓ2,
and look at

(5.38) Φ : L2(Rn) −→ L2(Rn, ℓ2)

given by

(5.39) Φ(f) = (ϕ0(D)f, ϕ1(D)f, ϕ2(D)f, . . . ).

This is clearly an isometry, though of course it is not surjective. The adjoint

(5.40) Φ∗ : L2(Rn, ℓ2) −→ L2(Rn),
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given by

(5.41) Φ∗(g0, g1, g2, . . . ) =
∑

ϕj(D)gj ,

satisfies

(5.42) Φ∗Φ = I

on L2(Rn). Note that Φ = Φ(D), where

(5.43) Φ(ξ) = (ϕ0(ξ), ϕ1(ξ), ϕ2(ξ), . . . ).

It is easy to see that the hypothesis (5.35) is satisfied by both Φ(ξ) and
Φ∗(ξ). Hence, for 1 < p < ∞,

(5.44)
Φ : Lp(Rn) −→ Lp(Rn, ℓ2),

Φ∗ : Lp(Rn, ℓ2) −→ Lp(Rn).

In particular, Φ maps Lp(Rn) isomorphically onto a closed subspace of
Lp(Rn, ℓ2), and we have compatibility of norms:

(5.45) ‖u‖Lp ≈ ‖Φu‖Lp(Rn,ℓ2).

In other words,

(5.46) C ′
p‖u‖Lp ≤

∥∥∥
{ ∞∑

j=0

|ϕj(D)u|2
}1/2∥∥∥

Lp
≤ Cp‖u‖Lp ,

for 1 < p < ∞.

Exercises

1. Estimate the family of symbols ay(ξ) = 〈ξ〉iy, y ∈ R. Show that if Λiy =
ay(D), then

(5.47) ‖Λiyu‖Lp(Rn) ≤ Cp〈y〉
n+1‖u‖Lp(Rn).

This estimate will be useful for the development of the Sobolev spaces Hs,p

in the next section.
2. Let ψ̃1(ξ) be supported on 1/4 ≤ |ξ| ≤ 4, ψ̃1(ξ) = 1 for 1/2 ≤ |ξ| ≤ 2, and

ψ̃j(ξ) = ψ̃1(2
1−jξ) for j ≥ 2. Let s ∈ R. Show that

A(D), B(D) : Lp(Rn, ℓ2) −→ Lp(Rn, ℓ2), 1 < p < ∞,

for

Ajk(ξ) = 2ks〈ξ〉−sψ̃j(ξ)δjk,

Bjk(ξ) = 2−ks〈ξ〉sψ̃j(ξ)δjk,

by applying Proposition 5.7.
3. Give a proof that

(5.48)

Z
|f(x)|p dx = p

Z ∞

0

µf (λ) λp−1 dλ,
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used in (5.13). Also, demonstrate (5.14) and (5.15). (Hint: After doing (5.48),
get an analogous identity for the integral of |f(x)|p over the set {x : |f(x)| >
λ}, resp., ≤ λ.)

4. Give a detailed proof of Lemma 5.6.
5. Let A ∈ OPS1

1,0(R
n), and suppose A(x, ξ) = 0 for xn = 0. Define Tf =

Af
˛̨
˛
R

n
−

, where R
n
± = {x ∈ R

n : ±xn ≥ 0}. Show that, for 1 ≤ p ≤ ∞,

(5.49) f ∈ Lp(Rn), supp f ⊂ R
n
+ =⇒ Tf ∈ Lp(Rn

−).

(Hint: Apply Proposition 5.1 of Appendix A. Compare with Exercise 3 in §5
of Appendix A.)

6. The spaces Hs,p

Here we define and study Hs,p for any s ∈ R, p ∈ (1,∞). In analogy with
the characterization of Hs(Rn) = Hs,2(Rn) given in §1 of Chapter 4, we
set

(6.1) Hs,p(Rn) = Λ−sLp(Rn).

Given the results of §5, we can establish the following.

Proposition 6.1. When s = k is a positive integer, p ∈ (1,∞), the spaces
Hk,p(Rn) of §1 coincide with (6.1).

Proof. For |α| ≤ k, ξα〈ξ〉−k belongs to S0
1(Rn). Thus, by Theorem 5.1,

DαΛ−k maps Lp(Rn) to itself. Thus any u ∈ Λ−kLp(Rn) satisfies the
definition of Hk,p(Rn) given in §1. For the converse, note that one can
write

(6.2) 〈ξ〉k =
∑

|α|≤k

qα(ξ)ξα,

with coefficients qα ∈ S0
1(Rn). Thus if Dαu ∈ Lp(Rn) for all |α| ≤ k, it

follows that Λku ∈ Lp(Rn).

We next prove an interpolation theorem generalizing the identity
[
L2(Rn),Hs(Rn)

]
θ

= Hθs(Rn), for θ ∈ [0, 1],

proven in §2 of Chapter 4.

Proposition 6.2. For s ∈ R, θ ∈ (0, 1), and p ∈ (1,∞),

(6.3)
[
Lp(Rn),Hs,p(Rn)

]
θ

= Hθs,p(Rn).

Proof. The proof is parallel to that of Proposition 2.2 of Chapter 4, except
that we use the estimate (5.47) of the last section in place of the obvious
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identity ‖Aiy‖ = 1 for a unitary operator Aiy on a Hilbert space. Thus, if
v ∈ Hθs,p(Rn), let

(6.4) u(z) = ez2

Λ(θ−z)sv.

Then u(θ) = eθ2

v, u(iy) = e−y2

Λ−iys
(
Λsθv

)
is bounded in Lp(Rn), by

(5.47), and also u(1 + iy) = e−(y−i)2Λ−sΛ−iys
(
Λsθv

)
is bounded in the

space Hs,p(Rn). Therefore, such a function v belongs to the left side of
(6.3). The reverse containment is similarly established as in the proof of
Proposition 2.2 of Chapter 4.

This sort of argument yields more generally that, for σ, s ∈ R, θ ∈ (0, 1),
and p ∈ (1,∞),

(6.5) [Hσ,p(Rn),Hs,p(Rn)]θ = Hθs+(1−θ)σ,p(Rn).

With Proposition 6.2 established, we can define and analyze spaces Hs,p

on compact manifolds in the same way as we did for p = 2 in Chapter
4. If M is a compact manifold without boundary, one defines Hs,p(M) in
analogy with Hs(M), via coordinate charts, and proves

(6.6) [Hσ,p(M),Hs,p(M)]θ = Hθs+(1−θ)σ,p(M),

for p ∈ (1,∞), θ ∈ (0, 1). If Ω is a compact subdomain of M with smooth
boundary, we define Hk,p(Ω) as in §1, and recall the extension operator
E : Hk,p(Ω) → Hk,p(M). If we define Hs,p(Ω) for s > 0 by

(6.7) Hs,p(Ω) = [Lp(Ω),Hk,p(Ω)]θ, θ ∈ (0, 1), s = kθ,

it follows that E : Hs,p(Ω) → Hs,p(M) and hence

(6.8) Hs,p(Ω) ≈ Hs,p(M)/{u : u = 0 on Ω}.
Also, of course, Hs,p(Ω) agrees with the characterization of §1 when s = k
is a positive integer. Generalizing the theorem of Rellich, Proposition 4.4
of Chapter 4, one has, for s ≥ 0, 1 < p < ∞,

(6.9) ι : Hs+σ,p(Ω) →֒ Hs,p(Ω) is compact for σ > 0.

By the arguments used in Chapter 4, we easily reduce this to showing that,
for σ > 0, 1 < p < ∞,

(6.10) Λ−σ : Lp(Tn) −→ Lp(Tn) is compact.

Indeed, the operator (6.10) is of the form Λ−σu = kσ ∗u, with kσ ∈ L1(Tn)
for any σ > 0. Thus kσ is an L1-norm limit of kσ,j ∈ C∞(Tn), so Λ−σ is
an operator norm limit of convolution maps Lp(Tn) → C∞(Tn), which are
clearly compact on Lp(Tn).

We now extend some of the Sobolev imbedding theorems of §2. Once
they are obtained on R

n, they easily yield similar results for functions on
compact manifolds, perhaps with boundary.
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Proposition 6.3. If s > n/p, then Hs,p(Rn) ⊂ C(Rn) ∩ L∞(Rn).

Proof. Λ−su = Js ∗ u, where Ĵs(ξ) = 〈ξ〉−s. It suffices to show that

(6.11) Js ∈ Lp′

(Rn), for s >
n

p
,

1

p
+

1

p′
= 1.

Indeed, estimates established in §8 of Chapter 3 imply that Js(x) is smooth
on R

n \ 0, rapidly decreasing as |x| → ∞, and

(6.12) |Js(x)| ≤ C|x|−n+s, |x| ≤ 1, s < n,

which is sufficient. Compare estimates for s = n/2 in (4.4)–(4.9).

Next we generalize (2.9).

Proposition 6.4. For sp < n, p ∈ (1,∞), we have

(6.13) Hs,p(Rn) ⊂ Lnp/(n−sp)(Rn).

Proof. Suppose s = k + σ, k ∈ Z
+, σ ∈ [0, 1). Then u ∈ Hs,p ⇒ Λσu ∈

Hk,p, and by (2.9) this gives Λσu ∈ Lq(Rn), with q = np/(n − kp). Note
that q ∈ (1,∞) and np/(n − sp) = nq/(n − σq), so also σq < n. Hence it
suffices to show that

(6.14) Λ−σ : Lq(Rn) −→ Lnq/(n−σq)(Rn),

when σ ∈ (0, 1), q ∈ (1,∞), and σq < n. We divide the analysis into cases.

Case I. 1 < q < n. In this case, we have, by (2.2),

(6.15) H1,q(Rn) ⊂ Lnq/(n−q)(Rn).

Fixing v ∈ Lq(Rn), consider Λ−zv for z ∈ Ω = {z ∈ C : 0 ≤ Re z ≤ 1}.
Note that Proposition 5.7 implies

(6.16) ‖Λiyv‖Lq ≤ AeB|y|‖v‖Lq ,

for y ∈ R. Making use also of (6.15), we have

(6.17) ‖Λ−(1+iy)v‖Lnq/(n−q) ≤ AeB|y|‖v‖Lq .

From here a complex interpolation argument gives (6.14) in this case.

Case II. 2 ≤ n ≤ q < ∞. In this case, set r = nq/(n − σq). Note that

(6.18)
1

r
=

1

q
− σ

n
and

1

r′
=

1

q′
+

σ

n
,

where r′ is the dual exponent to r. We have r > q ≥ n ≥ 2, so r′ < 2 ≤ n,
and Case I gives

(6.19) Λ−σ : Lr′

(Rn) −→ Lq′

(Rn).
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Then (6.14) follows by duality.

Case III. n = 1. Here one needs a different approach. Since this case is
not so crucial for PDE, we omit it. Various proofs that include this case
can be found in [S1], [S3], and [BL].

The following result is an immediate consequence of the definition (6.1),
the pseudodifferential operator calculus, and the Lp-boundedness result of
Theorem 5.2.

Proposition 6.5. If P ∈ OPSm
1,δ(R

n), 0 ≤ δ < 1, and 1 < p < ∞, then

(6.20) P : Hs,p(Rn) −→ Hs−m,p(Rn).

In view of the construction of parametrices for elliptic operators, we
deduce various Hs,p-regularity results for solutions to linear elliptic equa-
tions. A sequence of exercises on generalized div-curl lemmas given below
will make use of this.

Exercises

1. Let ϕj(ξ)
2 = ψj(ξ) be the partition of unity (5.37). Using the Littlewood-

Paley estimates, show that, for p ∈ (1,∞), s ∈ R,

(6.21) ‖u‖Hs,p(Rn) ≈

‚‚‚‚
 ∞X

k=0

4ks|ϕj(D)u|2
ff1/2‚‚‚‚

Lp(Rn)

.

(Hint: From (5.37), we have the left side of (6.21)

(6.22) ≈

‚‚‚‚
 ∞X

k=0

˛̨
˛Λsϕj(D)u

˛̨
˛
2
ff 1

2
‚‚‚‚

Lp(Rn)

.

Now apply Exercise 2 of §5.)

Exercises 2–4 lead up to a demonstration that if

(6.23) Ψk(ξ) =
X

ℓ≤k

ϕℓ(ξ)
2,

then, for s > 0, p ∈ (1,∞),

(6.24)

‚‚‚‚
∞X

k=0

Ψk(D)fk

‚‚‚‚
Hs,p

≤ Csp

‚‚‚‚
 ∞X

k=0

4ks|fk|
2

ff1/2‚‚‚‚
Lp

.

2. Show that the left side of (6.24) is

≈

‚‚‚‚
 ∞X

ℓ=0

˛̨
˛̨ψℓ(D)

∞X

k=ℓ

uk

˛̨
˛̨
2ff1/2‚‚‚‚

Lp

≈

‚‚‚‚
 ∞X

ℓ=0

4ℓs

˛̨
˛̨ψℓ(D)

∞X

k=ℓ

fk

˛̨
˛̨
2ff1/2‚‚‚‚

Lp

,
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where fk = Λ−suk. (Hint: Use arguments similar to those needed for Exercise
1.)

3. Taking wk = 2ksfk, argue that (6.24) follows given continuity of

(6.25) Γ(D) : Lp(Rn, ℓ2) −→ Lp(Rn, ℓ2),

where

(6.26)
Γkℓ(ξ) = ψk(ξ)2−(ℓ−k)s, for ℓ ≥ k,

0, for ℓ < k.

4. Demonstrate the continuity (6.25), for p ∈ (1,∞), s > 0.
(Hint: To apply Proposition 5.7, you need

‖Dα
ξ Γ(ξ)‖L(ℓ2) ≤ Cs〈ξ〉

−|α|, s > 0.

Obtain this by establishing
X

k

|Dα
ξ Γkℓ(ξ)| ≤ C〈ξ〉−|α|, s ≥ 0,

and
X

ℓ

|Dα
ξ Γkℓ(ξ)| ≤ Cs〈ξ〉

−|α|, s > 0.)

5. If u ∈ Hn/p,p(Rn), p ∈ (1,∞), show that, for q ∈ [p,∞),

‖u‖Lq(Rn) ≤ Cnq(p−1)/p‖u‖Hn/p,p(Rn).

Deduce that, for some constant γ = γ(u) > 0,

(6.27)

Z

Rn

„
eγ|u(x)|p/(p−1)

− 1

«
dx < ∞,

thus extending Trudinger’s estimate (4.10). See [Str].

The purpose of the next exercise is to extend the Gagliardo-Nirenberg esti-
mates (3.10) to nonintegral cases, namely

(6.28) ‖u‖Hλ,s/p ≤ C1‖u‖Ls/(p−λ) + C2‖u‖Hλ+µ,s/(p+µ) ,

given real p, s, λ, and µ satisfying

(6.29) 1 < p < ∞, 0 < µ < s − p, and λ ∈ (0, p).

6. Establish the interpolation result

(6.30)
h
Ls/(p−λ)(Rn), Hλ+µ,s/(p+µ)(Rn)

i
θ
⊂ Hλ,s/p(Rn), θ =

λ

λ + µ
,

under the hypotheses (6.29). Show that this implies (6.28).
(Hint: If f = u(θ) belongs to the left side of (6.30), with u(z) holomorphic,
u(iy) and u(1 + iy) appropriately bounded, consider v(z) = Λ−(λ+µ)zu(z).
Use the interpolation result

h
Ls/(p−λ), Ls/(p+µ)

i
θ

= Ls/p, θ =
λ

λ + µ
.)
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Can you treat the p = λ case, where Ls/(p−λ) = L∞?
7. Extend (6.30) to Sobolev inclusions for [Hs,p, Hσ,q]θ.

Exercises on generalized div-curl lemmas.

Let M be a compact, oriented Riemannian manifold, and assume that, for
j = 1, . . . , k, ν ∈ Z

+, σjν are ℓj-forms on M , such that

(6.31) σjν −→ σj weakly in Lpj (M), as ν → ∞,

and

(6.32) {dσjν : ν ≥ 0} compact in H−1,pj (M).

Assume that

(6.33) pj ∈ (1,∞),
1

p1
+ · · · +

1

pk
≤ 1.

The goal is to deduce that

(6.34) σ1ν ∧ · · · ∧ σkν −→ σ1 ∧ · · · ∧ σk in D′(M),

as ν → ∞. An exercise set in §8 of Chapter 5 deals with the case k = 2, p1 =
p2 = 2, which includes the div-curl lemma of F. Murat [Mur]. As in that
exercise set, we follow [RRT].

1. Show that you can write σjν = dαjν+βjν , where αjν → αj weakly in H1,pj (M)
and {βjν} is compact in Lpj (M). (Hint: Use the Hodge decomposition σ =
dδGσ + δdGσ + Pσ. Set αjν = δGσjν .)

2. Show that, for j ≤ k,

dα1ν ∧ · · · ∧ dαjν −→ dα1 ∧ · · · ∧ dαj

in D′(M). If p1
−1 + · · · + pj

−1 = qj
−1 < 1, show that this convergence holds

weakly in Lqj (M).
(Hint: Use induction on j, via

Z
dα1ν ∧ · · · ∧ dαj+1,ν ∧ ϕ = ±

Z
dα1ν ∧ · · · ∧ dαjν ∧ αj+1,ν ∧ dϕ.)

3. Now prove (6.34). (Hint: Expand (dα1ν + β1ν) ∧ · · · ∧ (dαkν + βkν). For a
term

±
“
dαℓ1ν ∧ · · · ∧ dαℓiν

”
∧

“
βℓi+1ν ∧ · · · ∧ βℓkν

”
,

establish and exploit weak Lq-convergence of the first factor (if i < k) plus
strong Lr convergence of the second factor, with q−1 + r−1 ≤ 1.)

4. Localize the result (6.31)–(6.33) ⇒ (6.34), replacing M by an open set Ω ⊂ R
n.

(Hint: Apply a cutoff χ ∈ C∞
0 (Ω).)

5. (The div-curl lemma.) Let dim M = 3, and let Xν and Yν be two sequences
of vector fields such that

Xν → X weakly in Lp1 , Yν → Y weakly in Lp2 ,
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div Xν compact in H−1,p1 , curl Yν compact in H−1,p2 ,

where 1 < pj < ∞, p1
−1 + p2

−1 ≤ 1. Show that Xν · Yν → X · Y in D′.
Formulate the analogue for dim M = 2.

6. Let Fν : R
n → R

n be a sequence of maps. Assume

(6.35) Fν → F weakly in H1,n(Rn).

Show that

(6.36) det DFν → det DF in D′(Rn).

(Hint: Set σjν = dαjν = F ∗
ν dxj .)

More generally, if 2 ≤ k ≤ n and

(6.37) Fν → F weakly in H1,k(Rn),

then

(6.38) ΛkDFν → ΛkDF in D′(Rn),

and hence

(6.39) Tr ΛkDFν → Tr ΛkDF in D′(Rn).

7. Lp-spectral theory of the Laplace operator

We will apply material developed in §§5 and 6 to study spectral properties
of the Laplace operator ∆ on Lp-spaces. We first consider ∆ on Lp(M),
where M is a compact Riemannian manifold, without boundary. For any
λ > 0, (λ−∆)−1 is bijective on D′(M), and results of §6 imply (λ−∆)−1 :
Lp(M) → H2,p(M), provided 1 < p < ∞. Thus if we define the unbounded
operator ∆p on Lp(M) to be ∆ acting on H2,p(M), it follows that ∆p is
a closed operator with nonempty resolvent set, and compact resolvent,
hence a discrete spectrum, with finite-dimensional generalized eigenspaces.
Elliptic regularity implies that each of these generalized eigenspaces consists
of functions in C∞(M), and then these functions are easily seen to be actual
eigenfunctions. Thus, in such a case, the Lp-spectrum of ∆ coincides with
its L2-spectrum.

It is desirable to mention properties of ∆p, related to spectral proper-
ties. In particular, the heat semigroup et∆ defines a strongly continuous
semigroup Hp(t) on Lp(M), for each p ∈ [1,∞). For p ∈ [2,∞), this can
be seen by applying the L2-theory, the maximum principle (for data in
L∞), and interpolating, to get Hp(t) : Lp(M) → Lp(M), for p ∈ [2,∞].
Strong continuity for p < ∞ follows from denseness of C∞(M) in Lp(M).
Then the action of Hp(t) as a semigroup on Lp(M) for p ∈ (1, 2) follows
by duality. One can also take the adjoint of the action of et∆ on C(M) to
get et∆ acting on M(M), the space of finite Borel measures on M , and et∆

then preserves L1(M), the closure of C∞(M) in M(M).
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Alternatively, the strongly continuous action of the heat semigroup on
Lp(M) for p ∈ [1,∞) can be perceived directly from the parametrix for et∆

constructed in Chapter 7, §13.
Let K be a closed cone in the right half-plane of C, with vertex at 0.

Assume K is symmetric about the positive real axis and has angle α ∈
(0, π). If P (z) : X → X is a family of bounded operators on a Banach
space X, for z ∈ K, we say it is a holomorphic semigroup if it satisfies
P (z1)P (z2) = P (z1 + z2) for zj ∈ K, is strongly continuous in z ∈ K, and

is holomorphic in the interior, z ∈
◦

K. The strong continuity implies that
‖P (z)‖ is locally uniformly bounded on K.

Clearly, et∆ gives a holomorphic semigroup on L2(M). Also, ez∆f is
defined in D′(M) whenever f ∈ D′(M) and Re z ≥ 0, and ez∆f ∈ C∞(M)
when Re z > 0. Also u(z, x) = ez∆f(x) is holomorphic in z in {Re z > 0}.
This establishes all but one “small” point in the following.

