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Sobolev Spaces

Introduction

In this chapter we develop the elements of the theory of Sobolev spaces,
a tool that, together with methods of functional analysis, provides for nu-
merous successful attacks on the questions of existence and smoothness of
solutions to many of the basic partial differential equations. For a positive
integer k, the Sobolev space Hk(Rn) is the space of functions in L2(Rn)
such that, for |α| ≤ k, Dαu, regarded a priori as a distribution, belongs to
L2(Rn). This space can be characterized in terms of the Fourier transform,
and such a characterization leads to a notion of Hs(Rn) for all s ∈ R.
For s < 0, Hs(Rn) is a space of distributions. There is an invariance un-
der coordinate transformations, permitting an invariant notion of Hs(M)
whenever M is a compact manifold. We also define and study Hs(Ω) when
Ω is a compact manifold with boundary.

The tools from Sobolev space theory discussed in this chapter are of
great use in the study of linear PDE; this will be illustrated in the following
chapter. Chapter 13 will develop further results in Sobolev space theory,
which will be seen to be of use in the study of nonlinear PDE.

1. Sobolev spaces on Rn

When k ≥ 0 is an integer, the Sobolev space Hk(Rn) is defined as follows:

(1.1) Hk(Rn) = {u ∈ L2(Rn) : Dαu ∈ L2(Rn) for |α| ≤ k},
where Dαu is interpreted a priori as a tempered distribution. Results from
Chapter 3 on Fourier analysis show that, for such k, if u ∈ L2(Rn), then

(1.2) u ∈ Hk(Rn) ⇐⇒ 〈ξ〉k û ∈ L2(Rn).

Recall that

(1.3) 〈ξ〉 =
(
1 + |ξ|2

)1/2
.
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We can produce a definition of the Sobolev space Hs(Rn) for general s ∈ R,
parallel to (1.2), namely

(1.4) Hs(Rn) = {u ∈ S ′(Rn) : 〈ξ〉sû ∈ L2(Rn)}.
We can define the operator Λs on S ′(Rn) by

(1.5) Λsu = F−1
(
〈ξ〉sû

)
.

Then (1.4) is equivalent to

(1.6) Hs(Rn) = {u ∈ S ′(Rn) : Λsu ∈ L2(Rn)},
or Hs(Rn) = Λ−sL2(Rn). Each space Hs(Rn) is a Hilbert space, with
inner product

(1.7)
(
u, v

)
Hs(Rn)

=
(
Λsu,Λsv

)
L2(Rn)

.

We note that the dual of Hs(Rn) is H−s(Rn).
Clearly, we have

(1.8) Dj : Hs(Rn) −→ Hs−1(Rn),

and hence

(1.9) Dα : Hs(Rn) −→ Hs−|α|(Rn).

Furthermore, it is easy to see that, given u ∈ Hs(Rn),

(1.10) u ∈ Hs+1(Rn) ⇐⇒ Dju ∈ Hs(Rn), ∀ j.

We can relate difference quotients to derivatives of elements of Sobolev
spaces. Define τy, for y ∈ R

n, by

(1.11) τyu(x) = u(x + y).

By duality this extends to S ′(Rn):

〈τ−yu, v〉 = 〈u, τyv〉.
Note that

(1.12) τyv = F−1
(
eiy·ξ v̂

)
,

so it is clear that τy : Hs(Rn) → Hs(Rn) is norm-preserving for each s ∈ R,
y ∈ R

n. Also, for each u ∈ Hs(Rn), τyu is a continuous fuction of y with
values in Hs(Rn). The following result is of frequent use, as we will see in
the next chapter.

Proposition 1.1. Let (e1, . . . , en) be the standard basis of R
n; let u ∈

Hs(Rn). Then

σ−1(τσej
u − u) is bounded in Hs(Rn),

for σ ∈ (0, 1], if and only if Dju ∈ Hs(Rn).
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Proof. We have σ−1(τσej
u − u) → iDju in Hs−1(Rn) as σ → 0 if u ∈

Hs(Rn). The hypothesis of boundedness implies that there is a sequence
σν → 0 such that σ−1

ν (τσνej
u − u) converges weakly to an element of

Hs(Rn); call it w. Since the natural inclusion Hs(Rn) →֒ Hs−1(Rn) is
easily seen to be continuous, it follows that w = iDju. Since w ∈ Hs(Rn),
this gives the desired conclusion.

Corollary 1.2. Given u ∈ Hs(Rn), then u belongs to Hs+1(Rn) if and
only if τyu is a Lipschitz-continuous function of y with values in Hs(Rn).

Proof. This follows easily, given the observation (1.10).

We now show that elements of Hs(Rn) are smooth in the classical sense
for sufficiently large positive s. This is a Sobolev imbedding theorem.

Proposition 1.3. If s > n/2, then each u ∈ Hs(Rn) is bounded and
continuous.

Proof. By the Fourier inversion formula, it suffices to prove that û(ξ)
belongs to L1(Rn). Indeed, using Cauchy’s inequality, we get

(1.13)

∫
|û(ξ)| dξ ≤

(∫
|û(ξ)|2〈ξ〉2s dξ

)1/2

·
(∫

〈ξ〉−2s dξ
)1/2

.

Since the last integral on the right is finite precisely for s > n/2, this
completes the proof.

Corollary 1.4. If s > n/2 + k, then Hs(Rn) ⊂ Ck(Rn).

If s = n/2 + α, 0 < α < 1, we can establish Hölder continuity. For
α ∈ (0, 1), we say

(1.14) u ∈ Cα(Rn) ⇐⇒ u bounded and |u(x + y) − u(x)| ≤ C|y|α.

An alternative notation is Lipα(Rn); then the definition above is effective
for α ∈ (0, 1].

Proposition 1.5. If s = n/2 + α, 0 < α < 1, then Hs(Rn) ⊂ Cα(Rn).

Proof. For u ∈ Hs(Rn), use the Fourier inversion formula to write

(1.15)

|u(x + y) − u(x)| = (2π)−n/2
∣∣∣
∫

û(ξ)eix·ξ(eiy·ξ − 1) dξ
∣∣∣

≤ C
(∫

|û(ξ)|2〈ξ〉n+2α dξ
)1/2

·
(∫ ∣∣eiy·ξ − 1

∣∣2〈ξ〉−n−2α dξ
)1/2

.
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Now, if |y| ≤ 1/2, write

(1.16)

∫
|eiy·ξ − 1|2〈ξ〉−n−2α dξ

≤ C

∫

|ξ|≤ 1
|y|

|y|2|ξ|2〈ξ〉−n−2α dξ + 4

∫

|ξ|≥ 1
|y|

〈ξ〉−n−2α dξ.

If we use polar coordinates, the right side is readily dominated by

(1.17) C|y|2 + C|y|2 |y|
2α−2 − 1

2α − 2
+ C|y|2α,

provided 0 < α < 1. This implies that, for |y| ≤ 1/2,

(1.18) |u(x + y) − u(x)| ≤ Cα|y|α,

given u ∈ Hs(Rn), s = n/2 + α, and the proof is complete.

We remark that if one took α = 1, the middle term in (1.17) would
be modified to C|y|2 log(1/|y|), so when u ∈ Hn/2+1(Rn), one gets the
estimate

|u(x + y) − u(x)| ≤ C|y|
(
log

1

|y|
)1/2

.

Elements of Hn/2+1(Rn) need not be Lipschitz, and elements of Hn/2(Rn)
need not be bounded.

We indicate an example of the last phenomenon. Let us define u by

(1.19) û(ξ) =
〈ξ〉−n

1 + log〈ξ〉 .

It is easy to show that u ∈ Hn/2(Rn). But û /∈ L1(Rn). Now one can
show that if û ∈ L1

loc(R
n) is positive and belongs to S ′(Rn), but does not

belong to L1(Rn), then u /∈ L∞(Rn); and this is what happens in the case
of (1.19). For more on this, see Exercises 2 and 3 below.

A result dual to Proposition 1.3 is

(1.20) δ ∈ H−n/2−ε(Rn), for all ε > 0,

which follows directly from the definition (1.4) together with the fact that
Fδ = (2π)−n/2, by the same sort of estimate on

∫
〈ξ〉−2sdξ used to prove

Proposition 1.3. Consequently,

(1.21) Dαδ ∈ H−n/2−|α|−ε(Rn), for all ε > 0.

Next we consider the trace map τ , defined initially from S(Rn) to S(Rn−1)
by τu = f , where f(x′) = u(0, x′) if x = (x1, . . . , xn), x′ = (x2, . . . , xn).

Proposition 1.6. The map τ extends uniquely to a continuous linear map

(1.22) τ : Hs(Rn) −→ Hs−1/2(Rn−1), for s >
1

2
.
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Proof. If f = τu, we have

(1.23) f̂(ξ′) =
1√
2π

∫
û(ξ) dξ1,

as a consequence of the identity
∫

g(x1)e
−ix1ξ1 dx1 dξ1 = 2πg(0). Thus

|f̂(ξ′)|2 ≤ 1

2π

(∫
|û(ξ)|2〈ξ〉2sdξ1

)
·
(∫

〈ξ〉−2sdξ1

)
,

where the last integral is finite if s > 1/2. In such a case, we have

(1.24)

∫
〈ξ〉−2s dξ1 =

∫ (
1 + |ξ′|2 + ξ2

1

)−s
dξ1

= C
(
1 + |ξ′|2

)−s+1/2
= C〈ξ′〉−2(s−1/2).

Thus

(1.25) 〈ξ′〉2(s−1/2)|f̂(ξ′)|2 ≤ C

∫
|û(ξ)|2〈ξ〉2s dξ1,

and integrating with respect to ξ′ gives

(1.26) ‖f‖2
Hs−1/2(Rn−1) ≤ C‖u‖2

Hs(Rn).

Proposition 1.6 has a converse:

Proposition 1.7. The map (1.22) is surjective, for each s > 1/2.

