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Pseudodifferential Operators

Introduction

In this chapter we discuss the basic theory of pseudodifferential operators
as it has been developed to treat problems in linear PDE. We define pseu-
dodifferential operators with symbols in classes denoted Sm

ρ,δ, introduced
by L. Hörmander. In §2 we derive some useful properties of their Schwartz
kernels. In §3 we discuss adjoints and products of pseudodifferential oper-
ators. In §4 we show how the algebraic properties can be used to establish
the regularity of solutions to elliptic PDE with smooth coefficients. In §5
we discuss mapping properties on L2 and on the Sobolev spaces Hs. In §6
we establish G̊arding’s inequality.

In §7 we apply some of the previous material to establish the existence
of solutions to hyperbolic equations. In §8 we show that certain important
classes of pseudodifferential operators are preserved under the action of
conjugation by solution operators to (scalar) hyperbolic equations, a result
of Y. Egorov. We introduce the notion of wave front set in §9 and discuss
the microlocal regularity of solutions to elliptic equations. We also discuss
how solution operators to a class of hyperbolic equations propagate wave
front sets. In §10 there is a brief discussion of pseudodifferential operators
on manifolds.

We give some further applications of pseudodifferential operators in the
next three sections. In §11 we discuss, from the perspective of the pseu-
dodifferential operator calculus, the classical method of layer potentials,
applied particularly to the Dirichlet and Neumann boundary problems for
the Laplace operator. Historically, this sort of application was one of the
earliest stimuli for the development of the theory of singular integral equa-
tions. One function of §11 is to provide a warm-up for the use of similar
integral equations to tackle problems in scattering theory, in §7 of Chap-
ter 9. Section 12 looks at general regular elliptic boundary problems and
includes material complementary to that developed in §11 of Chapter 5.
In §13 we construct a parametrix for the heat equation and apply this to
obtain an asymptotic expansion of the trace of the solution operator. This
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expansion will be useful in studies of the spectrum in Chapter 8 and in
index theory in Chapter 10.

Finally, in §14 we introduce the Weyl calculus. This can provide a pow-
erful alternative to the operator calculus developed in §§1–6, as can be seen
in [Ho4] and in Vol. 3 of [Ho5]. Here we concentrate on identities, tied to
symmetries in the Weyl calculus. We show how this leads to a quicker
construction of a parametrix for the heat equation than the method used
in §13. We will make use of this in §10 of Chapter 10, on a direct attack
on the index theorem for elliptic differential operators on two-dimensional
manifolds.

Material in §§1–10 is taken from Chapter 0 of [T4], and the author thanks
Birkhäuser Boston for permission to use this material. We also mention
some books that take the theory of pseudodifferential operators farther
than is done here: [Ho5], [Kg], [T1], and [Tre].

1. The Fourier integral representation and symbol classes

Using a slightly different convention from that established in Chapter 3,
we write the Fourier inversion formula as

(1.1) f(x) =

∫
f̂(ξ) eix·ξ dξ,

where f̂(ξ) = (2π)−n
∫

f(x)e−ix·ξ dx is the Fourier transform of a function
on R

n. If one differentiates (1.1), one obtains

(1.2) Dαf(x) =

∫
ξαf̂(ξ)eix·ξ dξ,

where Dα = Dα1

1 · · ·Dαn
n , Dj = (1/i) ∂/∂xj . Hence, if

p(x,D) =
∑

|α|≤k

aα(x)Dα

is a differential operator, we have

(1.3) p(x,D)f(x) =

∫
p(x, ξ)f̂(ξ)eix·ξ dξ

where

p(x, ξ) =
∑

|α|≤k

aα(x)ξα.

One uses the Fourier integral representation (1.3) to define pseudodiffer-
ential operators, taking the function p(x, ξ) to belong to one of a number
of different classes of symbols. In this chapter we consider the following
symbol classes, first defined by Hörmander [Ho2].
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Assuming ρ, δ ∈ [0, 1], m ∈ R, we define Sm
ρ,δ to consist of C∞-functions

p(x, ξ) satisfying

(1.4) |Dβ
xDα

ξ p(x, ξ)| ≤ Cαβ〈ξ〉m−ρ|α|+δ|β|,

for all α, β, where 〈ξ〉 = (1 + |ξ|2)1/2. In such a case we say the associated
operator defined by (1.3) belongs to OPSm

ρ,δ. We say that p(x, ξ) is the
symbol of p(x,D). The case of principal interest is ρ = 1, δ = 0. This class
is defined by [KN].

Recall that in Chapter 3, §8, we defined P (ξ) ∈ Sm
1 (Rn) to satisfy (1.4),

with ρ = 1, and with no x-derivatives involved. Thus Sm
1,0 contains Sm

1 (Rn).
If there are smooth pm−j(x, ξ), homogeneous in ξ of degree m − j for

|ξ| ≥ 1, that is, pm−j(x, rξ) = rm−jpm−j(x, ξ) for r, |ξ| ≥ 1, and if

(1.5) p(x, ξ) ∼
∑

j≥0

pm−j(x, ξ)

in the sense that

(1.6) p(x, ξ) −
N∑

j=0

pm−j(x, ξ) ∈ Sm−N−1
1,0 ,

for all N , then we say p(x, ξ) ∈ Sm
cl , or just p(x, ξ) ∈ Sm. We call pm(x, ξ)

the principal symbol of p(x,D). We will give a more general definition of
the principal symbol in §10.

It is easy to see that if p(x, ξ) ∈ Sm
ρ,δ and ρ, δ ∈ [0, 1], then p(x,D) :

S(Rn) → C∞(Rn). In fact, multiplying (1.3) by xα, writing xαeix·ξ =
(−Dξ)

αeix·ξ, and integrating by parts yield

(1.7) p(x,D) : S(Rn) −→ S(Rn).

Under one restriction, p(x,D) also acts on tempered distributions:

Lemma 1.1. If δ < 1, then

(1.8) p(x,D) : S ′(Rn) −→ S ′(Rn).

Proof. Given u ∈ S ′, v ∈ S, we have (formally)

(1.9) 〈v, p(x,D)u〉 = 〈pv, û〉,
where

pv(ξ) = (2π)−n

∫
v(x)p(x, ξ)eix·ξ dx.

Now integration by parts gives

ξαpv(ξ) = (2π)−n

∫
Dα

x

(
v(x)p(x, ξ)

)
eix·ξ dx,
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so

|pv(ξ)| ≤ Cα〈ξ〉m+δ|α|−|α|.

Thus if δ < 1, we have rapid decrease of pv(ξ). Similarly, we get rapid
decrease of derivatives of pv(ξ), so it belongs to S. Thus the right side of
(1.9) is well defined.

In §5 we will analyze the action of pseudodifferential operators on Sobolev
spaces.

Classes of symbols more general than Sm
ρ,δ have been introduced by

R. Beals and C. Fefferman [BF], [Be], and still more general classes were
studied by Hörmander [Ho4]. These classes have some deep applications,
but they will not be used in this book.

Exercises

1. Show that, for a(x, ξ) ∈ S(R2n),

(1.10) a(x, D)u =

Z

â(q, p) eiq·Xeip·Du(x) dq dp,

where â(q, p) is the Fourier transform of a(x, ξ), and the operators eiq·X and
eip·D are defined by

eiq·Xu(x) = eiq·xu(x), eip·Du(x) = u(x + p).

2. Establish the identity

(1.11) eip·Deiq·X = eiq·p eiq·Xeip·D.

Deduce that, for (t, q, p) ∈ R × R
n × R

n = Hn, the binary operation

(1.12) (t, q, p) ◦ (t′, q′, p′) = (t + t′ + p · q′, q + q′, p + p′)

gives a group and that

(1.13) π̃(t, q, p) = eiteiq·Xeip·X

defines a unitary representation of Hn on L2(Rn); in particular, it is a group
homomorphism: π̃(z ◦ z′) = π̃(z)π̃(z′). Hn is called the Heisenberg group.

3. Give a definition of a(x − q, D − p), acting on u(x). Show that

a(x − q, D − p) = π̃(0, q, p) a(x, D) π̃(0, q, p)−1.

4. Assume a(x, ξ) ∈ Sm
ρ,δ and b(x, ξ) ∈ S(Rn × R

n). Show that c(x, ξ) = (b ∗
a)(x, ξ) belongs to Sm

ρ,δ (∗ being convolution on R
2n). Show that

c(x, D)u =

Z

b(y, η) a(x − y, D − η) dy dη.

5. Show that the map Ψ(p, u) = p(x, D)u has a unique, continuous, bilinear
extension from Sm

ρ,δ × S(Rn) → S(Rn) to

Ψ : S ′(R2n) × S(Rn) −→ S ′(Rn),
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so that p(x, D) is “well defined” for any p ∈ S ′(Rn × R
n).

6. Let χ(ξ) ∈ C∞
0 (Rn) be 1 for |ξ| ≤ 1, χε(ξ) = χ(εξ). Given p(x, ξ) ∈ Sm

ρ,δ, let
pε(x, ξ) = χε(ξ)p(x, ξ). Show that if ρ, δ ∈ [0, 1], then

(1.14) u ∈ S(Rn) =⇒ pε(x, D)u → p(x, D)u in S(Rn).

If also δ < 1, show that

(1.15) u ∈ S ′(Rn) =⇒ pε(x, D)u → p(x, D)u in S ′(Rn),

where we give S ′(Rn) the weak∗ topology.
7. For s ∈ R, define Λs : S ′(Rn) → S ′(Rn) by

(1.16) Λsu(x) =

Z

〈ξ〉sû(ξ) eix·ξ dξ,

where 〈ξ〉 = (1 + |ξ|2)1/2. Show that Λs ∈ OPSs.
8. Given pj(x, ξ) ∈ S

mj

ρ,δ , for j ≥ 0, with ρ, δ ∈ [0, 1] and mj ց −∞, show that
there exists p(x, ξ) ∈ Sm0

ρ,δ such that

p(x, ξ) ∼
X

j≥0

pj(x, ξ),

in the sense that, for all k,

p(x, ξ) −
k−1
X

j=0

pj(x, ξ) ∈ S
mk
ρ,δ .

2. Schwartz kernels of pseudodifferential operators

To an operator p(x,D) ∈ OPSm
ρ,δ defined by (1.3) there corresponds a

Schwartz kernel K ∈ D′(Rn × R
n), satisfying

(2.1)

〈u(x)v(y),K〉 =

∫∫
u(x)p(x, ξ)v̂(ξ)eix·ξ dξ dx

= (2π)−n

∫∫∫
u(x)p(x, ξ)ei(x−y)·ξv(y) dy dξ dx.

Thus, K is given as an “oscillatory integral”

(2.2) K = (2π)−n

∫
p(x, ξ)ei(x−y)·ξ dξ.

We have the following basic result.

Proposition 2.1. If ρ > 0, then K is C∞ off the diagonal in R
n × R

n.

Proof. For given α ≥ 0,

(2.3) (x − y)αK =

∫
ei(x−y)·ξ Dα

ξ p(x, ξ) dξ.
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This integral is clearly absolutely convergent for |α| so large that m−ρ|α| <
−n. Similarly, it is seen that applying j derivatives to (2.3) yields an
absolutely convergent integral provided m + j − ρ|α| < −n, so in that case
(x − y)αK ∈ Cj(Rn × R

n). This gives the proof.

Generally, if T has the mapping properties

T : C∞
0 (Rn) −→ C∞(Rn), T : E ′(Rn) −→ D′(Rn),

and its Schwartz kernel K is C∞ off the diagonal, it follows easily that

sing supp Tu ⊂ sing supp u, for u ∈ E ′(Rn).

This is called the pseudolocal property. By (1.7)–(1.8) it holds for T ∈
OPSm

ρ,δ if ρ > 0 and δ < 1.
We remark that the proof of Proposition 2.1 leads to the estimate

(2.4) |Dβ
x,yK| ≤ C|x − y|−k,

where k ≥ 0 is any integer strictly greater than (1/ρ)(m + n + |β|). In
fact, this estimate is rather crude. It is of interest to record a more precise
estimate that holds when p(x, ξ) ∈ Sm

1,δ.

Proposition 2.2. If p(x, ξ) ∈ Sm
1,δ, then the Schwartz kernel K of p(x,D)

satisfies estimates

(2.5) |Dβ
x,yK| ≤ C|x − y|−n−m−|β|

provided m + |β| > −n.

The result is easily reduced to the case p(x, ξ) = p(ξ), satisfying |Dαp(ξ)|
≤ Cα〈ξ〉m−|α|, for which p(D) has Schwartz kernel K = p̂(y−x). It suffices
to prove (2.5) for such a case, for β = 0 and m > −n. We make use of the
following simple but important characterization of such symbols.

Lemma 2.3. Given p(ξ) ∈ C∞(Rn), it belongs to Sm
1,0 if and only if

(2.6) pr(ξ) = r−mp(rξ) is bounded in C∞(1 ≤ |ξ| ≤ 2), for r ∈ [1,∞).

Given this, we can write p(ξ) = p0(ξ) +
∫ ∞

0
qτ (e−τ ξ) dτ with p0(ξ) ∈

C∞
0 (Rn) and e−mτqτ (ξ) bounded in the Schwartz space S(Rn), for τ ∈

[0,∞). Hence e−mτ q̂τ (z) is bounded in S(Rn). In particular, e−mτ |q̂τ (z)| ≤
CN 〈z〉−N , so

(2.7)

|p̂(z)| ≤ |p̂0(z)| + CN

∫ ∞

0

e(n+m)τ
(
1 + |eτz|

)−N
dτ

≤ C + CN |z|−n−m

∫ ∞

log |z|

e(n+m)τ (1 + eτ )−Ndτ,
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which implies (2.5). We also see that in the case m + |β| = −n, we obtain
a result upon replacing the right side of (2.5) by C log |x− y|−1, (provided
|x − y| < 1/2).

We can get a complete characterization of P̂ (x) ∈ S ′(Rn), given P (ξ) ∈
Sm

1 (Rn), provided −n < m < 0.

Proposition 2.4. Assume −n < m < 0. Let q ∈ S ′(Rn) be smooth
outside the origin and rapidly decreasing as |x| → ∞. Then q = P̂ for
some P (ξ) ∈ Sm

1 (Rn) if and only if q ∈ L1
loc(R

n) and, for x 6= 0,

(2.8) |Dβ
xq(x)| ≤ Cβ |x|−n−m−|β|.