Proposition 7.1. ez∆ defines a holomorphic semigroup Hp(z) on Lp(M),
for each p ∈ [1,∞).

Proof. Here, K can be any cone of the sort described above. It remains
to establish strong continuity, Hp(z)f → f in Lp(M) as z → 0 in K, for
any f ∈ Lp(M). Since C∞(M) is dense in Lp(M), it suffices to prove that
{Hp(z) : z ∈ K, |z| ≤ 1} has uniformly bounded operator norm on Lp(M).
This can be done by checking that the parametrix construction for et∆

extends from t ∈ R
+ to z ∈ K, yielding integral operators whose norms on

Lp(M) are readily bounded. The reader can check this.

Since the heat semigroup on Lp(Ω) for a compact manifold with bound-
ary has a parametrix of a form more complicated than it does on Lp(M),
this “small” point gets bigger when we extend Proposition 7.1 to the case
of compact manifolds with boundary.

Here is a useful property of holomorphic semigroups.

Proposition 7.2. Let P (z) be a holomorphic semigroup on a Banach
space X, with generator A. Then

(7.1) t > 0, f ∈ X =⇒ P (t)f ∈ D(A)

and

(7.2) ‖AP (t)f‖X ≤ C

t
‖f‖X , for 0 < t ≤ 1.
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Proof. For some a > 0, there is a circle γ(t), centered at t, of radius a|t|,
such that γ(t) ∈ K, for all t ∈ (0,∞). Thus

(7.3) AP (t)f = P ′(t)f = − 1

2πi

∫

γ(t)

(t − ζ)−2P (ζ)f dζ.

Since ‖P (ζ)f‖ ≤ C2‖f‖ for ζ ∈ K, |ζ| ≤ 1 + a, we have (7.2).

In particular, we have that, for p ∈ (1,∞), 0 < t ≤ 1,

(7.4) f ∈ Lp(M) =⇒ ‖et∆f‖H2,p(M) ≤
C

t
‖f‖Lp(M),

where C = Cp. This result could also be verified using the parametrix for
et∆. Note that applying interpolation to (7.4) yields

(7.5) ‖et∆f‖Hs,p(M) ≤ Ct−s/2 ‖f‖Lp(M), for 0 ≤ s ≤ 2, 0 < t ≤ 1,

when p ∈ (1,∞), C = Cp. We will find it very useful to extend such an
estimate to the case of et∆ acting on Lp(Ω) when Ω has a boundary.

We now look at ∆ on a compact Riemannian manifold with (smooth)
boundary Ω, with Dirichlet boundary condition. Assume Ω is connected
and ∂Ω 6= ∅. We know that, for λ ≥ 0,

(7.6) Rλ = (λ − ∆)−1 : L2(Ω) → L2(Ω),

with range H2(Ω)∩H1
0 (Ω). We can analyze Rλf for f ∈ L∞(Ω) by noting

that Rλ is positivity preserving:

(7.7) λ ≥ 0, g ≥ 0 on Ω =⇒ Rλg ≥ 0 on Ω,

a result that follows from the positivity property of et∆ and the resolvent
formula. From this and regularity estimates on Rλ1, it easily follows that,
for λ ≥ 0,

(7.8) Rλ : C(Ω) → C(Ω) and Rλ : L∞(Ω) → L∞(Ω).

Taking the adjoint of Rλ acting on C(Ω), we have Rλ acting on M(Ω), the
space of finite Borel measures on Ω. Since the closure of L2(Ω) in M(Ω) is
L1(Ω), we have

(7.9) Rλ : L1(Ω) → L1(Ω).

Interpolation yields

(7.10) Rλ : Lp(Ω) −→ Lp(Ω), 1 ≤ p ≤ ∞.

We next want to prove that

(7.11) Rλ : Lp(Ω) −→ H2,p(Ω), p ∈ (1,∞),

when λ ≥ 0. To do this, it is convenient to assume that Ω ⊂ M , where
M is a compact Riemannian manifold without boundary, diffeomorphic to
the double of Ω. Let R : M → M be an involution that fixes ∂Ω and that,
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near ∂Ω, is the reflection of each geodesic normal to ∂Ω about the point
of intersection of the geodesic with ∂Ω. Then extend f to be 0 on M \ Ω,
defining f̃ , and define v by

(7.12) (∆ − λ)v = f̃ on M,

so v ∈ H2,p(M). Set u = Rλf . Take

(7.13) u1(x) = v(x) − v
(
R(x)

)
, x ∈ Ω.

With vr(x) = v
(
R(x)

)
, we have (L − λ)vr(x) = f̃

(
R(x)

)
, where L is

the Laplace operator for R∗g, the metric on M pulled back via R. Thus
L = ∆ + Lb, where Lb is a differential operator of order 2, whose principal
symbol vanishes on ∂Ω. Thus u1 ∈ H2,p(Ω), u1 = 0 on ∂Ω, and w1 = u−u1

satisfies

(7.14) (∆ − λ)w1 = r1 on Ω, w1

∣∣
∂Ω

= 0,

with

(7.15) r1 = (∆ − λ)vr
∣∣
Ω

= −Lbvr
∣∣
Ω
.

It follows from (5.49) that

(7.16) Lbvr
∣∣
Ω
∈ H1,p(Ω) ⊂ Lp2(Ω),

for some p2 > p. If p2 < ∞, repeat the construction above, applying it to
(7.14), to obtain

(7.17) w1 = u2 + w2, u2 ∈ H2,p2(Ω), u2

∣∣
∂Ω

= 0,

and

(7.18) (∆ − λ)w2 = r2 on Ω, w2

∣∣
∂Ω

= 0, r2 ∈ H1,p2(Ω) ⊂ Lp3(Ω).

Continue, obtaining

(7.19) u = u1 + · · · + uk + wk, uj ∈ H2,pj (Ω), uj

∣∣
∂Ω

= 0,

such that

(7.20) (∆ − λ)wj = rj on Ω, wj

∣∣
∂Ω

= 0, rj ∈ H1,pj (Ω) ⊂ Lpj+1(Ω).

We continue until pk > n = dim Ω. At this point, we use a couple of
results that will be established in the next section. Given s ∈ (0, 1), let
Cs(Ω) denote the space of Hölder-continuous functions on Ω, with Hölder
exponent s. We have

(7.21) rk ∈ H1,pk(Ω) ⊂ Cs(Ω),

for some s ∈ (0, 1), appealing to Proposition 8.5 for the last inclusion in
(7.21). Then the estimates in Theorem 8.9 imply

(7.22) wk ∈ C2+s(Ω) ⊂ H2,p(Ω).

This proves (7.11).
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Arguments parallel to those used for M show that the heat semigroup
et∆, defined a priori on L2(Ω), yields also a well-defined, strongly con-
tinuous semigroup Hp(t) on Lp(Ω), for each p ∈ [1,∞). If ∆p denotes
the generator of the heat semigroup on Lp(Ω), with Dirichlet boundary
condition, then (7.11) implies

(7.23) D(∆p) ⊂ H2,p(Ω), p ∈ (1,∞).

We see that ∆p has compact resolvent. Furthermore, arguments such as
used above for M show that the spectrum of ∆p coincides with the L2-
spectrum of ∆.

We now extend Proposition 7.1.

Proposition 7.3. For p ∈ (1,∞), ez∆ defines a holomorphic semigroup
on Lp(Ω), on any symmetric cone K about R

+ of angle < π.

Proof. As in the proof of Proposition 7.1, the point we need to establish
is the local uniform boundedness of the Lp(Ω)-operator norm of ez∆, for
z ∈ K. In other words, we need estimates for the solution u to

(7.24)
∂u

∂t
= ∆u on K × Ω, u(0) = f, u

∣∣
K×∂Ω

= 0,

of the form

(7.25) ‖u(t)‖Lp(Ω) ≤ C‖f‖Lp(Ω), t ∈ K, Re t ≤ 1.

By duality, it suffices to do this for p ∈ (1, 2]. The case p = 2 is obvious,
so for the rest of the proof we will assume p ∈ (1, 2). We will also assume
n = dim Ω > 1, since the reflection principle works easily when n = 1.

To begin, define v by

(7.26)
∂v

∂t
= ∆v on K × M, v(0) = f̃ ∈ Lp(M),

where f̃ is f on Ω, zero on M \ Ω. Making use of Proposition 7.2, which
we know applies to et∆ on Lp(M), we have

(7.27) ‖v(t)‖H1,p(M) ≤ C|t|−1/2 ‖f‖Lp(Ω).

Now, if R : M → M is the involution on M used above, for x ∈ Ω we set

(7.28) u1(t, x) = v(t, x) − v
(
t, R(x)

)
; u1 ∈ C

(
K, Lp(Ω)

)
.

We have

(7.29)
∂u1

∂t
= ∆u1 + g on K × Ω, u1(0) = f, u1

∣∣
K×∂Ω

= 0,

and, by an argument parallel to (7.16), we derive from (7.27) an estimate

(7.30) ‖g(t)‖Lp(Ω) ≤ C|t|−1/2 ‖f‖Lp(Ω).
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In this case, we replace appeal to (5.49) by the parametrix construction for
et∆ on D′(M) made in Chapter 7, §13.

We regard u1 as a first approximation to u, but we seek a more accurate
approximation rather than rely on an estimate at this point of the error.
So now we define v2 by

(7.31)
∂v2

∂t
= ∆v2 − g̃ on K × M, v2(0) = 0,

where g̃ is g on K × Ω and zero on K × (M \ Ω). We have

(7.32) v2(t) = −
∫ t

0

e(t−s)∆g̃(s) ds,

and the estimate ‖g̃(s)‖Lp(M) ≤ C|s|−1/2 from (7.30), together with the
operator norm estimate of e(t−s)∆ on Lp(M), from Proposition 7.2, yields

(7.33) v2 ∈ C
(
K,H1,p(M)

)
.

Now, for x ∈ Ω, set

(7.34) u2(t, x) = v2(t, x) − v2

(
t, R(x)

)
; u2 ∈ C

(
K,H1,p(Ω)

)
.

Thus

(7.35)
∂u2

∂t
= ∆u2 − g + g2 on K × Ω, u2(0) = 0, u2

∣∣
K×∂Ω

= 0,

and we have, parallel to but better than (7.30),

(7.36) ‖g2(t)‖Lp(Ω) ≤ C‖f‖Lp(Ω).

Next, solve

(7.37)
∂v3

∂t
= ∆v3 − g̃2 on K × M, v3(0) = 0,

where g̃2 is g2 on K×Ω and zero on K× (M \Ω). The argument involving
(7.32) and (7.33) this time yields the better estimate

(7.38) v3 ∈ C
(
K,H2−ε,p(M)

)
, ∀ ε > 0,

hence, by the Sobolev imbedding result of Proposition 6.4, with s = 1− ε,

(7.39) v3 ∈ C
(
K,H1,p3(M)

)
, p3 =

np

n − (1 − ε)p
> p,

provided p < n. Now we set

(7.40) u3(t, x) = v3(t, x) − v3

(
t, R(x)

)
; u3 ∈ C

(
K,H1,p3(Ω)

)
,

and we get

(7.41)
∂u3

∂t
= ∆u3 − g2 + g3 on K × Ω, u3(0) = 0, u3

∣∣
K×∂Ω

= 0,

with the following improvement on (7.36):

(7.42) ‖g3(t)‖Lp3 (Ω) ≤ C‖f‖Lp(Ω).
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Continuing in this fashion, we get

(7.43) uj ∈ C
(
K,H2−ε,pj−1(Ω)

)
⊂ C

(
K,H1,pj (Ω)

)
,

with p = p2 < p3 < · · · ր. Given p ∈ (1, 2), some pk is ≥ 2. Then
uk ∈ C

(
K,H1(Ω)

)
satisfies

(7.44)
∂uk

∂t
= ∆uk − gk−1 + gk on K × Ω, uk(0) = 0, uk

∣∣
K×∂Ω

= 0,

with

(7.45) gk ∈ C
(
K, L2(Ω)

)
.

Now we solve for w the equation

(7.46)
∂w

∂t
= ∆w − gk on K \ Ω, w(0) = 0, w

∣∣
K×∂Ω

= 0.

The easy L2-estimates yield

(7.47) w ∈ C
(
K,H2−ε(Ω)

)
,

and the solution to (7.24) is

(7.48) u = u1 + · · · + uk + w.

This proves the desired estimate (7.25), for p ∈ (1, 2), which is enough to
prove Proposition 7.3.

We mention that an interpolation argument yields that ez∆ is a holo-
morphic semigroup on Lp(Ω) on a cone K that is symmetric about R

+ and
has angle π

(
1 − |2/p − 1|

)
. (See [RS], Vol. 2, p. 255.) This result is valid

even if Ω has nasty boundary, as well as in other settings. On the other
hand, ingredients of the argument used above will also be useful for other
results, presented below.

Note that once we have the holomorphy of et∆ on Lp(Ω), for all p ∈
(1,∞), we can apply Proposition 7.2. In particular, suppose we carry out
the construction of the uk above, not stopping as soon as pk ≥ 2, but letting
pk become arbitrarily large. Then (7.44) is replaced by gk ∈ C

(
K, Lpk(Ω)

)
,

and we can now apply Proposition 7.2 to improve (7.47) to

(7.49) w ∈ C
(
K,H2−ε,pk(Ω)

)
,

making use of (7.2), (7.11), and interpolation to estimate the norm of
et∆ : Lp(Ω) → H2−ε,p(Ω).

We now consider the construction (7.24)–(7.44) when u(0) = f ∈ L∞(Ω).
We will restrict attention to t ∈ R

+. A direct inspection of the parametrix
for the heat kernel, constructed in Chapter 7, §13, shows that et∆ : L∞(M)
→ C1(M), with norm ≤ Ct−1/2, for t ∈ (0, 1], so v in (7.26) satisfies
the estimate ‖v(t)‖C1(M) ≤ Ct−1/2‖f‖L∞(Ω), and ‖u1(t)‖C1(Ω) satisfies
a similar estimate. Thus g in (7.29) satisfies the estimate (7.30), with
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p = ∞, and consequently v2 in (7.32) satisfies ‖v2(t)‖C1(M) ≤ C. Hence
‖u2(t)‖C1(Ω) ≤ C, and g2 in (7.35) satisfies (7.36) with p = ∞. Thus
u = u1 + u2 + w, where w satisfies

(7.50)
∂w

∂t
= ∆w − g2 on R

+ × Ω, w(0) = 0, w
∣∣
R+×∂Ω

= 0.

By the holomorphy of et∆ on Lp(Ω) for p ∈ (1,∞), we have

(7.51) w ∈ C
(
[0,∞),H2−ε,p(Ω)

)
,

for any ε > 0 and arbitrarily large p < ∞, hence w ∈ C
(
R

+, C2−δ(Ω)
)
, for

any δ > 0. We deduce that

(7.52) ‖et∆f‖C1(Ω) ≤ Ct−1/2 ‖f‖L∞(Ω), 0 < t ≤ 1.

The estimate (7.52), together with the following result, will be useful for
the study of semilinear parabolic equations on domains with boundary, in
§3 of Chapter 15.

Proposition 7.4. If Ω is a compact Riemannian manifold with boundary,
on which the Dirichlet condition is placed, then et∆ defines a strongly
continuous semigroup on the Banach space

(7.53) C1
b (Ω) =

{
f ∈ C1(Ω) : f |∂Ω = 0

}
.

Proof. It is easy to verify that, for N > 1 + (dim M)/4,

D(∆N ) ⊂ C1
b (Ω), densely.

Since et∆ is a strongly continuous semigroup on D(∆N ), it suffices to show
that for each f ∈ C1

b (Ω), {et∆f : 0 ≤ t ≤ 1} is uniformly bounded in
Lip(Ω). To see this, we analyze solutions to

∂u

∂t
= ∆u, for x ∈ Ω, u(0, x) = f(x), u(t, x) = 0, for x ∈ ∂Ω,

when

(7.54) f ∈ C1(Ω), f
∣∣
∂Ω

= 0.

We will to some extent follow the proof of Proposition 7.3, and also use
that result. In this case, for f̃ equal to f on Ω and to zero on M \ Ω, we
have f̃ ∈ Lip(M). Thus, for v defined by

∂v

∂t
= ∆v on R

+ × M, v(0) = f̃ ,

we have

(7.55) v ∈ C
(
R

+,Lip(M)
)
,

where the “C” stands for “weak” continuity in t, (i.e., v(t) is bounded in
Lip(M) and continuous in t, with values in H1,p(M), for each p < ∞).
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Hence

u1(t, x) = v(t, x) − v
(
t, R(x)

)∣∣
R+×Ω

satisfies

(7.56) u1 ∈ C
(
R

+,Lip(Ω)
)
.

We have

∂u1

∂t
= ∆u1 + g, u1(0) = f, u1

∣∣
R+×∂Ω

= 0,

where

g = Lbvr
∣∣
R+×Ω

.

Here, as in (7.15), Lb is a second-order differential operator whose principal
symbol vanishes on ∂Ω, and vr(x) = v

(
R(x)

)
. Consequently, again an

analogue of (5.49) gives

(7.57) g ∈ C
(
R

+, L∞(Ω)
)
.

Now, we have u = u1 + w, where w satisfies

(7.58)
∂w

∂t
= ∆w − g, w(0) = 0, w

∣∣
R+×∂Ω

= 0,

and, by (7.57), g ∈ C
(
R

+, Lp(Ω)
)
, for all p < ∞. This implies

(7.59) w ∈ C
(
R

+,H2−ε,p(Ω)
)
, ∀p < ∞, ε > 0,

since et∆ is a holomorphic semigroup on Lp(Ω). This proves Proposition
7.4.

Exercises

1. Extend results of this section to the Neumann boundary condition.

In Exercises 2 and 3, let Ω be an open subset, with smooth boundary, of a
compact Riemannian manifold M . Assume there is an isometry τ : M → M
that is an involution, fixing ∂Ω, so M is the isometric double of Ω.

2. Suppose Xj are smooth vector fields on Ω, fj ∈ Lp(Ω) for some p ∈ [2,∞),
and u is the unique solution in H1,2

0 (Ω) to

∆u =
X

Xjfj .

Show that u ∈ H1,p(Ω). (Hint: Reduce to the case where each Xj is a smooth
vector field on M , such that τ#Xj = ±Xj . Extend fj to fj ∈ Lp(M), so that
τ∗fj = ∓fj . Thus

P
Xjfj ∈ H−1,p(M) is odd under τ.)

3. Extend the result of Exercise 2 to the case fj ∈ Lp(Ω) when 1 < p < 2,
appropriately weakening the a priori hypothesis on u.
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4. Try to extend the results of Exercises 2 and 3 to general, compact, smooth Ω,
not necessarily having an isometric double.

5. Show that (7.5) can be improved to

Rλ : L∞(Ω) −→ C(Ω),

for λ ≥ 0. (Hint: Use (7.11). Show that, in fact, for λ ≥ 0,

Rλ : L∞(Ω) −→ Cr(Ω), ∀ r < 2.)

A sharper result will be contained in (8.54)–(8.55).

8. Hölder spaces and Zygmund spaces

If 0 < s < 1, we define the space Cs(Rn) of Hölder-continuous functions
on R

n to consist of bounded functions u such that

(8.1) |u(x + y) − u(x)| ≤ C|y|s.

For k = 0, 1, 2, . . . , we take Ck(Rn) to consist of bounded, continuous
functions u such that Dβu is bounded and continuous, for |β| ≤ k. If
s = k + r, 0 < r < 1, we define Cs(Rn) to consist of functions u ∈ Ck(Rn)
such that, for |β| = k, Dβu belongs to Cr(Rn).

For nonintegral s, the Hölder spaces Cs(Rn) have a characterization
similar to that for Lp and more generally Hs,p, in (5.46) and (6.23), via
the Littlewood-Paley partition of unity used in (5.37),

1 =

∞∑

j=0

ϕj(ξ)
2,

with ϕj supported on 〈ξ〉 ∼ 2j , and ϕj(ξ) = ϕ1(2
1−jξ) for j ≥ 1. Let

ψj(ξ) = ϕj(ξ)
2.

Proposition 8.1. If u ∈ Cs(Rn), then

(8.2) sup
k

2ks‖ψk(D)u‖L∞ < ∞.

Proof. To see this, first note that it is obvious for s = 0. For s = ℓ ∈ Z
+,

it then follows from the elementary estimate

(8.3)

C12
kℓ‖ψk(D)u(x)‖L∞ ≤

∑

|α|≤ℓ

‖ψk(D)Dαu(x)‖L∞

≤ C22
kℓ‖ψk(D)u(x)‖L∞ .
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Thus it suffices to establish that u ∈ Cs implies (8.2) for 0 < s < 1. Since
ψ̂1(x) has zero integral, we have, for k ≥ 1,

(8.4)

|ψk(D)u(x)| =
∣∣∣
∫

ψ̂k(y)
[
u(x − y) − u(x)

]
dy

∣∣∣

≤ C

∫
|ψ̂k(y)| · |y|s dy,

which is readily bounded by C · 2−ks.

This result has a partial converse.

Proposition 8.2. If s is not an integer, finiteness in (8.2) implies u ∈
Cs(Rn).

Proof. It suffices to demonstrate this for 0 < s < 1. With Ψk(ξ) =∑
j≤k ψj(ξ), if |y| ∼ 2−k, write

(8.5)
u(x + y) − u(x) =

∫ 1

0

y · ∇Ψk(D)u(x + ty) dt

+
(
I − Ψk(D)

)(
u(x + y) − u(x)

)

and use (8.2) and (8.3) to dominate the L∞-norm of both terms on the
right by C · 2−sk, since ‖∇Ψk(D)u‖L∞ ≤ C · 2(1−s)k.