Proof. If g ∈ Hs−1/2(Rn−1), we can let

(1.27) û(ξ) = ĝ(ξ′)
〈ξ′〉2(s−1/2)

〈ξ〉2s
.

It is easy to verify that this defines an element u ∈ Hs(Rn) and u(0, x′) =
cg(x′) for a nonzero constant c, using (1.24) and (1.23); this provides the
proof.

In the next section we will develop a tool that establishes the continuity
of a number of natural transformations on Hs(Rn), as an automatic con-
sequence of the (often more easily checked) continuity for integer s. This
will be useful for the study of Sobolev spaces on compact manifolds, in §§3
and 4.

Exercises

1. Show that S(Rn) is dense in Hs(Rn) for each s.
2. Assume v ∈ S ′(Rn)∩L1

loc(R
n) and v(ξ) ≥ 0. Show that if v̂ ∈ L∞(Rn), then

v ∈ L1(Rn) and

(2π)n/2‖v̂‖L∞ = ‖v‖L1 .
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(Hint: Consider vk(ξ) = χ(ξ/k)v(ξ), with χ ∈ C∞
0 (Rn), χ(0) = 1.)

3. Verify that (1.19) defines u ∈ Hn/2(Rn), u /∈ L∞(Rn).
4. Show that the pairing

〈u, v〉 =

Z

û(ξ)ṽ(ξ) dξ =

Z

û(ξ)〈ξ〉sṽ(ξ)〈ξ〉−s dξ

gives an isomorphism of H−s(Rn) and the space Hs(Rn)′, dual to Hs(Rn).
5. Show that the trace map (1.22) satisfies the estimate

‖τu‖2
L2(Rn−1) ≤ C‖u‖L2 · ‖∇u‖L2 ,

given u ∈ H1(Rn), where on the right L2 means L2(Rn).
6. Show that Hk(Rn) is an algebra for k > n/2, that is,

u, v ∈ Hk(Rn) =⇒ uv ∈ Hk(Rn).

Reconsider this problem after doing Exercise 5 in §2.
7. Let f : R → R be C∞, and assume f(0) = 0. Show that u 7→ f(u) defines

a continuous map F : Hk(Rn) → Hk(Rn), for k > n/2. Show that F is a
C1-map, with DF (u)v = f ′(u)v. Show that F is a C∞-map.

8. Show that a continuous map F : Hk+m(Rn) → Hk(Rn) is defined by F (u) =
f(Dmu), where Dmu = {Dαu : |α| ≤ m}, assuming f is smooth in its
arguments, f = 0 at u = 0, and k > n/2. Show that F is C1, and compute
DF (u). Show F is a C∞-map from Hk+m(Rn) to Hk(Rn).

9. Suppose P (D) is an elliptic differential operator of order m, as in Chapter 3.
If σ < s + m, show that

u ∈ Hσ(Rn), P (D)u = f ∈ Hs(Rn) =⇒ u ∈ Hs+m(Rn).

(Hint: Estimate 〈ξ〉s+mû in terms of 〈ξ〉σû and 〈ξ〉sP (ξ)û.)
10. Given 0 < s < 1 and u ∈ L2(Rn), show that

(1.28) u ∈ Hs(Rn) ⇐⇒

Z ∞

0

t−(2s+1)‖τtej u − u‖2
L2 dt < ∞, 1 ≤ j ≤ n,

where τy is as in (1.12).
(Hint: Show that the right side of (1.28) is equal to

(1.29)

Z

Rn

ψs(ξj)|û(ξ)|2 dξ,

where, for 0 < s < 1,

(1.30) ψs(ξj) = 2

Z ∞

0

t−(2s+1)
“

1 − cos tξj

”

dt = Cs|ξj |
2s.)

11. The fact that u ∈ Hs(Rn) implies that σ−1(τσej u− u) → iDju in Hs−1(Rn)
was used in the proof of Proposition 1.1. Give a detailed proof of this. Use
it to provide details for a proof of Corollary 1.4.

12. Establish the following, as another approach to justifying Corollary 1.4.

Lemma. If u ∈ C(Rn) and Dju ∈ C(Rn) for each j (Dju regarded a priori

as a distribution), then u ∈ C1(Rn).
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(Hint: Consider ϕε ∗ u for ϕε(x) = ε−nϕ(x/ε), ϕ ∈ C∞
0 (Rn),

R

ϕ dx = 1,
and let ε → 0.)

2. The complex interpolation method

It is easy to see from the product rule that if Mϕ is defined by

(2.1) Mϕu = ϕ(x)u(x),

then, for any integer k ≥ 0,

(2.2) Mϕ : Hk(Rn) −→ Hk(Rn),

provided ϕ is C∞ and

(2.3) Dαϕ ∈ L∞(Rn), for all α.

By duality, (2.2) also holds for negative integers. We claim it holds when
k is replaced by any real s, but it is not so simple to deduce this directly
from the definition (1.4) of Hs(Rn). Similarly, suppose

(2.4) χ : R
n −→ R

n

is a diffeomorphism, which is linear outside some compact set, and define
χ∗ on functions by

(2.5) χ∗ u(x) = u(χ(x)).

The chain rule easily gives

(2.6) χ∗ : Hk(Rn) −→ Hk(Rn),

for any integer k ≥ 0. Since the adjoint of χ∗ is ψ∗ composed with the
operation of multiplication by |det Dψ(x)|, where ψ = χ−1, we see that
(2.6) also holds for negative integers k. Again, it is not so straightforward
to deduce (2.6) when k is replaced by any real number s. A convenient
tool for proving appropriate generalizations of (2.2) and (2.6) is provided
by the complex interpolation method, introduced by A. P. Calderon, which
we now discuss.

Let E and F be Banach spaces. We suppose that F is included in E,
and the inclusion F →֒ E is continuous. If Ω is the vertical strip in the
complex plane,

(2.7) Ω = {z ∈ C : 0 < Re z < 1},
we define
(2.8)

HE,F (Ω) = {u(z) bounded and continuous on Ω with values in E;

holomorphic on Ω : ‖u(1 + iy)‖F is bounded, for y ∈ R}.
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We define the interpolation spaces [E,F ]θ by

(2.9) [E,F ]θ = {u(θ) : u ∈ HE,F (Ω)}, θ ∈ [0, 1].

We give [E,F ]θ the Banach space topology, making it isomorphic to the
quotient

(2.10) HE,F (Ω)/{u : u(θ) = 0}.

We will also use the convention

(2.11) [F,E]θ = [E,F ]1−θ.

The following result is of basic importance.

Proposition 2.1. Let E,F be as above; suppose Ẽ, F̃ are Banach spaces
with F̃ continuously injected in Ẽ. Suppose T : E → Ẽ is a continuous
linear map, and suppose T : F → F̃ . Then, for all θ ∈ [0, 1],

(2.12) T : [E,F ]θ → [Ẽ, F̃ ]θ.

Proof. Given v ∈ [E,F ]θ, let u ∈ HE,F (Ω), u(θ) = v. It follows that
Tu(z) ∈ H eE, eF (Ω), so Tv = Tu(θ) ∈ [Ẽ, F̃ ]θ, as asserted.

We next identify [H,D(A)]θ when H is a Hilbert space and D(A) is the
domain of a positive, self-adjoint operator on H. By the spectral theorem,
this means the following. There is a unitary map U : H → L2(X,µ) such
that B = UAU−1 is a multiplication operator on L2(X,µ):

(2.13) Bu(x) = Mbu(x) = b(x)u(x).

Then D(A) = U−1D(B), where

D(B) = {u ∈ L2(X,µ) : bu ∈ L2(X,µ)}.

We will assume b(x) ≥ 1, though perhaps b is unbounded. (Of course,
if b is bounded, then D(B) = L2(X,µ) and D(A) = H.) This is equiv-
alent to assuming (Au, u) ≥ ‖u‖2. In such a case, we define Aθ to be
U−1BθU , where Bθu(x) = b(x)θu(x), if θ ≥ 0, and D(Aθ) = U−1D(Bθ),
where D(Bθ) = {u ∈ L2(X,µ) : bθu ∈ L2(X,µ)}. We will give a proof
of the spectral theorem in Chapter 8. In this chapter we will apply this
notion only to operators A for which such a representation is explicitly
implemented by a Fourier transform. Our characterization of interpolation
spaces [H,D(A)]θ is given as follows.

Proposition 2.2. For θ ∈ [0, 1],

(2.14) [H,D(A)]θ = D(Aθ).
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Proof. First suppose v ∈ D(Aθ). We want to write v = u(θ), for some
u ∈ HH,D(A)(Ω). Let

u(z) = A−z+θv.

Then u(θ) = v, u is bounded with values in H, and furthermore u(1+iy) =
A−1A−iy(Aθv) is bounded in D(A).

Conversely, suppose u(z) ∈ HH,D(A)(Ω). We need to prove that u(θ) ∈
D(Aθ). Let ε > 0, and note that, by the maximum principle,

(2.15)

‖Az(I + iεA)−1u(z)‖H

≤ sup
y∈R

max
{
‖(I + iεA)−1Aiyu(iy)‖H ,

‖A1+iy(I + iεA)−1u(1 + iy)‖H

}
≤ C,

with C independent of ε. This implies u(θ) ∈ D(Aθ), as desired.

Now the definition of the Sobolev spaces Hs(Rn) given in §1 makes it
clear that, for s ≥ 0, Hs(Rn) = D(Λs), where Λs is the self-adjoint operator
on L2(Rn) defined by

(2.16) Λs = F M〈ξ〉s F−1,

where F is the Fourier transform. Thus it follows that, for k ≥ 0,

(2.17) [L2(Rn),Hk(Rn)]θ = Hkθ(Rn), θ ∈ [0, 1].