Proof. That P ∈ Sm
1 (Rn) implies (2.8) has been established above. For

the converse, write q = q0(x) +
∑

j≥0 ψj(x)q(x), where ψ0 ∈ C∞
0 (Rn)

is supported in 1/2 < |x| < 2, ψj(x) = ψ0(2
jx),

∑
j≥0 ψj(x) = 1 on

|x| ≤ 1. Since |q(x)| ≤ C|x|−n−m, m < 0, it follows that
∑

ψj(x)q(x)
converges in L1-norm. Then q0 ∈ S(Rn). The hypothesis (2.8) implies that
2−nj−mjψj(2

−jx)q(2−jx) is bounded in S(Rn), and an argument similar
to that used for Proposition 2.2 implies q̂0(ξ) +

∑∞
j=0(ψjq)ˆ(ξ) ∈ Sm

1 (Rn).

We will deal further with the space of elements of S ′(Rn) that are smooth
outside the origin and rapidly decreasing (with all their derivatives) at
infinity. We will denote this space by S ′

0(R
n).

If m ≤ −n, the argument above extends to show that (2.8) is a sufficient
condition for q = P̂ with P ∈ Sm

1 (Rn), but, as noted above, there exist
symbols P ∈ Sm

1 (Rn) for which q = P̂ does not satisfy (2.8). Now, given
that q ∈ S ′

0(R
n), it is easy to see that

(2.9) ∇q ∈ F
(
Sm+1

1 (Rn)
)
⇐⇒ q ∈ F

(
Sm

1 (Rn)
)
.

Thus, if −n − 1 < m ≤ −n, then Proposition 2.4 is almost applicable to
∇q, for n ≥ 2.

Proposition 2.5. Assume n ≥ 2 and −n − 1 < m ≤ −n. If q ∈ S ′
0(R

n) ∩
L1

loc, then q = P̂ for some P ∈ Sm(Rn) if and only if (2.8) holds for |β| ≥ 1.

Proof. First note that the hypotheses imply q ∈ L1(Rn); thus q̃(ξ) is con-
tinuous and vanishes as |ξ| → ∞. In the proposition, we need to prove the
“if” part. To use the reasoning behind Proposition 2.4, we need only deal
with the fact that ∇q is not assumed to be in L1

loc. The sum
∑

ψj(x)∇q(x)
still converges in L1(Rn), and so ∇q − ∑

ψj(x)∇q is a sum of an element
of S(Rn) and possibly a distribution (call it ν) supported at 0. Thus ν̂(ξ)
is a polynomial. But as noted, q̂(ξ) is bounded, so ν̂(ξ) can have at most
linear growth. Hence

ξj q̃(ξ) = Pj(ξ) + ℓj(ξ),
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where Pj ∈ Sm+1
1 (Rn) and ℓj(ξ) is a first-order polynomial in ξ. Since

q̃(ξ) → 0 as |ξ| → ∞ and m + 1 ≤ −n + 1 < 0, we deduce that ℓj(ξ) = cj ,
a constant, that is,

(2.10) ξj q̃(ξ) = Pj(ξ) + cj , Pj ∈ Sm+1
1 (Rn), m + 1 < 0.

Now the left side vanishes on the hyperplane ξj = 0, which is unbounded
if n ≥ 2. This forces cj = 0, and the proof of the proposition is then easily
completed.

If we take n = 1 and assume −2 < m < −1, the rest of the hypotheses
of Proposition 2.5 still yield (2.10), so

dq

dx
= P̂1 + c1δ.

If we also assume q is continuous on R, then c1 = 0 and we again conclude
that q = P̂ with P ∈ Sm

1 (R). But if q has a simple jump at x = 0, then
this conclusion fails.

Proposition 2.4 can be given other extensions, which we leave to the
reader. We give a few examples that indicate ways in which the result does
not extend, making use of results from §8 of Chapter 3. As shown in (8.31)
of that chapter, on R

n,

(2.11) v = PF |x|−n =⇒ v̂(ξ) = Cn log |ξ|.
Now v is not rapidly decreasing at infinity, but if ϕ(x) is a cut-off, belonging
to C∞

0 (Rn) and equal to 1 near x = 0, then f = ϕv belongs to S ′
0(R

n) and
f̂ = cϕ̂ ∗ v̂ behaves like log |ξ| as |ξ| → ∞. One can then deduce that, for
n = 1,

(2.12) f(x) = ϕ(x) log |x| sgn |x| =⇒ f̂(ξ) ∼ C ξ−1 log |ξ|, |ξ| → ∞.

Thus Proposition 2.5 does not extend to the case n = 1, m = −1. However,
we note that, in this case, f̂ belongs to S−1+ε

1 (R), for all ε > 0. In contrast
to (2.12), note that, again for n = 1,

(2.13) g(x) = ϕ(x) log |x| =⇒ ĝ(ξ) ∼ C |ξ|−1, |ξ| → ∞.

In this case, (d/dx) log |x| = PV (1/x).
Of considerable utility is the classification of F

(
Sm

cl (R
n)

)
. When m = −j

is a negative integer, this was effectively solved in §§8 and 9 of Chapter 3.
The following result is what follows from the proof of Proposition 9.2 in
Chapter 3.

Proposition 2.6. Assume q ∈ S ′
0(R

n) ∩ L1
loc(R

n). Let j = 1, 2, 3, . . . .
Then q = P̂ for some P ∈ S−j

cl (Rn) if and only if

(2.14) q ∼
∑

ℓ≥0

(
qℓ + pℓ(x) log |x|

)
,
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where

(2.15) qℓ ∈ H#
j+ℓ−n(Rn),

and pℓ(x) is a polynomial homogeneous of degree j + ℓ − n; these log
coefficients appear only for ℓ ≥ n − j.

We recall that H#
µ (Rn) is the space of distributions on R

n, homogeneous
of degree µ, which are smooth on R

n \0. For µ > −n, H#
µ (Rn) ⊂ L1

loc(R
n).

The meaning of the expansion (2.14) is that, for any k ∈ Z
+, there is an

N < ∞ such that the difference between q and the sum over ℓ < N belongs
to Ck(Rn). Note that, for n = 1, the function g(x) in (2.13) is of the form
(2.14), but the function f(x) in (2.12) is not.

To go from the proof of Proposition 9.2 of Chapter 3 to the result stated
above, it suffices to note explicitly that

(2.16) ϕ(x)xα log |x| ∈ F
(
S
−n−|α|
1 (Rn)

)
,

where ϕ is the cut-off used before. Since F intertwines Dα
ξ and multipli-

cation by xα, it suffices to verify the case α = 0, and this follows from the
formula (2.11), with x and ξ interchanged.

We can also classify Schwartz kernels of operators in OPSm
1,0 and OPSm

cl ,
if we write the kernel K of (2.2) in the form

(2.17) K(x, y) = L(x, x − y),

with

(2.18) L(x, z) = (2π)−n

∫
p(x, ξ)eiz·ξ dξ.

The following two results follow from the arguments given above.

Proposition 2.7. Assume −n < m < 0. Let L ∈ S ′(Rn × R
n) be a

smooth function of x with values in S ′
0(R

n) ∩ L1(Rn). Then (2.17) defines
the Schwartz kernel of an operator in OPSm

1,0 if and only if, for z 6= 0,

(2.19) |Dβ
xDγ

z L(x, z)| ≤ Cβγ |z|−n−m−|γ|.

Proposition 2.8. Assume L ∈ S ′(Rn × R
n) is a smooth function of x

with values in S ′
0(R

n) ∩ L1(Rn). Let j = 1, 2, 3, . . . . Then (2.17) defines
the Schwartz kernel of an operator in OPS−j

cl if and only if

(2.20) L(x, z) ∼
∑

ℓ≥0

(
qℓ(x, z) + pℓ(x, z) log |z|

)
,

where each Dβ
xqℓ(x, ·) is a bounded continuous function of x with values in

H#
j+ℓ−n, and pℓ(x, z) is a polynomial homogeneous of degree j + ℓ − n in

z, with coefficients that are bounded, together with all their x-derivatives.
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Exercises

1. Using the proof of Proposition 2.2, show that, given p(x, ξ) defined on R
n×R

n,
then

|Dβ
xDα

ξ p(x, ξ)| ≤ C′〈ξ〉−|α|+|β|, for |β| ≤ 1, |α| ≤ n + 1 + |β|,
implies

|K(x, y)| ≤ C|x − y|−n and |∇x,yK(x, y)| ≤ C|x − y|−n−1.

2. If the map κ is given by (2.2) (i.e., κ(p) = K) show that we get an isomorphism
κ : S ′(R2n) → S ′(R2n). Reconsider Exercise 3 of §1.

3. Show that κ, defined in Exercise 2, gives an isomorphism (isometric up to
a scalar factor) κ : L2(R2n) → L2(R2n). Deduce that p(x, D) is a Hilbert-
Schmidt operator on L2(Rn), precisely when p(x, ξ) ∈ L2(R2n).

3. Adjoints and products

Given p(x, ξ) ∈ Sm
ρ,δ, we obtain readily from the definition that the adjoint

is given by

(3.1) p(x,D)∗v = (2π)−n

∫
p(y, ξ)∗ei(x−y)·ξv(y) dy dξ.

This is not quite in the form (1.3), as the amplitude p(y, ξ)∗ is not a function
of (x, ξ). We need to transform (3.1) into such a form.

Before continuing the analysis of (3.1), we are motivated to look at a
general class of operators

(3.2) Au(x) = (2π)−n

∫
a(x, y, ξ)ei(x−y)·ξu(y) dy dξ.

We assume

(3.3) |Dγ
yDβ

xDα
ξ a(x, y, ξ)| ≤ Cαβγ〈ξ〉m−ρ|α|+δ1|β|+δ2|γ|

and then say a(x, y, ξ) ∈ Sm
ρ,δ1,δ2

. A brief calculation transforms (3.2) into

(3.4) (2π)−n

∫
q(x, ξ)ei(x−y)·ξu(y) dy dξ,

with

(3.5)
q(x, ξ) = (2π)−n

∫
a(x, y, η)ei(x−y)·(η−ξ) dy dη

= eiDξ·Dya(x, y, ξ)|y=x.

Note that a formal expansion eiDξ·Dy = I + iDξ ·Dy − (1/2)(Dξ ·Dy)2 + · · ·
gives

(3.6) q(x, ξ) ∼
∑

α≥0

i|α|

α!
Dα

ξ Dα
y a(x, y, ξ)

∣∣
y=x

.
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If a(x, y, ξ) ∈ Sm
ρ,δ1,δ2

, with 0 ≤ δ2 < ρ ≤ 1, then the general term in (3.6)

belongs to S
m−(ρ−δ2)|α|
ρ,δ , where δ = max(δ1, δ2), so the sum on the right is

formally asymptotic. This suggests the following result:

Proposition 3.1. If a(x, y, ξ) ∈ Sm
ρ,δ1,δ2

, with 0 ≤ δ2 < ρ ≤ 1, then (3.2)
defines an operator

A ∈ OPSm
ρ,δ, δ = max(δ1, δ2).

Furthermore, A = q(x,D), where q(x, ξ) has the asymptotic expansion
(3.6), in the sense that

q(x, ξ) −
∑

|α|<N

i|α|

α!
Dα

ξ Dα
y a(x, y, ξ)

∣∣
y=x

= rN (x, ξ) ∈ S
m−N(ρ−δ2)
ρ,δ .

To prove this proposition, one can first show that the Schwartz kernel

K(x, y) = (2π)−n

∫
a(x, y, ξ)ei(x−y)·ξ dξ

satisfies the same estimates as established in Proposition 2.1, and hence,
altering A only by an operator in OPS−∞, we can assume a(x, y, ξ) is
supported on |x − y| ≤ 1. Let

(3.7) b̂(x, η, ξ) = (2π)−n

∫
a(x, x + y, ξ)e−iy·η dy,

so

(3.8) q(x, ξ) =

∫
b̂(x, η, ξ + η) dη.

The hypotheses on a(x, y, ξ) imply

(3.9) |Dβ
xDα

ξ b̂(x, η, ξ)| ≤ Cναβ〈ξ〉m+δ|β|+δ2ν−ρ|α|〈η〉−ν ,

where δ = max (δ1, δ2). Since δ2 < 1, it follows that q(x, ξ) and any of its
derivatives can be bounded by some power of 〈ξ〉.

Now a power-series expansion of b̂(x, η, ξ +η) in the last argument about
ξ gives

(3.10)

∣∣∣b̂(x, η, ξ + η) −
∑

|α|<N

1

α!
(iDξ)

αb̂(x, η, ξ)ηα
∣∣∣

≤ Cν |η|N 〈η〉−ν sup
0≤t≤1

〈ξ + tη〉m+δ2ν−ρN .

Taking ν = N , we get a bound on the left side of (3.10) by

(3.11) C〈ξ〉m−(ρ−δ2)N if |η| ≤ 1

2
|ξ|,
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while taking ν large, we get a bound by any power of 〈η〉−1 for |ξ| ≤ 2|η|.
Hence

(3.12)
∣∣∣q(x, ξ)−

∑

|α|<N

1

α!
(iDξ)

αDα
y a(x, x+y, ξ)

∣∣
y=0

∣∣∣ ≤ C〈ξ〉m+n−(ρ−δ2)N .

The proposition follows from this, plus similar estimates on the difference
when derivatives are applied.

If we apply Proposition 3.1 to (3.1), we obtain:

Proposition 3.2. If p(x,D) ∈ OPSm
ρ,δ, 0 ≤ δ < ρ ≤ 1, then

(3.13) p(x,D)∗ = p∗(x,D) ∈ OPSm
ρ,δ,

with

(3.14) p∗(x, ξ) ∼
∑

α≥0

i|α|

α!
Dα

ξ Dα
x p(x, ξ)∗.

The result for products of pseudodifferential operators is the following.

Proposition 3.3. Given pj(x,D) ∈ OPS
mj

ρj ,δj
, suppose

(3.15) 0 ≤ δ2 < ρ ≤ 1, with ρ = min(ρ1, ρ2).

Then

(3.16) p1(x,D)p2(x,D) = q(x,D) ∈ OPSm1+m2

ρ,δ ,

with δ = max(δ1, δ2), and

(3.17) q(x, ξ) ∼
∑

α≥0

i|α|

α!
Dα

ξ p1(x, ξ) Dα
x p2(x, ξ).