This converse breaks down if s ∈ Z
+. We define the Zygmund space

Cs
∗(R

n) to consist of u such that (8.2) is finite, using that to define the
Cs

∗-norm, namely,

(8.6) ‖u‖Cs
∗

= sup
k

2ks‖ψk(D)u‖L∞ .

Thus

(8.7) Cs = Cs
∗ if s ∈ R

+ \ Z
+, Ck ⊂ Ck

∗ , k ∈ Z
+.

The class Cs
∗(R

n) can be defined for any s ∈ R, as the set of elements
u ∈ S ′(Rn) such that (8.6) is finite.

The following complements previous boundedness results for Fourier mul-
tipliers P (D) on Lp(Rn) and on Hs,p(Rn).

Proposition 8.3. If P (ξ) ∈ Sm
1 (Rn), then, for all s ∈ R,

(8.8) P (D) : Cs
∗ −→ Cs−m

∗ .

Proof. Consider first the case m = 0. Pick ψ̃j(ξ) ∈ C∞
0 (Rn) such that

ψ̃j(ξ) = 1 on supp ψj and ψ̃j(ξ) = ψ̃1(2
1−jξ), for j ≥ 2. It follows readily
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from the analysis of the Schwartz kernel of P (D) made in §2 of Chapter 7,
particularly in the proof of Proposition 2.2 there, that

(8.9) P (ξ) ∈ S0
1(Rn) =⇒ sup

j
‖ψ̃j(ξ)P (ξ)‖FL1 < ∞,

where ‖Q‖FL1 = ‖Q̂‖L1 . Also, it is clear that

(8.10) ‖ψk(D)P (D)u‖L∞ ≤ C‖ψ̃kP‖FL1 · ‖ψk(D)u‖L∞ ,

which implies (8.8) for m = 0. The extension to general m ∈ R is straight-
forward.

In particular, with Λ = (1 − ∆)1/2,

(8.11) Λm : Cs
∗ −→ Cs−m

∗ is an isomorphism.

Note that in light of (8.9) and (8.10), we have

(8.12) ‖P (D)u‖Cs
∗
≤ C sup

ξ∈Rn,|α|≤[n/2]+1

‖P (α)(ξ)〈ξ〉|α|‖L∞ · ‖u‖Cs
∗
.

In particular, for y ∈ R,

(8.13) ‖Λiyu‖Cs
∗
≤ C〈y〉n/2+1‖u‖Cs

∗
.

Compare with (5.47).
The Sobolev imbedding theorem, Proposition 6.3, can be sharpened and

extended to the following:

Proposition 8.4. For all s ∈ R, p ∈ (1,∞),

(8.14) Hs,p(Rn) ⊂ Cr
∗(Rn), r = s − n

p
.

Proof. In light of (8.11), it suffices to consider the case s = n/p. Let
Lm(ξ) ∈ Sm

1 (Rn) be nowhere vanishing and satisfy Lm(ξ) = |ξ|m, for
|ξ| ≥ 1/100. It suffices to show that, for p ∈ (1,∞),

(8.15) ‖ψk(D)L−n/p(D)u‖L∞ ≤ C‖u‖Lp(Rn),

with C independent of k. We can restrict attention to k ≥ 2. Then
Ak(ξ) = ψk(ξ)L−n/p(ξ) satisfies

Ak+1(ξ) = 2−nk/p A1(2
−kξ).

Hence Âk+1(x) ∈ S(Rn) and

(8.16) ‖Âk+1‖Lp′ (Rn) = C, independent of k ≥ 2.

Thus the left side of (8.15) is dominated by ‖Âk‖Lp′ · ‖u‖Lp , which in turn
is dominated by the right side of (8.15). This completes the proof.

It is useful to extend Proposition 8.3 to the following.
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Proposition 8.5. If p(x, ξ) ∈ Sm
1,0(R

n), then, for s ∈ R,

(8.17) p(x,D) : Cs
∗(R

n) −→ Cs−m
∗ (Rn).

Proof. In light of (8.11), it suffices to consider the case m = 0. Also, it
suffices to consider one fixed s, which we can take to be positive. First we
prove (8.18) in the special case where p(x, ξ) has compact support in x.
Then we can write

(8.18) p(x,D)u =

∫
eix·η qη(D)u dη,

with

(8.19) qη(ξ) = (2π)−n

∫
e−ix·η p(x, ξ) dx.

Via the estimates used to prove Proposition 8.3, it follows that, for any
given s ∈ R, qη(D) ∈ L

(
Cs

∗(R
n)

)
has an operator norm that is a rapidly

decreasing function of η. It is easy to establish the estimate

(8.20) ‖eix·η u‖Cs
∗
≤ C(s) 〈η〉s ‖u‖Cs

∗
(s > 0),

first for s /∈ Z
+, by using the characterization (8.1) of Cs = Cs

∗ , then
for general s > 0 by interpolation. The desired operator bound on (8.18)
follows easily.

To do the general case, one can use a partition of unity in the x-variables,
of the form

1 =
∑

j∈Zn

ϕj(x), ϕj(x) = ϕ0(x + j), ϕ0 ∈ C∞
0 (Rn),

and exploit the estimates on pj(x,D)u = ϕj(x)p(x,D)u obtained by the
argument above, in concert with the rapid decrease of the Schwartz kernel
of the operator p(x,D) away from the diagonal. Details are left to the
reader.

In §9 we will establish a result that is somewhat stronger than Proposi-
tion 8.5, but this relatively simple result is already useful for Hölder esti-
mates on solutions to linear, elliptic PDE.

It is useful to note that we can define Zygmund spaces Cs
∗(T

n) on the
torus just as in (8.6), but using Fourier series. We again have (8.7) and
Propositions 8.3–8.5.

The issue of how Zygmund spaces form a complex interpolation scale is
more subtle than the analogous situation for Lp-Sobolev spaces, treated in
§6. A different type of complex interpolation functor, [X,Y ]bθ, defined in
Appendix A at the end of this chapter, does a better job than [X,Y ]θ. We
have the following result established in Appendix A.
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Proposition 8.6. For r, s ∈ R, θ ∈ (0, 1),

(8.21) [Cr
∗(Tn), Cs

∗(T
n)]bθ = C

θs+(1−θ)r
∗ (Tn).

It is straightforward to extend the notions of Hölder and Zygmund spaces
to spaces Cs(M) and Cs

∗(M) when M is a compact manifold without
boundary. Furthermore, the analogue of (8.21) is readily established, and
we have

(8.22) P : Cs
∗(M) −→ Cs−m

∗ (M) if P ∈ OPSm
1,0(M).

If Ω is a compact manifold with boundary, there is an obvious notion
of Cs(Ω), for s ≥ 0. We will define Cs

∗(Ω) below, for s ≥ 0. For now we
look further at Cs(Ω). The following simple observation is useful. Give Ω
a Riemannian metric and let δ(x) = dist(x, ∂Ω).

Proposition 8.7. Let r ∈ (0, 1). Assume f ∈ C1(Ω) satisfies

(8.23) |∇f(x)| ≤ C δ(x)r−1, x ∈ Ω.

Then f extends continuously to Ω, as an element of Cr(Ω).

Proof. There is no loss of generality in assuming that Ω is the unit ball in
R

n. When estimating f(x2) − f(x1), we may as well assume that x1 and
x2 are a distance ≤ 1/4 from ∂Ω and |x1 − x2| ≤ 1/4. Write

f(x2) − f(x1) =

∫

γ

df(x),

where γ is a path from x1 to x2 of the following sort. Let yj lie on the ray
segment from 0 to xj , a distance d = |x1 − x2| from xj . Then γ goes from
x1 to y1 on a line, from y1 to y2 on a line, and from y2 to x2 on a line, as
illustrated in Fig. 8.1. Then

(8.24) |f(xj) − f(yj)| ≤ C

∫ 1

1−d

(1 − ρ)r−1 dρ = C

∫ d

0

τ r−1 dτ ≤ C ′dr,

while

(8.25) |f(y1) − f(y2)| ≤ C|y1 − y2|dr−1 ≤ C ′dr,

so

(8.26) |f(x2) − f(x1)| ≤ C|x1 − x2|r,
as asserted.

Now consider Ω of the form Ω = [0, 1] × M , where M is a compact
Riemannian manifold without boundary. We want to consider the action
on f ∈ Cr(M) of a family of operators of Poisson integral type, such
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Figure 8.1

as were studied in Chapter 7, §12, to construct parametrices for regular
elliptic boundary problems. We recall from (12.35) of Chapter 7 the class
OPP−j consisting of families A(y) of pseudodifferential operators on M ,
parameterized by y ∈ [0, 1]:

(8.27) A(y) ∈ OPP−j ⇐⇒ ykDℓ
yA(y) bounded in OPS−j−k+ℓ

1,0 (M).

Furthermore, if L ∈ OPS1(M) is a positive, self-adjoint, elliptic operator,
then operators of the form A(y)e−yL, with A(y) ∈ OPP−j , belong to
OPP−j

e . In addition (see (12.50)), any A(y) ∈ OPP−j
e can be written

in the form e−yLB(y) for some such elliptic L and some B(y) ∈ OPP−j .
The following result is useful for Hölder estimates on solutions to elliptic
boundary problems.

Proposition 8.8. If A(y) ∈ OPP−j
e and f ∈ Cr

∗(M), then

(8.28) u(y, x) = A(y)f(x) =⇒ u ∈ Cj+r(I × M),

provided j + r ∈ R
+ \ Z

+.

Note that we allow r < 0 if j > 0.

Proof. First consider the case j = 0, 0 < r < 1, and write

(8.29) A(y)f = e−κyΛ B(y)f, B(y) ∈ OPP0.

We can assume without loss of generality that Λ = (1−∆)1/2, and we can
replace M by R

n. In such a case, we will show that

(8.30) |∇y,xu(y, x)| ≤ Cyr−1 ‖u‖Cr

if 0 < r < 1, which by Proposition 8.7 will yield u ∈ Cr(I × M). Now if
we set ∂j = ∂/∂xj for 1 ≤ j ≤ n, ∂0 = ∂/∂y, then we can write

(8.31) y∂ju(y, x) = yΛe−κyΛBj(y)f, Bj(y) ∈ OPP0.
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Now, given f ∈ Cr(M), 0 < r < 1, we have Bj(y)f bounded in Cr(M),
for y ∈ [0, 1]. Then the estimate (8.30) follows from

(8.32) ‖ϕ(yΛ)g‖L∞ ≤ Cyr‖g‖Cr
∗
,

for 0 < r < 1, where ϕ(λ) = λe−κλ, which vanishes at λ = 0 and is rapidly
decreasing as λ → +∞. In turn, this follows easily from the characteriza-
tion (8.6) of the Cr

∗ -norm.
If f ∈ Ck+r(M), k ∈ Z

+, 0 < r < 1, and j = 0 then given |α| ≤ k,

(8.33) Dα
y,xu = e−κyΛBα(y)Λkf, Bα(y) ∈ OPP0,

so the analysis of (8.29), with f replaced by Λkf , applies to yield Dα
y,xu ∈

Cr(I × M), for |α| ≤ k.
Similarly, the extension from j = 0 to general j ∈ Z

+ is straightforward,
so Proposition 8.8 is proved.

As we have said above, Proposition 8.8 is important because it yields
Hölder estimates on solutions to elliptic boundary problems, as defined in
Chapter 5, §11. The principal consequence is the following:

Theorem 8.9. Let (P,Bj , 1 ≤ j ≤ ℓ) be a regular elliptic boundary prob-
lem. Suppose P has order m and each Bj has order mj . If u solves

(8.34) Pu = 0 on Ω, Bju = gj on ∂Ω,

then, for r ∈ R
+ \ Z

+,

(8.35) gj ∈ C
r−mj
∗ (∂Ω) =⇒ u ∈ Cr(Ω).

Proof. Of course, u ∈ C∞(Ω). On a collar neighborhood of ∂Ω, diffeo-
morphic to [0, 1] × ∂Ω, we can write, modulo C∞

(
[0, 1] × ∂Ω

)
,

(8.36) u =
∑

Qj(y)gj , Qj(y) ∈ OPP−mj
e ,

by Theorem 12.6 of Chapter 7, so the implication (8.35) follows directly
from (8.28).

We next want to define Zygmund spaces on domains with boundary. Let
Ω be an open set with smooth boundary (and closure Ω) in a compact
manifold M . We want to consider Zygmund spaces Cr

∗(Ω), r > 0. The
approach we will take is to define Cr

∗(Ω) by interpolation:

(8.37) Cr
∗(Ω) =

[
Cs1(Ω), Cs2(Ω)

]b

θ
,

where 0 < s1 < r < s2, 0 < θ < 1, r = (1− θ)s1 + θs2 (and sj /∈ Z). As in
(8.21), we are using the complex interpolation functor defined in Appendix
A. We need to show that this is independent of choices of such sj . Using
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an argument parallel to one in §6, for any N ∈ Z
+, we have an extension

operator

(8.38) E : Cs(Ω) −→ Cs(M), s ∈ (0, N) \ Z,

providing a right inverse for the surjective restriction operator

(8.39) ρ : Cs(M) −→ Cs(Ω).

From Proposition 8.6, we can deduce that whenever r > 0 and sj and θ are

as above, Cr
∗(M) =

[
Cs1(M), Cs2(M)

]b

θ
. Thus, by interpolation, we have,

for r > 0,

(8.40) E : Cr
∗(Ω) −→ Cr

∗(M), ρ : Cr
∗(M) −→ Cr

∗(Ω),

and ρE = I on Cr
∗(Ω). Hence

(8.41) Cr
∗(Ω) ≈ Cr

∗(M)
/
{u ∈ Cr

∗(M) : u
∣∣
Ω

= 0}.
This characterization is manifestly independent of the choices made in
(8.37). Note that the right side of (8.41) is meaningful even for r ≤ 0.

By Propositions 8.1 and 8.2, we know that Cr
∗(M) = Cr(M), for r ∈

R
+ \ Z

+, so

(8.42) Cr
∗(Ω) = Cr(Ω), for r ∈ R

+ \ Z
+.

Using the spaces Cr
∗(Ω), we can fill in the gaps (at r ∈ Z

+) in the estimates
of Theorem 8.9.

Proposition 8.10. If (P,Bj , 1 ≤ j ≤ ℓ) is a regular elliptic boundary
problem as in Theorem 8.9 and u solves (8.34), then, for all r ∈ (0,∞),

(8.43) gj ∈ C
r−mj
∗ (∂Ω) =⇒ u ∈ Cr

∗(Ω).

Proof. For r ∈ R
+\Z

+, this is equivalent to (8.35). Since the solution u is
given, mod C∞(Ω), by the operator (8.36), the rest follows by interpolation.

In a sense, the C0
∗ -norm is only a tad weaker than the C0-norm. The

following is a quantitative version of this statement, which will prove very
useful for the study of nonlinear evolution equations, particularly in Chap-
ter 17.

Proposition 8.11. If s > n/2 + δ, then there is C < ∞ such that, for all
ε ∈ (0, 1],

(8.44) ‖u‖L∞ ≤ Cεδ‖u‖Hs + C
(
log

1

ε

)
‖u‖C0

∗
.

Proof. By (8.6), ‖u‖C0
∗

= sup ‖ψk(D)u‖L∞ . Now, with Ψj =
∑

ℓ≤j ψℓ,
make the decomposition u = Ψj(D)u+

(
1−Ψj(D)

)
u; let ε = 2−j . Clearly,

(8.45) ‖Ψj(D)u‖L∞ ≤ j‖u‖C0
∗
.
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Meanwhile, using the Sobolev imbedding theorem, since n/2 < s − δ,

(8.46)
‖(1 − Ψj(D))u‖L∞ ≤ C‖(1 − Ψj(D))u‖Hs−δ

≤ C 2−jδ‖(1 − Ψj(D))u‖Hs ,

the last identity holding since {2jδ〈ξ〉−δ
(
1 − Ψj(ξ)

)
: j ∈ Z

+} is uniformly
bounded. This proves (8.44).

Suppose the norms satisfy ‖u‖C0
∗

≤ C‖u‖Hs . If we substitute εδ =
C−1‖u‖C0

∗
/‖u‖Hs into (8.44), we obtain the estimate (for a new C = C(δ))

(8.47) ‖u‖L∞ ≤ C‖u‖C0
∗

[
1 + log

(‖u‖Hs

‖u‖C0
∗

)]
.

We note that a number of variants of (8.44) and (8.47) hold. For some
of them, it is useful to strengthen the last observation in the proof above
to

(8.48)
{
2jδ〈ξ〉−δ

(
1 − Ψj(ξ)

)
: j ∈ Z

+
}

is bounded in S0
1(Rn).

An argument parallel to the proof of Proposition 8.11 gives estimates

(8.49) ‖u‖Ck(M) ≤ Cεδ‖u‖Hs(M) + C
(
log

1

ε

)
‖u‖Ck

∗ (M),

given k ∈ Z
+, s > n/2 + k + δ, and consequently

(8.50) ‖u‖Ck(M) ≤ C‖u‖Ck
∗ (M)

[
1 + log

(‖u‖Hs

‖u‖Ck
∗

)]

when M is a compact manifold without boundary.
We can also establish such an estimate for the Ck(Ω)-norm when Ω is a

compact manifold with boundary. If Ω ⊂ M as above, this follows easily
from (8.50), via:

Lemma 8.12. For any r ∈ (0, N),

(8.51) ‖u‖Cr
∗(Ω) ≈ ‖Eu‖Cr

∗(M).

Proof. If Euj → v in Cr
∗(M), then ρEuj → ρv in Cr

∗(Ω), that is, uj → ρv
in Cr

∗(Ω), since ρEuj = uj . Thus v = Eρv, in this case. This proves
the lemma, which is also equivalent to the statement that E in (8.40) has
closed range.

We also have such a result for Sobolev spaces:

(8.52) ‖u‖Hr,p(Ω) ≈ ‖Eu‖Hr,p(M), 1 < p < ∞.

Thus (8.50) yields

(8.53) ‖u‖Ck(Ω) ≤ C‖u‖Ck
∗ (Ω)

[
1 + log

(‖u‖Hs(Ω)

‖u‖Ck
∗ (Ω)

)]
,
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provided s > n/2 + k.

Exercises

1. Extend the estimates of Theorem 8.9 and Proposition 8.10 to solutions of

(8.54) Pu = f on Ω, Bju = gj on ∂Ω.

Show that, for r ∈ (µ,∞), µ = max(mj),

(8.55) f ∈ Cr−m
∗ (Ω), gj ∈ C

r−mj
∗ (∂Ω) =⇒ u ∈ Cr

∗(Ω).

Note that we allow r − m < 0, in which case Cr−m
∗ (Ω) is defined by the right

side of (8.41) (with r replaced by r − m).
2. Establish the following result, similar to (8.44):

(8.56) ‖u‖L∞ ≤ Cεδ‖u‖Hs,p + C

„
log

1

ε

«1−1/q

‖u‖Hn/q,q ,

where s > n/p + δ, q ∈ [2,∞), and a similar estimate for q ∈ (1, 2], using“
log 1/ε

”1/q

. (See [BrG] and [BrW].)

3. From (8.15) it follows that H1,p(Rn) ⊂ Cr(Rn) if p > n, r = 1−n/p. Demon-
strate the following more precise result:

(8.57) |u(x) − u(y)| ≤ C|x − y|1−n/p ‖∇u‖Lp(Bxy), p > n,

where Bxy = B|x−y|(x) ∩ B|x−y|(y).
(Hint: Apply scaling to (2.16) to obtain

|v(re1) − v(0)| ≤ Crp−n

Z

Br(0)

|∇v(x)|p dx.

To pass from B|x−y|(x) to Bxy in (8.57), note what the support of ϕ is in
Exercise 5 of §2.) There is a stronger estimate, known as Morrey’s inequality.
See Chapter 14 for more on this.

9. Pseudodifferential operators with nonregular symbols

We establish here some results on Hölder and Sobolev space continuity for
pseudodifferential operators p(x,D) with symbols p(x, ξ) which are some-
what more ill behaved than those for which we had L2-Sobolev estimates
in Chapter 7 or Lp-Sobolev estimates and Hölder estimates in §§5 and 8 of
this chapter. These results will be very useful in the analysis of nonlinear,
elliptic PDE in Chapter 14 and will also be used in Chapters 15 and 16.

Let r ∈ (0,∞). We say p(x, ξ) ∈ Cr
∗Sm

1,δ(R
n) provided

(9.1) |Dα
ξ p(x, ξ)| ≤ Cα〈ξ〉m−|α|

and

(9.2) ‖Dα
ξ p(·, ξ)‖Cr

∗(Rn) ≤ Cα〈ξ〉m−|α|+δr.



48 13. Function Space and Operator Theory for Nonlinear Analysis

Here δ ∈ [0, 1]. The following rather strong result is due to G. Bourdaud
[Bou], following work of E. Stein [S2].

Theorem 9.1. If r > 0 and p ∈ (1,∞), then, for p(x, ξ) ∈ Cr
∗Sm

1,1,

(9.3) p(x,D) : Hs+m,p −→ Hs,p,

provided 0 < s < r. Furthermore, under these hypotheses,

(9.4) p(x,D) : Cs+m
∗ −→ Cs

∗ .

Before giving the proof of this result, we record some implications. Note
that any p(x, ξ) ∈ Sm

1,1 satisfies the hypotheses for all r > 0. Since operators
in OPSm

1,δ possess good multiplicative properties for δ ∈ [0, 1), we have the
following:

Corollary 9.2. If p(x, ξ) ∈ Sm
1,δ, 0 ≤ δ < 1, we have the mapping proper-

ties (9.3) and (9.4) for all s ∈ R.