In fact, the same sort of reasoning applies more generally. For any σ, s ∈ R,

(2.18) [Hσ(Rn),Hs(Rn)]θ = Hθs+(1−θ)σ(Rn), θ ∈ [0, 1].

Consequently Proposition 2.1 is applicable to (2.4) and (2.6), to give

(2.19) Mϕ : Hs(Rn) −→ Hs(Rn)

and

(2.20) χ∗ : Hs(Rn) −→ Hs(Rn),

for all s ∈ R.
It is often convenient to have a definition of [E,F ]θ when neither Banach

space E nor F is contained in the other. Suppose they are both contin-
uously injected into a locally convex topological vector space V . Then
G = {e+f : e ∈ E, f ∈ F} has a natural structure of a Banach space, with
norm

‖a‖G = inf{‖e‖E + ‖f‖F : a = e + f in V, e ∈ E, f ∈ F}.

In fact, G is naturally isomorphic to the quotient (E⊕F )/L of the Banach
space E ⊕ F , with the product norm, by the closed linear subspace L =
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{(e,−e) : e ∈ E ∩ F ⊂ V }. Generalizing (2.8), we set
(2.21)

HE,F (Ω) = {u(z) bounded and continuous in Ω with values in G; holo-

morphic in Ω : ‖u(iy)‖E and ‖u(1 + iy)‖F bounded, y ∈ R},
where Ω is the vertical strip (2.7). Then we define the interpolation space
[E,F ]θ by (2.9), as before. In this context, the identity (2.11) is a (simple)
proposition rather than a definition.

Typical cases where it is of interest to apply such a construction include
E = Lp1(X,µ), F = Lp2(X,µ). If (X,µ) is a measure space that is neither
finite nor atomic (e.g., R

n with Lebesgue measure), typically neither of
these Lp-spaces is contained in the other. We have the following useful
result.

Proposition 2.3. Take θ ∈ (0, 1), p1 ∈ [1,∞), p2 ≥ 1. Assume either
µ(x) < ∞ or p2 < ∞. Then

(2.22) [Lp1(X,µ), Lp2(X,µ)]θ = Lq(X,µ),

where p1, p2, and q are related by

(2.23)
1

q
=

1 − θ

p1
+

θ

p2
.

Proof. Given f ∈ Lq, one can take c = (q − p1)/p1θ = (p2 − q)/p2(1 − θ)
and define

(2.24) u(z) = |f(x)|c(θ−z) f(x),

by convention zero when f(x) = 0. Then u belongs to HLp1 ,Lp2 , which
gives Lq ⊂ [Lp1 , Lp2 ]θ.

Conversely, suppose that one is given f ∈ [Lp1 , Lp2 ]θ; say f = u(θ) with
u ∈ HLp1 ,Lp2 (Ω). For g ∈ Lq ′, you can define v(z) = |g(x)|b(θ−z) g(x) with
b = (q′ − p′1)/p′1θ = (p′2 − q′)/p′2(1 − θ), chosen so that v ∈ HLp1 ′,Lp2 ′(Ω).
Then the Hadamard three-lines lemma, applied to 〈u(z), v(z)〉, implies

(2.25) |〈f, g〉| ≤
(
sup
y∈R

∣∣〈u(iy), v(iy)〉
∣∣
)1−θ(

sup
r∈R

∣∣〈u(1 + iy), v(1 + iy)
∣∣
)θ

,

for each simple function g. This implies

(2.26)

∣∣∣
∫

X

f(x)g(x) dµ(x)
∣∣∣ ≤ C

∥∥∥|g|bθ+1
∥∥∥

1−θ

L
p′
1

·
∥∥∥|g|b(θ−1)+1

∥∥∥
θ

L
p′
2

= C ‖g‖Lq ′ ,

the last identity holding by (2.23) and the identities bθ + 1 = q′/p′1 and
b(θ − 1) + 1 = q′/p′2. This implies f ∈ Lq.
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If µ(X) = ∞ and p2 = ∞, then (2.24) need not yield an element of
HLp1 ,Lp2 , but the argument involving (2.25)–(2.26) still works, to give

[Lp1(X,µ), L∞(X,µ)]θ ⊂ Lq(X,µ), q =
p1

1 − θ
.

We record a couple of consequences of Proposition 2.3 and the remark
following it, together with Proposition 2.1. Recall that the Fourier trans-
form has the following mapping properties:

F : L1(Rn) −→ L∞(Rn); F : L2(Rn) −→ L2(Rn).

Thus interpolation yields

(2.27) F : Lp(Rn) −→ Lp′(Rn), for p ∈ [1, 2],

where p′ is defined by 1/p + 1/p′ = 1. Also, for the convolution product
f ∗ g, we clearly have

Lp ∗ L1 ⊂ Lp; Lp ∗ Lp′ ⊂ L∞.

Fixing f ∈ Lp and interpolating between L1 and Lp′ give

(2.28) Lp ∗ Lq ⊂ Lr, for q ∈ [1, p′],
1

r
=

1

p
+

1

q
− 1.

We return to Hilbert spaces, and an interpolation result that is more
general than Proposition 2.2, in that it involves D(A) for not necessarily
self-adjoint A.

Proposition 2.4. Let P t be a uniformly bounded, strongly continuous
semigroup on a Hilbert space H0, whose generator A has domain D(A) =
H1. Let f ∈ H0, 0 < θ < 1. Then the following are equivalent:

(2.29) f ∈ [H0,H1]θ;

for some u,

(2.30) f = u(0), t1/2−θu ∈ L2(R+,H1), t1/2−θ du

dt
∈ L2(R+,H0);

(2.31)

∫ ∞

0

t−(2θ+1)‖P tf − f‖2
H0

dt < ∞.

Proof. First suppose (2.30) holds; then u′(t) − Au(t) = g(t) satisfies
t1/2−θg ∈ L2(R+,H0). Now, u(t) = P tf +

∫ t

0
P t−sg(s) ds, by Duhamel’s

principle, so

(2.32) P tf − f =
(
u(t) − f

)
−

∫ t

0

P t−sg(s) ds,

and hence

(2.33) ‖t−1(P tf − f)‖H0
≤ 1

t

∫ t

0

‖u′(s)‖H0
ds +

C

t

∫ t

0

‖g(s)‖H0
ds.
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This implies (2.31), via the elementary inequality (see Exercise 4 below)

(2.34)

‖Φh‖L2(R+,tβdt) ≤ K‖h‖L2(R+,tβdt), β < 1,

Φh(t) =
1

t

∫ t

0

h(s) ds,

where we set β = 1 − 2θ and take h(t) = ‖u′(t)‖H0
or h(t) = ‖g(t)‖H0

.
Next we show that (2.31) ⇒ (2.30). If f satisfies (2.31), set

(2.35) u(t) =
ϕ(t)

t

∫ t

0

P sf ds,

where ϕ ∈ C∞
0 (R) and ϕ(0) = 1. Then u(0) = f . We need to show that

(2.36) t1/2−θAu ∈ L2(R+,H0) and t1/2−θu′ ∈ L2(R+,H0).

Now, t1/2−θAu = ϕ(t)t−1/2−θ(P tf − f), so the first part of (2.36) follows
directly from (2.31). The second part of (2.36) will be proved once we show
that t1/2−θv′ ∈ L2(R+,H0), where

(2.37) v(t) =
1

t

∫ t

0

P sf ds.

Now

(2.38) v′(t) =
1

t

(
P tf − f

)
− 1

t2

∫ t

0

(
P sf − f

)
ds,

and since the first term on the right has been controlled, it suffices to show
that

(2.39) w(t) = t1/2−θ−2

∫ t

0

(P sf − f) ds ∈ L2(R+,H0).

Indeed, since s ≤ t in the integrand,

(2.40)
‖w(t)‖H0

≤ t1/2−θ

t

∫ t

0

h(s) ds,

h(t) = t−1‖P tf − f‖H0
∈ L2(R+, t1−2θdt),

so (2.39) follows from (2.34).
We now tackle the equivalence (2.29) ⇔ (2.31). Since we have (2.30)

⇔ (2.31) and (2.30) is independent of the choice of P t, it suffices to show
that (2.29) ⇔ (2.31) for a single choice of P t such that D(A) = H1. Now,
we can pick a positive self-adjoint operator B such that D(B) = H1 (see
Exercise 2 below), and take A = iB, so P t = eitB is a unitary group. In
such a case, the spectral decomposition yields the identity

(2.41) ‖Bθf‖2
H0

= Cθ

∫ ∞

0

t−(2θ+1)‖eitBf − f‖2
H0

dt;

compare (1.28)–(1.30); and the proof is easily completed.
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Exercises

1. Show that the class of interpolation spaces [E, F ]θ defined in (2.9) and (2.15)
is unchanged if one replaces various norm bounds ‖u(x + iy)‖ by bounds on
e−K|y|‖u(x + iy)‖.

In Exercises 2 and 3, let H0 = E and H1 = F be two Hilbert spaces satisfying
the hypotheses of Proposition 2.1. Assume H1 is dense in H0.

2. Show that there is a positive self adjoint operator A on H0 such that D(A) =
H1. (Hint: Use the Friedrichs method.)

3. Let Hθ = [H0, H1]θ, 0 < θ < 1. Show that if 0 ≤ r < s ≤ 1, then

[Hr, Hs]θ = H(1−θ)r+θs, 0 < θ < 1.

Relate this to (2.18).
4. Prove the estimate (2.34). (Hint: Make the change of variable e(β−1)τ/2h(eτ ) =

eh(τ), and convert Φ into a convolution operator on L2(R).)
5. Show that, for 0 ≤ s < n/2,

(2.42) Hs(Rn) ⊂ Lp(Rn), ∀ p ∈

»

2,
2n

n − 2s

«

.

(Hint: Use interpolation.)
Use (2.42) to estimate (Dαu)(Dβv), given u, v ∈ Hk(Rn), k > n/2, |α|+ |β| ≤
k. Sharper and more general results will be obtained in Chapter 13.