This can be proved by writing

(3.18) p1(x,D)p2(x,D)u = p1(x,D)p∗2(x,D)∗u = Au,

for A as in (3.2), with

(3.19) a(x, y, ξ) = p1(x, ξ)p∗2(y, ξ)∗,

and then applying Propositions 3.1 and 3.2, to obtain (3.16), with

(3.20) q(x, ξ) ∼
∑

γ,σ≥0

i|σ|−|γ|

σ!γ!
Dσ

ξ Dσ
y

(
p1(x, ξ)Dγ

ξ Dγ
xp2(y, ξ)

)∣∣∣
y=x

.

The general term in this sum is equal to

i|σ|−|γ|

σ!γ!
Dσ

ξ

(
p1(x, ξ)Dγ

ξ Dγ+σ
x p2(x, ξ)

)
.
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Evaluating this by the product rule

Dσ
ξ (uv) =

∑

α+β=σ

(
σ

α

)
Dα

ξ u · Dβ
ξ v

gives

(3.21) q(x, ξ) ∼
∑

α

i|α|

α!
Dα

ξ p1(x, ξ)
∑

β,γ

i|β|−|γ|

β!γ!
Dβ+γ

ξ Dβ+γ+α
x p2(x, ξ).

That this yields (3.17) follows from the fact that, whenever |µ| > 0,

(3.22)
∑

β+γ=µ

i|β|−|γ|

β!γ!
Dβ+γ

ξ Dβ+γ+α
x p2(x, ξ) = 0,

an identity we leave as an exercise.
An alternative approach to a proof of Proposition 3.3 is to compute

directly that p1(x,D)p2(x,D) = q(x,D), with

(3.23)
q(x, ξ) = (2π)−n

∫
p1(x, η)p2(y, ξ)ei(x−y)·(η−ξ) dη dy

= eiDη·Dyp1(x, η)p2(y, ξ)
∣∣
y=x,η=ξ

,

and then apply an analysis such as used to prove Proposition 3.1. Carrying
out this latter approach has the advantage that the hypothesis (3.15) can
be weakened to

0 ≤ δ2 < ρ1 ≤ 1,

which is quite natural since the right side of (3.17) is formally asymptotic
under such a hypothesis. Also, the symbol expansion (3.17) is more easily
seen from (3.23).

Note that if Pj = pj(x,D) ∈ OPS
mj

ρ,δ are scalar, and 0 ≤ δ < ρ ≤ 1,
then the leading terms in the expansions of the symbols of P1P2 and P2P1

agree. It follows that the commutator

[P1, P2] = P1P2 − P2P1

has order lower than m1 +m2. In fact, the symbol expansion (3.17) implies

(3.24) Pj ∈ OPS
mj

ρ,δ scalar =⇒ [P1, P2] ∈ OPS
m1+m2−(ρ−δ)
ρ,δ .

Also, looking at the sum over |α| = 1 in (3.17), we see that the leading
term in the expansion of the symbol of [P1, P2] is given in terms of the
Poisson bracket:
(3.25)

[P1, P2] = q(x,D), q(x, ξ) =
1

i
{p1, p2}(x, ξ) mod S

m1+m2−2(ρ−δ)
ρ,δ .



14 7. Pseudodifferential Operators

The Poisson bracket {p1, p2} is defined by

(3.26) {p1, p2}(x, ξ) =
∑

j

∂p1

∂ξj

∂p2

∂xj
− ∂p1

∂xj

∂p2

∂ξj
,

as in §10 of Chapter 1.
The result (3.25) plays an important role in the treatment of Egorov’s

theorem, in §8.

Exercises

1. Writing aj(x, D) in the form (1.10), that is,

(3.27) aj(x, D) =

Z

âj(q, p)eiq·Xeip·D dq dp,

use the formula (1.11) for eip·Deiq′·X to express a1(x, D)a2(x, D) as a 4n-fold
integral. Show that it gives (3.20).

2. If Q(x, x) is any nondegenerate, symmetric, bilinear form on R
n, calculate the

kernel KQ(x, y, t) for which

(3.28) eitQ(D,D)u(x) =

Z

Rn

KQ(x, y, t) u(y) dy.

In case x ∈ R
n is replaced by (x, ξ) ∈ R

2n, use this to verify (3.5).
(Hint: Diagonalize Q and recall the treatment of eit∆ in (6.42) of Chapter 3,
giving

e−it∆δ(x) = (−4πit)−n/2 e|x|
2/4it, x ∈ R

n.

Compare the treatment of the stationary phase method in Appendix B of
Chapter 6.)

3. Establish the identity (3.22), used in the proof of Proposition 3.3.
(Hint: The left side of (3.22) is equal to

0

@

X

β+γ=µ

i|β|−|γ|

β!γ!

1

ADµ
ξ Dµ+α

x p2(x, ξ),

so one needs to show that the quantity in parentheses here vanishes if |µ| > 0.
To see this, make an expansion of (z + w)µ, and set z = (i, . . . , i), w =
(−i, . . . ,−i).)

4. Elliptic operators and parametrices

We say p(x,D) ∈ OPSm
ρ,δ is elliptic if, for some r < ∞,

(4.1) |p(x, ξ)−1| ≤ C〈ξ〉−m, for |ξ| ≥ r.
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Thus, if ψ(ξ) ∈ C∞(Rn) is equal to 0 for |ξ| ≤ r, 1 for |ξ| ≥ 2r, it follows
easily from the chain rule that

(4.2) ψ(ξ)p(x, ξ)−1 = q0(x, ξ) ∈ S−m
ρ,δ .

As long as 0 ≤ δ < ρ ≤ 1, we can apply Proposition 3.3 to obtain

(4.3)
q0(x,D)p(x,D) = I + r0(x,D),

p(x,D)q0(x,D) = I + r̃0(x,D),

with

(4.4) r0(x, ξ), r̃0(x, ξ) ∈ S
−(ρ−δ)
ρ,δ .

Using the formal expansion

(4.5) I − r0(x,D) + r0(x,D)2 − · · · ∼ I + s(x,D) ∈ OPS0
ρ,δ

and setting q(x,D) = (I + s(x,D))q0(x,D) ∈ OPS−m
ρ,δ , we have

(4.6) q(x,D)p(x,D) = I + r(x,D), r(x, ξ) ∈ S−∞.

Similarly, we obtain q̃(x,D) ∈ OPS−m
ρ,δ satisfying

(4.7) p(x,D)q̃(x,D) = I + r̃(x,D), r̃(x, ξ) ∈ S−∞.

But evaluating

(4.8)
(
q(x,D)p(x,D)

)
q̃(x,D) = q(x,D)

(
p(x,D)q̃(x,D)

)

yields q(x,D) = q̃(x,D) mod OPS−∞, so in fact

(4.9)
q(x,D)p(x,D) = I mod OPS−∞,

p(x,D)q(x,D) = I mod OPS−∞.

We say that q(x,D) is a two-sided parametrix for p(x,D).
The parametrix can establish the local regularity of a solution to

(4.10) p(x,D)u = f.

Suppose u, f ∈ S ′(Rn) and p(x,D) ∈ OPSm
ρ,δ is elliptic, with 0 ≤ δ < ρ ≤ 1.

Constructing q(x,D) ∈ OPS−m
ρ,δ as in (4.6), we have

(4.11) u = q(x,D)f − r(x,D)u.

Now a simple analysis parallel to (1.7) implies that

(4.12) R ∈ OPS−∞ =⇒ R : E ′ −→ S.

By duality, since taking adjoints preserves OPS−∞,

(4.13) R ∈ OPS−∞ =⇒ R : S ′ −→ C∞.

Thus (4.11) implies

(4.14) u = q(x,D)f mod C∞.
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Applying the pseudolocal property to (4.10) and (4.14), we have the fol-
lowing elliptic regularity result.

Proposition 4.1. If p(x,D) ∈ OPSm
ρ,δ is elliptic and 0 ≤ δ < ρ ≤ 1, then,

for any u ∈ S ′(Rn),

(4.15) sing supp p(x,D)u = sing supp u.

More refined elliptic regularity involves keeping track of Sobolev space
regularity. As we have the parametrix, this will follow simply from mapping
properties of pseudodifferential operators, to be established in subsequent
sections.

Exercises

1. Give the details of the implication (4.1) ⇒ (4.2) when p(x, ξ) ∈ Sm
ρ,δ, 0 ≤ δ <

ρ ≤ 1. Include the case where p(x, ξ) is a k × k matrix-valued function, using
such identities as

∂

∂xj
p(x, ξ)−1 = −p(x, ξ)−1 ∂p

∂xj
p(x, ξ)−1.

2. On R × R
n, consider the operator P = ∂/∂t − L(x, Dx), where

L(x, Dx) =
X

ajk(x) ∂j∂ku +
X

bj(x) ∂ju + c(x)u.

Assume that the coefficients are smooth and bounded, with all their deriva-
tives, and that L satisfies the strong ellipticity condition

−L2(x, ξ) =
X

ajk(x)ξjξk ≥ C|ξ|2, C > 0.

Show that
“

iτ − L2(x, ξ) + 1
”−1

= E(t, x, τ, ξ) ∈ S−1
1/2,0.

Show that E(t, x, D)P = A1(t, x, D) and PE(t, x, D) = A2(t, x, D), where
Aj ∈ OPS0

1/2,0 are elliptic. Then, using Proposition 4.1, construct a parametrix
for P , belonging to OPS−1

1/2,0.
3. Assume −n < m < 0, and suppose P = p(x, D) ∈ OPSm

cl has Schwartz kernel
K(x, y) = L(x, x − y). Suppose that, at x0 ∈ R

n,

L(x0, z) ∼ a|z|−m−n + · · · , z → 0,

with a 6= 0, the remainder terms being progressively smoother. Show that

pm(x0, ξ) = b|ξ|m, b 6= 0,

and hence that P is elliptic near x0.
4. Let P = (Pjk) be a K × K matrix of operators in OPS∗. It is said to be

“elliptic in the sense of Douglis and Nirenberg” if there are numbers aj , bj ,
1 ≤ j ≤ K, such that Pjk ∈ OPSaj+bk and the matrix of principal symbols
has nonvanishing determinant (homogeneous of order

P

(aj +bj)), for ξ 6= 0. If
Λs is as in (1.17), let A be a K×K diagonal matrix with diagonal entries Λ−aj ,
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and let B be diagonal, with entries Λ−bj . Show that this “DN-ellipticity” of
P is equivalent to the ellipticity of APB in OPS0.

5. L2-estimates

Here we want to obtain L2-estimates for pseudodifferential operators. The
following simple basic estimate will get us started.

Proposition 5.1. Let (X,µ) be a measure space. Suppose k(x, y) is mea-
surable on X × X and

(5.1)

∫

X

|k(x, y)| dµ(x) ≤ C1,

∫

X

|k(x, y)| dµ(y) ≤ C2,

for all y and x, respectively. Then

(5.2) Tu(x) =

∫
k(x, y)u(y) dµ(y)

satisfies

(5.3) ‖Tu‖Lp ≤ C
1/p
1 C

1/q
2 ‖u‖Lp ,

for p ∈ [1,∞], with

(5.4)
1

p
+

1

q
= 1.

This is proved in Appendix A on functional analysis; see Proposition 5.1
there. To apply this result when X = R

n and k = K is the Schwartz kernel
of p(x,D) ∈ OPSm

ρ,δ, note from the proof of Proposition 2.1 that

(5.5) |K(x, y)| ≤ CN |x − y|−N , for |x − y| ≥ 1

as long as ρ > 0, while

(5.6) |K(x, y)| ≤ C|x − y|−(n−1), for |x − y| ≤ 1

as long as m < −n + ρ(n − 1). (Recall that this last estimate is actually
rather crude.) Hence we have the following preliminary result.

Lemma 5.2. If p(x,D) ∈ OPSm
ρ,δ, ρ > 0, and m < −n + ρ(n − 1), then

(5.7) p(x,D) : Lp(Rn) −→ Lp(Rn), 1 ≤ p ≤ ∞.

If p(x,D) ∈ OPSm
1,δ, then (5.7) holds for m < 0.

The last observation follows from the improvement of (5.6) given in (2.5).
Our main goal in this section is to prove the following.
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Theorem 5.3. If p(x,D) ∈ OPS0
ρ,δ and 0 ≤ δ < ρ ≤ 1, then

(5.8) p(x,D) : L2(Rn) −→ L2(Rn).

The proof we give, following [Ho5], begins with the following result.

Lemma 5.4. If p(x,D) ∈ OPS−a
ρ,δ , 0 ≤ δ < ρ ≤ 1, and a > 0, then (5.8)

holds.

Proof. Since ‖Pu‖2
L2 = (P ∗Pu, u), it suffices to prove that some power of

p(x,D)∗p(x,D) = Q is bounded on L2. But Qk ∈ OPS−2ka
ρ,δ , so for k large

enough this follows from Lemma 5.2.

To proceed with the proof of Theorem 5.3, set q(x,D) = p(x,D)∗p(x,D)
∈ OPS0

ρ,δ, and suppose |q(x, ξ)| ≤ M − b, b > 0, so

(5.9) M − Re q(x, ξ) ≥ b > 0.

In the matrix case, take Re q(x, ξ) = (1/2)
(
q(x, ξ) + q(x, ξ)∗

)
. It follows

that

(5.10) A(x, ξ) =
(
M − Re q(x, ξ)

)1/2 ∈ S0
ρ,δ

and

(5.11) A(x,D)∗A(x,D) = M−q(x,D)+r(x,D), r(x,D) ∈ OPS
−(ρ−δ)
ρ,δ .

Applying Lemma 5.4 to r(x,D), we have

(5.12)
M‖u‖2

L2 − ‖p(x,D)u‖2
L2 = ‖A(x,D)u‖2

L2 − (r(x,D)u, u)

≥ −C‖u‖2
L2 ,

or

(5.13) ‖p(x,D)u‖2 ≤ (M + C)‖u‖2
L2 ,

finishing the proof.
From these L2-estimates easily follow L2-Sobolev space estimates. Recall

from Chapter 4 that the Sobolev space Hs(Rn) is defined as

(5.14) Hs(Rn) = {u ∈ S ′(Rn) : 〈ξ〉sû(ξ) ∈ L2(Rn)}.
Equivalently, with

(5.15) Λsu =

∫
〈ξ〉sû(ξ)eix·ξ dξ; Λs ∈ OPSs,

we have

(5.16) Hs(Rn) = Λ−sL2(Rn).

The operator calculus easily gives the next proposition:
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Proposition 5.5. If p(x,D) ∈ OPSm
ρ,δ, 0 ≤ δ < ρ ≤ 1, m, s ∈ R, then

(5.17) p(x,D) : Hs(Rn) −→ Hs−m(Rm).