It is known that elements of OPS0
1,1 need not be bounded on Lp, even

for p = 2, but by duality and interpolation we have the following:

Corollary 9.3. If p(x,D) and p(x,D)∗ belong to OPSm
1,1, then (9.3) holds

for all s ∈ R.

We prepare to prove Theorem 9.1. It suffices to treat the case m =
0. Following [Bou] and also [Ma2], we make use of the following results
from Littlewood-Paley theory. These results follow from (6.23) and (6.25),
respectively.

Lemma 9.4. Let fk ∈ S ′(Rn) be such that, for some A > 0,

(9.5) supp f̂k ⊂ {ξ : A · 2k−1 ≤ |ξ| ≤ A · 2k+1}, k ≥ 1.

Say f̂0 has compact support. Then, for p ∈ (1,∞), s ∈ R, we have

(9.6)
∥∥

∞∑

k=0

fk

∥∥
Hs,p ≤ C

∥∥{ ∞∑

k=0

4ks|fk|2
}1/2∥∥

Lp .

If fk = ϕk(D)f with ϕk supported in the shell defined in (9.5) and bounded
in S0

1,0, then the converse of the estimate (9.6) also holds.

Lemma 9.5. Let fk ∈ S ′(Rn) be such that

(9.7) supp f̂k ⊂ {ξ : |ξ| ≤ A · 2k+1}, k ≥ 0.

Then, for p ∈ (1,∞), s > 0, we have

(9.8)
∥∥∥

∞∑

k=0

fk

∥∥∥
Hs,p

≤ C
∥∥∥
{ ∞∑

k=0

4ks|fk|2
}1/2∥∥∥

Lp
.
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The next ingredient is a symbol decomposition. We begin with the
Littlewood-Paley partition of unity (5.37),

(9.9) 1 =
∑

ϕj(ξ)
2 =

∑
ψj(ξ),

and with

(9.10) p(x, ξ) =
∞∑

j=0

p(x, ξ)ψj(ξ) =
∞∑

j=0

pj(x, ξ).

Now, let us take a basis of L2
(
|ξj | < π

)
of the form

eα(ξ) = eiα·ξ,

and write (for j ≥ 1)

(9.11) pj(x, ξ) =
∑

α

pjα(x)eα(2−jξ)ψ#
j (ξ),

where ψ#
1 (ξ) has support on 1/2 < |ξ| < 2 and is 1 on supp ψ1, ψ#

j (ξ) =

ψ#
1 (2−j+1ξ), with an analogous decomposition for p0(ξ). Inserting these

decompositions into (9.10) and summing over j, we obtain p(x, ξ) as a sum
of a rapidly decreasing sequence of elementary symbols.

By definition, an elementary symbol in Cr
∗S0

1,δ is of the form

(9.12) q(x, ξ) =
∞∑

k=0

Qk(x)ϕk(ξ),

where ϕk is supported on 〈ξ〉 ∼ 2k and bounded in S0
1—in fact, ϕk(ξ) =

ϕ1(2
−k+1ξ), for k ≥ 2—and Qk(x) satisfies

(9.13) |Qk(x)| ≤ C, ‖Qk‖Cr
∗
≤ C · 2krδ.

For the purpose of proving Theorem 9.1, we take δ = 1. It suffices to esti-
mate the Hr,p-operator norm of q(x,D) when q(x, ξ) is such an elementary
symbol.

Set Qkj(x) = ψj(D)Qk(x), with {ψj} the partition of unity described in
(9.9). Set

(9.14)
q(x, ξ) =

∑

k

{k−4∑

j=0

Qkj(x) +

k+3∑

j=k−3

Qkj(x) +

∞∑

j=k+4

Qkj(x)
}

ϕk(ξ)

= q1(x, ξ) + q2(x, ξ) + q3(x, ξ).

We will perform separate estimates of these three pieces. Set fk = ϕk(D)f .



50 13. Function Space and Operator Theory for Nonlinear Analysis

First we estimate q1(x,D)f . By Lemma 9.4, since 〈ξ〉 ∼ 2j on the
spectrum of Qkj ,

(9.15)

‖q1(x,D)f‖Hs,p ≤ C
∥∥∥
{ ∞∑

k=4

4ks
∣∣
k−4∑

j=0

Qkjfk

∣∣2
}1/2∥∥∥

Lp

≤ C
∥∥∥
{ ∞∑

k=4

4ks‖Qk‖2
L∞ |fk|2

}1/2∥∥∥
Lp

≤ C‖f‖Hs,p ,

for all s ∈ R.
To estimate q2(x,D)f , note that ‖Qkj‖L∞ ≤ C · 2−jr+kr. Then Lemma

9.5 implies

(9.16) ‖q2(x,D)f‖Hs,p ≤ C
∥∥{ ∞∑

k=0

4ks|fk|2
}1/2∥∥

Lp ≤ C‖f‖Hs,p ,

for s > 0.
To estimate q3(x,D)f , we apply Lemma 9.4 to hj =

∑j−4
k=0 Qkjfk, to

obtain

(9.17)

‖q3(x,D)f‖Hs,p ≤ C
∥∥∥
{ ∞∑

j=4

4js
∣∣
j−4∑

k=0

Qkjfk

∣∣2
}1/2∥∥∥

Lp

≤ C
∥∥∥
{ ∞∑

j=4

4j(s−r)
(j−4∑

k=0

2kr|fk|
)2}1/2∥∥∥

Lp
.

Now, if we set gj =
∑j−4

k=0 2(k−j)r|fk| and then set Gj = 2jsgj and Fj =
2js|fj |, we see that

Gj =

j−4∑

k=0

2(k−j)(r−s)Fk.

As long as r > s, Young’s inequality (see Exercise 1 at the end of this
section) yields ‖(Gj)‖ℓ2 ≤ C‖(Fj)‖ℓ2 , so the last line in (9.17) is bounded
by

C
∥∥{ ∞∑

j=0

4js|fj |2
}1/2∥∥

Lp ≤ C‖f‖Hs,p .

This proves (9.3).
The proof of (9.4) is similar. We replace (9.6) by

(9.18) ‖f‖Cr
∗
∼ sup

k≥0
2kr‖ψk(D)f‖L∞ , r > 0.

We also need an analogue of Lemma 9.5:
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Lemma 9.6. If fk ∈ S ′(Rn) and supp f̂k ⊂ {ξ : |ξ| ≤ A · 2k+1}, then, for
r > 0,

(9.19)
∥∥

∞∑

k=0

fk

∥∥
Cr

∗
≤ C sup

k≥0
2kr‖fk‖L∞ .

Proof. For some finite N , we have ψj(D)
∑

k≥0 fk = ψj(D)
∑

k≥j−N fk.
Suppose supk 2kr‖fk‖L∞ = S. Then

∥∥∥ψj(D)
∑

k≥0

fk

∥∥∥
L∞

≤ CS
∑

k≥j−N

2−kr ≤ C ′S2−jr.

This proves (9.19).

Now, to prove (9.4), as before it suffices to consider elementary symbols,
of the form (9.12)–(9.13), and we use again the decomposition q(x, ξ) =
q1 + q2 + q3 of (9.14). Thus it remains to obtain analogues of the estimates
(9.15)–(9.17).

Parallel to (9.15), using the fact that
∑k−4

j=0 Qkj(x)fk has spectrum in
the shell 〈ξ〉 ∼ 2k, and ‖Qk‖L∞ ≤ C, we obtain

(9.20)

‖q1(x,D)f‖Cs
∗
≤ C sup

k≥0
2ks

∥∥
k−4∑

j=0

Qkjfk

∥∥
L∞

≤ C sup
k≥0

2ks‖fk‖L∞

≤ C‖f‖Cs
∗
,

for all s ∈ R. Parallel to (9.16), using ‖Qkj‖L∞ ≤ C · 2−jr+kr and Lemma
9.6, we have

(9.21)

‖q2(x,D)f‖Cs
∗
≤

∥∥
∞∑

k=0

gk

∥∥
Cs

∗

≤ C sup
k≥0

2ks‖gk‖L∞

≤ C sup
k≥0

2ks‖fk‖L∞ ≤ C‖f‖Cs
∗
,

for all s > 0, where the sum of seven terms

gk =

k+3∑

j=k−3

Qkj(x)fk

has spectrum contained in |ξ| ≤ C · 2k, and ‖gk‖L∞ ≤ C‖fk‖L∞ .
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Finally, parallel to (9.17), since
∑j−4

k=0 Qkjfk has spectrum in the shell
〈ξ〉 ∼ 2j , we have

(9.22)

‖q3(x,D)f‖Cs
∗
≤ C sup

j≥0
2js

∥∥
j−4∑

k=0

Qkjfk

∥∥
L∞

≤ C sup
j≥0

2j(s−r)

j−4∑

k=0

2kr‖fk‖L∞ .

If we bound this last sum by

(9.23)
[j−4∑

k=0

2k(r−s)
]
sup

k
2ks‖fk‖L∞ ,

then

(9.24) ‖q3(x,D)f‖Cs
∗
≤ C

[
sup
j≥0

2j(s−r)

j−4∑

k=0

2k(r−s)
]
‖f‖Cs

∗
,

and the factor in brackets is finite as long as s < r. The proof of Theorem
9.1 is complete.

Things barely blow up in (9.24) when s = r. We will establish the
following result here. A sharper result (for p(x, ξ) ∈ Cr

∗Sm
1,δ with δ < 1) is

given in (9.43).

Proposition 9.7. If p(x, ξ) ∈ Cr
∗Sm

1,1, then

(9.25) p(x,D) : Cm+r+ε
∗ −→ Cr

∗ , for all ε > 0.

Proof. It suffices to treat the case m = 0. We follow the proof of (9.4).
The estimates (9.20) and (9.21) continue to work; (9.22) yields

(9.26)

‖q3(x,D)f‖Cr
∗
≤ C sup

j≥0

j−4∑

k=0

2kr‖fk‖L∞

= C

∞∑

k=0

2kr‖fk‖L∞

≤ C

∞∑

k=0

2kr · 2−kr−kε‖f‖Cr+ε
∗

,

which proves (9.25).

The way symbols in Cr
∗Sm

1,δ most frequently arise is the following. One
has in hand a symbol p(x, ξ) ∈ Cr

∗Sm
1,0, such as the symbol of a differential

operator, with Hölder-continuous coefficients. One is then motivated to
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decompose p(x, ξ) as a sum

(9.27) p(x, ξ) = p#(x, ξ) + pb(x, ξ),

where p#(x, ξ) ∈ Sm
1,δ, for some δ ∈ (0, 1), and there is a good operator

calculus for p#(x,D), while pb(x, ξ) ∈ Cr
∗Sµ

1,δ (for some µ < m) is treated
as a remainder term, to be estimated. We will refer to this construction as
symbol smoothing.

The symbol decomposition (9.27) is constructed as follows. Use the
partition of unity ψj(ξ) of (9.9). Given p(x, ξ) ∈ Cr

∗Sm
1,0, choose δ ∈ (0, 1]

and set

(9.28) p#(x, ξ) =

∞∑

j=0

Jεj
p(x, ξ) ψj(ξ),

where Jε is a smoothing operator on functions of x, namely

(9.29) Jεf(x) = φ(εD)f(x),

with φ ∈ C∞
0 (Rn), φ(ξ) = 1 for |ξ| ≤ 1 (e.g., φ = ψ0), and we take

(9.30) εj = 2−jδ.

We then define pb(x, ξ) to be p(x, ξ) − p#(x, ξ), yielding (9.27).
To analyze these terms, we use the following simple result.

Lemma 9.8. For ε ∈ (0, 1],

(9.31) ‖Dβ
xJεf‖Cs

∗
≤ Cβ ε−|β|‖f‖Cs

∗

and

(9.32) ‖f − Jεf‖Cs−t
∗

≤ Cεt‖f‖Cs
∗
, for t ≥ 0.

Furthermore, if s > 0,

(9.33) ‖f − Jεf‖L∞ ≤ Csε
s‖f‖Cs

∗
.

Proof. The estimate (9.31) follows from the fact that, for each β ≥ 0,

ε|β|Dβ
xφ(εD) is bounded in OPS0

1,0,

and the estimate (9.32) follows from the fact that, with Λ = (1 − ∆)1/2,

Λt : Cs
∗ −→ Cs−t

∗ isomorphically,

plus the fact that

ε−tΛ−t(1 − φ(εD)) is bounded in OPS0
1,0,

for 0 < ε ≤ 1. As for (9.33), if ε ∼ 2−j , we have

‖
(
1 − φ(εD)

)
f‖L∞ ≤

∑

ℓ≥j

‖ψℓ(D)f‖L∞ ≤ C
∑

ℓ≥j

2−ℓs‖f‖Cs
∗
,
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and since
∑

ℓ≥j 2−ℓs ≤ Cs2
−js for s > 0, (9.33) follows.

Using this, we easily derive the following conclusion:

Proposition 9.9. If p(x, ξ) ∈ Cr
∗Sm

1,0, then, in the decomposition (9.27),

(9.34) p#(x, ξ) ∈ Sm
1,δ

and

(9.35) pb(x, ξ) ∈ Cr
∗Sm−rδ

1,δ .

Proof. The estimate (9.31) yields

(9.36) ‖Dβ
xDα

ξ p#(·, ξ)‖Cr
∗
≤ Cαβ〈ξ〉m−|α|+δ|β|,

which implies (9.34).
That pb(x, ξ) satisfies an estimate of the form (9.2), with m replaced by

m − rδ, follows from (9.32), with t = 0. That it satisfies (9.1), with m
replaced by m − rδ, is a consequence of the estimate (9.33).

It will also be useful to smooth out a symbol p(x, ξ) ∈ Cr
∗Sm

1,δ, for δ ∈
(0, 1). Pick γ ∈ (δ, 1), and apply (9.28), with εj = 2−j(γ−δ), obtaining
p#(x, ξ) and hence a decomposition of the form (9.27). In this case, we
obtain

(9.37) p(x, ξ) ∈ Cr
∗Sm

1,δ =⇒ p#(x, ξ) ∈ Sm
1,γ , pb(x, ξ) ∈ Cr

∗S
m−(γ−δ)r
1,γ .

We use the symbol decomposition (9.27) to establish the following variant
of Theorem 9.1, which will be most useful in Chapter 14.

Proposition 9.10. If δ ∈ [0, 1) and p(x, ξ) ∈ Cr
∗Sm

1,δ, then

(9.38)
p(x,D) : Hs+m,p −→ Hs,p,

p(x,D) : Cs+m
∗ −→ Cs

∗ ,

provided p ∈ (1,∞) and

(9.39) −(1 − δ)r < s < r.

Proof. The result follows directly from Theorem 9.1 if 0 < s < r, so
it remains to consider s ∈

(
−(1 − δ)r, 0

]
. Use the decomposition (9.27),

p = p# +pb, with (9.37) holding. Thus p#(x,D) has the mapping property
(9.38) for all s ∈ R. Applying Theorem 9.1 to pb(x,D) yields mapping
properties such as

pb(x,D) : Hσ+m−(γ−δ)r,p −→ Hσ,p, σ > 0,
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or, setting s = σ − (γ − δ)r,

pb(x,D) : Hs+m,p −→ Hs+(γ−δ)r,p ⊂ Hs,p, s > −(γ − δ)r,

and similar results on Cs+m
∗ . Then letting γ ր 1 completes the proof of

(9.38).

Recall that, for r ∈ (0,∞), we have defined p(x, ξ) to belong to the space
Cr

∗Sm
1,δ(R

n) provided the estimates (9.1) and (9.2) hold. If r ∈ [0,∞),
we will say that p(x, ξ) ∈ CrSm

1,δ(R
n) provided that (9.1)–(9.2) hold and,

additionally,

(9.40) ‖Dα
ξ p(·, ξ)‖Cj(Rn) ≤ Cα 〈ξ〉m−|α|+jδ, 0 ≤ j ≤ r, j ∈ Z.

In particular, we make a semantic distinction between Cr
∗Sm

1,δ and CrSm
1,δ

even when r /∈ Z
+, in which cases Cr

∗ and Cr coincide. The differences
between the two symbol classes are minor, especially when r /∈ Z, but
natural examples of symbols often do have this additional property, and
we sometimes use the symbol classes just defined to record this fact.

Exercises

1. Young’s inequality implies

‖f ∗ g‖ℓq ≤ ‖f‖ℓ1 ‖g‖ℓq ,

where f = (fj), g = (gj), and (f ∗ g)j =
P

k fj−kgk. Show how this applies
(with q = 2) to the estimate of (9.17).

2. Supplement Lemma 9.8 with the estimates

(9.41)
‖Dβ

xJεf‖L∞ ≤ C‖f‖Cs , |β| ≤ s,

Cε−(|β|−s) ‖f‖Cs
∗
, |β| > s,

given s > 0.
3. Show that if p(x, ξ) ∈ Cr

∗Sm
1,0 has the decomposition (9.27), then

(9.42)
Dβ

xp#(x, ξ) ∈ Sm
1,δ, for |β| < r,

S
m+δ(|β|−r)
1,δ , for |β| > r.

4. Strengthen part of Proposition 9.10 to obtain, for δ ∈ [0, 1), r > 0,

(9.43) p(x, ξ) ∈ Cr
∗Sm

1,δ =⇒ p(x, D) : Cs+m
∗ −→ Cs

∗ , for − (1 − δ)r < s ≤ r.

(Hint: Apply Proposition 9.7 to pb(x, D), arising in (9.37).)
5. Given s ∈ R, 1 ≤ p, q ≤ ∞, we say f ∈ S ′(Rn) belongs to the Triebel space

F s
p,q(R

n) provided

(9.44) ‖f‖F s
p,q

=
‚‚‚{2jsψj(D)f}

‚‚‚
Lp(Rn,ℓq)

< ∞,

where {ψj} is the partition of unity (9.9). Note that F s
p,2 = Hs,p if 1 < p < ∞,

by Lemma 9.4. Also, we say that f ∈ S ′(Rn) belongs to the Besov space
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Bs
p,q(R

n) provided

(9.45) ‖f‖Bs
p,q

=
‚‚‚{2jsψj(D)f}

‚‚‚
ℓq(Lp(Rn))

< ∞.

Note that Bs
∞,∞ = Cs

∗ . Also, Bs
2,2 = Hs, since ℓ2(L2(Rn)) = L2(Rn, ℓ2).

Extend Theorem 9.1 to results of the form

p(x, D) : F s+m
p,q → F s

p,q, p(x, D) : Bs+m
p,q → Bs

p,q.

(See [Ma1].)
6. We define the symbol class Cr

∗Sm
cl to consist of p(x, ξ) ∈ Cr

∗Sm
1,0 such that

(9.46) p(x, ξ) ∼
X

j≥0

pj(x, ξ)

where pj(x, ξ) ∈ Cr
∗Sm

1,0 is homogeneous of degree m − j in ξ, for |ξ| ≥ 1,
and (9.46) means that the difference between the left side and the sum over
0 ≤ j < N belongs to Cr

∗Sm−N
1,0 . If r ∈ R

+ \ Z
+, we also denote the symbol

class by CrSm
cl . Show that estimates of the form (9.3) and (9.4) have simpler

proofs in this case, derived from expansions of the form

(9.47) pj(x, ξ) =
X

ν

pjν(x)|ξ|m−jων

“
|ξ|−1ξ

”
,

for |ξ| ≥ 1, where {ων} is an orthonormal basis of L2(Sn−1) consisting of
eigenfunctions of the Laplace operator.

10. Paradifferential operators

Here we develop the paradifferential operator calculus, introduced by J.-
M. Bony in [Bon]. We begin with Y. Meyer’s ingenious formula for F (u) as
M(x,D)u+R where F is smooth in its argument(s), u belongs to a Hölder
or Sobolev space, M(x,D) is a pseudodifferential operator of type (1, 1),
and R is smooth. From there, one applies symbol smoothing to M(x, ξ)
and makes use of results established in §9.

Following [Mey], we discuss the connection between F (u), for smooth
nonlinear F , and the action on u of certain pseudodifferential operators of
type (1, 1). Let ψj(ξ) = ϕj(ξ)

2 be the Littlewood-Paley partition of unity
(5.37), and set Ψk(ξ) =

∑
j≤k ψj(ξ). Given u (e.g., in Cr(Rn)), set

(10.1) uk = Ψk(D)u,

and write

(10.2) F (u) = F (u0) + [F (u1) − F (u0)] + · · · + [F (uk+1) − F (uk)] + · · · .

Then write

(10.3)
F (uk+1) − F (uk) = F

(
uk + ψk+1(D)u

)
− F (uk)

= mk(x)ψk+1(D)u,
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where

(10.4) mk(x) =

∫ 1

0

F ′
(
Ψk(D)u + tψk+1(D)u

)
dt.

Consequently, we have

(10.5)
F (u) = F (u0) +

∞∑

k=0

mk(x)ψk+1(D)u

= M(x,D)u + F (u0),

where

(10.6) M(x, ξ) =

∞∑

k=0

mk(x)ψk+1(ξ) = MF (u;x, ξ).