3. Sobolev spaces on compact manifolds

Let M be a compact manifold. If u ∈ D′(M), we say u ∈ Hs(M) provided
that, on any coordinate patch U ⊂ M , any ψ ∈ C∞

0 (U), the element
ψu ∈ E ′(U) belongs to Hs(U), if U is identified with its image in R

n. By
the invariance under coordinate changes derived in §2, it suffices to work
with any single coordinate cover of M . If s = k, a nonnegative integer,
then Hk(M) is equal to the set of u ∈ L2(M) such that, for any ℓ smooth
vector fields X1, . . . ,Xℓ on M , ℓ ≤ k, X1 · · ·Xℓu ∈ L2(M). Parallel to
(2.17), we have the following result.

Proposition 3.1. For k ≥ 0 an integer, θ ∈ [0, 1],

(3.1) [L2(M),Hk(M)]θ = Hkθ(M).

More generally, for any σ, s ∈ R,

(3.2) [Hσ(M),Hs(M)]θ = Hθs+(1−θ)σ(M).

Proof. These results follow directly from (2.17) and (2.18), with the aid
of a partition of unity on M subordinate to a coordinate cover. We leave
the details as an exercise.
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Similarly, the duality of Hs(Rn) and H−s(Rn) can easily be used to
establish:

Proposition 3.2. If M is a compact Riemannian manifold, s ∈ R, there
is a natural isomorphism

(3.3) Hs(M)∗ ≈ H−s(M).

Furthermore, Propositions 1.3–1.5 easily yield:

Proposition 3.3. If M is a smooth compact manifold of dimension n, and
u ∈ Hs(M), then

u ∈ C(M) provided s >
n

2
.(3.4)

u ∈ Ck(M) provided s >
n

2
+ k,(3.5)

u ∈ Cα(M) provided s =
n

2
+ α, α ∈ (0, 1).(3.6)

In the case M = T
n, the torus, we know from results on Fourier series

given in Chapter 3 that, for k ≥ 0 an integer,

(3.7) u ∈ Hk(Tn) ⇐⇒
∑

m∈Zn

|û(m)|2〈m〉2k < ∞.

By duality, this also holds for k a negative integer. Now interpolation, via
Proposition 2.2, implies that, for any s ∈ R,

(3.8) u ∈ Hs(Tn) ⇐⇒
∑

m∈Zn

|û(m)|2〈m〉2s < ∞.

Alternatively, if we define Λs on D′(Tn) by

(3.9) Λs u =
∑

m∈Zn

〈m〉s û(m) eim·θ,

then, for s ∈ R,

(3.10) Hs(Tn) = Λ−sL2(Tn).

Thus, for any s, σ ∈ R,

(3.11) Λs : Hσ(Tn) −→ Hσ−s(Tn)

is an isomorphism.
It is clear from (3.9) that, for any σ > 0,

Λ−σ : Hs(Tn) −→ Hs(Tn)

is a norm limit of finite rank operators, hence compact. Consequently, if j
denotes the natural injection, we have, for any s ∈ R,

(3.12) j : Hs+σ(Tn) −→ Hs(Tn) compact, ∀ σ > 0.
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This is a special case of the following result.

Proposition 3.4. For any compact M , s ∈ R,

(3.13) j : Hs+σ(M) −→ Hs(M) is compact, ∀ σ > 0.

Proof. This follows easily from (3.12), by using a partition of unity to
break up an element of Hs+σ(M) and transfer it to a finite set of elements
of Hs+σ(Tn), if n = dim M .

This result is a special case of a theorem of Rellich, which also deals with
manifolds with boundary, and will be treated in the next section. Rellich’s
theorem will play a fundamental role in Chapter 5.

We next mention the following observation, an immediate consequence of
(3.8) and Cauchy’s inequality, which provides a refinement of Proposition
1.3 of Chapter 3.

Proposition 3.5. If u ∈ Hs(Tn), then the Fourier series of u is absolutely
convergent, provided s > n/2.

Exercises

1. Fill in the details in the proofs of Propositions 3.1–3.4.
2. Show that C∞(M) is dense in each Hs(M), when M is a compact manifold.
3. Consider the projection P defined by

Pf(θ) =

∞
X

n=0

f̂(n)einθ.

Show that P : Hs(S1) → Hs(S1), for all s ∈ R.
4. Let a ∈ C∞(S1), and define Ma by Maf(θ) = a(θ)f(θ). Thus Ma : Hs(S1) →

Hs(S1). Consider the commutator [P, Ma] = PMa − MaP . Show that

[P, Ma]f =
X

k≥0,m>0

â(k + m)f̂(−m)eikθ −
X

k>0,m≥0

â(−k − m)f̂(m)e−ikθ,

and deduce that, for all s ∈ R,

[P, Ma] : Hs(S1) −→ C∞(S1).

(Hint: The Fourier coefficients
“

â(n)
”

form a rapidly decreasing sequence.)

5. Let aj , bj ∈ C∞(S1), and consider Tj = Maj P + Mbj (I − P ). Show that

T1T2 = Ma1a2
P + Mb1b2(I − P ) + R,

where, for each s ∈ R, R : Hs(S1) → C∞(S1).
6. Suppose a, b ∈ C∞(S1) are both nowhere vanishing. Let

T = MaP + Mb(I − P ), S = Ma−1P + Mb−1(I − P ).



16 4. Sobolev Spaces

Show that ST = I + R1 and TS = I + R2, where Rj : Hs(S1) → C∞(S1), for
all s ∈ R. Deduce that, for each s ∈ R,

T : Hs(S1) −→ Hs(S1) is Fredholm.

Remark: The theory of Fredholm operators is discussed in §7 of Appendix A,
Functional Analysis.

7. Let ej(θ) = eijθ. Describe explicitly the kernel and range of

Tjk = Mej P + Mek (I − P ).

Hence compute the index of Tjk. Using this, if a and b are nowhere-vanishing,
complex-valued smooth functions on S1, compute the index of Ta = MaP +
Mb(I − P ), in terms of the winding numbers of a and b. (Hint: If a and b are
homotopic to ej and ek, respectively, as maps from S1 to C \ 0, then T and
Tjk have the same index.)

4. Sobolev spaces on bounded domains

Let Ω be a smooth, compact manifold with boundary ∂Ω and interior Ω.
Our goal is to describe Sobolev spaces Hs(Ω). In preparation for this, we
will consider Sobolev spaces Hs(Rn

+), where R
n
+ is the half-space

R
n
+ = {x ∈ R

n : x1 > 0},

with closure Rn
+. For k ≥ 0 an integer, we want

(4.1) Hk(Rn
+) = {u ∈ L2(Rn

+) : Dαu ∈ L2(Rn
+) for |α| ≤ k}.

Here, Dαu is regarded a priori as a distribution on the interior R
n
+. The

space Hk(Rn) defined above has a natural Hilbert space structure. It
is not hard to show that the space S(Rn

+) of restrictions to R
n
+ of el-

ements of S(Rn) is dense in Hk(Rn
+), from the fact that, if τsu(x) =

u(x1 + s, x2, . . . , xn), then τsu → u in Hk(Rn
+) as s ց 0, if u ∈ Hk(Rn

+).
Now, we claim that each u ∈ Hk(Rn

+) is the restriction to R
n
+ of an element

of Hk(Rn). To see this, fix an integer N , and let

(4.2)

Eu(x) = u(x), for x1 ≥ 0,

N∑

j=1

aju(−jx1, x
′), for x1 < 0,

defined a priori for u ∈ S(Rn
+). We have the following.

Lemma 4.1. One can pick {a1, . . . , aN} such that the map E has a unique
continuous extension to

(4.3) E : Hk(Rn
+) −→ Hk(Rn), for k ≤ N − 1.
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Proof. Given u ∈ S(Rn), we get an Hk-estimate on Eu provided all the
derivatives of Eu of order ≤ N − 1 match up at x1 = 0, that is, provided

(4.4)

N∑

j=1

(−j)ℓaj = 1, for ℓ = 0, 1, . . . , N − 1.

The system (4.4) is a linear system of N equations for the N quantities aj ;
its determinant is a Vandermonde determinant that is seen to be nonzero,
so appropriate aj can be found.

Corollary 4.2. The restriction map

(4.5) ρ : Hk(Rn) −→ Hk(Rn
+)

is surjective.

Indeed, this follows from

(4.6) ρE = I on Hk(Rn
+).

Suppose s ≥ 0. We can define Hs(Rn
+) by interpolation:

(4.7) Hs(Rn
+) = [L2(Rn

+),Hk(Rn
+)]θ, k ≥ s, s = θk.

We can show that (4.7) is independent of the choice of an integer k ≥ s.
Indeed, interpolation from (4.3) gives

(4.8) E : Hs(Rn
+) −→ Hs(Rn);

interpolation of (4.5) gives

(4.9) ρ : Hs(Rn) −→ Hs(Rn
+);

and we have

(4.10) ρE = I on Hs(Rn
+).

This gives

(4.11) Hs(Rn
+) ≈ Hs(Rn)/{u ∈ Hs(Rn) : u

∣∣
R

n
+

= 0},

for s ≥ 0, a characterization that is manifestly independent of the choice
of k ≥ s in (4.7).

Now let Ω be a smooth, compact manifold with smooth boundary. We
can suppose that Ω is imbedded as a submanifold of a compact (bound-
aryless) manifold M of the same dimension. If Ω ⊂ R

n, n = dim Ω, you
can arrange this by putting Ω in a large box and identifying opposite sides
to get Ω ⊂ T

n. In the general case, one can construct the “double” of Ω,
as follows. Using a vector field X on ∂Ω that points into Ω at each point,
that is, X is nowhere vanishing on ∂Ω and in fact nowhere tangent to ∂Ω,
we can extend X to a vector field on a neighborhood of ∂Ω in Ω, and using
its integral curves construct a neighborhood of ∂Ω in Ω diffeomorphic to
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[0, 1) × ∂Ω, a so-called “collar neighborhood” of ∂Ω. Using this, one can
glue together two copies of Ω along ∂Ω in such a fashion as to produce a
smooth, compact M as desired.