Given Proposition 5.5, one easily obtains the Sobolev regularity of solu-
tions to the elliptic equations studied in §4.

Calderon and Vaillancourt sharpened Theorem 5.3, showing that

(5.18) p(x, ξ) ∈ S0
ρ,ρ, 0 ≤ ρ < 1 =⇒ p(x,D) : L2(Rn) −→ L2(Rn).

This result, particularly for ρ = 1/2, has played an important role in linear
PDE, especially in the study of subelliptic operators, but it will not be
used in this book. The case ρ = 0 is treated in the exercises below.

Another important extension of Theorem 5.3 is that p(x,D) is bounded
on Lp(Rn), for 1 < p < ∞, when p(x, ξ) ∈ S0

1,δ. Similarly, Proposition
5.5 extends to a result on Lp-Sobolev spaces, in the case ρ = 1. This is
important for applications to nonlinear PDE, and will be proved in Chapter
13.

Exercises

Exercises 1–7 present an approach to a proof of the Calderon-Vaillancourt
theorem, (5.18), in the case ρ = 0. This approach is due to H. O. Cordes
[Cor]; see also T. Kato [K] and R. Howe [How]. In these exercises, we assume
that U(y) is a (measurable) unitary, operator-valued function on a measure
space Y , operating on a Hilbert space H. Assume that, for f, g ∈ V, a dense
subset of H,

(5.19)

Z

Y

˛

˛

˛(U(y)f, g)
˛

˛

˛

2

dm(y) = C0‖f‖2 ‖g‖2.

1. Let ϕ0 ∈ H be a unit vector, and set ϕy = U(y)ϕ0. Show that, for any
T ∈ L(H),

(5.20) C2
0 (Tf1, f2) =

Z

Y

Z

Y

LT (y, y′) (f1, ϕy′) (ϕy, f2) dm(y) dm(y′),

where

(5.21) LT (y, y′) = (Tϕy′ , ϕy).

(Hint: Start by showing that
R

(f1, ϕy)(ϕy, f2) dm(y) = C0(f1, f2).)
A statement equivalent to (5.20) is

(5.22) T =

ZZ

LT (y, y′) U(y)Φ0U(y′) dm(y) dm(y′),

where Φ0 is the orthogonal projection of H onto the span of ϕ0.
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2. For a partial converse, suppose L is measurable on Y × Y and

(5.23)

Z

|L(y, y′)| dm(y) ≤ C1,

Z

|L(y, y′)| dm(y′) ≤ C1.

Define

(5.24) TL =

ZZ

L(y, y′) U(y)Φ0U(y′)∗ dm(y) dm(y′).

Show that the operator norm of TL on H has the estimate

‖TL‖ ≤ C2
0C1.

3. If G is a trace class operator, and we set

(5.25) TL,G =

ZZ

L(y, y′) U(y)GU(y′)∗ dm(y) dm(y′),

show that

(5.26) ‖TL,G‖ ≤ C2
0C1 ‖G‖TR.

(Hint: In case G = G∗, diagonalize G and use Exercise 2.)
4. Suppose b ∈ L∞(Y ) and we set

(5.27) T#
b,G =

Z

b(y) U(y)GU(y)∗ dm(y).

Show that

(5.28) ‖T#
b,G‖ ≤ C0‖b‖L∞ ‖G‖TR.

5. Let Y = R
2n, with Lebesgue measure, y = (q, p). Set U(y) = eiq·Xeip·D =

π̃(0, q, p), as in Exercises 1 and 2 of §1. Show that the identity (5.19) holds,
for f, g ∈ L2(Rn) = H, with C0 = (2π)−n. (Hint: Make use of the Plancherel
theorem.)

6. Deduce that if a(x, D) is a trace class operator,

(5.29) ‖(b ∗ a)(x, D)‖L(L2) ≤ C‖b‖L∞ ‖a(x, D)‖TR.

(Hint: Look at Exercises 3–4 of §1.)
7. Suppose p(x, ξ) ∈ S0

0,0. Set

(5.30) a(x, ξ) = ψ(x)ψ(ξ), b(x, ξ) = (1 − ∆x)k(1 − ∆ξ)
kp(x, ξ),

where k is a positive integer, ψ̂(ξ) = 〈ξ〉−2k. Show that if k is chosen large
enough, then a(x, D) is trace class. Note that, for all k ∈ Z

+, b ∈ L∞(R2n),
provided p ∈ S0

0,0. Show that

(5.31) p(x, D) = (b ∗ a)(x, D),

and deduce the ρ = 0 case of the Calderon-Vaillancourt estimate (5.19).
8. Sharpen the results of problems 3–4 above, showing that

(5.32) ‖TL,G‖L(H) ≤ C2
0 ‖L‖L(L2(Y )) ‖G‖TR.

This is stronger than (5.26) in view of Proposition 5.1.
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6. G̊arding’s inequality

In this section we establish a fundamental estimate, first obtained by
L. G̊arding in the case of differential operators.

Theorem 6.1. Assume p(x,D) ∈ OPSm
ρ,δ, 0 ≤ δ < ρ ≤ 1, and

(6.1) Re p(x, ξ) ≥ C|ξ|m, for |ξ| large.

Then, for any s ∈ R, there are C0, C1 such that, for u ∈ Hm/2(Rn),

(6.2) Re
(
p(x,D)u, u

)
≥ C0‖u‖2

Hm/2 − C1‖u‖2
Hs .

Proof. Replacing p(x,D) by Λ−m/2p(x,D)Λ−m/2, we can suppose with-
out loss of generality that m = 0. Then, as in the proof of Theorem 5.3,
take

(6.3) A(x, ξ) =
(
Re p(x, ξ) − 1

2
C

)1/2

∈ S0
ρ,δ,

so

(6.4)
A(x,D)∗A(x,D) = Re p(x,D) − 1

2
C + r(x,D),

r(x,D) ∈ OPS
−(ρ−δ)
ρ,δ .

This gives

(6.5)
Re (p(x,D)u, u) = ‖A(x,D)u‖2

L2 +
1

2
C‖u‖2

L2 +
(
r(x,D)u, u

)

≥ 1

2
C‖u‖2

L2 − C1‖u‖2
Hs

with s = −(ρ − δ)/2, so (6.2) holds in this case. If s < −(ρ − δ)/2 = s0,
use the simple estimate

(6.6) ‖u‖2
Hs0 ≤ ε‖u‖2

L2 + C(ε)‖u‖2
Hs

to obtain the desired result in this case.

This G̊arding inequality has been improved to a sharp G̊arding inequal-
ity, of the form

(6.7) Re
(
p(x,D)u, u

)
≥ −C‖u‖2

L2 when Re p(x, ξ) ≥ 0,

first for scalar p(x, ξ) ∈ S1
1,0, by Hörmander, then for matrix-valued sym-

bols, with Re p(x, ξ) standing for (1/2)
(
p(x, ξ) + p(x, ξ)∗

)
, by P. Lax and

L. Nirenberg. Proofs and some implications can be found in Vol. 3 of [Ho5],
and in [T1] and [Tre]. A very strong improvement due to C. Fefferman and
D. Phong [FP] is that (6.7) holds for scalar p(x, ξ) ∈ S2

1,0. See also [Ho5]
and [F] for further discussion.
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Exercises

1. Suppose m > 0 and p(x, D) ∈ OPSm
1,0 has a symbol satisfying (6.1). Examine

the solvability of

∂u

∂t
= p(x, D)u,

for u = u(t, x), u(0, x) = f ∈ Hs(Rn).
(Hint: Look ahead at §7 for some useful techniques. Solve

∂uε

∂t
= Jεp(x, D)Jεuε

and estimate (d/dt)‖Λsuε(t)‖2
L2 , making use of G̊arding’s inequality.)

7. Hyperbolic evolution equations

In this section we examine first-order systems of the form

(7.1)
∂u

∂t
= L(t, x,Dx)u + g(t, x), u(0) = f.

We assume L(t, x, ξ) ∈ S1
1,0, with smooth dependence on t, so

(7.2) |Dj
t D

β
xDα

ξ L(t, x, ξ)| ≤ Cjαβ〈ξ〉1−|α|.

Here L(t, x, ξ) is a K × K matrix-valued function, and we make the hy-
pothesis of symmetric hyperbolicity:

(7.3) L(t, x, ξ)∗ + L(t, x, ξ) ∈ S0
1,0.

We suppose f ∈ Hs(Rn), s ∈ R, g ∈ C(R,Hs(Rn)).
Our strategy will be to obtain a solution to (7.1) as a limit of solutions

uε to

(7.4)
∂uε

∂t
= JεLJεuε + g, uε(0) = f,

where

(7.5) Jε = ϕ(εDx),

for some ϕ(ξ) ∈ S(Rn), ϕ(0) = 1. The family of operators Jε is called a
Friedrichs mollifier. Note that, for any ε > 0, Jε ∈ OPS−∞, while, for
ε ∈ (0, 1], Jε is bounded in OPS0

1,0.
For any ε > 0, JεLJε is a bounded linear operator on each Hs, and

solvability of (7.4) is elementary. Our next task is to obtain estimates on
uε, independent of ε ∈ (0, 1]. Use the norm ‖u‖Hs = ‖Λsu‖L2 . We derive
an estimate for

(7.6)
d

dt
‖Λsuε(t)‖2

L2 = 2Re (ΛsJεLJεuε,Λ
suε) + 2Re (Λsg,Λsuε).
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Write the first two terms on the right as the real part of

(7.7) 2(LΛsJεuε,Λ
sJεuε) + 2([Λs, L]Jεuε,Λ

sJεuε).

By (7.3), L + L∗ = B(t, x,D) ∈ OPS0
1,0, so the first term in (7.7) is equal

to

(7.8)
(
B(t, x,D)ΛsJεuε,Λ

sJεuε

)
≤ C‖Jεuε‖2

Hs .

Meanwhile, [Λs, L] ∈ OPSs
1,0, so the second term in (7.7) is also bounded

by the right side of (7.8). Applying Cauchy’s inequality to 2(Λsg,Λsuε),
we obtain

(7.9)
d

dt
‖Λsuε(t)‖2

L2 ≤ C‖Λsuε(t)‖2
L2 + C‖g(t)‖2

Hs .

Thus Gronwall’s inequality yields an estimate

(7.10) ‖uε(t)‖2
Hs ≤ C(t)

[
‖f‖2

Hs + ‖g‖2
C([0,t],Hs)

]
,

independent of ε ∈ (0, 1]. We are now prepared to establish the following
existence result.

Proposition 7.1. If (7.1) is symmetric hyperbolic and

f ∈ Hs(Rn), g ∈ C(R,Hs(Rn)), s ∈ R,

then there is a solution u to (7.1), satisfying

(7.11) u ∈ L∞
loc(R,Hs(Rn)) ∩ Lip (R,Hs−1(Rn)).

Proof. Take I = [−T, T ]. The bounded family

uε ∈ C(I,Hs) ∩ C1(I,Hs−1)

will have a weak limit point u satisfying (7.11), and it is easy to verify
that such u solves (7.1). As for the bound on [−T, 0], this follows from the
invariance of the class of hyperbolic equations under time reversal.

Analogous energy estimates can establish the uniqueness of such a solu-
tion u and rates of convergence of uε → u as ε → 0. Also, (7.11) can be
improved to

(7.12) u ∈ C(R,Hs(Rn)) ∩ C1(R,Hs−1(Rn)).

To see this, let fj ∈ Hs+1, fj → f in Hs, and let uj solve (7.1) with uj(0) =
fj . Then each uj belongs to L∞

loc(R,Hs+1) ∩ Lip(R,Hs), so in particular
each uj ∈ C(R,Hs). Now vj = u−uj solves (7.1) with vj(0) = f − fj , and
‖f − fj‖Hs → 0 as j → ∞, so estimates arising in the proof of Proposition
7.1 imply that ‖vj(t)‖Hs → 0 locally uniformly in t, giving u ∈ C(R,Hs).

There are other notions of hyperbolicity. In particular, (7.1) is said to be
symmetrizable hyperbolic if there is a K×K matrix-valued S(t, x, ξ) ∈ S0

1,0
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that is positive-definite and such that S(t, x, ξ)L(t, x, ξ) = L̃(t, x, ξ) satisfies
(7.3). Proposition 7.1 extends to the case of symmetrizable hyperbolic
systems. Again, one obtains u as a limit of solutions uε to (7.4). There
is one extra ingredient in the energy estimates. In this case, construct
S(t) ∈ OPS0

1,0, positive-definite, with symbol equal to S(t, x, ξ) mod S−1
1,0 .

For the energy estimates, replace the left side of (7.6) by

(7.13)
d

dt

(
Λsuε(t), S(t)Λsuε(t)

)
L2 ,

which can be estimated in a fashion similar to (7.7)–(7.9).
A K × K system of the form (7.1) with L(t, x, ξ) ∈ S1

cl is said to be
strictly hyperbolic if its principal symbol L1(t, x, ξ), homogeneous of degree
1 in ξ, has K distinct, purely imaginary eigenvalues, for each x and each
ξ 6= 0. The results above apply in this case, in view of:

Proposition 7.2. Whenever (7.1) is strictly hyperbolic, it is symmetriz-
able.

Proof. If we denote the eigenvalues of L1(t, x, ξ) by iλν(t, x, ξ), ordered so
that λ1(t, x, ξ) < · · · < λK(t, x, ξ), then λν are well-defined C∞-functions
of (t, x, ξ), homogeneous of degree 1 in ξ. If Pν(t, x, ξ) are the projections
onto the −iλν-eigenspaces of L∗

1,

(7.14) Pν(t, x, ξ) =
1

2πi

∫

γν

(
ζ − L1(t, x, ξ)∗

)−1
dζ,

where γν is a small circle about −iλν(t, x, ξ), then Pν is smooth and ho-
mogeneous of degree 0 in ξ. Then

(7.15) S(t, x, ξ) =
∑

j

Pj(t, x, ξ)∗Pj(t, x, ξ)

gives the desired symmetrizer.

Higher-order, strictly hyperbolic PDE can be reduced to strictly hy-
perbolic, first-order systems of this nature. Thus one has an analysis of
solutions to such higher-order hyperbolic equations.

Exercises

1. Carry out the reduction of a strictly hyperbolic PDE of order m to a first-order
system of the form (7.1). Starting with

Lu =
∂mu

∂ym
+

m−1
X

j=0

Aj(y, x, Dx)
∂ju

∂yj
,
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where Aj(y, x, D) has order ≤ m − j, form v = (v1, . . . , vm)t with

v1 = Λm−1u, . . . , vj = ∂j−1
y Λm−ju, . . . , vm = ∂m−1

y u,

to pass from Lu = f to

∂v

∂y
= K(y, x, Dx)v + F,

with F = (0, . . . , 0, f)t. Give an appropriate definition of strict hyperbolicity
in this context, and show that this first-order system is strictly hyperbolic
provided L is.