We claim

(10.7) M(x, ξ) ∈ S0
1,1,

provided u is continuous. To estimate M(x, ξ), note first that by (10.4)

(10.8) ‖mk‖L∞ ≤ sup |F ′(λ)|.
To estimate higher derivatives, we use the elementary estimate

(10.9) ‖Dℓg(h)‖L∞ ≤ C
∑

ℓ1+···+ℓν≤ℓ

‖g′‖Cν−1‖Dℓ1h‖L∞ · · · ‖Dℓν h‖L∞

to obtain

(10.10) ‖Dℓ
xmk‖L∞ ≤ Cℓ‖F ′′‖Cℓ−1〈‖u‖L∞〉ℓ−1 · 2kℓ,

granted the following estimates, which hold for all u ∈ L∞:

(10.11) ‖Ψk(D)u + tψk+1(D)u‖L∞ ≤ C‖u‖L∞

and

(10.12) ‖Dℓ[Ψk(D)u + tψk+1(D)u]‖L∞ ≤ Cℓ2
kℓ‖u‖L∞

for t ∈ [0, 1]. Consequently, (10.6) yields

(10.13) |Dα
ξ M(x, ξ)| ≤ Cα sup

λ
|F ′(λ)|〈ξ〉−|α|

and, for |β| ≥ 1,

(10.14) |Dβ
xDα

ξ M(x, ξ)| ≤ Cαβ‖F ′′‖C|β|−1〈‖u‖L∞〉|β|−1〈ξ〉|β|−|α|.

We give a formal statement of the result just established.

Proposition 10.1. If F is C∞ and u ∈ Cr with r ≥ 0, then

(10.15) F (u) = MF (u;x,D)u + R(u),
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where

R(u) = F (ψ0(D)u) ∈ C∞

and

(10.16) MF (u;x, ξ) = M(x, ξ) ∈ S0
1,1.

Following [Bon] and [Mey], we call MF (u;x,D) a paradifferential operator.

Applying Theorem 9.1, we have

(10.17) ‖M(x,D)f‖Hs,p ≤ K‖f‖Hs,p ,

for p ∈ (1,∞), s > 0, with

(10.18) K = KN (F, u) = C‖F ′‖CN [1 + ‖u‖N
L∞ ],

provided 0 < s < N , and similarly

(10.19) ‖M(x,D)f‖Cs
∗
≤ K‖f‖Cs

∗
.

Using f = u, we have the following important Moser-type estimates, ex-
tending Proposition 3.9:

Proposition 10.2. If F is smooth with ‖F ′‖CN (R) < ∞, and 0 < s < N ,
then

(10.20) ‖F (u)‖Hs,p ≤ KN (F, u)‖u‖Hs,p + ‖R(u)‖Hs,p

and

(10.21) ‖F (u)‖Cs
∗
≤ KN (F, u)‖u‖Cs

∗
+ ‖R(u)‖Cs

∗
,

given 1 < p < ∞, with KN (F, u) as in (10.18).

This expression for KN (F, u) involves the L∞-norm of u, and one can
use ‖F ′‖CN (I), where I contains the range of u. Note that if F (u) = u2,
then F ′(u) = 2u, and higher powers of ‖u‖L∞ do not arise; hence we obtain
the estimate

(10.22) ‖u2‖Hs,p ≤ Cs‖u‖L∞ · ‖u‖Hs,p , s > 0,

and a similar estimate on ‖u2‖Cs
∗
.

It will be useful to have further estimates on the symbol M(x, ξ) =
MF (u;x, ξ) when u ∈ Cr with r > 0. The estimate (10.12) extends to

(10.23)

∥∥Dℓ
[
Ψk(D)f + tψk+1(D)f

]∥∥
L∞ ≤ Cℓ‖f‖Cr , ℓ ≤ r,

Cℓ2
k(ℓ−r)‖f‖Cr , ℓ > r,
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so we have, when u ∈ Cr,

(10.24)
|Dβ

xDα
ξ M(x, ξ)| ≤ Kαβ〈ξ〉−|α|, |β| ≤ r,

Kαβ〈ξ〉−|α|+|β|−r, |β| > r,

with

(10.25) Kαβ = Kαβ(F, u) = Cαβ‖F ′‖C|β| [1 + ‖u‖|β|Cr ].

Also, since Ψk(D) + tψk+1(D) is uniformly bounded on Cr, for t ∈ [0, 1]
and k ≥ 0, we have

(10.26) ‖Dα
ξ M(·, ξ)‖Cr ≤ Kαr〈ξ〉−|α|,

where Kαr is as in (10.25), with |β| = [r] + 1. This last estimate shows
that

(10.27) u ∈ Cr =⇒ MF (u;x, ξ) ∈ CrS0
1,0.

This is useful additional information; for example, (10.17) and (10.19) hold
for s > −r, and of course we can apply the symbol smoothing of §9.

It will be useful to have terminology expressing the structure of the
symbols we produce. Given r ≥ 0, we say

(10.28)
p(x, ξ) ∈ ArSm

1,δ ⇐⇒ ‖Dα
ξ p(·, ξ)‖Cr ≤ Cα〈ξ〉m−|α| and

|Dβ
xDα

ξ p(x, ξ)| ≤ Cαβ〈ξ〉m−|α|+δ(|β|−r), |β| > r.

Thus (10.24)–(10.26) yield

(10.29) M(x, ξ) ∈ ArS0
1,1

for the M(x, ξ) of Proposition 10.1. If r ∈ R
+ \ Z

+, the class ArSm
1,1

coincides with the symbol class denoted by Am
r by Meyer [Mey]. Clearly,

A0Sm
1,δ = Sm

1,δ, and

ArSm
1,δ ⊂ CrSm

1,0 ∩ Sm
1,δ.

Also, from the definition we see that

(10.30)
p(x, ξ) ∈ ArSm

1,δ =⇒ Dβ
xp(x, ξ) ∈ Sm

1,δ, for |β| ≤ r,

S
m+δ(|β|−r)
1,δ , for |β| ≥ r.

It is also natural to consider a slightly smaller symbol class:

(10.31) p(x, ξ) ∈ Ar
0S

m
1,δ ⇐⇒ ‖Dα

ξ p(·, ξ)‖Cr+s ≤ Cαs〈ξ〉m−|α|+δs, s ≥ 0.

Considering the cases s = 0 and s = |β| − r, we see that

Ar
0S

m
1,δ ⊂ ArSm

1,δ.

We also say

(10.32) p(x, ξ) ∈ rSm
1,δ ⇐⇒ the right side of (10.30) holds,



60 13. Function Space and Operator Theory for Nonlinear Analysis

so

ArSm
1,δ ⊂ rSm

1,δ.

The following result refines (10.29).

Proposition 10.3. For the symbol M(x, ξ) = MF (u;x, ξ) of Proposition
10.1, we have

(10.33) M(x, ξ) ∈ Ar
0S

0
1,1,

provided u ∈ Cr, r ≥ 0.

Proof. For this, we need

(10.34) ‖mk‖Cr+s ≤ C · 2ks.

Now, extending (10.9), we have

(10.35) ‖g(h)‖Cr+s ≤ C‖g‖CN [1 + ‖h‖N
L∞ ](‖h‖Cr+s + 1),

with N = [r + s] + 1, as a consequence of (10.21) when r + s is not an
integer, and by (10.9) when it is. This gives, via (10.4),

(10.36) ‖mk‖Cr+s ≤ C(‖u‖L∞) sup
t∈I

‖(Ψk + tψk+1)u‖Cr+s ,

where I = [0, 1]. However,

(10.37) ‖(Ψk + tψk+1)u‖Cr+s ≤ C · 2ks‖u‖Cr .

For r + s ∈ Z
+, this follows from (9.41); for r + s /∈ Z

+, it follows as in the
proof of Lemma 9.8, since

(10.38) 2−ksΛs(Ψk + tψk+1) is bounded in OPS0
1,0.

This establishes (10.34), and hence (10.33) is proved.

Returning to symbol smoothing, if we use the method of §9 to write

(10.39) M(x, ξ) = M#(x, ξ) + M b(x, ξ),

then (10.27) implies

(10.40) M#(x, ξ) ∈ Sm
1,δ, M b(x, ξ) ∈ CrSm−rδ

1,δ .

We now refine these results; for M# we have a general result:

Proposition 10.4. For the symbol decomposition defined by the formulas
(9.27)–(9.30),

(10.41) p(x, ξ) ∈ CrSm
1,0 =⇒ p#(x, ξ) ∈ Ar

0S
m
1,δ.
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Proof. This is a simple modification of (9.42) which essentially says that
p#(x, ξ) ∈ ArSm

1,δ; we simply supplement (9.41) with

(10.42) ‖Jεf‖Cr+s
∗

≤ C ε−s‖f‖Cr
∗
, s ≥ 0,

which is basically the same as (10.37).

To treat M b(x, ξ), we have, for δ ≤ γ,

(10.43) p(x, ξ) ∈ Ar
0S

m
1,γ =⇒ pb(x, ξ) ∈ CrSm−δr

1,δ ∩ Ar
0S

m
1,γ ⊂ Sm−δr

1,γ ,

where containment in CrSm−δr
1,δ follows from (9.35). To see the last inclu-

sion, note that for pb(x, ξ) to belong to the intersection above implies

(10.44)
‖Dα

ξ pb(·, ξ)‖Cs ≤ C〈ξ〉m−|α|−δr+δs, for 0 ≤ s ≤ r,

C〈ξ〉m−|α|+(s−r)γ , for s ≥ r.

In particular, these estimates imply pb(x, ξ) ∈ Sm−rδ
1,γ . This proves the

following:

Proposition 10.5. For the symbol M(x, ξ) = MF (u;x, ξ) with decompo-
sition (10.39),

(10.45) u ∈ Cr =⇒ M b(x, ξ) ∈ S−rδ
1,1 .

Results discussed above extend easily to the case of a function F of
several variables, say u = (u1, . . . , uL). Directly extending (10.2)–(10.6),
we have

(10.46) F (u) =

L∑

j=1

Mj(x,D)uj + F (Ψ0(D)u),

with

(10.47) Mj(x, ξ) =
∑

k

mj
k(x)ψk+1(ξ),

where

(10.48) mj
k(x) =

∫ 1

0

(∂jF )
(
Ψk(D)u + tψk+1(D)u

)
dt.

Clearly, the results established above apply to the Mj(x, ξ) here; for exam-
ple,

(10.49) u ∈ Cr =⇒ Mj(x, ξ) ∈ Ar
0S

m
1,1.

In the particular case F (u, v) = uv, we obtain

(10.50) uv = A(u;x,D)v + A(v;x,D)u + Ψ0(D)u · Ψ0(D)v,
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where

(10.51) A(u;x, ξ) =

∞∑

k=1

[
Ψk(D)u +

1

2
ψk+1(D)u

]
ψk+1(ξ).

Since this symbol belongs to S0
1,1 for u ∈ L∞, we obtain the following

extension of (10.22), which generalizes the Moser estimate (3.21):

Corollary 10.6. For s > 0, 1 < p < ∞, we have

(10.52) ‖uv‖Hs,p ≤ C
[
‖u‖L∞‖v‖Hs,p + ‖u‖Hs,p‖v‖L∞

]
.

We now analyze a nonlinear differential operator in terms of a paradiffer-
ential operator. If F is smooth in its arguments, in analogy with (10.46)–
(10.48) we have

(10.53) F (x,Dmu) =
∑

|α|≤m

Mα(x,D)Dαu + F (x,DmΨ0(D)u),

where F (x,DmΨ0(D)u) ∈ C∞ and

(10.54) Mα(x, ξ) =
∑

k

mα
k (x)ψk+1(ξ),

with

(10.55) mα
k (x) =

∫ 1

0

(∂F/∂ζα)
(
Ψk(D)Dmu + tψk+1(D)Dmu

)
dt.

As in Propositions 10.1 and 10.3, we have, for r ≥ 0,

(10.56) u ∈ Cm+r =⇒ Mα(x, ξ) ∈ Ar
0S

0
1,1 ⊂ S0

1,1 ∩ CrS0
1,0.

In other words, if we set

(10.57) M(u;x,D) =
∑

|α|≤m

Mα(x,D)Dα,

we obtain

Proposition 10.7. If u ∈ Cm+r, r ≥ 0, then

(10.58) F (x,Dmu) = M(u;x,D)u + R,

with R ∈ C∞ and

(10.59) M(u;x, ξ) ∈ Ar
0S

m
1,1 ⊂ Sm

1,1 ∩ CrSm
1,0.

As in Propositions 10.4 and 10.5, in this case symbol smoothing yields

(10.60) M(u;x, ξ) = M#(x, ξ) + M b(x, ξ),
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with

(10.61) M#(x, ξ) ∈ Ar
0S

m
1,δ, M b(x, ξ) ∈ Sm−rδ

1,1 .

A specific choice for symbol smoothing which leads to paradifferential
operators of [Bon] and [Mey] is the following operation on M(x, ξ):

(10.62) M#(x, ξ) =
∑

k

Ψk−5M(x, ξ) ψk(ξ),

where, as in (9.28), Ψk−5 acts on M(x, ξ) as a function of x. We use
Ψk−5 = Ψk−5(D), with Ψℓ(ξ) =

∑
j≤ℓ ψj(ξ). We have

(10.63) M(x, ξ) ∈ L∞Sm
1,0 =⇒ M#(x, ξ) ∈ BρS

m
1,1,

with ρ = 1/16, where we define BρS
m
1,1 for ρ < 1 to be

(10.64) BρS
m
1,1 = {b(x, ξ) ∈ Sm

1,1 : b̂(η, ξ) supported in |η| ≤ ρ|ξ|},

and where b̂(η, ξ) =
∫

b(x, ξ)e−iη·x dx. Set BSm
1,1 = ∪ρ<1BρS

m
1,1.

Most of the applications of the material of this section made in the
following chapters of this book will involve symbol smoothing, (10.60)–
(10.61), with δ < 1. However, we will establish some basic results on
operator calculus for symbols of the form (10.64).

We will analyze products a(x,D)b(x,D) = p(x,D) when we are given
a(x, ξ) ∈ Sµ

1,1(R
n) and b(x, ξ) ∈ BSm

1,1(R
n). We are particularly interested

in estimating the remainder rν(x, ξ), arising in

(10.65) a(x,D)b(x,D) = pν(x,D) + rν(x,D),

where

(10.66) pν(x, ξ) =
∑

|α|≤ν

i−|α|

α!
∂α

ξ a(x, ξ) · ∂α
x b(x, ξ).

Proposition 10.8 below is a variant of results of [Bon] and [Mey], established
in [AT].

To begin the analysis, we have the formula

(10.67) rν(x, ξ) =
1

(2π)n

∫ [
a(x, ξ+η)−

∑

|α|≤ν

ηα

α!
∂α

ξ a(x, ξ)
]
eix·η b̂(η, ξ) dη.

Write

(10.68) rν(x, ξ) =
∑

j≥0

rνj(x, ξ),

with

(10.69)

rνj(x, ξ) =

∫
Âνj(x, ξ, η)B̂j(x, ξ, η) dη

=

∫
Aνj(x, ξ, y)Bj(x, ξ,−y) dy,



64 13. Function Space and Operator Theory for Nonlinear Analysis

where the terms in these integrands are defined as follows. Pick ϑ > 1,
and take a Littlewood-Paley partition of unity {ϕ2

j : j ≥ 0}, such that
ϕ0(η) is supported in |η| ≤ 1, while for j ≥ 1, ϕj(η) is supported in
ϑj−1 ≤ |η| ≤ ϑj+1. Then we set

(10.70)
Âνj(x, ξ, η) =

1

(2π)n

[
a(x, ξ + η) −

∑

|α|≤ν

ηα

α!
∂α

ξ a(x, ξ)
]
ϕj(η),

B̂j(x, ξ, η) = b̂(η, ξ)ϕj(η)eix·η.

Note that

(10.71) Bj(x, ξ, y) = ϕj(Dy)b(x + y, ξ).

Thus

(10.72) ‖Bj(x, ξ, ·)‖L∞ ≤ Cϑ−rj‖b(·, ξ)‖Cr
∗
.

Also,

(10.73) supp b̂(η, ξ) ⊂ {|η| < ρ|ξ|} =⇒ Bj(x, ξ, y) = 0, for ϑj−1 ≥ ρ|ξ|.
We next estimate the L1-norm of Aνj(x, ξ, ·). Now, by a standard proof

of Sobolev’s imbedding theorem, given K > n/2, we have

(10.74) ‖Aνj(x, ξ, ·)‖L1 ≤ C‖ΓjÂνj(x, ξ, ·)‖HK ,

where Γjf(η) = f(ϑjη), so ΓjÂνj is supported in |η| ≤ ϑ. Let us use the
integral formula for the remainder term in the power-series expansion to
write

Âνj(x, ξ, ϑjη) =

(10.75)

ϕj(ϑ
jη)

(2π)n

∑

|α|=ν+1

ν + 1

α!

(∫ 1

0

(1 − s)ν+1∂α
ξ a(x, ξ + sϑjη) ds

)
ϑj|α|ηα.

Since |η| ≤ ϑ on the support of ΓjÂνj , if also ϑj−1 < ρ|ξ|, then |ϑjη| <
ρϑ2|ξ|. Now, given ρ ∈ (0, 1), choose ϑ > 1 such that ρϑ3 < 1. This implies
〈ξ〉 ∼ 〈ξ + sϑjη〉, for all s ∈ [0, 1]. We deduce that the hypothesis

(10.76) |∂α
ξ a(x, ξ)| ≤ Cα〈ξ〉µ2−|α|, for |α| ≥ ν + 1,

implies

(10.77) ‖Aνj(x, ξ, ·)‖L1 ≤ Cνϑj(ν+1)〈ξ〉µ2−ν−1, for ϑj−1 < ρ|ξ|.
Now, when (10.72) and (10.77) hold, we have

(10.78) |rνj(x, ξ)| ≤ Cνϑj(ν+1−r)〈ξ〉µ2−ν−1‖b(·, ξ)‖Cr
∗
,

and if (10.73) also applies, we have

(10.79) |rν(x, ξ)| ≤ Cν〈ξ〉µ2−r‖b(·, ξ)‖Cr
∗

if ν + 1 > r,
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since
∑

ϑj−1<ρ|ξ|

ϑj(ν+1−r) ≤ C|ξ|ν+1−r

in such a case.
To estimate derivatives of rν(x, ξ), we can write

Dβ
xDγ

ξ rνj(x, ξ) =

(10.80)

∑

β1+β2=β

∑

γ1+γ2=γ

(
β

β1

)(
γ

γ1

)∫
Dβ1

x Dγ1

ξ Aνj(x, ξ, y) · Dβ2
x Dγ2

ξ Bj(x, ξ,−y) dy.

Now Dβ1
x Dγ1

ξ Aνj(x, ξ, y) is produced just like Aνj(x, ξ, y), with the symbol
a(x, ξ) replaced by Dβ1

x Dγ1

ξ a(x, ξ), and Dβ2
x Dγ2

ξ Bj(x, ξ,−y) is produced
just like Bj(x, ξ,−y), with b(x, ξ) replaced by Dβ2

x Dγ2

ξ b(x, ξ). Thus, if we
strengthen the hypothesis (10.76) to

(10.81) |∂β
x ∂α

ξ a(x, ξ)| ≤ Cαβ〈ξ〉µ2−|α|+|β|, for |α| ≥ ν + 1,

we have

(10.82) ‖Dβ1
x Dγ1

ξ Aνj(x, ξ, ·)‖L1 ≤ Cνϑj(ν+1)〈ξ〉µ2−|γ1|+|β1|−ν−1,

for ϑj−1 < ρ|ξ|. Furthermore, extending (10.72), we have

(10.83) ‖Dβ2
x Dγ2

ξ Bj(x, ξ, ·)‖L∞ ≤ Cϑ(|β2|−r)j‖Dγ2

ξ b(·, ξ)‖Cr
∗
.

Now

(10.84)
∑

ϑj−1<ρ|ξ|

ϑj(ν+1+|β2|−r) ≤ C|ξ|ν+1+|β2|−r

if ν + 1 > r, so as long as (10.73) applies, (10.82) and (10.83) yield

(10.85) |Dβ
xDγ

ξ rν(x, ξ)| ≤ C
∑

γ1+γ2=γ

〈ξ〉µ2+|β|−|γ1|−r‖Dγ2

ξ b(·, ξ)‖Cr
∗

if ν + 1 > r. These estimates lead to the following result:

Proposition 10.8. Assume

(10.86) a(x, ξ) ∈ Sµ
1,1, b(x, ξ) ∈ BSm

1,1.

Then

(10.87) a(x,D)b(x,D) = p(x,D) ∈ OPSµ+m
1,1 .

Assume furthermore that

(10.88) |∂β
x ∂α

ξ a(x, ξ)| ≤ Cαβ〈ξ〉µ2−|α|+|β|, for |α| ≥ ν + 1,
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with µ2 ≤ µ, and that

(10.89) ‖Dα
ξ b(·, ξ)‖Cr

∗
≤ Cα〈ξ〉m2−|α|.

Then, if ν + 1 > r, we have (10.65)–(10.66), with

(10.90) rν(x,D) ∈ OPSµ2+m2−r
1,1 .

The following is a commonly encountered special case of Proposition
10.8.

Corollary 10.9. In Proposition 10.8, replace the hypothesis (10.89) by

(10.91) Dβ
xb(x, ξ) ∈ Sm2

1,1 , for |β| = K,

where K ∈ {1, 2, 3, . . . } is given. Then we have (10.65)–(10.66), with

(10.92) rν(x, ξ) ∈ OPSµ2+m2−K
1,1 if ν ≥ K.

Proof. The hypothesis (10.91) implies (10.89), with r = K.

We can also deduce from Proposition 10.8 that a(x,D)b(x,D) has a
complete asymptotic expansion if b(x, ξ) is a symbol of type (1, δ) with
δ < 1.

Corollary 10.10. If 0 ≤ δ < 1 and

(10.93) a(x, ξ) ∈ Sµ
1,1, b(x, ξ) ∈ Sm

1,δ,

then a(x,D)b(x,D) ∈ OPSµ+m
1,1 , and we have (10.65)–(10.66), with

(10.94) rν(x,D) ∈ OPS
µ+m−ν(1−δ)
1,1 .