If k ≥ 0 is an integer, we define Hk(Ω) to consist of all u ∈ L2(Ω)
such that Pu ∈ L2(Ω) for all differential operators P of order ≤ k with
coefficients in C∞(Ω). We use Ω to denote Ω\∂Ω. Similar to the case of R

n
+,

one shows that C∞(Ω) is dense in Hk(Ω). By covering a neighborhood of
∂Ω ⊂ M with coordinate patches and locally using the extension operator
E from above, we get, for each finite N , an extension operator

(4.12) E : Hk(Ω) −→ Hk(M), 0 ≤ k ≤ N − 1.

If, for real s ≥ 0, we define Hs(Ω) by

(4.13) Hs(Ω) = [L2(Ω),Hk(Ω)]θ, k ≥ s, s = θk,

we see that

(4.14) E : Hs(Ω) −→ Hs(M),

so the restriction ρ : Hs(M) → Hs(Ω) is onto, and

(4.15) Hs(Ω) ≈ Hs(M)/{u ∈ Hs(M) : u
∣∣
Ω

= 0},

which shows that (4.13) is independent of the choice of k ≥ s.
The characterization (4.15) can be used to define Hs(Ω) when s is a

negative real number. In that case, one wants to show that the space
Hs(Ω) so defined is independent of the inclusion Ω ⊂ M . We will take care
of this point in the next section.

The existence of the extension map (4.14) allows us to draw the following
immediate consequence from Proposition 3.3.

Proposition 4.3. If dim Ω = n and u ∈ Hs(Ω), then

u ∈ C(Ω) provided s >
n

2
;

u ∈ Ck(Ω) provided s >
n

2
+ k;

u ∈ Cα(Ω) provided s =
n

2
+ α, α ∈ (0, 1).

We now extend Proposition 3.4, obtaining the full version of Rellich’s
theorem.

Proposition 4.4. For any s ≥ 0, σ > 0, the natural inclusion

(4.16) j : Hs+σ(Ω) −→ Hs(Ω) is compact.
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Proof. Using E and ρ, we can factor the map (4.16) through the map
(3.9):

Hs+σ(Ω)
j−−−−→ Hs(Ω)

E

y
xρ

Hs+σ(M)
j−−−−→ Hs(M)

which immediately gives (4.16) as a consequence of Proposition 3.4.

The boundary ∂Ω of Ω is a smooth, compact manifold, on which Sobolev
spaces have been defined. By using local coordinate systems flattening
out ∂Ω, together with the extension map (4.14) and the trace theorem,
Proposition 1.6, we have the following result on the trace map:

(4.17) τu = u
∣∣
∂Ω

.

Proposition 4.5. For s > 1/2, τ extends uniquely to a continuous map

(4.18) τ : Hs(Ω) −→ Hs−1/2(∂Ω).

We close this section with a consideration of mapping properties on
Sobolev spaces of the Poisson integral considered in §2 of Chapter 3:

(4.19) PI : C(S1) −→ C(D),

where

(4.20) D = {(x, y) ∈ R
2 : x2 + y2 < 1},

given explicitly by

(4.21) PI f(z) =
∞∑

k=0

f̂(k)zk +
∞∑

k=1

f̂(−k)zk,

as in (2.4) of Chapter 3, and satisfying the property that

(4.22) u = PI f =⇒ ∆u = 0 in D and u
∣∣
S1 = f.

The following result can be compared with Proposition 2.2 in Chapter 3.

Proposition 4.6. The Poisson integral gives a continuous map

(4.23) PI : Hs(S1) −→ Hs+1/2(D), for s ≥ −1

2
.

Proof. It suffices to prove this for s = k − 1/2, k = 0, 1, 2, . . . ; this result
for general s ≥ −1/2 will then follow by interpolation. Recall that to say
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f ∈ Hk−1/2(S1) means

(4.24)

∞∑

n=−∞

|f̂(n)|2〈k〉2k−1 < ∞.

Now the functions {r|n|einθ : n ∈ Z} are mutually orthogonal in L2(D),
and

(4.25)

∫∫

D

∣∣r|n|einθ
∣∣2 dx dy = 2π

∫ 1

0

r2|n|r dr =
π

|n| + 1
.

In particular, f ∈ H−1/2(S1) implies

∞∑

n=−∞

|f̂(n)|2〈n〉−1 < ∞,

which implies PI f ∈ L2(D), by (4.25).
Next, if f ∈ Hk−1/2(S1), then (∂/∂θ)νf ∈ H−1/2(S1), for 0 ≤ ν ≤ k, so

(∂/∂θ)νPI f = PI(∂/∂θ)νf ∈ L2(D). We need to show that

(
r

∂

∂r

)µ( ∂

∂θ

)ν

PI f ∈ L2(D),

for 0 ≤ µ + ν ≤ k. Indeed, set

(4.26) Nf =

∞∑

n=−∞

|n|f̂(n)einθ.

It follows from Plancherel’s theorem that (∂/∂θ)νNµf ∈ H−1/2(S1), for
0 ≤ µ+ν ≤ k, if f ∈ Hk−1/2(S1), while, as in (2.18) of Chapter 2, we have

(4.27)
(
r

∂

∂r

)µ( ∂

∂θ

)ν

PI f = PI
( ∂

∂θ

)ν

Nµ f,

which hence belongs to L2(D). Since PI f is smooth in a neighborhood of
the origin r = 0, this finishes the proof.

The Poisson integral taking functions on the sphere Sn−1 to harmonic
functions on the ball in R

n, and more generally the map taking functions on
the boundary of ∂Ω of a compact Riemannian manifold Ω (with boundary),
to harmonic functions on Ω, will be studied in Chapter 5.

Exercises

1. Let D be the unit disk in R
2, with boundary ∂D = S1. Consider the solution

to the Neumann problem

(4.28) ∆u = 0 on D,
∂u

∂r
= g on S1,
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studied in Chapter 3, §2, Exercises 1–4. Show that, for s ≥ 1/2,

(4.29) g ∈ Hs(S1) =⇒ u ∈ Hs+3/2(D).

(Hint: Write u = PI f , with Nf = g, where N is given by (4.26).)
2. Let Ω be a smooth, compact manifold with boundary. Show that the follow-

ing versions of the divergence theorem and Green’s formula hold:

(4.30)

Z

Ω

h

(div X)uv + (Xu)v + u(Xv)
i

dV =

Z

∂Ω

〈X, ν〉uv dS,

when, among X, u, and v, one is smooth and two belong to H1(Ω). Also
show that

(4.31) −(u, ∆v)L2(Ω) = (du, dv)L2(Ω) −

Z

∂Ω

u
∂v

∂ν
dS,

for u ∈ H1(Ω), v ∈ H2(Ω). (Hint: Approximate.)
3. Show that if u ∈ H2(Ω) satisfies ∆u = 0 on Ω and ∂u/∂ν = 0 on ∂Ω, then u

must be constant, if Ω is connected. (Hint: Use (4.31) with v = u.)

Exercises 4–9 deal with the “oblique derivative problem” for the Laplace
operator on the disk D ⊂ R

2. The oblique derivative problem on higher-
dimensional regions is discussed in exercises in §12 of Chapter 5.

4. Consider the oblique derivative problem

(4.32) ∆u = 0 on D, a
∂u

∂r
+ b

∂u

∂θ
+ cu = g on S1,

where a, b, c ∈ C∞(S1) are given. If u = PI f , show that u is a solution if
and only if Qf = g, where

(4.33) Q = MaN + Mb
∂

∂θ
+ Mc : Hs+1(S1) −→ Hs(S1).

5. Recall Λ : Hs+1(S1) → Hs(S1), defined by

(4.34) Λf(θ) =
X

〈k〉f̂(k)eikθ,

as in (3.9). Show that Λ is an isomorphism and that

(4.35) Λ − N : Hs(S1) −→ Hs(S1).

6. With Q as in (4.33), show that Q = TΛ with

(4.36) T = Ma+ibP + Ma−ib(I − P ) + R : Hs(S1) −→ Hs(S1),

where

R : Hs(S1) −→ Hs+1(S1).

Here P is as in Exercise 3 of §3. (Hint: Note that ∂/∂θ = iPN − i(I −P )N.)
7. Deduce that the operator Q in (4.33) is Fredholm provided a + ib and a− ib

are nowhere vanishing on S1. In particular, if a and b are real-valued, Q
is Fredholm provided a and b have no common zeros on S1. (Hint: Recall
Exercises 4–6 of §3.)
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8. Let H = {u ∈ C2(D) : ∆u = 0 in D}. Take s > 0. Using the commutative
diagram

(4.37)

Hs+1(S1)
PI

−−−−→ Hs+ 3
2 (D) ∩H

Q

?

?

?

y

?

?

?

y

B

Hs(S1)
I

−−−−→ Hs(S1)

where Q is as in (4.33) and

(4.38) Bu = a
∂u

∂r
+ b

∂u

∂θ
+ cu

˛

˛

˛

S1
,

deduce that B is Fredholm provided a, b ∈ C∞(S1) are real-valued and have
no common zeros on S1. In such a case, compute the index of B. (Hint:
Recall Exercise 7 from §3. Also note that the two horizontal arrows in (4.37)
are isomorphisms.)

9. Let B be as above; assume a, b, c ∈ C∞(S1) are all real-valued. Also assume
that a is nowhere vanishing on S1. If c/a ≥ 0 on S1, show that Ker B
consists at most of constant functions. (Hint: See Zaremba’s principle, in §2
of Chapter 5.)
If, in addition, c is not identically zero, show that Ker B = 0. Using Exercise
8, show that B has index zero in this case. Draw conclusions about the
solvability of the oblique derivative problem (4.32).