2. Fix r > 0. Let γr ∈ E ′(R2) denote the unit mass density on the circle of radius
r:

〈u, γr〉 =
1

2π

Z π

−π

u(r cos θ, r sin θ) dθ.

Let Γru = γr ∗ u. Show that there exist Ar(ξ) ∈ S−1/2(R2) and Br(ξ) ∈
S1/2(R2), such that

(7.16) Γr = Ar(D) cos r
√
−∆ + Br(D)

sin r
√
−∆√

−∆
.

(Hint: See Exercise 1 in §7 of Chapter 6.)

8. Egorov’s theorem

We want to examine the behavior of operators obtained by conjugating
a pseudodifferential operator P0 ∈ OPSm

1,0 by the solution operator to a
scalar hyperbolic equation of the form

(8.1)
∂u

∂t
= iA(t, x,Dx)u,

where we assume A = A1 + A0 with

(8.2) A1(t, x, ξ) ∈ S1
cl real, A0(t, x, ξ) ∈ S0

cl.

We suppose A1(t, x, ξ) is homogeneous in ξ, for |ξ| ≥ 1. Denote by S(t, s)
the solution operator to (8.1), taking u(s) to u(t). This is a bounded
operator on each Sobolev space Hσ, with inverse S(s, t). Set

(8.3) P (t) = S(t, 0)P0S(0, t).

We aim to prove the following result of Y. Egorov.

Theorem 8.1. If P0 = p0(x,D) ∈ OPSm
1,0, then for each t, P (t) ∈ OPSm

1,0,
modulo a smoothing operator. The principal symbol of P (t) (mod Sm−1

1,0 ) at
a point (x0, ξ0) is equal to p0(y0, η0), where (y0, η0) is obtained from (x0, ξ0)
by following the flow C(t) generated by the (time-dependent) Hamiltonian
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vector field

(8.4) HA1(t,x,ξ) =

n∑

j=1

(∂A1

∂ξj

∂

∂xj
− ∂A1

∂xj

∂

∂ξj

)
.

To start the proof, differentiating (8.3) with respect to t yields

(8.5) P ′(t) = i[A(t, x,D), P (t)], P (0) = P0.

We will construct an approximate solution Q(t) to (8.5) and then show
that Q(t) − P (t) is a smoothing operator.

So we are looking for Q(t) = q(t, x,D) ∈ OPSm
1,0, solving

(8.6) Q′(t) = i[A(t, x,D), Q(t)] + R(t), Q(0) = P0,

where R(t) is a smooth family of operators in OPS−∞. We do this by
constructing the symbol q(t, x, ξ) in the form

(8.7) q(t, x, ξ) ∼ q0(t, x, ξ) + q1(t, x, ξ) + · · · .

Now the symbol of i[A,Q(t)] is of the form

(8.8) HA1
q + {A0, q} + i

∑

|α|≥2

i|α|

α!

(
A(α)q(α) − q(α)A(α)

)
,

where A(α) = Dα
ξ A, A(α) = Dα

x A, and so on. Since we want the difference
between this and ∂q/∂t to have order −∞, this suggests defining q0(t, x, ξ)
by

(8.9)
( ∂

∂t
− HA1

)
q0(t, x, ξ) = 0, q0(0, x, ξ) = p0(x, ξ).

Thus q0(t, x0, ξ0) = p0(y0, η0), as in the statement of the theorem; we
have q0(t, x, ξ) ∈ Sm

1,0. The equation (8.9) is called a transport equation.
Recursively, we obtain transport equations

(8.10)
( ∂

∂t
− HA1

)
qj(t, x, ξ) = bj(t, x, ξ), qj(0, x, ξ) = 0,

for j ≥ 1, with solutions in Sm−j
1,0 , leading to a solution to (8.6).

Finally, we show that P (t)−Q(t) is a smoothing operator. Equivalently,
we show that, for any f ∈ Hσ(Rn),

(8.11) v(t) − w(t) = S(t, 0)P0f − Q(t)S(t, 0)f ∈ H∞(Rn),

where H∞(Rn) = ∩sH
s(Rn). Note that

(8.12)
∂v

∂t
= iA(t, x,D)v, v(0) = P0f,

while use of (8.6) gives

(8.13)
∂w

∂t
= iA(t, x,D)w + g, w(0) = P0f,
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where

(8.14) g = R(t)S(t, 0)w ∈ C∞(R,H∞(Rn)).

Hence

(8.15)
∂

∂t
(v − w) = iA(t, x,D)(v − w) − g, v(0) − w(0) = 0.

Thus energy estimates for hyperbolic equations yield v(t)−w(t) ∈ H∞, for
any f ∈ Hσ(Rn), completing the proof.

A check of the proof shows that

(8.16) P0 ∈ OPSm
cl =⇒ P (t) ∈ OPSm

cl .

Also, the proof readily extends to yield the following:

Proposition 8.2. With A(t, x,D) as before,

(8.17) P0 ∈ OPSm
ρ,δ =⇒ P (t) ∈ OPSm

ρ,δ

provided

(8.18) ρ >
1

2
, δ = 1 − ρ.

One needs δ = 1−ρ to ensure that p(C(t)(x, ξ)) ∈ Sm
ρ,δ, and one needs ρ >

δ to ensure that the transport equations generate qj(t, x, ξ) of progressively
lower order.

Exercises

1. Let χ : R
n → R

n be a diffeomorphism that is a linear map outside some

compact set. Define χ∗ : C∞(Rn) → C∞(Rn) by χ∗f(x) = f
“

χ(x)
”

. Show

that

(8.19) P ∈ OPSm
1,0 =⇒ (χ∗)−1Pχ∗ ∈ OPSm

1,0.

(Hint: Reduce to the case where χ is homotopic to a linear map through
diffeomorphisms, and show that the result in that case is a special case of
Theorem 8.1, where A(t, x, D) is a t-dependent family of real vector fields on
R

n.)
2. Let a ∈ C∞

0 (Rn), ϕ ∈ C∞(Rn) be real-valued, and ∇ϕ 6= 0 on supp a. If
P ∈ OPSm, show that

(8.20) P
“

a eiλϕ
”

= b(x, λ) eiλϕ(x),

where

(8.21) b(x, λ) ∼ λm
h

b±0 (x) + b±1 (x)λ−1 + · · ·
i

, λ → ±∞.

(Hint: Using a partition of unity and Exercise 1, reduce to the case ϕ(x) = x·ξ,
for some ξ ∈ R

n \ 0.)
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3. If a and ϕ are as in Exercise 2 above and Γr is as in Exercise 2 of §7, show
that, mod O(λ−∞),

(8.22) Γr

“

a eiλϕ
”

= cos r
√
−∆

“

Ar(x, λ)eiλϕ
”

+
sin r

√
−∆√

−∆

“

Br(x, λ)eiλϕ
”

,

where

Ar(x, λ) ∼ λ−1/2
h

a±
0r(x) + a±

1r(x)λ−1 + · · ·
i

,

Br(x, λ) ∼ λ1/2
h

b±0r(x) + b±1r(x)λ−1 + · · ·
i

,

as λ → ±∞.

9. Microlocal regularity

We define the notion of wave front set of a distribution u ∈ H−∞(Rn) =
∪sH

s(Rn), which refines the notion of singular support. If p(x, ξ) ∈ Sm

has principal symbol pm(x, ξ), homogeneous in ξ, then the characteristic
set of P = p(x,D) is given by

(9.1) Char P = {(x, ξ) ∈ R
n × (Rn \ 0) : pm(x, ξ) = 0}.

If pm(x, ξ) is a K×K matrix, take the determinant. Equivalently, (x0, ξ0) is
noncharacteristic for P , or P is elliptic at (x0, ξ0), if |p(x, ξ)−1| ≤ C|ξ|−m,
for (x, ξ) in a small conic neighborhood of (x0, ξ0) and |ξ| large. By defini-
tion, a conic set is invariant under the dilations (x, ξ) 7→ (x, rξ), r ∈ (0,∞).
The wave front set is defined by

(9.2) WF(u) =
⋂

{Char P : P ∈ OPS0, Pu ∈ C∞}.

Clearly, WF(u) is a closed conic subset of R
n × (Rn \ 0).

Proposition 9.1. If π is the projection (x, ξ) 7→ x, then

π(WF(u)) = sing supp u.

Proof. If x0 /∈ sing supp u, there is a ϕ ∈ C∞
0 (Rn), ϕ = 1 near x0,

such that ϕu ∈ C∞
0 (Rn). Clearly, (x0, ξ) /∈ Char ϕ for any ξ 6= 0, so

π(WF (u)) ⊂ sing supp u.
Conversely, if x0 /∈ π(WF (u)), then for any ξ 6= 0 there is a Q ∈ OPS0

such that (x0, ξ) /∈ Char Q and Qu ∈ C∞. Thus we can construct finitely
many Qj ∈ OPS0 such that Qju ∈ C∞ and each (x0, ξ) (with |ξ| = 1)
is noncharacteristic for some Qj . Let Q =

∑
Q∗

jQj ∈ OPS0. Then Q is
elliptic near x0 and Qu ∈ C∞, so u is C∞ near x0.

We define the associated notion of ES(P ) for a pseudodifferential op-
erator. Let U be an open conic subset of R

n × (Rn \ 0). We say that
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p(x, ξ) ∈ Sm
ρ,δ has order −∞ on U if for each closed conic set V of U we

have estimates, for each N ,

(9.3) |Dβ
xDα

ξ p(x, ξ)| ≤ CαβNV 〈ξ〉−N , (x, ξ) ∈ V.

If P = p(x,D) ∈ OPSm
ρ,δ, we define the essential support of P (and of

p(x, ξ)) to be the smallest closed conic set on the complement of which
p(x, ξ) has order −∞. We denote this set by ES(P ).

From the symbol calculus of §3, it follows easily that

(9.4) ES(P1P2) ⊂ ES(P1) ∩ ES(P2)

provided Pj ∈ OPS
mj

ρj ,δj
and ρ1 > δ2. To relate WF(Pu) to WF(u) and

ES(P ), we begin with the following.

Lemma 9.2. Let u ∈ H−∞(Rn), and suppose that U is a conic open set
satisfying

WF(u) ∩ U = ∅.
If P ∈ OPSm

ρ,δ, ρ > 0, δ < 1, and ES(P ) ⊂ U , then Pu ∈ C∞.

Proof. Taking P0 ∈ OPS0 with symbol identically 1 on a conic neigh-
borhood of ES(P ), so P = PP0 mod OPS−∞, it suffices to conclude that
P0u ∈ C∞, so we can specialize the hypothesis to P ∈ OPS0.

By hypothesis, we can find Qj ∈ OPS0 such that Qju ∈ C∞ and each
(x, ξ) ∈ ES(P ) is noncharacteristic for some Qj , and if Q =

∑
Q∗

jQj , then
Qu ∈ C∞ and Char Q ∩ ES(P ) = ∅. We claim there exists an operator
A ∈ OPS0 such that AQ = P mod OPS−∞. Indeed, let Q̃ be an elliptic
operator whose symbol equals that of Q on a conic neighborhood of ES(P ),
and let Q̃−1 denote a parametrix for Q̃. Now simply set set A = PQ̃−1.
Consequently, (mod C∞) Pu = AQu ∈ C∞, so the lemma is proved.

We are ready for the basic result on the preservation of wave front sets
by a pseudodifferential operator.

Proposition 9.3. If u ∈ H−∞ and P ∈ OPSm
ρ,δ, with ρ > 0, δ < 1, then

(9.5) WF(Pu) ⊂ WF(u) ∩ ES(P ).

Proof. First we show WF(Pu) ⊂ ES(P ). Indeed, if (x0, ξ0) /∈ ES(P ),
choose Q = q(x,D) ∈ OPS0 such that q(x, ξ) = 1 on a conic neighborhood
of (x0, ξ0) and ES(Q) ∩ ES(P ) = ∅. Thus QP ∈ OPS−∞, so QPu ∈ C∞.
Hence (x0, ξ0) /∈ WF(Pu).

In order to show that WF(Pu) ⊂ WF(u), let Γ be any conic neighbor-
hood of WF(u), and write P = P1 + P2, Pj ∈ OPSm

ρ,δ, with ES(P1) ⊂ Γ
and ES(P2) ∩ WF(u) = ∅. By Lemma 9.2, P2u ∈ C∞. Thus WF(u) =
WF(P1u) ⊂ Γ, which shows WF(Pu) ⊂ WF(u).
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One says that a pseudodifferential operator of type (ρ, δ), with ρ > 0 and
δ < 1, is microlocal. As a corollary, we have the following sharper form of
local regularity for elliptic operators, called microlocal regularity.

Corollary 9.4. If P ∈ OPSm
ρ,δ is elliptic, 0 ≤ δ < ρ ≤ 1, then

(9.6) WF(Pu) = WF(u).

Proof. We have seen that WF(Pu) ⊂ WF(u). On the other hand, if
E ∈ OPS−m

ρ,δ is a parametrix for P , we see that WF(u) = WF(EPu) ⊂
WF(Pu). In fact, by an argument close to the proof of Lemma 9.2, we
have for general P that

(9.7) WF(u) ⊂ WF(Pu) ∪ Char P.

We next discuss how the solution operator eitA to a scalar hyperbolic
equation ∂u/∂t = iA(x,D)u propagates the wave front set. We assume
A(x, ξ) ∈ S1

cl, with real principal symbol. Suppose WF(u) = Σ. Then
there is a countable family of operators pj(x,D) ∈ OPS0, each of whose
complete symbols vanishes in a neighborhood of Σ, but such that

(9.8) Σ =
⋂

j

{(x, ξ) : pj(x, ξ) = 0}.

We know that pj(x,D)u ∈ C∞ for each j. Using Egorov’s theorem, we want
to construct a family of pseudodifferential operators qj(x,D) ∈ OPS0 such
that qj(x,D)eitAu ∈ C∞, this family being rich enough to describe the
wave front set of eitAu.