Proof. Altering b(x, ξ) by an element of S−∞
1,0 , one can arrange that the

condition (10.73) on supp b̂(η, ξ) hold. Then, apply Corollary 10.9, with
m2 = m + Kδ, so m2 − K = m − K(1 − δ), and take K = ν.

Note that, under the hypotheses of Corollary 10.10,

(10.95)
∑

|α|=ν

1

α!
∂α

ξ a(x, ξ) · ∂α
x b(x, ξ) ∈ S

µ+m−ν(1−δ)
1,1 ,

so we actually have

(10.96) rν−1(x,D) ∈ OPS
µ+m−ν(1−δ)
1,1 .

The family ∪mOPBSm
1,1 does not form an algebra, but the following

result is a useful substitute:
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Proposition 10.11. If pj(x, ξ) ∈ Bρj
S

mj

1,1 and ρ = ρ1 + ρ2 + ρ1ρ2 < 1,
then

(10.97)
p1(x, ξ)p2(x, ξ) ∈ BρS

m1+m2
1,1 ,

p1(x,D)p2(x,D) ∈ OPBρS
m1+m2
1,1 .

Proof. The result for the symbol product is obvious; in fact, one can
replace ρ by ρ1 + ρ2. As for A(x,D) = p1(x,D)p2(x,D), we already have
from Proposition 10.8 that A(x, ξ) ∈ Sm1+m2

1,1 ; we merely need to check the

support of Â(η, ξ). We can do this using the formula

(10.98) Â(η, ξ) =

∫
p̂1(η − ζ, ξ + ζ)p̂2(ζ, ξ) dζ.

Note that given (η, ξ), if there exists ζ ∈ R
n such that p̂1(η − ζ, ξ + ζ) 6= 0

and p̂2(ζ, ξ) 6= 0, then

|η − ζ| ≤ ρ1|ξ + ζ|, |ζ| ≤ ρ2|ξ|,
so

|η| ≤ ρ1|ξ + ζ| + |ζ| ≤ ρ1|ξ| + ρ1|ζ| + ρ2|ξ| ≤ (ρ1 + ρ2 + ρ1ρ2)|ξ|.
This completes the proof.

Exercises

1. Prove the commutator property:

(10.99) [OPSµ, OPAr
0S

m
1,δ] ⊂ OPSm+µ−r

1,δ , 0 ≤ r < 1, 0 ≤ δ < 1.

2. Prove that, for 0 ≤ δ < 1,

(10.100) P ∈ OPAr
0S

m
1,δ =⇒ P ∗ ∈ OPAr

0S
m
1,δ.

(Hint: Use P (x, D)∗ = P ∗(x, D), with P ∗(x, ξ) ∼
P

Dα
x Dα

ξ p(x, ξ). Show that

p(x, ξ) ∈ Ar
0S

m
1,δ =⇒ Dα

x Dα
ξ p(x, ξ) ∈ Ar

0S
m−(1−δ)|α|
1,δ .)

3. Show that

(10.101)
X

|α|≤m

aα(x, Dm−1u)Dαu = M(u; x, D)u + R,

where R ∈ C∞ and, for 0 < r < 1,

(10.102) u ∈ Cm−1+r =⇒ M(u; x, ξ) ∈ Ar
0S

m
1,1 + Sm−r

1,1 .

Deduce that you can write

(10.103) M(u; x, ξ) = M#(x, ξ) + Mb(x, ξ),

with

(10.104) M#(x, ξ) ∈ Ar
0S

m
1,δ, Mb(x, ξ) ∈ Sm−rδ

1,1 .
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Note that the hypothesis on u is weaker than in Proposition 10.7.
4. The estimate (10.9) follows from the formula

Dαg(h) =
X

α1+···+αν=α

C(α1, . . . , αν)h(α1) · · ·h(αν)g(ν)(h),

which is a consequence of the chain rule. Show that the following Moser-type
estimate holds:

(10.105) ‖Dℓg(h)‖L∞ ≤ C
X

1≤ν≤ℓ

‖g′‖Cν−1‖h‖
ν−1
L∞ ‖Dℓh‖L∞ .

5. The paraproduct of J.-M. Bony [Bon] is defined by applying symbol smoothing
to the multiplication operator, Mfu = fu. One takes

(10.106) Tfu =
X

k

Ψk−5(D)f · ψk(D)u,

where, as in (10.62), Ψℓ(ξ) =
P

j≤ℓ ψj(ξ). Show that, with Tf = F (x, D),

(10.107) f ∈ L∞(Rn) =⇒ F (x, ξ) ∈ S0
1,1(R

n).

Show that, for any r ∈ R,
(10.108)

f ∈ Cr
∗(Rn) =⇒ |Dβ

xDα
ξ F (x, ξ)| ≤ Cαβ‖f‖Cr

∗
〈ξ〉−r−|α|+|β|, for |α| ≥ 1.

6. Using Propositions 10.8–10.11, show that if p(x, ξ) ∈ B1/2S
m
1,1, then

(10.109) f ∈ C0
∗ =⇒ [Tf , p(x, D)] ∈ OPBSm

1,1.

Applications of this are given in [AT].
7. Show that p(x, ξ) ∈ BSm

1,1 implies p(x, D)∗ ∈ OPSm
1,1, and, if ρ is sufficiently

small,

(10.110) p(x, ξ) ∈ BρSm
1,1 =⇒ p(x, D)∗ ∈ OPBSm

1,1.

8. Investigate properties of operators with symbols in

(10.111) BrSm
1,1 = BSm

1,1 ∩ Ar
0S

m
1,1.

11. Young measures and fuzzy functions

Limits in the weak∗ topology of sequences fj ∈ Lp(Ω) are often not well
behaved under the pointwise application of nonlinear functions. For exam-
ple,

(11.1) sin nx → 0 weak∗ in L∞
(
[0, π]

)
,

while

(11.2) sin2 nx → 1

2
weak∗ in L∞

(
[0, π]

)

(see Fig. 11.1). A fuzzy function is endowed with an extra piece of structure,
allowing for convergence under nonlinear mappings.
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Figure 11.1

Assume Ω is an open set in R
n. Given 1 ≤ p ≤ ∞, we define an element

of Y p(Ω) to be a pair (f, λ), where f ∈ Lp(Ω) and λ is a positive Borel
measure on Ω × R (R = [−∞,∞]), having the properties

(11.3) y ∈ Lp
(
Ω × R, dλ(x, y)

)
,

(so, in particular, Ω × {±∞} has measure zero),

(11.4) λ(E × R) = Ln(E),

for Borel sets E ⊂ Ω, where Ln is Lebesgue measure on Ω, and

(11.5)

∫∫

E×R

y dλ(x, y) =

∫

E

f(x) dx,

for each Borel set E ⊂ Ω. We can equivalently state (11.4) and (11.5) as

(11.6)

∫∫
ϕ(x) dλ(x, y) =

∫
ϕ(x) dx

and

(11.7)

∫∫
ϕ(x)y dλ(x, y) =

∫
ϕ(x)f(x) dx,

for ϕ ∈ C0(Ω), that is, for continuous and compactly supported ϕ.
Note that (11.5) implies

(11.8)

∫

E

|f(x)| dx ≤
∫∫

E×R

|y| dλ(x, y),

since we can write E = E1 ∪ E2 with f ≥ 0 on E1 and f < 0 on E2. If we
partition E into tiny sets, on each of which f is nearly constant, we obtain

(11.9)

∫

E

|f(x)|p dx ≤
∫∫

E×R

|y|p dλ(x, y).
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We say that (f, λ) is a fuzzy function, and λ is a Young measure, repre-
senting f .

A special case of such λ is γf , defined by

(11.10)

∫∫
ψ(x, y) dγf (x, y) =

∫
ψ

(
x, f(x)

)
dx,

for ψ ∈ C0(Ω × R). We say (f, γf ) is sharply defined.
Fuzzy functions arise as limits of sharply defined functions in the fol-

lowing sense. Suppose fj ∈ Lp(Ω), 1 < p ≤ ∞, and (f, λ) ∈ Y p(Ω). We
say

(11.11) fj → (f, λ) in Y p(Ω),

provided

(11.12) fj → f weak∗ in Lp(Ω)

and

(11.13) γfj
→ λ weak∗ in M(Ω × R),

and furthermore,

(11.14) ‖y‖Lp(Ω×R,dγfj
) ≤ C < ∞.

Actually, (11.12) is a consequence of (11.13) and (11.14), thanks to (11.9).
To take an example, if Ω = (0, π) and fn(x) = sin nx, as in (11.1), it is

easily seen that

(11.15) fn → (0, λ0) in Y ∞(Ω),

where

(11.16) dλ0(x, y) = χ[−1,1](y)
2 dx dy√

1 − y2
.

Also,

(11.17) f2
n →

(1

2
, λ1

)
in Y ∞(Ω),

where

(11.18) dλ1(x, y) = χ[0,1](y)
2 dx dy√
y(y − 1)

.

The following result illustrates the use of Y p(Ω) in controlling the be-
havior of nonlinear maps. We make rather restrictive hypotheses for this
first result, to keep the argument short and reveal its basic simplicity.

Proposition 11.1. Let Φ : R → R be continuous. If fj → (f, λ) in
Y ∞(Ω), then

(11.19) Φ(fj) → g weak∗ in L∞(Ω),
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where g ∈ L∞(Ω) is specified by

(11.20)

∫
g(x)ϕ(x) dx =

∫∫
Φ(y)ϕ(x) dλ(x, y), ϕ ∈ C0(Ω).

Proof. We need to check the behavior of
∫

Φ(fj)ϕ dx. Since Φ(fj) is
bounded in L∞(Ω), it suffices to take ϕ in C0(Ω), which is dense in L1(Ω).
Let I be a compact interval in (−∞,∞), containing the range of each
function Φ(fj). Now, for any ϕ ∈ C0(Ω),

(11.21)

∫

Ω

Φ(fj)ϕ dx =

∫∫

Ω×I

ϕ(x)Φ(y) dγfj
(x, y)

→
∫∫

Ω×I

ϕ(x)Φ(y) dλ(x, y),

since γfj
→ λ weak∗ in M(Ω × I). This proves the proposition.

Under the hypotheses of Proposition 11.1, we see that, more precisely
than (11.19),

(11.22) Φ(fj) → (g, ν) in Y ∞(Ω),

where g is given by (11.20) and ν is specified by

(11.23)

∫∫
ψ(x, y) dν(x, y) =

∫∫
ψ

(
x,Φ(y)

)
dλ(x, y), ψ ∈ C0(Ω × R).

Thus ν is the natural image of λ under the map Φ̃(x, y) =
(
x,Φ(y)

)
of

Ω × I → Ω × R. One often writes ν = Φ̃∗λ. The extra information carried
by (11.22) is that γΦ(fj) → ν, weak∗ in M(Ω × R), which follows from

(11.24)

∫∫
ψ(x, y) dγΦ(fj)(x, y) =

∫∫
ψ

(
x,Φ(y)

)
dγfj

(x, y)

→
∫∫

ψ
(
x,Φ(y)

)
dλ(x, y).

We can extend Proposition 11.1 and its refinement (11.22) to

(11.25) fj → (f, λ) in Y p(Ω) =⇒ Φ(fj) → (g, ν) in Y q(Ω),

with 1 < p, q < ∞, where g and ν are given by the same formulas as above,
provided that Φ : R → R is continuous and satisfies

(11.26) |Φ(y)| ≤ C|y|p/q.

We need this only for large |y| if Ω has finite measure.
This result suggests defining the action of Φ on a fuzzy function (f, λ)

by

(11.27) Φ(f, λ) = (g, ν),
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where g and ν are given by the formulas (11.20) and (11.23). Thus (11.22)
can be restated as

(11.28) fj → (f, λ) in Y ∞(Ω) =⇒ Φ(fj) → Φ(f, λ) in Y ∞(Ω).

It is now natural to extend the notion of convergence fj → (f, λ) in
Y p(Ω) to (fj , λj) → (f, λ) in Y p(Ω), provided all these objects belong to
Y p(Ω) and we have, parallel to (11.12)–(11.14),

fj → f weak∗ in Lp(Ω),(11.29)

λj → λ weak∗ in M(Ω × R),(11.30)

and

(11.31) ‖y‖Lp(Ω×R,dλj)
≤ C < ∞.

As before, (11.29) is actually a consequence of (11.30) and (11.31). Now
(11.28) is easily extended to

(11.32) (fj , λj) → (f, λ) in Y ∞(Ω) =⇒ Φ(fj , λj) → Φ(f, λ) in Y ∞(Ω),

for continuous Φ : R → R. There is a similar extension of (11.25), granted
the bound (11.26) on Φ(y).

We say that fj (or more generally (fj , λj)) converges sharply in Y p(Ω), if
it converges, in the sense defined above, to (f, λ) with λ = γf . It is of inter-
est to specify conditions under which we can guarantee sharp convergence.
We will establish some results in that direction a bit later.

When one has a fuzzy function (f, λ), it can be conceptually useful to
pass from the measure λ on Ω × R to a family of probability measures λx

on R, defined for a.e. x ∈ Ω. We discuss how this can be done. From (11.4)
we have

(11.33)
∣∣∣
∫∫

E×R

ψ(y) dλ(x, y)
∣∣∣ ≤ sup |ψ| Ln(E),

and hence

(11.34)
∣∣∣
∫∫

Ω×R

ϕ(x)ψ(y) dλ(x, y)
∣∣∣ ≤ sup |ψ| · ‖ϕ‖L1(Ω).

It follows that there is a linear transformation

(11.35) T : C(R) −→ L∞(Ω), ‖Tψ‖L∞(Ω) ≤ sup |ψ|,
such that

(11.36)

∫∫

Ω×R

ϕ(x)ψ(y) dλ(x, y) =

∫

Ω

ϕ(x)Tψ(x) dx.

Using the separability of C(R), we can deduce that there is a set S ⊂ Ω,
of Lebesgue measure zero, such that, for all ψ ∈ C(R), Tψ(x) is defined
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pointwise, for x ∈ Ω\S. Note that T is positivity preserving and T (1) = 1.
Thus for each x ∈ Ω \ S, there is a probability measure λx on R such that

(11.37) Tψ(x) =

∫

R

ψ(y) dλx(y).

Hence

(11.38)

∫∫

Ω×R

ϕ(x)ψ(y) dλ(x, y) =

∫

Ω

(∫

R

ϕ(x)ψ(y) dλx(y)

)
dx.

From this it follows that

(11.39)

∫∫

Ω×R

ψ(x, y) dλ(x, y) =

∫

Ω

(∫

R

ψ(x, y) dλx(y)

)
dx,

for any Borel-measurable function ψ that is either positive or integrable
with respect to dλ. Thus we can reformulate Proposition 11.1:

Corollary 11.2. If Φ : R → R is continuous and fj → (f, λ) in Y ∞(Ω),
then

(11.40) Φ(fj) → g weak∗ in L∞(Ω),

where

(11.41) g(x) =

∫

R

Φ(y) dλx(y), a.e. x ∈ Ω.

One key feature of the notion of convergence of a sequence of fuzzy
functions is that, while it is preserved under nonlinear maps, we also retain
the sort of compactness property that weak∗ convergence has.

Proposition 11.3. Let (fj , λj) ∈ Y ∞(Ω), and assume ‖fj‖L∞(Ω) ≤ M .
Then there exist (f, λ) ∈ Y ∞(Ω) and a subsequence (fjν

, λjν
) such that

(11.42) (fjν
, λjν

) −→ (f, λ).

Proof. The well-known weak∗ compactness (and metrizability) of {g ∈
L∞(Ω) : ‖g‖L∞ ≤ M} implies that one can pass to a subsequence (which
we continue to denote by (fj , λj)) such that fj → f weak∗ in L∞(Ω).

Each measure λj is supported on Ω×I, I = [−M,M ]. Now we exploit the
weak∗ compactness and metrizability of {µ ∈ M(K × I) : ‖µ‖ ≤ Ln(K)},
for each compact K ⊂ Ω, together with a standard diagonal argument, to
obtain a further subsequence such that λjν

→ λ weak∗ in M(Ω × I). The
identities (11.6) and (11.7) are preserved under passage to such a limit, so
the proposition is proved.
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So far we have dealt with real-valued fuzzy functions, but we can as easily
consider fuzzy functions with values in a finite-dimensional, normed vector
space V . We define Y p(Ω, V ) to consist of pairs (f, λ), where f ∈ Lp(Ω, V )
is a V -valued Lp function and λ is a positive Borel measure on Ω × V
(V = V plus the sphere S∞ at infinity), having the properties

(11.43) |y| ∈ Lp
(
Ω × V , dλ(x, y)

)
,

so in particular Ω × S∞ has measure zero,

(11.44) λ(E × V ) = Ln(E),

for Borel sets E ⊂ Ω, and

(11.45)

∫∫

E×V

y dλ(x, y) =

∫

E

f(x) dx ∈ V,

for each Borel set E ⊂ Ω.
All of the preceding results of this section extend painlessly to this case.

Instead of considering Φ : R → R, we take Φ : V1 → V2, where Vj are two
normed finite-dimensional vector spaces. This time, a Young measure λ
“disintegrates” into a family λx of probability measures on V .

There is a natural map

(11.46) & : Y ∞(Ω, V1) × Y ∞(Ω, V2) −→ Y ∞(Ω, V1 ⊕ V2)

defined by

(11.47) (f1, λ1)&(f2, λ2) = (f1 ⊕ f2, ν),

where, for a.e. x ∈ Ω, Borel Fj ⊂ Vj ,

(11.48) νx(F1 × F2) = λ1x(F1)λ2x(F2).

Using this, we can define an “addition” on elements of Y ∞(Ω, V ):

(11.49) (f1, λ1) + (f2, λ2) = S
(
(f1, λ1)&(f2, λ2)

)
,

where S : V ⊕ V → V is given by S(v, w) = v + w, and we extend S to
a map S : Y ∞(Ω, V ⊕ V ) → Y ∞(Ω, V ) by the same process as used in
(11.27).

Of course, multiplication by a scalar a ∈ R, Ma : V → V , induces
a map Ma on Y ∞(Ω, V ), so we have what one might call a “fuzzy linear
structure” on Y ∞(Ω, V ). It is not truly a linear structure since certain basic
requirements on vector space operations do not hold here. For example (in
the case V = R), (f, λ) ∈ Y ∞(Ω) has a natural “negative,” namely (−f, λ̌),
where λ̌(E) = λ(−E). However, (f, λ) + (−f, λ̌) 6= (0, γ0) unless (f, λ) is
sharply defined. Similarly, (f, λ) + (f, λ) 6= 2(f, λ) unless (f, λ) is sharply
defined, so the distributive law fails.

We now derive some conditions under which, for a given sequence uj →
(u, λ) in Y ∞(Ω) and a given nonlinear function F , we also have F (uj) →
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F (u) weak∗ in L∞(Ω), which is the same here as F (u) = F . The following
result is of the nature that weak∗ convergence of the dot product of the R

2-
valued functions

(
uj , F (uj)

)
with a certain family of R

2-valued functions
V (uj) to (u, F ) · V will imply F = F (u). The specific choice of V (uj) will
perhaps look curious; we will explain below how this choice arises.

Proposition 11.4. Suppose uj → (u, λ) in Y ∞(Ω), and let F : R → R be
C1. Suppose you know that

(11.50) ujq(uj) − F (uj)η(uj) −→ uq − Fη weak∗ in L∞(Ω),

for every convex function η : R → R, with q given by

(11.51) q(y) =

∫ y

c

η′(s)F ′(s) ds,

and where

(11.52) q(u, λ) = (q, ν1), F (u, λ) = (F , ν2), η(u, λ) = (η, ν3).

Then

(11.53) F (uj) → F (u) weak∗ in L∞(Ω).

Proof. It suffices to prove that F = F (u) a.e. on Ω. Now, applying
Corollary 11.2 to Φ(y) = yq(y)−F (y)η(y), we have the left side of (11.50)
converging weak∗ in L∞(Ω) to

v(x) =

∫ [
yq(y) − F (y)η(y)

]
dλx(y),

so the hypothesis (11.50) implies

v = uq − Fη, a.e. on Ω.

Rewrite this as

(11.54)

∫ {(
F (y)−F (x)

)
η(y)−

(
u(x)−y

)
q(y)

}
dλx(y) = 0, a.e. x ∈ Ω.

Now we make the following special choices of functions η and q:

(11.55) ηa(y) = |y − a|, qa(y) = sgn(y − a)
(
F (y) − F (a)

)
.

We use these in (11.54), with a = u(x), obtaining, after some cancellation,

(11.56)
(
F

(
u(x)

)
− F (x)

) ∫
|y − u(x)| dλx(y) = 0, a.e. x ∈ Ω.

Thus, for a.e. x ∈ Ω, either F (x) = F
(
u(x)

)
or λx = δu(x), which also

implies F (x) = F
(
u(x)

)
. The proof is complete.

Why is one motivated to work with such functions η(u) and q(u)? They
arise in the study of solutions to some nonlinear PDE on Ω ⊂ R

2. Let
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us use coordinates (t, x) on Ω. As long as u is a Lipschitz-continuous,
real-valued function on Ω, it follows from the chain rule that

(11.57) ut + F (u)x = 0 =⇒ η(u)t + q(u)x = 0,

provided q′(y) = η′(y)F ′(y), that is, q is given by (11.52). (For general
u ∈ L∞(Ω), the implication (11.57) does not hold.) Our next goal is to
establish the following:

Proposition 11.5. Assume uj ∈ L∞(Ω), of norm ≤ M < ∞. Assume
also that

(11.58) ∂tuj + ∂xF (uj) → 0 in H−1
loc (Ω)

and

(11.59) ∂tη(uj) + ∂xq(uj) precompact in H−1
loc (Ω),

for each convex function η : R → R, with q given by (11.51). If uj → u
weak∗ in L∞(Ω), then

(11.60) ∂tu + ∂xF (u) = 0.