10. Prove that C∞(Ω) is dense in Hs(Ω) for all s ≥ 0.
(Hint: With E as in (4.14), approximate Eu by elements of C∞(M).)

11. Consider the Vandermonde determinant

∆n+1(x0, . . . , xn) =

˛

˛

˛

˛

˛

˛

˛

˛

˛

1 1 · · · 1
x0 x1 · · · xn

...
...

. . .
...

xn
0 xn

1 · · · xn
n

˛

˛

˛

˛

˛

˛

˛

˛

˛

.

Show that ∆n+1(x0, . . . , xn−1, t) is a polynomial of degree n in t, with roots
x0, . . . , xn−1, hence equal to K(t − x0) · · · (t − xn−1); the coefficient K of tn

is equal to ∆n(x0, . . . , xn−1). Deduce by induction that

∆n+1(x0, . . . , xn) =
Y

0≤j<k≤n

(xk − xj).

12. Given 0 < s < 1 and f ∈ L2(R+), show that

(4.39) f ∈ Hs(R+) ⇐⇒

Z ∞

0

t−(2s+1)‖τtf − f‖2
L2(R+) dt < ∞,

where τtf(x) = f(x+ t). (Hint: Use Proposition 2.4, with P tf(x) = f(x+ t),
whose infinitesimal generator is d/dx, with domain H1(R+). Note that “⇒”
also follows from (4.14) plus (1.28).)
More generally, given 0 < s < 1 and f ∈ L2(Rn

+), show that

(4.40) f ∈ Hs(Rn
+) ⇐⇒

Z ∞

0

t−(2s+1)‖τtej f − f‖2
L2(R

n
+

) dt < ∞, 1 ≤ j ≤ n,

where τy is as in (1.12).



5. The Sobolev spaces Hs
0(Ω) 23

5. The Sobolev spaces Hs
0(Ω)

Let Ω be a smooth, compact manifold with boundary; we denote the interior
by Ω, as before. As before, we can suppose Ω is contained in a compact,
smooth manifold M , with ∂Ω a smooth hypersurface. For s ≥ 0, we define
Hs

0(Ω) to consist of the closure of C∞
0 (Ω) in Hs(Ω). For s = k a nonnegative

integer, it is not hard to show that

(5.1) Hk
0 (Ω) = {u ∈ Hk(M) : supp u ⊂ Ω}.

This is because a norm giving the topology of Hk(Ω) can be taken to be
the square root of

(5.2)

K∑

j=1

‖Pju‖2
L2(Ω),

for a certain finite number of differential operators Pj of order ≤ k, which
implies that the closure of C∞

0 (Ω) in Hk(Ω) can be identified with its
closure in Hk(M). Since the topology of Hs(M) for s /∈ Z

+ is not defined
in such a localizable fashion, such an argument does not work for general
real s. For a general closed set B in M , set

(5.3) Hs
B(M) = {u ∈ Hs(M) : supp u ⊂ B}.

It has been proved in [Fu] that, for s ≥ 0,

(5.4) Hs
0(Ω) ≈ Hs

Ω
(M) if s +

1

2
/∈ Z.

See the exercises below for some related results.
Recall our characterization of the space Hs(Ω) given in (4.15), which we

rewrite as

(5.5) Hs(Ω) ≈ Hs(M)/Hs
K(Ω), K = M \ Ω.

This characterization makes sense for any s ∈ R, not just for s ≥ 0, and
we use it as a definition of Hs(Ω) for s < 0. For k ∈ Z

+, we can redefine
H−k(Ω) in a fashion intrinsic to Ω, making use of the following functional
analytic argument.

In general, if E is a Banach space, with dual E∗, and F a closed linear
subspace of E, we have a natural isomorphism of dual spaces:

(5.6) F ∗ ≈ E∗/F⊥,

where

(5.7) F⊥ = {u ∈ E∗ : 〈v, u〉 = 0 for all v ∈ F}.
If E = Hk(M), we take F = Hk

0 (Ω), which, as discussed above, we can
regard as the closure of C∞

0 (Ω) in Hk(M) = E. Then it is clear that
F⊥ = H−k

K (M), with K = M \ Ω, so we have proved:
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Proposition 5.1. For Ω open in M with smooth boundary, k ≥ 0 an
integer, we have a natural isomorphism

(5.8) Hk
0 (Ω)∗ ≈ H−k(Ω).

Let P be a differential operator of order 2k, with smooth coefficients on
Ω. Suppose

(5.9) P =

L∑

j=1

AjBj ,

where Aj and Bj are differential operators of order k, with coefficients
smooth on Ω. Then we have a well-defined continuous linear map

(5.10) P : Hk
0 (Ω) −→ H−k(Ω),

and, if At
j denotes the formal adjoint of Aj on Ω, endowed with a smooth

Riemannian metric, then, for u, v ∈ Hk
0 (Ω), we have

(5.11) 〈u, Pv〉 =
L∑

j=1

(At
ju,Bjv)L2(Ω),

the dual pairing on the left side being that of (5.8). In fact, the formula
(5.5) gives

(5.12) P : Hs(Ω) −→ Hs−2k(Ω)

for all real s, and in particular

(5.13) P : Hk(Ω) −→ H−k(Ω),

and the identity (5.11) holds for v ∈ Hk(Ω), provided u ∈ Hk
0 (Ω). In

Chapter 5 we will study in detail properties of the map (5.10) when P is
the Laplace operator (so k = 1).

The following is an elementary but useful result.

Proposition 5.2. Suppose Ω is a smooth, connected, compact manifold
with boundary, endowed with a Riemannian metric. Suppose ∂Ω 6= ∅.
Then there exists a constant C = C(Ω) < ∞ such that

(5.14) ‖u‖2
L2(Ω) ≤ C‖du‖2

L2(Ω), for u ∈ H1
0 (Ω).

It suffices to establish (5.14) for u ∈ C∞(Ω). Given u
∣∣
∂Ω

= 0, one can
write

(5.15) u(x) = −
∫

γ(x)

du,
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for any x ∈ Ω, where γ(x) is some path from x to ∂Ω. Upon making a
reasonable choice of γ(x), obtaining (5.14) is an exercise, which we leave
to the reader. (See Exercises 4–5 below.)

Finding a sharp value of C such that (5.14) holds is a challenging prob-
lem, for which a number of interesting results have been obtained. As
will follow from results in Chapter 5, this is equivalent to the problem of
estimating the smallest eigenvalue of −∆ on Ω, with Dirichlet boundary
conditions.

Below, there is a sequence of exercises, one of whose implications is that

(5.16) [L2(Ω),H1
0 (Ω)]s = Hs

0(Ω) = Hs(Ω), 0 < s <
1

2
.

Here we will establish a result that is useful for the proof.

Proposition 5.3. Let Ω ⊂ R
n be a bounded region with smooth bound-

ary. If 0 ≤ s < 1/2, and Tu = χΩu, then

(5.17) T : Hs(Rn) −→ Hs(Rn).

Proof. It is easy to reduce this to the case Ω = R
n
+, and then to the case

n = 1, which we will treat here. Also, the case s = 0 is trivial, so we take
0 < s < 1/2. By (1.28), it suffices to estimate

(5.18)

∫ ∞

0

t−(2s+1)‖τtũ − ũ‖2
L2(R) dt,

where ũ(x) = Tu(x), so, for t > 0,

(5.19)

τtũ(x) − ũ(x) = u(t + x) − u(x), x > 0

u(t + x), −t < x < 0

0, x < −t

Hence (5.18) is

(5.20) ≤
∫ ∞

0

t−(2s+1)‖τtu−u‖2
L2(R) dt+

∫ ∞

0

t−(2s+1)

∫ 0

−t

|u(t+x)|2 dx dt.

The first term in (5.20) is finite for u ∈ Hs(R), 0 < s < 1, by (1.28). The
last term in (5.20) is equal to

(5.21)

∫ ∞

0

∫ t

0

t−(2s+1)|u(t − x)|2 dx dt =

∫ ∞

0

∫ t

0

t−(2s+1)|u(x)|2 dx dt

= Cs

∫ ∞

0

|x|−2s|u(x)|2 dx.

The next lemma implies that this is finite for u ∈ Hs(R), 0 < s < 1/2.
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Lemma 5.4. If 0 < s < 1/2, then

(5.22) u ∈ Hs(Rn) =⇒ |x1|−su ∈ L2(Rn).

Proof. The general case is easily deduced from the case n = 1, which we
establish here. Also, it suffices to show that, for 0 < s < 1/2,

(5.23) u ∈ Hs(R) =⇒ x−sũ ∈ L2(R+),

where ũ = u
∣∣
R+ . Now, for x > 0, u ∈ C∞

0 (R), set

(5.24) v(x) =
1

x

∫ x

0

[
u(x) − u(y)

]
dy, w(x) =

∫ ∞

x

v(y)

y
dy.

We claim that

(5.25) u(x) = v(x) − w(x), x > 0.

In fact, if u ∈ C∞
0 (R), then v(x) → 0 and w(x) → 0 as x → +∞, and one

verifies easily that u′(x) = v′(x)−w′(x). Thus it suffices to show that, for
0 < s < 1/2,

(5.26) ‖x−sv‖L2(R+) ≤ C‖u‖Hs(R), ‖x−sw‖L2(R+) ≤ C‖u‖Hs(R),

for u ∈ C∞
0 (R).

To verify the first estimate in (5.26), we will use the simple fact that
|v(x)|2 ≤ (1/x)

∫ x

0
|u(x) − u(y)|2 dy. Hence

(5.27)∫ ∞

0

x−s|v(x)|2 dx ≤
∫ ∞

0

∫ x

0

x−(2s+1)
∣∣u(x) − u(y)

∣∣2 dy dx

=

∫ ∞

0

∫ ∞

0

(y + t)−(2s+1)
∣∣u(y + t) − u(y)

∣∣2 dt dy

≤
∫ ∞

0

y−(2s+1)‖τtu − u‖2
L2(R+) dy.