Indeed, let qj(x,D) = eitApj(x,D)e−itA. Egorov’s theorem implies that
qj(x,D) ∈ OPS0 (modulo a smoothing operator) and gives the principal
symbol of qj(x,D). Since pj(x,D)u ∈ C∞, we have eitApj(x,D)u ∈ C∞,
which in turn implies qj(x,D)eitAu ∈ C∞. From this it follows that
WF(eitAu) is contained in the intersection of the characteristics of the
qj(x,D), which is precisely C(t)Σ, the image of Σ under the canonical
transformation C(t), generated by HA1

. In other words,

WF(eitAu) ⊂ C(t)WF(u).

However, our argument is reversible; u = e−itA(eitAu). Consequently, we
have the following result:

Proposition 9.5. If A = A(x,D) ∈ OPS1 is scalar with real principal
symbol, then, for u ∈ H−∞,

(9.9) WF(eitAu) = C(t)WF(u).

The same argument works for the solution operator S(t, 0) to a time-
dependent, scalar, hyperbolic equation.
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Exercises

1. If a ∈ C∞
0 (Rn), ϕ ∈ C∞(Rn) is real-valued, ∇ϕ 6= 0 on supp a, as in Exercise

2 of §8, and P = p(x, D) ∈ OPSm, so

P
“

a eiλϕ
”

= b(x, λ)eiλϕ(x),

as in (8.20), show that, mod O(|λ|−∞), b(x, λ) depends only on the behavior
of p(x, ξ) on an arbitrarily small conic neighborhood of

Cϕ =
n“

x, λdϕ(x)
”

: x ∈ supp a, λ 6= 0
o

.

If C+
ϕ is the subset of Cϕ on which λ > 0, show that the asymptotic behavior

of b(x, λ) as λ → +∞ depends only on the behavior of p(x, ξ) on an arbitrarily
small conic neighborhood of C+

ϕ .
2. If Γr is as in (8.22), show that, given r > 0,

(9.10)
“

cos r
√
−∆

”

(a eiλϕ) = ΓrQr(a eiλϕ), mod O(λ−∞), λ > 0,

for some Qr ∈ OPS1/2. Consequently, analyze the behavior of the left side of
(9.10), as λ → +∞, in terms of the behavior of Γr analyzed in §7 of Chapter
6.

10. Operators on manifolds

Let M be a smooth manifold. It would be natural to say that a continuous
linear operator P : C∞

0 (M) → D′(M) is a pseudodifferential operator in
OPSm

ρ,δ(M) provided its Schwartz kernel is C∞ off the diagonal in M ×M ,
and there exists an open cover Ωj of M , a subordinate partition of unity
ϕj , and diffeomorphisms Fj : Ωj → Oj ⊂ R

n that transform the operators
ϕkPϕj : C∞(Ωj) → E ′(Ωk) into pseudodifferential operators in OPSm

ρ,δ, as
defined in §1.

This is a rather “liberal” definition of OPSm
ρ,δ(M). For example, it poses

no growth restrictions on the Schwartz kernel K ∈ D′(M × M) at infinity.
Consequently, if M happens to be R

n, the class of operators in OPSm
ρ,δ(M)

as defined above is a bit larger than the class OPSm
ρ,δ defined in §1. One

negative consequence of this definition is that pseudodifferential operators
cannot always be composed. One drastic step to fix this would be to insist
that the kernel be properly supported, so P : C∞

0 (M) → C∞
0 (M). If M is

compact, these problems do not arise. If M is noncompact, it is often of
interest to place specific restrictions on K near infinity, but we won’t go
further into this point here.

Another way in which the definition of OPSm
ρ,δ(M) given above is lib-

eral is that it requires P to be locally transformed to pseudodifferential
operators on R

n by some coordinate cover. One might ask if then P is
necessarily so transformed by every coordinate cover. This comes down to
asking if the class OPSm

ρ,δ defined in §1 is invariant under a diffeomorphism
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F : R
n → R

n. It would suffice to establish this for the case where F is the
identity outside a compact set.

In case ρ ∈ (1/2, 1] and δ = 1− ρ, this invariance is a special case of the
Egorov theorem established in §8. Indeed, one can find a time-dependent
vector field X(t) whose flow at t = 1 coincides with F and apply Theorem
8.1 to iA(t, x,D) = X(t). Note that the formula for the principal symbol
of the conjugated operator given there implies

(10.1) p(1, F (x), ξ) = p0(x, F ′(x)tξ),

so that the principal symbol is well defined on the cotangent bundle of M .
We will therefore generally insist that ρ ∈ (1/2, 1] and δ = 1 − ρ when

talking about OPSm
ρ,δ(M) for a manifold M , without a distinguished co-

ordinate chart. In special situations, it might be natural to use coordi-
nate charts with special structure. For instance, for a Cartesian product
M = R×Ω, one can stick to product coordinate systems. In such a case, we
can construct a parametrix E for the hypoelliptic operator ∂/∂t−∆x, t ∈ R,
x ∈ Ω, and unambiguously regard E as an operator in OPS−1

1/2,0(R × Ω).
We make the following comments on the principal symbol of an operator

P ∈ OPSm
ρ,δ(M), when ρ ∈ (1/2, 1], δ = 1 − ρ. By the arguments in §8,

the principal symbol is well defined, if it is regarded as an element of the
quotient space:

(10.2) p(x, ξ) ∈ Sm
ρ,δ(T

∗M)/S
m−(2ρ−1)
ρ,δ (T ∗M).

In particular, by Theorem 8.1, in case P ∈ OPSm
1,0(M), we have

(10.3) p(x, ξ) ∈ Sm
1,0(T

∗M)/Sm−1
1,0 (T ∗M).

If P ∈ Sm
cl (M), then the principal symbol can be taken to be homogeneous

in ξ of degree m, by (8.16). Note that the characterizations of the Schwartz
kernels of operators in OPSm

1,0 and in OPSm
cl given in §2 also make clear

the invariance of these classes under coordinate transformations.
We now discuss some properties of an elliptic operator A ∈ OPSm

1,0(M),
when M is a compact Riemannian manifold. Denote by B a parametrix,
so we have, for each s ∈ R,

(10.4) A : Hs+m(M) −→ Hs(M), B : Hs(M) −→ Hs+m(M),

and AB = I + K1, BA = I + K2, where Kj : D′(M) → C∞(M). Thus Kj

is compact on each Sobolev space Hs(M), so B is a two-sided Fredholm
inverse of A in (10.4). In particular, A is a Fredholm operator; ker A =
Ks+m ⊂ Hs+m(M) is finite-dimensional, and A

(
Hs+m(M)

)
⊂ Hs(M) is

closed, of finite codimension, so

Cs = {v ∈ H−s(M) : 〈Au, v〉 = 0 for all u ∈ Hs+m(M)}
is finite-dimensional. Note that Cs is the null space of

(10.5) A∗ : H−s(M) −→ H−s−m(M),
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which is also an elliptic operator in OPSm
1,0(M). Elliptic regularity yields,

for all s,

(10.6) Ks+m = {u ∈ C∞(M) : Au = 0}, Cs = {v ∈ C∞(M) : A∗v = 0}.
Thus these spaces are independent of s.

Suppose now that m > 0. We will consider A as an unbounded operator
on the Hilbert space L2(M), with domain

(10.7) D(A) = {u ∈ L2(M) : Au ∈ L2(M)}.
It is easy to see that A is closed. Also, elliptic regularity implies

(10.8) D(A) = Hm(M).

Since A is closed and densely defined, its Hilbert space adjoint is defined,
also as a closed, unbounded operator on L2(M), with a dense domain.
The symbol A∗ is also our preferred notation for the Hilbert space adjoint.
To avoid confusion, we will temporarily use At to denote the adjoint on
D′(M), so At ∈ OPSm(M), At : Hs+m(M) → Hs(M), for all s. Now the
unbounded operator A∗ has domain

(10.9) D(A∗) = {u ∈ L2(M) : |(u,Av)| ≤ c(u)‖v‖L2 ,∀ v ∈ D(A)},
and then A∗u is the unique element of L2(M) such that

(10.10) (A∗u, v) = (u,Av), for all v ∈ D(A).

Recall that D(A) = Hm(M). Since, for any u ∈ Hm(M), v ∈ Hm(M),
we have (Atu, v) = (u,Av), we see that D(A∗) ⊃ Hm(M) and A∗ = At on
Hm(M). On the other hand, (u,Av) = (Atu, v) holds for all v ∈ Hm(M),
u ∈ L2(M), the latter inner product being given by the duality of H−m(M)
and Hm(M). Thus it follows that

u ∈ D(A∗) =⇒ A∗u = Atu ∈ L2(M).

But elliptic regularity for At ∈ OPSm
1,0(M) then implies u ∈ Hm(M). Thus

(10.11) D(A∗) = Hm(M), A∗ = At
∣∣
Hm(M)

.

In particular, if A is elliptic in OPSm
1,0(M), m > 0, and also symmetric

(i.e., A = At), then the Hilbert space operator is self-adjoint; A = A∗. For
any λ ∈ C \R, (λI −A)−1 : L2(M) → D(A) = Hm(M), so A has compact
resolvent. Thus L2(M) has an orthonormal basis of eigenfunctions of A,
Auj = λjuj , |λj | → ∞, and, by elliptic regularity, each uj belongs to
C∞(M).

Exercises

In the following exercises, assume that M is a smooth, compact, Riemannian
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manifold. Let A ∈ OPSm(M) be elliptic, positive, and self-adjoint, with m >
0. Let uj be an orthonormal basis of L2(M) consisting of eigenfunctions of
A, Auj = λjuj . Given f ∈ D′(M), form “Fourier coefficients” f̂(j) = (f, uj).
Thus f ∈ L2(M) implies

(10.12) f =
∞
X

j=0

f̂(j)uj ,

with convergence in L2-norm.
1. Given s ∈ R, show that f ∈ Hs(M) if and only if

P |f̂(j)|2〈λj〉2s/m < ∞.
2. Show that, for any s ∈ R, f ∈ Hs(M), (10.12) holds, with convergence in

Hs-norm. Conclude that if s > n/2 and f ∈ Hs(M), the series converges
uniformly to f .

3. If s > n/2 and f ∈ Hs(M), show that (10.12) converges absolutely. (Hint: Fix
x0 ∈ M and pick cj ∈ C, |cj | = 1, such that cj f̂(j)uj(x0) ≥ 0. Now consider
P

cj f̂(j)uj .)
4. Let −L be a second-order, elliptic, positive, self-adjoint differential operator

on a compact Riemannian manifold M . Suppose A ∈ OPS1(M) is positive,
self-adjoint, and A2 = −L + R, where R : D′(M) → C∞(M). Show that
A −

√
−L : D′(M) → C∞(M).

One approach to Exercise 4 is the following.
5. Given f ∈ Hs(M), form

u(y, x) = e−y
√
−Lf(x), v(y, x) = e−yAf(x),

for (y, x) ∈ [0,∞) × M . Note that
„

∂2

∂y2
+ L

«

u = 0,

„

∂2

∂y2
+ L

«

v = −Rv(y, x).

Use estimates and regularity for the Dirichlet problem for ∂2/∂y2 + L on
[0,∞) × M to show that u − v ∈ C∞([0,∞) × M). Conclude that ∂u/∂y −
∂v/∂y

˛

˛

˛

y=0
= (A −

√
−L)f ∈ C∞(M).

6. With L as above, use the symbol calculus of §3 to construct a self-adjoint A ∈
OPS1(M), with positive principal symbol, such that A2 + L ∈ OPS−∞(M).
Conclude that Exercise 4 applies to A.

7. Show that OPS0
1,0(M) has a natural Fréchet space structure.

11. The method of layer potentials

We discuss, in the light of the theory of pseudodifferential operators, the use
of “single- and double-layer potentials” to study the Dirichlet and Neumann
boundary problems for the Laplace equation. Material developed here will
be useful in §7 of Chapter 9, which treats the use of integral equations in
scattering theory.
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Let Ω be a connected, compact Riemannian manifold with nonempty
boundary; n = dim Ω. Suppose Ω ⊂ M , a Riemannian manifold of dimen-
sion n without boundary, on which there is a fundamental solution E(x, y)
to the Laplace equation:

(11.1) ∆xE(x, y) = δy(x),

where E(x, y) is the Schwartz kernel of an operator E(x,D) ∈ OPS−2(M);
we have

(11.2) E(x, y) ∼ cn dist(x, y)2−n + · · ·
as x → y, if n ≥ 3, while

(11.3) E(x, y) ∼ c2 log dist(x, y) + · · ·

if n = 2. Here, cn = −
[
(n − 2)Area(Sn−1)

]−1
for n ≥ 3, and c2 = 1/2π.

The single- and double-layer potentials of a function f on ∂Ω are defined
by

(11.4) Sℓ f(x) =

∫

∂Ω

f(y)E(x, y) dS(y),

and

(11.5) Dℓ f(x) =

∫

∂Ω

f(y)
∂E

∂νy
(x, y) dS(y),

for x ∈ M \ ∂Ω. Given a function v on M \ ∂Ω, for x ∈ ∂Ω, let v+(x) and
v−(x) denote the limits of v(z) as z → x, from z ∈ Ω and z ∈ M \ Ω =
O, respectively, when these limits exist. The following are fundamental
properties of these layer potentials.

Proposition 11.1. For x ∈ ∂Ω, we have

(11.6) Sℓ f+(x) = Sℓ f−(x) = Sf(x)

and

(11.7) Dℓ f±(x) = ±1

2
f(x) +

1

2
Nf(x),

where, for x ∈ ∂Ω,

(11.8) Sf(x) =

∫

∂Ω

f(y)E(x, y) dS(y)

and

(11.9) Nf(x) = 2

∫

∂Ω

f(y)
∂E

∂νy
(x, y) dS(y).
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Note that E(x, ·)
∣∣
∂Ω

is integrable, uniformly in x, and that the conclusion
in (11.6) is elementary, at least for f continuous; the conclusion in (11.7)
is a bit more mysterious. To see what is behind such results, let us look at
the more general situation of

(11.10) v = p(x,D)(fσ),

where σ ∈ E ′(M) is surface measure on a hypersurface (here ∂Ω), f ∈
D′(∂Ω), so fσ ∈ E ′(M). Assume that p(x,D) ∈ OPSm(M). Make a local
coordinate change, straightening out the surface to {xn = 0}. Then, in
this coordinate system

(11.11)
v(x′, xn) =

∫
f̂(ξ′)eix′·ξ′

p(x, ξ′, ξn)eixnξn dξn dξ′

= q(xn, x′,Dx′)f,

for xn 6= 0, where

(11.12) q(xn, x′, ξ′) =

∫
p(x, ξ′, ξn)eixnξn dξn.