Proof. By Proposition 11.3, passing to a subsequence, we have uj →
(u, λ) in Y ∞(Ω). Then, by Proposition 11.1, F (uj) → F , q(uj) → q, and
η(uj) → η weak∗ in L∞(Ω). Consider the vector-valued functions

(11.61) vj =
(
uj , F (uj)

)
, wj =

(
q(uj),−η(uj)

)
.

Thus vj → (u, F ), wj → (q,−η) weak∗ in L∞(Ω). The hypotheses (11.58)–
(11.59) are equivalent to

(11.62) div vj , rot wj precompact in H−1
loc (Ω).

Also, the hypothesis on ‖uj‖L∞ implies that vj and wj are bounded in
L∞(Ω), and a fortiori in L2

loc(Ω). The div-curl lemma hence implies that

(11.63) vj · wj → v · w in D′(Ω), v = (u, F ), w = (q,−η).

In view of the L∞-bounds, we hence have

(11.64) ujq(uj) − F (uj)η(uj) −→ uq − Fη weak∗ in L∞(Ω).

Since this is the hypothesis (11.50) of Proposition 11.4, we deduce that

(11.65) F (uj) −→ F (u) weak∗ in L∞(Ω).

Hence ∂tuj + ∂xF (uj) → ∂tu + ∂xF (u) in D′(Ω), so we have (11.60).

One of the most important cases leading to the situation dealt with in
Proposition 11.5 is the following; for ε ∈ (0, 1], consider the PDE

(11.66) ∂tuε + ∂xF (uε) = ε∂2
xuε on Ω = (0,∞) × R, uε(0) = f.
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Say f ∈ L∞(R). The unique solvability of (11.66), for t ∈ [0,∞), for each
ε > 0, will be established in Chapter 15, and results there imply

(11.67) uε ∈ C∞(Ω),

(11.68) ‖uε‖L∞(Ω) ≤ ‖f‖L∞ ,

and

(11.69) ε

∫ ∞

0

∫ ∞

−∞

(∂xuε)
2 dx dt ≤ 1

2
‖f‖2

L2 .

The last result implies that
√

ε∂xuε is bounded in L2(Ω). Hence ε∂2
xuε →

0 in H−1(Ω), as ε → 0. Thus, if uεj
is relabeled uj , with εj → 0, we have

hypothesis (11.58) of Proposition 11.5. We next check hypothesis (11.59).
Using the chain rule and (11.66), we have

(11.70) ∂tη(uε) + ∂xq(uε) = ε∂2
xη(uε) − εη′′(uε)(∂xuε)

2,

at least when η is C2 and q satisfies (11.52). Parallel to (11.69), we have

(11.71) ε

∫ T

0

∫
η′′(uε)(∂xuε)

2 dx dt =

∫
η
(
f(x)

)
dx−

∫
η
(
uε(T, x)

)
dx.

A simple approximation argument, taking smooth ηδ → η, shows that
whenever η is nonnegative and convex, C2 or not,

(11.72) ∂tη(uε) + ∂xq(uε) = ε∂2
xη(uε) − Rε,

with

(11.73) Rε bounded in M(Ω).

Since ∂xη(uε) = η′(uε)∂xuε, and any convex η is locally Lipschitz, we de-
duce from (11.68) and (11.69) that

√
ε∂xη(uε) is bounded in L2(Ω). Hence

(11.74) ε∂2
xη(uε) → 0 in H−1(Ω), as ε → 0.

We thus have certain bounds on the right side of (11.72), by (11.73)
and (11.74). Meanwhile, the left side of (11.72) is certainly bounded in
H−1,p

loc (Ω), ∀ p < ∞. This situation is treated by the following lemma of
F. Murat.

Lemma 11.6. Suppose F is bounded in H−1,p
loc (Ω), for some p > 2, and

F ⊂ G + H, where G is precompact in H−1
loc (Ω) and H is bounded in

Mloc(Ω). Then F is precompact in H−1
loc (Ω).

Proof. Multiplying by a cut-off χ ∈ C∞
0 (Ω), we reduce to the case where

all f ∈ F are supported in some compact K, and the decomposition f =
g + h, g ∈ G, h ∈ H also has g, h supported in K. Putting K in a box
and identifying opposite sides, we are reduced to establishing an analogue
of the lemma when Ω is replaced by T

n.
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Now Sobolev imbedding theorems imply

M(Tn) ⊂ H−s,q(Tn), s ∈ (0, n), q ∈
(
1,

n

n − s

)
.

Via Rellich’s compactness result (6.9), it follows that

(11.75) ι : M(Tn) →֒ H−1,q(Tn), compact ∀ q ∈
(
1,

n

n − 1

)
.

Hence H is precompact in H−1,q(Tn), for any q < n/(n − 1), so we have

(11.76) F precompact in H−1,q(Tn), bounded in H−1,p(Tn), p > 2.

By a simple interpolation argument, (11.76) implies that F is precompact
in H−1(Tn), so the lemma is proved.

We deduce that if the family {uε : 0 < ε ≤ 1} of solutions to (11.66)
satisfies (11.67)–(11.69), then

(11.77) ∂tη(uε) + ∂xq(uε) precompact in H−1
loc (Ω),

which is hypothesis (11.59) of Proposition 11.5. Therefore, we have the
following:

Proposition 11.7. Given solutions uε, 0 < ε ≤ 1 to (11.66), satisfying
(11.67)–(11.69), a weak∗ limit u in L∞(Ω), as ε = εj → 0, satisfies

(11.78) ∂tu + ∂xF (u) = 0.

The approach to the solvability of (11.78) used above is given in [Tar].
In Chapter 16, §6, we will obtain global existence results containing that
of Proposition 11.7, using different methods, involving uniform estimates
of ‖∂xuε(t)‖L1(R). On the other hand, in §9 of Chapter 16 we will make
use of techniques involving fuzzy functions and the div-curl lemma to es-
tablish some global solvability results for certain 2 × 2 hyperbolic systems
of conservation laws, following work of R. DiPerna [DiP].

The notion of fuzzy function suggests the following notion of a “fuzzy
solution” to a PDE, of the form

(11.79)
∑

j

∂

∂xj
Fj(u) = 0.

Namely, (u, λ) ∈ Y ∞(Ω) is a fuzzy solution to (11.79) if

(11.80)
∑

j

∂

∂xj
F j = 0 in D′(Ω), F j(x) =

∫
Fj(y) dλx(y).

This notion was introduced in [DiP], where (u, λ) is called a “measure-
valued solution” to (11.79). Given |Fj(y)| ≤ C〈y〉p, we can also consider
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the concept of a fuzzy solution (u, λ) ∈ Y p(Ω). Contrast the following
simple result with Proposition 11.5:

Proposition 11.8. Assume (uj , λj) ∈ Y ∞(Ω), ‖uj‖L∞ ≤ M , and (uj , λj)
→ (u, λ) in Y ∞(Ω). If

(11.81)
∑

k

∂kFk(uj) → 0 in D′(Ω),

as j → ∞, then u is a fuzzy solution to (11.79).

Proof. By Proposition 11.1, Fk(uj) → F k weak∗ in L∞(Ω). The result
follows immediately from this.

In [DiP] there are some results on when one can say that, when (u, λ) ∈
Y ∞(Ω) is a fuzzy solution to (11.79), then u ∈ L∞(Ω) is a weak solution
to (11.79), results that in particular lead to another proof of Proposition
11.7.

Exercises

1. If fj → (f, λ) in Y ∞(Ω), we say the convergence is sharp provided λ = γf .
Show that sharp convergence implies

fj → f in L2(Ω0),

for any Ω0 ⊂⊂ Ω.
(Hint: Sharp convergence implies |fj |

2 → |f |2 weak∗ in L∞(Ω). Thus fj → f
weakly in L2 and also ‖fj‖L2(Ω0) → ‖f‖L2(Ω0).)

2. Deduce that, given fj → (f, λ) in Y ∞(Ω), the convergence is sharp if and only
if, for some subsequence, fjν → f a.e. on Ω.

3. Given (f, λ) ∈ Y ∞(Ω) and the associated family of probability measures
λx, x ∈ Ω, as in (11.37)–(11.39), show that λ = γf if and only if, for a.e.
x ∈ Ω, λx is a point mass.

4. Complete the interpolation argument cited in the proof of Lemma 11.6. Show
that (with X = Λ−1(F)) if q < 2 < p,

X precompact in Lq(Tn), bounded in Lp(Tn) =⇒ X precompact in L2(Tn).

(Hint: If fn ∈ X, fn → f in Lq(Tn), use

‖fn − f‖L2 ≤ ‖fn − f‖α
Lq‖fn − f‖1−α

Lp .)

5. Extend various propositions of this section from Y ∞(Ω) to Y p(Ω), 1 < p ≤ ∞.

12. Hardy spaces

The Hardy space H1(Rn) is a subspace of L1(Rn) defined as follows. Set

(12.1) (Gf)(x) = sup
{
|ϕt ∗ f(x)| : ϕ ∈ F , t > 0

}
,
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where ϕt(x) = t−nϕ(x/t) and

(12.2) F =
{
ϕ ∈ C∞

0 (Rn) : ϕ(x) = 0 for |x| ≥ 1, ‖∇ϕ‖L∞ ≤ 1
}
.

This is called the grand maximal function of f . Then we define

(12.3) H1(Rn) = {f ∈ L1(Rn) : Gf ∈ L1(Rn)}.
A related (but slightly larger) space is h1(Rn), defined as follows. Set

(12.4) (Gbf)(x) = sup
{
|ϕt ∗ f(x)| : ϕ ∈ F , 0 < t ≤ 1

}
,

and define

(12.5) h1(Rn) = {f ∈ L1(Rn) : Gbf ∈ L1(Rn)}.
An important tool in the study of Hardy spaces is another maximal

function, the Hardy-Littlewood maximal function, defined by

(12.6) M(f)(x) = sup
r>0

1

vol(Br)

∫

Br(x)

|f(y)| dy.

The basic estimate on this maximal function is the following weak type-
(1,1) estimate:

Proposition 12.1. There is a constant C = C(n) such that, for any
λ > 0, f ∈ L1(Rn), we have the estimate

(12.7) meas
(
{x ∈ R

n : M(f)(x) > λ}
)
≤ C

λ
‖f‖L1 .

Note that the estimate

meas
(
{x ∈ R

n : |f(x)| > λ}
)
≤ 1

λ
‖f‖L1

follows by integrating the inequality |f | ≥ λχSλ
, where Sλ = {|f | > λ}.

To begin the proof of Proposition 12.1, let

(12.8) Fλ = {x ∈ R
n : Mf(x) > λ}.

We remark that, for any f ∈ L1(Rn) and any λ > 0, Fλ is open. Given
x ∈ Fλ, pick r = rx such that Ar|f |(x) > λ, and let Bx = Brx

(x). Thus
{Bx : x ∈ Fλ} is a covering of Fλ by balls. We will be able to obtain the
estimate (12.7) from the following “covering lemma,” due to N. Wiener.

Lemma 12.2. If C = {Bα : α ∈ A} is a collection of open balls in R
n,

with union U , and if m0 < meas(U), then there is a finite collection of
disjoint balls Bj ∈ C, 1 ≤ j ≤ K, such that

(12.9)
∑

meas(Bj) > 3−nm0.
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We show how the lemma allows us to prove (12.7). In this case, let

C = {
◦

Bx : x ∈ Fλ}. Thus, if m0 < meas(Fλ), there exist disjoint balls

Bj =
◦

Brj
(xj) such that meas(∪Bj) > 3−nm0. This implies

(12.10) m0 < 3n
∑

meas(Bj) ≤
3n

λ

∑ ∫

Bj

|f(x)| dx ≤ 3n

λ

∫
|f(x)| dx,

for all m0 < meas(Fλ), which yields (12.7), with C = 3n.
We now turn to the proof of Lemma 12.2. We can pick a compact K ⊂ U

such that m(K) > m0. Then the covering C yields a finite covering of K, say
A1, . . . , AN . Let B1 be the ball Aj of the largest radius. Throw out all Aℓ

that meet B1, and let B2 be the remaining ball of largest radius. Continue
until {A1, . . . , AN} is exhausted. One gets disjoint balls B1, . . . , BK in C.
Now each Aj meets some Bℓ, having the property that the radius of Bℓ is
≥ the radius of Aj . Thus, if B̂j is the ball concentric with Bj , with 3 times
the radius, we have

K⋃

j=1

B̂j ⊃
N⋃

ℓ=1

Aℓ ⊃ K.

This yields (12.9).
Note that clearly

(12.11) f ∈ L∞(Rn) =⇒ ‖M(f)‖L∞ ≤ ‖f‖L∞ .

Now the method of proof of the Marcinkiewicz interpolation theorem,
Proposition 5.4, yields the following.

Corollary 12.3. If 1 < p < ∞, then

(12.12) ‖M(f)‖Lp ≤ Cp‖f‖Lp .

Our first result on Hardy spaces is the following, relating h1(Rn) to the
smaller space H1(Rn).

Proposition 12.4. If u ∈ h1(Rn) has compact support and
∫

u(x) dx = 0,
then u ∈ H1(Rn).

Proof. It suffices to show that

(12.13) v(x) = sup{|ϕt ∗ u(x)| : ϕ ∈ F , t ≥ 1}
belongs to L1(Rn). Clearly, v is bounded. Also, if supp u ⊂ {|x| ≤ R},
then we can write u =

∑
∂juj , uj ∈ L1(BR). Then

(12.14)

ϕt ∗ u(x) =
∑

j

t−1ψjt ∗ uj(x), ψjt(x) = t−nψj(t
−1x), ψj(x) = ∂jϕ(x).
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If |x| = R + 1 + ρ, then ψjt ∗ uj(x) = 0 for t < ρ, so

(12.15) v(x) ≤ Cρ−1
∑

j

M(uj)(x).

The weak (1,1) bound (12.7) on M now readily yields an L1-bound on
v(x).

One advantage of h1(Rn) is its localizability. We have the following useful
result:

Proposition 12.5. If r > 0 and g ∈ Cr(Rn) has compact support, then

(12.16) u ∈ h1(Rn) =⇒ gu ∈ h1(Rn).

Proof. If g ∈ Cr and 0 < r ≤ 1, we have, for all ϕ ∈ F ,

(12.17)
∣∣ϕt ∗ (gu)(x) − g(x)ϕt ∗ u(x)

∣∣ ≤ Ctr−n

∫

Bt(x)

|u(y)| dy.

Hence it suffices to show that

(12.18) v(x) = sup
0<t≤1

tr−n

∫

Bt(x)

|u(y)| dy

belongs to L1(Rn). Since

(12.19) v(x) ≤
∫

χ(x − y)

|x − y|n−r
|u(y)| dy,

where χ(x) is the characteristic function of {|x| ≤ 1}, this is clear.

Given Ω ⊂ R
n open, u ∈ L1

loc(Ω), we say

(12.20) u ∈ H1
loc(Ω) ⇐⇒ gu ∈ h1(Rn), ∀ g ∈ C∞

0 (Ω).

This is equivalent to the statement that, for any compact K ⊂ Ω, there
is a v ∈ H1(Rn) such that u = v on a neighborhood of K. To see this,
note that if u ∈ H1

loc(Ω) and g ∈ C∞
0 (Ω), g = 1 on a neighborhood of K,

then gu ∈ h1(Rn). Now take v = gu + h, where h ∈ C∞
0 (Rn) has support

disjoint from supp g, and
∫

h(x) dx = −
∫

g(x)u(x) dx. By Proposition
12.4, v ∈ H1(Rn). The converse is established similarly.

Not every compactly supported element of L1(Rn) belongs to h1(Rn),
but we do have the following.

Proposition 12.6. If p > 1 and u ∈ Lp(Rn) has compact support, then
u ∈ h1(Rn).
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Proof. We have

(12.21) (Gbf)(x) ≤ (Gf)(x) ≤ CMf(x).

Hence, given p > 1, u ∈ Lp(Rn) ⇒ Gbu ∈ Lp(Rn). Also, Gbu has support
in |x| ≤ R + 1 if supp u ⊂ {|x| ≤ R}, so Gbu ∈ L1(Rn).

The spaces H1(Rn) and h1(Rn) are Banach spaces, with norms

(12.22) ‖u‖H1 = ‖Gu‖L1 , ‖u‖h1 = ‖Gbu‖L1 .

It is useful to have the following approximation result.

Proposition 12.7. Fix ψ ∈ C∞
0 (Rn) such that

∫
ψ(x) dx = 1. If u ∈

H1(Rn), then

(12.23) ‖ψε ∗ u − u‖H1 −→ 0, as ε → 0.

Proof. One easily verifies from the definition that, for some C < ∞, G(ψε∗
u)(x) ≤ CGu(x),∀ x,∀ ε ∈ (0, 1]. Hence, by the dominated convergence
theorem, it suffices to show that

(12.24) G(ψε ∗ u − u)(x) −→ 0, a.e. x, as ε → 0;

that is,

sup
t>0,ϕ∈F

∣∣(ϕt ∗ ψε ∗ u − ϕt ∗ u)(x)
∣∣ → 0, a.e. x, as ε → 0.

To prove this, it suffices to show that

(12.25) lim
ε,δ→0

sup
0<t≤δ

sup
ϕ∈F

∣∣(ϕt ∗ ψε ∗ u − ϕt ∗ u)(x)
∣∣ = 0, a.e. x,

and that, for each δ > 0,

(12.26) lim
ε→0

sup
t≥δ

sup
ϕ∈F

∣∣(ϕt ∗ ψε − ϕt) ∗ u(x)
∣∣ = 0.

In fact, (12.25) holds whenever x is a Lebesgue point for u (see the exercises
for more on this), and (12.26) holds for all x ∈ R

n, since u ∈ L1(Rn) and,
for all ϕ ∈ F , we have ‖ϕt ∗ ψε − ϕt‖L∞ ≤ Cεt−n−1.

Corollary 12.8. Let Tyu(x) = u(x + y). Then, for u ∈ H1(Rn),

(12.27) ‖Tyu − u‖H1 −→ 0, as |y| → 0.

Proof. Since ‖T‖L(H1) = 1 for all y, it suffices to show that (12.27) holds
for u in a dense subspace of H1(Rn). Thus it suffices to show that, for each
ε > 0, u ∈ H1(Rn),

(12.28) lim
|y|→0

‖Ty(ψε ∗ u) − ψε ∗ u‖H1 = 0.
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But Ty(ψε ∗ u) − ψε ∗ u = (ψεy − ψε) ∗ u, where

(12.29) ψεy(x) − ψε(x) = ε−n
[
ψ(ε−1(x + y)) − ψ(ε−1x)

]
.

Thus

(12.30)

‖Ty(ψε ∗ u) − ψε ∗ u‖H1 = sup
t>0,ϕ∈F

‖(ψεy − ψε) ∗ ϕt ∗ u‖L1

≤ ‖ψεy − ψε‖L∞‖u‖H1

≤ C|y|ε−n−1‖u‖H1 ,

which finishes the proof.

It is clear that we can replace H1 by h1 in Proposition 12.7 and Corollary
12.8, obtaining, for u ∈ h1(Rn),

(12.31) ‖ψε ∗ u − u‖h1 −→ 0,

as ε → 0, and

(12.32) ‖Tyu − u‖h1 −→ 0,

as |y| → 0.
We can also approximate by cut-offs:

Proposition 12.9. Fix χ ∈ C∞
0 (Rn), so that χ(x) = 1 for |x| ≤ 1, 0 for

|x| ≥ 2, and 0 ≤ χ ≤ 1. Set χR(x) = χ(x/R). Then, given u ∈ h1(Rn), we
have

(12.33) lim
R→∞

‖u − χRu‖h1 = 0.

Proof. Clearly, Gb(u − χRu)(x) = 0, for |x| ≤ R − 1, so

lim
R→∞

Gb(u − χRu)(x) = 0, ∀ x ∈ R
n.

To get (12.33), we would like to appeal to the dominated convergence
theorem. In fact, the estimates (12.17)–(12.19) (with g = 1 − χR) give

(12.34) Gb(u − χRu)(x) ≤ Gbu(x) + Av(x), ∀ R ≥ 1,

where A = ‖∇χ‖L∞ , and v(x) is given by (12.19), with r = 1, so v ∈
L1(Rn). Thus dominated convergence does give

(12.35) lim
R→∞

‖Gb(u − χRu)‖L1 = 0,

and the proof is done.

Together with (12.31), this gives

Corollary 12.10. The space C∞
0 (Rn) is dense in h1(Rn).
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A slightly more elaborate argument shows that

(12.36) D0 =
{

u ∈ C∞
0 (Rn) :

∫
u(x) dx = 0

}

is dense in H1(Rn); see [Sem].
One significant measure of how much smaller H1(Rn) is than L1(Rn) is

the following identification of an element of the dual of H1(Rn) that does
not belong to L∞(Rn).

Proposition 12.11. We have

(12.37)
∣∣∣
∫

f(x) log |x| dx
∣∣∣ ≤ C‖f‖H1 .

Proof. Let λ(x) ∈ C∞
0 (Rn) satisfy λ(x) = 1 for |x| ≤ 1, λ(x) = 0 for

|x| ≥ 2. Set

(12.38) ℓ(x) = −
∞∑

j=1

λ(2jx) +

∞∑

j=0

(
1 − λ(2−jx)

)
.

It is easy to check that

(12.39) log |x| − (log 2)ℓ(x) ∈ L∞(Rn).