Since the L2(R+)-norm is less than the L2(R)-norm, it follows from (1.28)
that the last integral in (5.27) is dominated by C‖u‖2

Hs(R), for 0 < s < 1.
Thus, to prove the rest of (5.26), it suffices to show that

(5.28) ‖x−sw‖L2(R+) ≤ C‖x−sv‖L2(R+), 0 < s <
1

2
,

or equivalently, that ‖w‖L2(R+,x−2sdx) ≤ C‖v‖L2(R+,x−2sdx). In turn, this
follows from the estimate (2.34), with β = 2s, since we have w = Φ∗v,
where Φ∗ acting on L2(R+, x−βdx) is the adjoint of Φ in (2.34). This
completes the proof of the lemma, hence of Proposition 5.3.

Corollary 5.5. If Sv(x) = v(x) for x ∈ Ω, and Sv(x) = 0 for x ∈ R
n \ Ω,

then

(5.29) S : Hs(Ω) −→ Hs(Rn), 0 ≤ s <
1

2
.
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Proof. Apply Proposition 5.3 to u = Ev, where E : Hs(Ω) → Hs(Ω) is
any extension operator that works for 0 ≤ s ≤ 1.

Exercises

1. Give the a detailed proof of (5.1).

2. With τu = u
˛

˛

˛

∂Ω
, as in (4.17), prove that

(5.30) H1
0 (Ω) = {u ∈ H1(Ω) : τu = 0}.

(Hint: Given u ∈ H1(Ω) and τu = 0, define ũ = u(x) for x ∈ Ω, ũ(x) = 0
for x ∈ M \ Ω. Use (4.30) to show that ũ ∈ H1(M).)

3. Let u ∈ Hk(Ω). Prove that u ∈ Hk
0 (Ω) if and only if τ(Pu) = 0 for all

differential operators P (with smooth coefficients) of order ≤ k − 1 on M .
4. Give a detailed proof of Proposition 5.2 along the lines suggested, involving

(5.15).
5. Give an alternative proof of Proposition 5.2, making use of the compactness

of the inclusion H1(Ω) →֒ L2(Ω). (Hint: If (5.14) is false, take uj ∈ H1
0 (Ω)

such that ‖duj‖L2 → 0, ‖uj‖L2 = 1. The compactness yields a subsequence
uj → v in H1(Ω). Hence ‖v‖L2 = 1 while ‖dv‖L2 = 0.)

6. Suppose Ω ⊂ R
n lies between two parallel hyperplanes, x1 = A and x1 = B.

Show that the estimate (5.14) holds with C = (B − A)2/π2.
Reconsider this problem after reading §1 of Chapter 5.

7. Show that C∞(Ω) is dense in H−s(Ω), for s ≥ 0. Compare Exercise 10 of §4.
8. Give a detailed proof that (5.11) is true for u ∈ Hk

0 (Ω), v ∈ Hk(Ω).
(Hint: Approximate u by uj ∈ C∞

0 (Ω) and v by vj ∈ C∞(Ω).)
9. Show that if P t is the formal adjoint of P , then 〈u, Pv〉 = 〈P tu, v〉 for

u, v ∈ Hk
0 (Ω).

In the following problems, let Ω be an open subset of a compact manifold
M , with smooth boundary ∂Ω and closure Ω. Let O = M \ Ω.

10. Define Z : L2(Ω) → L2(M) by Zu(x) = u(x) for x ∈ Ω, 0 for x ∈ O. Show
that

(5.31) Z : Hk
0 (Ω) −→ Hk

Ω(M), k = 0, 1, 2, . . .

and that Z is an isomorphism in these cases. Deduce that

(5.32) Z : [L2(Ω), Hk
0 (Ω)]θ −→ Hkθ

Ω (M), 0 < θ < 1, k ∈ Z
+.

11. For fixed but large N , let E : Hs(O) → Hs(M) be an extension operator,

similar to (4.14), for 0 ≤ s ≤ N . Define Tu = u − ERu, where Ru = u
˛

˛

˛

O
.

Show that

(5.33) T : Hs(M) −→ Hs
Ω(M), 0 ≤ s ≤ N.

Note that Tu = u for u ∈ Hs
Ω
(M).
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12. Set T bu = Tu
˛

˛

˛

Ω
, so T b : Hk(M) → Hk

0 (Ω), for 0 ≤ k ≤ N , and hence

T b : Hkθ(M) −→ [L2(Ω), Hk
0 (Ω)]θ.

Show that

T bjZ = id. on [L2(Ω), Hk
0 (Ω)]θ,

where j : Hs
Ω
(M) →֒ Hs(M) is the natural inclusion. Deduce that (5.32) is

an isomorphism. Conclude that

(5.34) [L2(Ω), Hk
0 (Ω)]θ ≈ [H0

Ω(M), Hk
Ω(M)]θ = Hkθ

Ω (M), 0 < θ < 1.

13. Show that Hs
Ω
(M) is equal to the closure of C∞

0 (Ω) in Hs(M). (This can
fail when ∂Ω is not smooth.) Conclude that there is a natural injective map

κ : Hs
Ω(M) −→ Hs

0(Ω), s ≥ 0.

(Hint: Recall that Hs
0(Ω) is the closure of C∞

0 (Ω) in Hs(Ω) ≈ Hs(M)/Hs
O

(M).)
14. If Z is defined as in Exercise 10, use Corollary 5.5 to show that

(5.35) Z : Hs
0(Ω) −→ Hs(M), 0 ≤ s <

1

2
.

15. If v ∈ C∞(Ω), and w = v on Ω, 0 on O, show that w ∈ Hs(M), for all
s ∈ [0, 1/2). If v = 1, show that w /∈ H1/2(M).

16. Show that

(5.36) Hs
0(Ω) = Hs(Ω), for 0 ≤ s ≤

1

2
.

(Hint: To show that C∞
0 (Ω) is dense in Hs(Ω), show that {u ∈ C∞(M) :

u = 0 near ∂Ω} is dense in Hs(M), for 0 ≤ s ≤ 1/2.)
17. Using the results of Exercises 10–16, show that, for k ∈ Z

+,

(5.37) [L2(Ω), Hk
0 (Ω)]θ = Hs

0(Ω) = Hs(Ω) if s = kθ ∈ [0, 1
2
).

See [LM], pp. 60–62, for a demonstration that, for s > 0,

Z : Hs
0(Ω) −→ Hs(M) ⇐⇒ s −

1

2
/∈ Z,

which, by Exercise 12, implies (5.4) and also, for k ∈ Z
+,

[L2(Ω), Hk
0 (Ω)]θ = Hs

0(Ω) if s = kθ /∈ Z +
1

2
.

18. If F is a closed subspace of a Banach space, there is a natural isomorphism
(E/F )∗ ≈ F⊥ = {ω ∈ E∗ : 〈f, ω〉 = 0, ∀ f ∈ F}. Use this to show that

(5.38) Hs(Ω)∗ ≈ H−s

Ω
(M).

19. Applying (5.6) with E = Hk(Ω), F = Hk
0 (Ω), in conjunction with (5.8) and

(5.38), show that for k ∈ N,

(5.39) H−k(Ω) ≈ H−k

Ω
(M)/H−k

∂Ω (M).



6. The Schwartz kernel theorem 29

6. The Schwartz kernel theorem

Let M and N be compact manifolds. Suppose

(6.1) T : C∞(M) −→ D′(N)

is a linear map that is continuous. We give C∞(M) its usual Fréchet space
topology and D′(N) its weak∗ topology. Consequently, we have a bilinear
map

(6.2) B : C∞(M) × C∞(N) −→ C,

separately continuous in each factor, given by

(6.3) B(u, v) = 〈v, Tu〉, u ∈ C∞(M), v ∈ C∞(N).

For such u, v, define

(6.4) u ⊗ v ∈ C∞(M × N)

by

(6.5) (u ⊗ v)(x, y) = u(x)v(y), x ∈ M, y ∈ N.

We aim to prove the following result, known as the Schwartz kernel theo-
rem.

Theorem 6.1. Given B as in (6.2), there exists a distribution

(6.6) κ ∈ D′(M × N)

such that

(6.7) B(u, v) = 〈u ⊗ v, κ〉,
for all u ∈ C∞(M), v ∈ C∞(N).

We note that the right side of (6.7) defines a bilinear map (6.2) that
is continuous in each factor, so Theorem 6.1 establishes an isomorphism
between D′(M×N) and the space of maps of the form (6.2), or equivalently
the space of continuous linear maps (6.1).

The first step in the proof is to elevate the hypothesis of separate conti-
nuity to an apparently stronger condition. Generally speaking, let E and
F be Fréchet spaces, and let

(6.8) β : E × F −→ C

be a separately continuous bilinear map. Suppose the topology of E is
defined by seminorms p1 ≤ p2 ≤ p3 ≤ · · · and that of F by seminorms
q1 ≤ q2 ≤ q3 ≤ · · · . We have the following result.

Proposition 6.2. If β in (6.8) is separately continuous, then there exist
seminorms pK and qL and a constant C ′ such that

(6.9) |β(u, v)| ≤ C ′pK(u)qL(v), u ∈ E, v ∈ F.
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Proof. This will follow from the Baire category theorem, in analogy with
the proof of the uniform boundedness theorem. Let SC,j ⊂ E consist of
u ∈ E such that

(6.10) |β(u, v)| ≤ Cqj(v), for all v ∈ F.

The hypothesis that β is continuous in v for each u implies

(6.11)
⋃

C,j

SC,j = E.