If p(x, ξ) is homogeneous of degree m in ξ, for |ξ| ≥ 1, then for |ξ′| ≥ 1 we
have

(11.13) q(xn, x′, ξ′) = |ξ′|m+1p̃(x, ω′, xn|ξ′|),
where ω′ = ξ′/|ξ′| and

p̃(x, ω′, τ) =

∫
p(x, ω′, ζ)eiζτ dζ.

Now, if m < −1, the integral in (11.12) is absolutely convergent and
q(xn, x′, ξ′) is continuous in all arguments, even across xn = 0. On the
other hand, if m = −1, then, temporarily neglecting all the arguments of p
but the last, we are looking at the Fourier transform of a smooth function
of one variable whose asymptotic behavior as ξn → ±∞ is of the form
C±

1 ξ−1
n + C±

2 ξ−2
n + · · · . From the results of Chapter 3 we know that the

Fourier transform is smooth except at xn = 0, and if C+
1 = C−

1 , then the
Fourier transform has a jump across xn = 0; otherwise there may be a
logarithmic singularity.

It follows that if p(x,D) ∈ OPSm(M) and m < −1, then (11.10) has a
limit on ∂Ω, given by

(11.14) v
∣∣
∂Ω

= Qf, Q ∈ OPSm+1(∂Ω).

On the other hand, if m = −1 and the symbol of p(x,D) has the behavior
that, for x ∈ ∂Ω, νx normal to ∂Ω at x,

(11.15) p(x, ξ ± τνx) = ±C(x, ξ)τ−1 + O(τ−2), τ → +∞,

then (11.10) has a limit from each side of ∂Ω, and

(11.16) v± = Q±f, Q± ∈ OPS0(∂Ω).
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To specialize these results to the setting of Proposition 11.1, note that

(11.17) Sℓ f = E(x,D)(fσ)

and

(11.18) Dℓ f = E(x,D)X∗(fσ),

where X is any vector field on M equal to ∂/∂ν on ∂Ω, with formal adjoint
X∗, given by

(11.19) X∗v = −Xv − (div X)v.

The analysis of (11.10) applies directly to (11.17), with m = −2. That the
boundary value is given by (11.8) is elementary for f ∈ C(∂Ω), as noted
before. Given (11.14), it then follows for more general f .

Now (11.18) is also of the form (11.10), with p(x,D) = E(x,D)X∗ ∈
OPS−1(M). Note that the principal symbol at x ∈ ∂Ω is given by

(11.20) p0(x, ξ) = −|ξ|−2〈ν(x), ξ〉,
which satisfies the condition (11.15), so the conclusion (11.16) applies. Note
that

p0(x, ξ ± τνx) = −|ξ ± τνx|−2〈νx, ξ ± τνx〉,
so in this case (11.15) holds with C(x, ξ) = 1. Thus the operators Q± in
(11.16) have principal symbols ± const. That the constant is as given in
(11.7) follows from keeping careful track of the constants in the calculations
(11.11)–(11.13) (cf. Exercise 9 below).

Let us take a closer look at the behavior of (∂/∂νy)E(x, y). Note that,
for x close to y, if Vx,y denotes the unit vector at y in the direction of the
geodesic from x to y, then (for n ≥ 3)

(11.21) ∇yE(x, y) ∼ (2 − n)cn dist(x, y)1−nVx,y + · · · .

If y ∈ ∂Ω and νy is the unit normal to ∂Ω at y, then

(11.22)
∂

∂νy
E(x, y) ∼ (2 − n)cn dist(x, y)1−n〈Vx,y, νy〉 + · · · .

Note that (2−n)cn = −1/Area(Sn−1). Clearly, the inner product 〈Vx,y, νy〉
= α(x, y) restricted to (x, y) ∈ ∂Ω × ∂Ω is Lipschitz and vanishes on the
diagonal x = y. This vanishing makes (∂E/∂νy)(x, y) integrable on ∂Ω ×
∂Ω. It is clear that in the case (11.7), Q± have Schwartz kernels equal to
(∂/∂νy)E(x, y) on the complement of the diagonal in ∂Ω × ∂Ω. In light
of our analysis above of the principal symbol of Q±, the proof of (11.7) is
complete.

As a check on the evaluation of the constant c in Dℓ f± = ±cf+(1/2)Nf ,
c = 1/2, note that applying Green’s formula to

∫
Ω

(∆1) · E(x, y) dy readily



38 7. Pseudodifferential Operators

gives
∫

∂Ω

∂E

∂νy
(x, y) dS(y) = 1, for x ∈ Ω,

0, for x ∈ O,

as the value of Dℓ f± for f = 1. Since Dℓ f+ − Dℓ f− = 2cf , this forces
c = 1/2.

The way in which ±(1/2)f(x) arises in (11.7) is captured well by the
model case of ∂Ω a hyperplane in R

n, and

E
(
(x′, xn), (y′, 0)

)
= cn

[
(x′ − y′)2 + x2

n

](2−n)/2
,

when (11.22) becomes

∂

∂yn
E

(
(x′, xn), (y′, 0)

)
= (2 − n)cnxn

[
(x′ − y′)2 + x2

n

]−n/2
,

though in this example N = 0.
The following properties of the operators S and N are fundamental.

Proposition 11.2. We have

(11.23) S,N ∈ OPS−1(∂Ω), S elliptic.

Proof. That S has this behavior follows immediately from (11.2) and
(11.3). The ellipticity at x follows from taking normal coordinates at x
and using Exercise 3 of §4, for n ≥ 3; for n = 2, the reader can supply
an analogous argument. That N also satisfies (11.23) follows from (11.22)
and the vanishing of α(x, y) = 〈Vx,y, νy〉 on the diagonal.

An important result complementary to Proposition 11.1 is the following,
on the behavior of the normal derivative at ∂Ω of single-layer potentials.

Proposition 11.3. For x ∈ ∂Ω, we have

(11.24)
∂

∂ν
Sℓ f±(x) =

1

2

(
∓f + N#f

)
,

where N# ∈ OPS−1(∂Ω) is given by

(11.25) N#f(x) = 2

∫

∂Ω

f(y)
∂E

∂νx
(x, y) dS(y).

Proof. The proof of (11.24) is directly parallel to that of (11.7). To see on
general principles why this should be so, use (11.17) to write (∂/∂ν)Sℓ f
as the restriction to ∂Ω of

(11.26) XSℓ f = XE(x,D)(fσ).
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Using (11.18) and (11.19), we see that

(11.27)
Dℓ f + XSℓ f = [X,E(x,D)](fσ) − E(x,D)(div X)(fσ)

= A(x,D)(fσ),

with A(x,D) ∈ OPS−2(M), the same class as E(x,D). Thus the extension
of A(x,D)(fσ) to ∂Ω is straightforward, and we have

(11.28)
∂

∂ν
Sℓ f± = −Dℓ f± + A(x,D)(fσ)

∣∣
∂Ω

.

In particular, the jumps across ∂Ω are related by

(11.29)
∂

∂ν
Sℓ f+ − ∂

∂ν
Sℓ f− = Dℓ f− −Dℓ f+,

consistent with the result implied by formulas (11.7) and (11.24).

It is also useful to understand the boundary behavior of (∂/∂ν)Dℓ f .
This is a bit harder since ∂2E/∂νx∂νy is more highly singular. From here
on, assume E(x, y) = E(y, x), so also ∆yE(x, y) = δx(y). We define the
Neumann operator

(11.30) N : C∞(∂Ω) −→ C∞(∂Ω)

as follows. Given f ∈ C∞(∂Ω), let u ∈ C∞(Ω) be the unique solution to

(11.31) ∆u = 0 on Ω, u = f on ∂Ω,

and let

(11.32) N f =
∂u

∂ν

∣∣∣
∂Ω

,

the limit taken from within Ω. It is a simple consequence of Green’s formula
that if we form

(11.33)

∫

∂Ω

[
f(y)

∂E

∂νy
(x, y)−N f(y)E(x, y)

]
dS(y) = Dℓ f(x)−Sℓ N f(x),

for x ∈ M \ ∂Ω, then

(11.34)
Dℓ f(x) − Sℓ N f(x) = u(x), x ∈ Ω,

0, x ∈ M \ Ω,

where u is given by (11.31). Note that taking the limit of (11.34) from
within Ω, using (11.6) and (11.7), gives f = (1/2)f + (1/2)Nf − SN f ,
which implies the identity

(11.35) SN = −1

2
(I − N).

Taking the limit in (11.34) from M \ Ω gives the same identity. In view of
the behavior (11.23), in particular the ellipticity of S, we conclude that

(11.36) N ∈ OPS1(∂Ω), elliptic.
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Now we apply ∂/∂ν to the identity (11.34), evaluating on ∂Ω from both
sides. Evaluating from Ω gives

(11.37)
∂

∂ν
Dℓ f+ − ∂

∂ν
Sℓ N f+ = N f,

while evaluating from M \ Ω gives

(11.38)
∂

∂ν
Dℓ f− − ∂

∂ν
Sℓ N f− = 0.

In particular, applying ∂/∂ν to (11.34) shows that (∂/∂ν)Dℓ f± exists,
by Proposition 11.3. Furthermore, applying (11.24) to (∂/∂ν)Sℓ N f±, we
have a proof of the following.

Proposition 11.4. For x ∈ ∂Ω, we have

(11.39)
∂

∂ν
Dℓ f±(x) =

1

2
(I + N#)N f.

In particular, there is no jump across ∂Ω of (∂/∂ν)Dℓ f .

We have now developed the layer potentials far enough to apply them to
the study of the Dirichlet problem. We want an approximate formula for
the Poisson integral u = PI f , the unique solution to

(11.40) ∆u = 0 in Ω, u
∣∣
∂Ω

= f.

Motivated by the Poisson integral formula on R
n
+, we look for a solution of

the form

(11.41) u(x) = Dℓ g(x), x ∈ Ω,

and try to relate g to f . In view of Proposition 11.1, letting x → z ∈ ∂Ω
in (11.41) yields

(11.42) u(z) =
1

2
(g + Ng), for z ∈ ∂Ω.

Thus if we define u by (11.41), then (11.40) is equivalent to

(11.43) f =
1

2
(I + N)g.

Alternatively, we can try to solve (11.40) in terms of a single-layer po-
tential:

(11.44) u(x) = Sℓ h(x), x ∈ Ω.

If u is defined by (11.44), then (11.40) is equivalent to

(11.45) f = Sh.

Note that, by (11.23), the operator (1/2)(I +N) in (11.43) is Fredholm, of
index zero, on each space Hs(∂Ω). It is not hard to verify that S is elliptic
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of order −1, with real principal symbol, so for each s,

S : Hs−1(∂Ω) −→ Hs(∂Ω)

is Fredholm, of index zero.
One basic case when the equations (11.43) and (11.45) can both be solved

is the case of bounded Ω in M = R
n, with the standard flat Laplacian.

Proposition 11.5. If Ω is a smooth, bounded subdomain of R
n, with

connected complement, then, for all s,

(11.46) I + N : Hs(∂Ω) −→ Hs(∂Ω) and S : Hs−1(∂Ω) −→ Hs(∂Ω)

are isomorphisms.

Proof. It suffices to show that I + N and S are injective on C∞(∂Ω).
First, if g ∈ C∞(∂Ω) belongs to the null space of I + N , then, by (11.42)
and the maximum principle, we have Dℓ g = 0 in Ω. By (11.7), the jump
of Dℓ g across ∂Ω is g, so we have for v = Dℓ g|O, where O = R

n \ Ω,

(11.47) ∆v = 0 on O, v
∣∣
∂Ω

= −g.

Also, v clearly vanishes at infinity. Now, by (11.39), (∂/∂ν)Dℓ g does not
jump across ∂Ω, so we have ∂v/∂ν = 0 on ∂Ω. But at a point on ∂Ω where
−g is maximal, this contradicts Zaremba’s principle, unless g = 0. This
proves that I + N is an isomorphism in this case.

Next, suppose h ∈ C∞(∂Ω) belongs to the null space of S. Then, by
(11.45) and the maximum principle, we have Sℓ h = 0 on Ω. By (11.24),
the jump of (∂/∂ν)Sℓ h across ∂Ω is −h, so we have for w = Sℓ h|O that

(11.48) ∆w = 0 on O,
∂w

∂ν

∣∣∣
∂Ω

= h,

and w vanishes at infinity. This time, Sℓ h does not jump across ∂Ω, so
we also have w = 0 on ∂Ω. The maximum principle forces w = 0 on O, so
h = 0. This proves that S is an isomorphism in this case.

In view of (11.6), we see that (11.44) and (11.45) also give a solution to
∆u = 0 on the exterior region R

n \Ω, satisfying u = f on ∂Ω and u(x) → 0
as |x| → ∞, if n ≥ 3. This solution is unique, by the maximum principle.

One can readily extend the proof of Proposition 11.5 and show that
I + N and S in (11.46) are isomorphisms in somewhat more general cir-
cumstances.

Let us now consider the Neumann problem

(11.49) ∆u = 0 on Ω,
∂u

∂ν
= ϕ on ∂Ω.

We can relate (11.49) to (11.40) via the Neumann operator:

(11.50) ϕ = N f.
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Let us assume that Ω is connected; then

(11.51) Ker N = {f = const. on Ω},
so dim Ker N = 1. Note that, by Green’s theorem,

(11.52) (N f, g)L2(∂Ω) = −(du, dv)L2(Ω) = (f,N g)L2(∂Ω),

where u = PI f , v = PI g, so N is symmetric. In particular,

(11.53) (N f, f)L2(∂Ω) = −‖du‖2
L2(Ω),

so N is negative-semidefinite. The symmetry of N together with its ellip-
ticity implies that, for each s,

(11.54) N : Hs+1(∂Ω) −→ Hs(∂Ω)

is Fredholm, of index zero, with both Ker N and R(N )⊥ of dimension 1,
and so

(11.55) R(N ) =
{

ϕ ∈ Hs(∂Ω) :

∫

∂Ω

ϕ dS = 0
}

,

this integral interpreted in the obvious distributional sense when s < 0.
By (11.35), whenever S is an isomorphism in (11.46), we can say that

(11.50) is equivalent to

(11.56) (I − N)f = −2Sϕ.

We can also represent a solution to (11.49) as a single-layer potential, of
the form (11.44). Using (11.24), we see that this works provided h satisfies

(11.57) (I − N#)h = −2ϕ.

In view of the fact that (11.44) solves the Dirichlet problem (11.40) with
f = Sh, we deduce the identity ϕ = NSh, or

(11.58) NS = −1

2
(I − N#),

complementing (11.35). Comparing these identities, representing SNS in
two ways, we obtain the intertwining relation

(11.59) SN# = NS.