Thus it suffices to estimate
∫

f(x)ℓ(x) dx. We have

(12.40)
∣∣∣
∫

f(x)ℓ(x) dx
∣∣∣ ≤

∞∑

j=−∞

∣∣∣
∫

f(x)λ(2jx) dx
∣∣∣.

We claim that, for each j ∈ Z,

(12.41)
∣∣∣
∫

f(x)λ(2jx) dx
∣∣∣ ≤ C2−jn inf

B2−j (0)
Gf.

In fact, given j ∈ Z, z ∈ B2−j (0), we can write

(12.42)

∫
f(x)2jnλ(2jx) dx = Kϕr ∗ f(z),

with r = 22−j , K = K(λ, n), for some ϕ ∈ F ; say ϕ(x) is a multiple of a
translate of λ(4x). Consequently, with Sj = B2−j (0), we have

(12.43)
∣∣∣
∫

f(x)ℓ(x) dx
∣∣∣ ≤ C

∞∑

j=−∞

∫

Sj\Sj+1

Gf = C‖f‖H1 .

By Corollary 12.8, we have the following:

Corollary 12.12. Given f ∈ H1(Rn),

(12.44) log ∗f ∈ C(Rn).
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The result (12.37) is a very special case of the fact that the dual of H1(Rn)
is naturally isomorphic to a space of functions called BMO(Rn). This was
established in [FS]. The special case given above is the only case we will use
in this book. More about this duality and its implications for analysis can
be found in the treatise [S3]. Also, [S3] has other important information
about Hardy spaces, including a study of singular integral operators on
these spaces.

The next result is a variant of the div-curl lemma (discussed in Exercises
for §6), due to [CLMS]. It states that a certain function that obviously
belongs to L1(Rn) actually belongs to H1(Rn). Together with Corollary
12.12, this produces a useful tool for PDE. An application will be given in
§12B of Chapter 14. The proof below follows one of L. Evans and S. Muller,
given in [Ev2].

Proposition 12.13. If u ∈ L2(Rn, Rn), v ∈ H1(Rn), and div u = 0, then
u · ∇v ∈ H1(Rn).

Proof. Clearly, u · ∇v ∈ L1(Rn). Now, with ϕ ∈ C∞
0 (Rn), supported in

the unit ball, set ϕr(y) = r−nϕ
(
r−1(x − y)

)
. We have

(12.45)

∫
(u · ∇v)ϕr dy = −

∫

Br(x)

(v − vx,r)u · ∇ϕr dy,

since div u = 0. Thus, with C0 = ‖∇ϕ‖L∞ ,

(12.46)
∣∣∣
∫

(u · ∇v)ϕr dy
∣∣∣ ≤ C0

r

∫

Br(x)

|u − vx,r| · |u| dy.

Take

(12.47) p ∈
(
2,

2n

n − 2

)
, q =

p

p − 1
∈ (1, 2).

Then
(12.48)∣∣∣

∫
(u · ∇v)ϕr dy

∣∣∣ ≤ C0

r

( ∫

Br(x)

|v − vx,r|p dy
)1/p( ∫

Br(x)

|u|q dy
)1/q

≤ C0

ra

( ∫

Br(x)

|∇v|ρ dy
)1/ρ( ∫

Br(x)

|u|q dy
)1/q

,

where ρ = pn/(p + n) < 2 and a = n + 1. Consequently,

(12.49)

∣∣∣
∫

(u · ∇v)ϕr dy
∣∣∣ ≤ C0M

(
|∇v|ρ

)1/ρM
(
|u|q

)1/q

≤ C0

{
M

(
|∇v|ρ

)2/ρ
+ M

(
|u|q

)2/q}
.
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By Corollary 12.3, we have
∥∥M

(
|∇v|ρ

)∥∥
L2/ρ ≤ C

∥∥|∇v|ρ
∥∥

L2/ρ , and so

∫
M

(
|∇v|ρ

)2/ρ
dx ≤ C

∫
|∇v|2 dx.

Similarly,
∫

M
(
|u|q

)2/q
dx ≤ C

∫
|u|2 dx.

Hence

(12.50) ‖u · ∇v‖H1 = sup
ϕ∈F,r>0

∥∥∥
∫

(u · ∇v)ϕr dy
∥∥∥

L1
≤ C

(
‖∇v‖2 + ‖u‖2

L2

)
.

We next establish a localized version of Proposition 12.13.

Proposition 12.14. Let Ω ⊂ R
n be open. If u ∈ L2(Ω, Rn), div u = 0,

and v ∈ H1(Ω), then u · ∇v ∈ H1
loc(Ω).

Proof. We may as well suppose n > 1. Take any O ⊂ Ω, diffeomorphic
to a ball. It suffices to show that u · ∇v is equal on O to an element of
H1(Rn). Say O ⊂⊂ U ⊂⊂ Ω, with U also diffeomorphic to a ball. Pick
χ ∈ C∞

0 (U), χ = 1 on O.
Let ũ ∈ L2(Ω,Λn−1) correspond to u via the volume element on Ω. Then

dũ = 0. We use the Hodge decomposition of L2(U,Λn−1), with absolute
boundary condition:

(12.51) ũ = dδGAũ + δdGAũ + PA
h ũ on u.

Since dũ = 0, we have by (9.48) of Chapter 5 that δdGAũ = 0. Also, given
n > 1, Hn−1(U) = 0, so PA

h ũ = 0, too, and so

(12.52) ũ = dw̃, w̃ ∈ H1(U,Λn−2).

Having this, we define a vector field u0 on R
n so that ũ0 = d(χw̃), and

we set v0 = χv. It follows that u0, v0 satisfy the hypotheses of Proposition
12.13, so u0 · ∇v0 ∈ H1(Rn). But u0 · ∇v0 = u · ∇v on O, so the proof is
done.

Let us finally mention that while we have only briefly alluded to the
space BMO, it has also proven to be of central importance, especially since
the work of [FS]. More about the role of BMO in paradifferential operator
calculus can be found in [T2]. Also, Proposition 12.13 can be deduced from
a commutator estimate involving BMO, as explained in [CLMS]; see also
[AT].
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Exercises

We say x ∈ R
n is a Lebesgue point for f ∈ L1(Rn) provided

lim
r→0

1

vol(Br)

Z

Br(x)

|f(y) − f(x)| dy = 0.

In Exercises 1 and 2, we establish that, given f ∈ L1(Rn), a.e. x ∈ R
n is a

Lebesgue point of f .
1. Set

fM(f)(x) = sup
r>0

1

vol(Br)

Z

Br(x)

|f(y) − f(x)| dy.

Show that, for all x ∈ R
n,

fM(f)(x) ≤ M(f)(x) + |f(x)|.

2. Given λ > 0, let

Eλ =


x ∈ R

n : lim sup
r→0

1

vol(Br)

Z

Br(x)

|f(y) − f(x)| dy > λ

ff
.

Take ε > 0, and take g ∈ C∞
0 (Rn) so that ‖f − g‖L1 < ε. Show that Eλ is

unchanged if f is replaced by f − g. Deduce that

Eλ ⊂
n

x : M(f − g)(x) >
1

2
λ

o
∪

n
x : |f(x) − g(x)| >

1

2
λ

o
,

and hence, via Proposition 12.1,

meas(Eλ) ≤
C

λ
‖f − g‖L1 ≤

Cε

λ
.

Deduce that meas(Eλ) = 0, ∀ λ > 0, and hence a.e. x ∈ R
n is a Lebesgue

point for f .
3. Now verify that (12.25) holds whenever x is a Lebesgue point of u.
4. If u : R

2 → R
2, show that

u ∈ H1(R2) =⇒ det Du ∈ H
1(R2).

(Hint: Compute div w, when w = (∂yu1,−∂xu2).)
5. If u : R

2 → R
3, show that

u ∈ H1(R2) =⇒ ux × uy ∈ H
1(R2).

(Hint. Show that the first argument of ux ×uy is det Dv, where v = (u2, u3).)

A. Variations on complex interpolation

Let X and Y be Banach spaces, assumed to be linear subspaces of a Haus-
dorff locally convex space V (with continuous inclusions). We say (X,Y, V )
is a compatible triple. For θ ∈ (0, 1), the classical complex interpolation
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space [X,Y ]θ, introduced in Chapter 4 and much used in this chapter, is
defined as follows. First, Z = X + Y gets a natural norm; for v ∈ X + Y ,

(A.1) ‖v‖Z = inf {‖v1‖X + ‖v2‖Y : v = v1 + v2, v1 ∈ X, v2 ∈ Y }.
One has X + Y ≈ X ⊕ Y/L, where L = {(v,−v) : x ∈ X ∩ Y } is a closed
linear subspace, so X + Y is a Banach space. Let Ω = {z ∈ C : 0 <
Re z < 1}, with closure Ω. Define HΩ(X,Y ) to be the space of functions
f : Ω → Z = X + Y , continuous on Ω, holomorphic on Ω (with values in
X + Y ), satisfying f : {Im z = 0} → X continuous, f : {Im z = 1} → Y
continuous, and

(A.2) ‖u(z)‖Z ≤ C, ‖u(iy)‖X ≤ C, ‖u(1 + iy)‖Y ≤ C,

for some C < ∞, independent of z ∈ Ω and y ∈ R. Then, for θ ∈ (0, 1),

(A.3) [X,Y ]θ = {u(θ) : u ∈ HΩ(X,Y )}.
One has

(A.4) [X,Y ]θ ≈ HΩ(X,Y )/{u ∈ HΩ(X,Y ) : u(θ) = 0},
giving [X,Y ]θ the sructure of a Banach space. Here

(A.5) ‖u‖HΩ(X,Y ) = sup
z∈Ω

‖u(z)‖Z + sup
y

‖u(iy)‖X + sup
y

‖u(1 + iy)‖Y .

If I is an interval in R, we say a family of Banach spaces Xs, s ∈ I
(subspaces of V ) forms a complex interpolation scale provided that for
s, t ∈ I, θ ∈ (0, 1),

(A.6) [Xs,Xt]θ = X(1−θ)s+θt.

Examples of such scales include Lp-Sobolev spaces Xs = Hs,p(M), s ∈ R,
provided p ∈ (1,∞), as shown in §6 of this chapter, the case p = 2 having
been done in Chapter 4. It turns out that (A.6) fails for Zygmund spaces
Xs = Cs

∗(M), but an analogous identity holds for some closely related
interpolation functors, which we proceed to introduce.

If (X,Y, V ) is a compatible triple, as defined in above, we define HΩ(X,Y, V )
to be the space of functions u : Ω → X + Y = Z such that

(A.7) u : Ω −→ Z is holomorphic,

(A.8) ‖u(z)‖Z ≤ C, ‖u(iy)‖X ≤ C, ‖u(1 + iy)‖Y ≤ C,

and

(A.9) u : Ω −→ V is continuous.

For such u, we again use the norm (A.5). Note that the only difference
with HΩ(X,Y ) is that we are relaxing the continuity hypothesis for u on
Ω. HΩ(X,Y, V ) is also a Banach space, and we have a natural isometric
inclusion

(A.10) HΩ(X,Y ) →֒ HΩ(X,Y, V ).
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Now for θ ∈ (0, 1) we set

(A.11) [X,Y ]θ;V = {u(θ) : u ∈ HΩ(X,Y, V )}.
Again this space gets a Banach space structure, via

(A.12) [X,Y ]θ;V ≈ HΩ(X,Y, V )/{u ∈ HΩ(X,Y, V ) : u(θ) = 0},
and there is a natural continuous injection

(A.13) [X,Y ]θ →֒ [X,Y ]θ;V .

Sometimes this is an isomorphism. In fact, sometimes [X,Y ]θ = [X,Y ]θ;V

for practically all reasonable choices of V . For example, one can verify this
for X = Lp(Rn), Y = Hs,p(Rn), the Lp-Sobolev space, with p ∈ (1,∞), s ∈
(0,∞). On the other hand, there are cases where equality in (A.10) does
not hold, and where [X,Y ]θ;V is of greater interest than [X,Y ]θ.

We next define [X,Y ]bθ. In this case we assume X and Y are Banach
spaces and Y ⊂ X (continuously). We take Ω as above, and set Ω̃ = {z ∈
C : 0 < Re z ≤ 1}, i.e., we throw in the right boundary but not the left
boundary. We then define Hb

Ω(X,Y ) to be the space of functions u : Ω̃ → X
such that

(A.14)

u : Ω −→ X is holomorphic,

‖u(z)‖X ≤ C, ‖u(1 + iy)‖Y ≤ C,

u : Ω̃ −→ X is continuous.

Note that the essential difference between HΩ(X,Y ) and the space we
have just introduced is that we have completely dropped any continuity
requirement at {Re z = 0}. We also do not require continuity from {Re z =
1} to Y . The space Hb

Ω(X,Y ) is a Banach space, with norm

(A.15) ‖u‖Hb
Ω(X,Y ) = sup

z∈eΩ

‖u(z)‖X + sup
y

‖u(1 + iy)‖Y .

Now, for θ ∈ (0, 1), we set

(A.16) [X,Y ]bθ = {u(θ) : u ∈ Hb
Ω(X,Y )},

with the same sort of Banach space structure as arose in (A.4) and (A.12).
We have continuous injections

(A.17) [X,Y ]θ →֒ [X,Y ]θ;X →֒ [X,Y ]bθ.

Our next task is to extend the standard result on operator interpolation
from the setting of [X,Y ]θ to that of [X,Y ]θ;V and [X,Y ]bθ.

Proposition A.1. Let (Xj , Yj , Vj) be compatible triples, j = 1, 2. Assume
that T : V1 → V2 is continuous and that

(A.18) T : X1 −→ X2, T : Y1 −→ Y2,
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continuously. (Continuity is automatic, by the closed graph theorem.)
Then, for each θ ∈ (0, 1),

(A.19) T : [X1, Y1]θ;V1
−→ [X2, Y2]θ;V2

.

Furthermore, if Yj ⊂ Xj (continuously) and T is a continuous linear map
satisfying (A.18), then for each θ ∈ (0, 1),

(A.20) T : [X1, Y1]
b
θ −→ [X2, Y2]

b
θ.

Proof. Given f ∈ [X1, Y2]θ;V , pick u ∈ HΩ(X1, Y1, V1) such that f = u(θ).
Then we have

(A.21) T : HΩ(X1, Y1, V1) → HΩ(X2, Y2, V2), (T u)(z) = Tu(z),

and hence

(A.22) Tf = (T u)(θ) ∈ [X2, Y2]θ;V2
.

This proves (A.19). The proof of (A.20) is similar.

Remark. In case V = X +Y , with the weak topology, [X,Y ]θ;V is what is
denoted (X,Y )w

θ in [JJ], and called the weak complex interpolation space.

Alternatives to (A.6) for a family Xs of Banach spaces include

(A.23) [Xs,Xt]θ;V = X(1−θ)s+θt

and

(A.24) [Xs,Xt]
b
θ = X(1−θ)s+θt.

Here, as before, we take θ ∈ (0, 1). It is an exercise, using results of
§6, to show that both (A.23) and (A.24), as well as (A.6), hold when
Xs = Hs,p(M), given p ∈ (1,∞), where M can be R

n or a compact
Riemannian manifold. We now discuss the situation for Zygmund spaces.

We start with Zygmund spaces on the torus T
n. We recall from §8

that the Zygmund space Cr
∗(Tn) is defined for r ∈ R, as follows. Take

ϕ ∈ C∞
0 (Rn), radial, satisfying ϕ(ξ) = 1 for |ξ| ≤ 1. Set ϕk(ξ) = ϕ(2−kξ).

Then set ψ0 = ϕ, ψk = ϕk−ϕk−1 for k ∈ N, so {ψk : k ≥ 0} is a Littlewood-
Paley partition of unity. We define Cr

∗(Tn) to consist of f ∈ D′(Tn) such
that

(A.25) ‖f‖Cr
∗

= sup
k≥0

2kr‖ψk(D)f‖L∞ < ∞.

With Λ = (I − ∆)1/2 and s, t ∈ R, we have

(A.26) Λs+it : Cr
∗(Tn) −→ Cr−s

∗ (Tn).
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By material developed in §8,

(A.27) r ∈ R
+ \ Z

+ =⇒ Cr
∗(Tn) = Cr(Tn),

where, if r = k+α with k ∈ Z
+ and 0 < α < 1, Cr(Tn) consists of functions

whose derivatives of order ≤ k are Hölder continuous of exponent α.
We aim to show the following.

Proposition A.2. If r < s < t and 0 < θ < 1, then

(A.28) [Cs
∗(T

n), Ct
∗(T

n)]θ;Cr
∗(Tn) = C

(1−θ)s+θt
∗ (Tn),

and

(A.29) [Cs
∗(T

n), Ct
∗(T

n)]bθ = C
(1−θ)s+θt
∗ (Tn).

Proof. First, suppose f ∈ [Cs
∗ , C

t
∗]θ;Cr

∗
, so f = u(θ) for some u ∈ HΩ(Cs

∗ , C
t
∗, C

r
∗).

Then consider

(A.30) v(z) = ez2

Λ(t−s)zΛsu(z).

Bounds of the type (A.8) on u, together with (8.13) in the torus setting,
yield

(A.31) ‖v(iy)‖C0
∗
, ‖v(1 + iy)‖C0

∗
≤ C,

with C independent of y ∈ R. In other words,

(A.32) ‖ψk(D)v(z)‖L∞ ≤ C, Re z = 0, 1,

with C independent of Im z and k. Also, for each k ∈ Z
+, ψk(D)v : Ω →

L∞(Tn) continuously, so the maximum principle implies

(A.33) ‖ψk(D)Λ(t−s)θΛsf‖L∞ ≤ C,

independent of k ∈ Z
+. This gives Λ(1−θ)s+θtf ∈ C0

∗ , hence f ∈ C
(1−θ)s+θt
∗ (Tn).

Second, suppose f ∈ C
(1−θ)s+θt
∗ (Tn). Set

(A.34) u(z) = ez2

Λ(θ−z)(t−s)f.

Then u(θ) = eθ2

f . We claim that

(A.35) u ∈ HΩ(Cs
∗ , C

t
∗, C

r
∗),

as long as r < s < t. Once we establish this, we will have the reverse
containment in (A.28). Bounds of the form

(A.36) ‖u(z)‖Cs
∗
≤ C, ‖u(1 + iy)‖Ct

∗
≤ C

follow from (8.13), and are more than adequate versions of (A.8). It remains
to establish that

(A.37) u : Ω −→ Cr
∗(Tn), continuously.
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Indeed, we know u : Ω → Cs
∗(T

n) is bounded. It is readily verified that

(A.38) u : Ω −→ D′(Tn), continuously,

and that

(A.39) r < s =⇒ Cs
∗(T

n) →֒ Cr
∗(Tn) is compact.

The result (A.37) follows from these observations. Thus the proof of (A.28)
is complete.

We turn to the proof of (A.29). If u ∈ Hb
Ω(Cs

∗ , C
t
∗), form v(z) as in

(A.30), and for ε ∈ (0, 1] set

(A.40) vε(z) = e−εΛv(z), vε : Ω̃ → C0
∗(Tn) bounded and continuous

(with bound that might depend on ε). We have

(A.41) ψk(D)vε(ε + iy) = e(ε+iy)2ψk(D)e−εΛΛ(t−s)εΛi(t−s)yΛsu(z).

Now {Λsu(z) : z ∈ Ω̃} is bounded in C0
∗(Tn), and the operator norm of

Λi(t−s)y on C0
∗(Tn) is exponentially bounded in |y|. We have

(A.42) {e−εΛΛε(t−s) : 0 < ε ≤ 1} bounded in OPS0
1,0(T

n),

hence bounded in operator norm on C0
∗(Tn). We deduce that

(A.43) ‖ψk(D)vε(ε + iy)‖L∞ ≤ C,

independent of y ∈ R and ε ∈ (0, 1]. The hypothesis on u also implies

(A.44) ‖ψk(D)vε(1 + iy)‖L∞ ≤ C,

independent of y ∈ R and ε ∈ (0, 1]. Now the maximum principle applies.
Given θ ∈ (0, 1),

(A.45) ‖ψk(D)e−εΛv(θ)‖L∞ ≤ C,

independent of ε. Taking ε ց 0 yields v(θ) ∈ C0
∗(Tn), hence u(ε) ∈

C
(1−θ)s+θt
∗ (Tn).
This proves one inclusion in (A.29). The proof of the reverse inclusion

is similar to that for (A.28). Given f ∈ C
(1−θ)s+θt
∗ (Tn), take u(z) as in

(A.34). The claim is that u ∈ Hb
Ω(Cs

∗ , C
t
∗). We already have (A.36), and

the only thing that remains is to check that

(A.46) u : Ω̃ −→ Cs
∗(T

n) continuously,

and this is straightforward. (What fails is continuity of u : Ω → Cs
∗(T

n) at
the left boundary of Ω.)

Remark. In contrast to (A.28)–(A.29), one has

(A.47) [Cs
∗(T

n), Ct
∗(T

n)]θ = closure of C∞(Tn) in C
(1−θ)s+θt
∗ (Tn).
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Related results are given in [Tri].

If OPSm
1,0(T

n) denotes the class of pseudodifferential operators on T
n

with symbols in Sm
1,0, then for all s,m ∈ R,

(A.48) P ∈ OPSm
1,0(T

n) =⇒ P : Cs
∗(T

n) → Cs−m
∗ (Tn).

Cf. Proposition 8.6. Using coordinate invariance of OPSm
1,0 and of Cr(Tn)

for r ∈ R
+ \ Z

+, we deduce invariance of Cs
∗(T

n) under diffeomorphisms,
for all s ∈ R.

From here, we can develop the spaces Cs
∗(M) on a compact Riemannian

manifold M and the spaces Cs
∗(M) on a compact manifold with boundary.

These developments are done in §8.
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