The hypothesis that β is continuous in u implies that each SC,j is closed.
The Baire category theorem implies that some SC,L has nonempty interior.
Hence S1/2,L = (2C)−1SC,L has nonempty interior. Since Sc,L = −Sc,L

and S1/2,L + S1/2,L = S1,L, it follows that S1,L is a neighborhood of 0 in
E. Picking K so large that, for some C1, the set of u ∈ E with pK(u) ≤ C1

is contained in this neighborhood, we have (6.9) with C ′ = C/C1. This
proves the proposition.

Returning to the bilinear map B of (6.2), we use Sobolev norms to define
the topology of C∞(M) and of C∞(N):

(6.12) pj(u) = ‖u‖Hj(M), qj(v) = ‖v‖Hj(N).

In the case of M = T
m, we can take

(6.13) pj(u) =
( ∑

|α|≤j

‖Dαu‖2
L2(Tm)

)1/2

,

and similarly for pj(v) if N = T
n. Proposition 6.2 implies that there are

C,K,L such that

(6.14) |B(u, v)| ≤ C‖u‖HK(M)‖v‖HL(N).

Recalling that the dual of HL(N) is H−L(N), we have the following result.

Proposition 6.3. Let B be as in Theorem 6.1. Then for some K,L, there
is a continuous linear map

(6.15) T : HK(M) −→ H−L(N)

such that

(6.16) B(u, v) = 〈v, Tu〉, for u ∈ C∞(M), v ∈ C∞(N).

Thus, if a continuous linear map of the form (6.1) is given, it has a contin-
uous linear extension of the form (6.15).

In the next few steps of the proof of Theorem 6.1, it will be convenient
to work with the case M = T

m, N = T
n. Once Theorem 6.1 is established

in this case, it can readily be extended to the general case.
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Recall from (3.7) the isomorphisms

(6.17) Λs : Hσ(Tm) −→ Hσ−s(Tm),

for all real s, σ, where Λ2 = I − ∆. It follows from (6.15) that

(6.18) Tjk = (I − ∆)−jT (I − ∆)−k : L2(Tm) −→ Hs(Tn)

as long as k ≥ K/2 and j ≥ L/2 + s. Note that

(6.19) T = (I − ∆)jTjk(I − ∆)k.

The next step in our analysis will exploit the fact that if j is picked
sufficiently large in (6.18), then Tjk is a Hilbert-Schmidt operator from
L2(Tm) to L2(Tn).

We recall here the notion of a Hilbert-Schmidt operator, which is dis-
cussed in detail in §6 of Appendix A. Let H1 and H2 be two separable
infinite dimensional Hilbert spaces, with orthonormal bases {uj} and {vj},
respectively. Then A : H1 → H2 is Hilbert-Schmidt if and only if

(6.20)
∑

j

‖Auj‖2 =
∑

j,k

|ajk|2 < ∞,

where ajk = (Auj , vk). The quantity on the left is denoted ‖A‖2
HS . It is not

hard to show that this property is independent of choices of orthonormal
bases. Also, if there are bounded operators V1 : X1 → H1 and V2 : H2 →
X2 between Hilbert spaces, we have

(6.21) ‖V2AV1‖HS ≤ ‖V2‖ · ‖A‖HS · ‖V1‖,
where of course ‖Vj‖ are operator norms. If Vj are both unitary, there is
identity in (6.21). For short, we call a Hilbert-Schmidt operator an “HS
operator.”

From the definition, and using the exponential functions for Fourier series
as an orthonormal basis, it easily follows that

(6.22) Λ−s is HS on L2(Tn) ⇐⇒ s >
n

2
.

Consequently, we can say of the operator Tjk given by (6.18) that

(6.23) Tjk : L2(Tm) −→ L2(Tn) is HS if 2k ≥ K and 2j > L + n.

Our next tool, which we call the Hilbert-Schmidt kernel theorem, is
proved in §6 of Appendix A.

Theorem 6.4. Given a Hilbert-Schmidt operator

T1 : L2(X1, µ1) −→ L2(X2, µ2),

there exists K ∈ L2(X1 × X2, µ1 × µ2) such that

(6.24) (T1u, v)L2 =

∫∫
K(x1, x2)u(x1)v(x2) dµ1(x1) dµ2(x2).
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To proceed with the proof of the Schwartz kernel theorem, we can now
establish the following.

Proposition 6.5. The conclusion of Theorem 6.1 holds when M = T
m

and N = T
n.

Proof. By Theorem 6.4, there exists K ∈ L2(Tm × T
n) such that

(6.25) 〈v, Tjku〉 =

∫∫
K(x, y)u(x)v(y) dx dy,

for u ∈ C∞(Tm), v ∈ C∞(Tn), provided Tjk, given by (6.18), satisfies
(6.23). In view of (6.19), this implies

(6.26)

〈v, Tu〉 = 〈(I − ∆)jv, Tjk(I − ∆)ku〉

=

∫∫
K(x, y) (I − ∆y)jv(y) (I − ∆x)ku(x) dx dy,

so (6.7) holds with

(6.27) κ = (I − ∆x)k(I − ∆y)jK(x, y) ∈ D′(Tm × T
n).

Now Theorem 6.1 for general compact M and N can be proved by writing

(6.28) B(u, v) =
∑

j,k

B(ϕju, ψkv),

for partitions of unity {ϕj}, {ψk} subordinate to coordinate covers of M
and N , and transferring the problem to the case of tori.

Exercises

1. Extend Theorem 6.1 to treat the case of

B : C∞
0 (M) × C∞

0 (N) −→ C,

when M and N are smooth, paracompact manifolds. State carefully an ap-
propriate continuity hypothesis on B.

2. What is the Schwartz kernel of the identity map I : C∞(Tn) → C∞(Tn)?

7. Sobolev spaces on rough domains

With Ω ⊂ M as in §§4–5, suppose O ⊂ Ω is an open subset, perhaps with
quite rough boundary. As in our definitions of Hk(Ω) and Hk

0 (Ω), we set,
for k ∈ Z

+,

(7.1) Hk(O) = {u ∈ L2(O) : Pu ∈ L2(O), ∀P ∈ Diffk(M)},
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where Diffk(M) denotes the set of all differential operators of order ≤ k,
with C∞ coefficients, on M . Then we set

(7.2) Hk
0 (O) = closure of C∞

0 (O) in Hk(O).

There exist operators Pk1, . . . , PkN ∈ Diffk(M) spanning Diffk(M) over
C∞(M), N = N(k), and we can take

(7.3) ‖u‖2
Hk(O) =

n∑

j=1

‖Pkju‖2
L2(O).

It readily folllows that

(7.4) Hk
0 (O) = closure of C∞

0 (O) in Hk(M),

with u ∈ Hk
0 (O) extended by 0 off O. We have

(7.5) Hk
0 (O) ⊂ Hk

O
(M),

where

(7.6) Hk
O

(M) = {u ∈ Hk(M) : suppu ⊂ O}.
Unlike in (5.1), the reverse inclusion can fail for rough ∂O. Here is a
condition favorable for such a reverse inclusion.

Proposition 7.1. If at each point ∂O is locally the graph of a continuous
function, then

(7.7) Hk
0 (O) = Hk

O
(M).

In such a case, given u ∈ Hk
O

(M), one can use a partition of unity,
slight shifts, and mollifiers to realize u as a limit in Hk(M) of functions in
C∞

0 (O).
A simple example of a domain O for which (7.7) fails, for all k ≥ 1, is

the slit disk:

(7.8) O = {x ∈ R
2 : |x| < 1} \ {(x1, 0) : 0 ≤ x1 < 1}.

Another easy consequence of (7.4), plus Proposition 4.4, is that for k ≥ 1,
the natural injection

(7.9) Hk
0 (O) →֒ L2(O) is compact.

Also, the extension of u ∈ Hk
0 (O) by zero off O gives

(7.10) Hk
0 (O) →֒ Hk

0 (Ω), closed subspace.

Specializing this to k = 1 and recalling Proposition 5.2, we have

(7.11) ‖u‖2
L2(O) ≤ C̃‖du‖2

L2(O), ∀u ∈ H1
0 (O),

with C̃ ≤ C, where C is as in (5.14).
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Recall the restriction map ρ : Hk(M) → Hk(Ω), considered in §4. Simi-
larly we have ρ : Hk(M) → Hk(O), but for rough ∂O this map might not
be onto. There might not be an extension operator E : Hk(O) → Hk(M),
as in (4.12). Here is one favorable case for the existence of an extension
operator.

Proposition 7.2. If at each point ∂O is locally the graph of a Lipschitz
function, then there exists

(7.12) E : Hk(O) −→ Hk(M), for k = 0, 1, ρE = I on Hk(O).

In such a case, given u ∈ Hk(O), one can use a partition of unity to
reduce the construction to extending u supported on a small neighborhood
in O of a point p0 ∈ ∂O and use a bi-Lipschitz map to flatten out ∂O on
this support. Such bi-Lipschitz maps preserve Hk for k = 0 and 1, and we
can appeal to Lemma 4.1.

If (7.12) holds, then, as in Proposition 4.4, we have

(7.13) H1(O) →֒ L2(O)

compact. However, for rough ∂O, compactness in (7.13) can fail. A simple
example of such failure is given by

(7.14) O =

∞⋃

k=1

Ok, Ok = {x ∈ R
2 : |x − (2−k, 0)| < 8−k}.

When (7.12) holds, results on

(7.15) Hs(O) = [L2(O),H1(O)]s, 0 < s < 1,

parallel to those presented in §5, hold, as the reader is invited to verify.

Exercises

1. The example (7.8), for which (7.7) fails, is not equal to the interior of its
closure. Construct O ⊂ R

n, equal to the interior of its closure, for which (7.7)
fails.

2. The example (7.14), for which (7.13) is not compact, has infinitely many
connected components. Construct a connected, open, bounded O ⊂ R

n, such
that (7.13) is not compact.
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