Also note that, under the symmetry hypothesis E(x, y) = E(y, x), we have
N# = N∗.

The method of layer potentials is applicable to other boundary problems.
An application to the “Stokes system” will be given in Chapter 17, §A.

We remark that a number of results in this section do not make substan-
tial use of the pseudodifferential operator calculus developed in the early
sections; this makes it easy to extend such results to situations where the
boundary has limited smoothness. For example, it is fairly straightforward
to extend results on the double-layer potential Dℓ to the case where ∂Ω
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is a C1+r-hypersurface in R
n, for any r > 0, and in particular to extend

(partially) the first part of (11.46), obtaining

I + N : L2(∂Ω) −→ L2(∂Ω) invertible,

in such a case, thus obtaining the representation (11.41) for the solution
to the Dirichlet problem with boundary data in L2(∂Ω), when ∂Ω is a
C1+r-surface. Results on S in (11.23) and some results on the Neumann
operator, such as (11.36), do depend on the pseudodifferential operator
calculus, so more work is required to adapt this material to C1+r-surfaces,
though that has been done.

In fact, via results of [Ca3] and [CMM], the layer potential approach has
been extended to domains in R

n bounded by C1-surfaces, in [FJR], and
then to domains bounded by Lipschitz surfaces, in [Ver] and [DK]. See also
[JK] for nonhomogeneous equations. Extensions to Lipschitz domains in
Riemannian manifolds are given in [MT1] and [MT2], and extensions to
“uniformly rectifiable” domains in [D], [DS], and [HMT]. We mention just
one result here; many others can be found in the sources cited above and
references they contain.

Proposition 11.6. If Ω is a Lipschitz domain in a compact Riemannian
manifold M , then

PI : L2(∂Ω) −→ H1/2(Ω).

Exercises

1. Let M be a compact, connected Riemannian manifold, with Laplace operator
L, and let Ω = [0, 1]×M , with Laplace operator ∆ = ∂2/∂y2 + L, y ∈ [0, 1].
Show that the Dirichlet problem

∆u = 0 on Ω, u(0, x) = f0(x), u(1, x) = f1(x)

has the solution

u(y, x) = e−y
√
−Lϕ0 + e−(1−y)

√
−Lϕ1 + κy,

where κ is the constant κ = (vol M)−1
R

M
(f1 − f0) dV , and

ϕ0 = (1 − e−2
√
−L)−1(f0 − e−

√
−Lf1 − κ),

ϕ1 = (1 − e−2
√
−L)−1(f1 − κ − e−

√
−Lf0),

the operator (1 − e−2
√
−L)−1 being well defined on (ker L)⊥.

2. If Nf0(x) = (∂u/∂y)(0, x), where u is as above, with f1 = 0, show that

Nf0 = −
√
−Lf0 + Rf0,

where R is a smoothing operator, R : D′(M) → C∞(M). Using (11.36),
deduce that these calculations imply

√
−L ∈ OPS1(M).
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Compare Exercises 4–6 of §10.
3. If PI: C∞(∂Ω) → C∞(Ω) is the Poisson integral operator solving (11.40),

show that, for x ∈ Ω,

PI f(x) =

Z

∂Ω

k(x, y)f(y) dS(y),

with

|k(x, y)| ≤ C
“

d(x, y)2 + ρ(x)2
”−(n−1)/2

,

where n = dim Ω, d(x, y) is the distance from x to y, and ρ(x) is the distance
from x to ∂Ω.

4. If M is an (n − 1)-dimensional surface with boundary in Ω, intersecting ∂Ω
transversally, with ∂M ⊂ ∂Ω, and ρ : C∞(Ω) → C∞(M) is restriction to M ,
show that

ρ ◦ PI : L2(∂Ω) −→ L2(M).

(Hint: Look at Exercise 2 in §5 of Appendix A on functional analysis.)
5. Given y ∈ Ω, let Gy be the “Green function,” satisfying

∆Gy = δy, Gy = 0 on ∂Ω.

Show that, for f ∈ C∞(∂Ω),

PI f(y) =

Z

∂Ω

f(x) ∂νGy(x) dS(x).

(Hint: Apply Green’s formula to (PI f, ∆Gy) = (PI f, ∆Gy)− (∆ PI f, Gy).)
6. Assume u is scalar, ∆u = f , and w is a vector field on Ω. Show that

(11.60)

Z

∂Ω

〈ν, w〉|∇u|2 dS = 2

Z

∂Ω

(∇wu)(∂νu) dS − 2

Z

Ω

(∇wu)f dV

+

Z

Ω

(div w)|∇u|2 dV − 2

Z

Ω

(Lwg)(∇u,∇u) dV,

where g is the metric tensor on Ω. This identity is a “Rellich formula.”

(Hint: Compute div
“

〈∇u,∇u〉w
”

and 2 div(∇wu ·∇u), and apply the diver-

gence theorem to the difference.)
7. In the setting of Exercise 6, assume w is a unit vector field and that 〈ν, w〉 ≥

a > 0 on ∂Ω. Deduce that

(11.61)

a

2

Z

∂Ω

|∇u|2 dS ≤ 2

a

Z

∂Ω

|∂νu|2 dS +

Z

Ω

|f |2 dV

+

Z

Ω



|div w| + 2|Def w| + 1

ff

|∇u|2 dV.

When ∆u = f = 0, compare implications of (11.61) with implications of
(11.36).
See [Ver] for applications of Rellich’s formula to analysis on domains with
Lipschitz boundary.
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8. What happens if, in Proposition 11.5, you allow O = R
n \ Ω to have several

connected components? Can you show that one of the operators in (11.46)
is still an isomorphism?

9. Calculate q(xn, x′, ξ′) in (11.13) when p(x, ξ) = ξj |ξ|−2. Relate this to the
results (11.7) and (11.24) for Dℓ f± and ∂ν Sℓ f±. (Hint. The calculation
involves

R

(1 + ζ2)−1eiζτ dζ = πe−|τ |.)
10. Let N and N# be the operators given by (11.9) and (11.25). Show that

N# = N∗, the L2-adjoint of N .

12. Parametrix for regular elliptic boundary problems

Here we shall complement material on regular boundary problems for ellip-
tic operators developed in §11 of Chapter 5, including in particular results
promised after the statement of Proposition 11.16 in that chapter.

Suppose P is an elliptic differential operator of order m on a compact
manifold M with boundary, with boundary operators Bj of order mj , 1 ≤
j ≤ ℓ, satisfying the regularity conditions given in §11 of Chapter 5. In
order to construct a parametrix for the solution to Pu = f , Bju|∂M = gj ,
we will use pseudodifferential operator calculus to manipulate P in ways
that constant-coefficient operators P (D) were manipulated in that section.
To start, we choose a collar neighborhood C of ∂M , C ≈ [0, 1] × ∂M ;
use coordinates (y, x), y ∈ [0, 1], x ∈ ∂M ; and without loss of generality,
consider

(12.1) Pu =
∂mu

∂ym
+

m−1∑

j=0

Aj(y, x,Dx)
∂ju

∂yj
,

the order of Aj(y, x,Dx) being ≤ m−j. We convert Pu = f to a first-order
system using v = (v1, . . . , vm)t, with

(12.2) v1 = Λm−1u, . . . , vj = ∂j−1
y Λm−ju, . . . , vm = ∂m−1

y u,

as in (11.41) of Chapter 5. Here, Λ can be taken to be any elliptic, invertible
operator in OPS1(∂M), with principal symbol |ξ| (with respect to some
Riemannian metric put on ∂M). Then Pu = f becomes, on C, the system

(12.3)
∂v

∂y
= K(y, x,Dx)v + F,

where F = (0, . . . , 0, f)t and

(12.4) K =




0 Λ
0 Λ

. . .
. . .

Λ
C0 C1 C2 . . . Cm−1




,
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where

(12.5) Cj(y, x,Dx) = −Aj(y, x,Dx)Λ1−(m−j)

is a smooth family of operators in OPS1(∂M), with y as a parameter. As
in Lemma 11.3 of Chapter 5, we have that P is elliptic if and only if, for all
(x, ξ) ∈ T ∗∂M \0, the principal symbol K1(y, x, ξ) has no purely imaginary
eigenvalues.

We also rewrite the boundary conditions Bju = gj at y = 0. If

(12.6) Bj =
∑

k≤mj

bjk(x,Dx)
∂k

∂yk

at y = 0, then we have for vj the boundary conditions

(12.7)
∑

k≤mj

b̃jk(x,Dx)Λk−mj vk+1(0) = Λm−mj−1gj = hj , 1 ≤ j ≤ ℓ,

where b̃jk(x,D) has the same principal symbol as bjk(x,D). We write this
as

(12.8) B(x,Dx)v(0) = h, B(x,Dx) ∈ OPS0(∂M).

We will construct a parametrix for the solution of (12.3), (12.8), with F = 0.
Generalizing (11.52) of Chapter 5, we construct E0(y, x, ξ) for (x, ξ) ∈

T ∗∂M \ 0, the projection onto the sum of the generalized eigenspaces of
K1(y, x, ξ) corresponding to eigenvalues of positive real part, annihilating
the other generalized eigenspaces, in the form

(12.9) E0(y, x, ξ) =
1

2πi

∫

γ

(
ζ − K1(y, x, ξ)

)−1
dζ,

where γ = γ(y, x, ξ) is a curve in the right half-plane of C, encircling
all the eigenvalues of K1(y, x, ξ) of positive real part. Then E0(y, x, ξ) is
homogeneous of degree 0 in ξ, so it is the principal symbol of a family of
operators in OPS0(∂M).

Recall the statement of Proposition 11.9 of Chapter 5 on the regularity
condition for (P,Bj , 1 ≤ j ≤ ℓ). One characterization is that, for (x, ξ) ∈
T ∗∂M \ 0,

(12.10) B0(x, ξ) : V (x, ξ) −→ C
λ isomorphically,

where V (x, ξ) = ker E0(0, x, ξ), and B0(x, ξ) : C
ν → C

λ is the principal
symbol of B(x,Dx). Another, equivalent characterization is that, for any
η ∈ C

λ, (x, ξ) ∈ T ∗∂M \ 0, there exists a unique bounded solution on
y ∈ [0,∞) to the ODE

(12.11)
∂ϕ

∂y
− K1(0, x, ξ)ϕ = 0, B0(x, ξ)ϕ(0) = η.
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In that case, of course, ϕ(0) = ϕ(0, x, ξ) belongs to V (x, ξ), so ϕ(y, x, ξ)
is actually exponentially decreasing as y → +∞, for fixed (x, ξ), and it is
exponentially decreasing as |ξ| → ∞, for fixed y > 0, x ∈ ∂M .

On a conic neighborhood Γ of any (x0, ξ0) ∈ T ∗∂M \0, one can construct
U0(y, x, ξ) smooth and homogeneous of degree 0 in ξ, so that

(12.12) U0K1U
−1
0 =

(
E1 0
0 F1

)
,

where E1(y, x, ξ) has eigenvalues all in Re ζ < 0 and F1 has all its eigen-
values in Re ζ > 0. If we set w(0) = U0(y, x,D)v, then the equation
∂v/∂y = K(y, x,Dx)v is transformed to

(12.13)
∂w(0)

∂y
=

(
E

F

)
w(0) + Aw(0) = Gw(0) + Aw(0),

where E(y, x,Dx) and F (y, x,Dx) have E1 and F1 as their principal sym-
bols, respectively, and A(y, x,Dx) is a smooth family of operators in the
space OPS0(∂M).

We want to decouple this equation more completely into two pieces. The
next step is to decouple terms of order zero. Let w(1) = (I + V1)w

(0), with
V1 ∈ OPS−1 to be determined. We have
(12.14)

∂w(1)

∂y
= (I + V1)G(I + V1)

−1w(1) + (I + V1)A(I + V1)
−1w(1) + · · ·

= Gw(1) + (V1G − GV1 + A)w(1) + · · · ,

where the remainder involves terms of order at most −1 operating on w(1).
We would like to pick V1 so that the off-diagonal terms of V1G − GV1 + A
vanish. We require V1 to be of the form

V1 =

(
0 V12

V21 0

)
.

If A is put into 2 × 2 block form with entries Ajk, we are led to require
that (on the symbol level)

(12.15)
V12E1 − F1V12 = −A12,

V21F1 − E1V21 = −A21.

That we have unique solutions Vjk(y, x, ξ) (homogeneous of degree −1 in
ξ) is a consequence of the following lemma.

Lemma 12.1. Let F ∈ Mν×ν , the set of ν × ν matrices, and E ∈ Mµ×µ.
Define ψ : Mν×µ → Mν×µ by

ψ(T ) = TF − ET.

Then ψ is bijective, provided E and F have disjoint spectra.
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Proof. In fact, if {fj} are the eigenvalues of F and {ek} those of E, it is
easily seen that the eigenvalues of ψ are {fj − ek}.

Thus we obtain solutions V12 and V21 to (12.15). With such a choice of
the symbol of K1, we have

(12.16)
∂w(1)

∂y
= Gw(1) +

(
A1

A2

)
w(1) + Bw(1),

with B ∈ OPS−1. To decouple the part of order −1, we try w(2) =
(I + V2)w

(1) with V2 ∈ OPS−2. We get

(12.17)
∂w(2)

∂y
= Gw(2) +

(
A1

A2

)
w(2) + (V2G−GV2 + B)w(2) + · · · ,

so we want to choose V2 so that, on the symbol level, the off-diagonal terms
of V2G − GV2 + B vanish. This is the problem solved above, so we are in
good shape.

From here we continue, defining w(j) = (I+Vj)w
(j−1) with Vj ∈ OPS−j ,

decoupling further out along the line. Letting w = (I + V )v, with

(12.18) I + V ∼ · · · (I + V3)(I + V2)(I + V1), V ∈ OPS−1,

we have

(12.19)
∂w

∂y
=

(
E′

F ′

)
w, mod C∞,

with E′ = E, F ′ = F mod OPS0. The system (12.3) is now completely
decoupled.

We now concentrate on constructing a parametrix for an “elliptic evolu-
tion equation”

(12.20)
∂u

∂y
= E(y, x,Dx)u, u(0) = f,

where E is a k×k system of first-order pseudodifferential operators, whose
principal symbol satisfies

(12.21) spec E1(y, x, ξ) ⊂ {ζ ∈ C : Re ζ ≤ −C0|ξ| < 0}, ξ 6= 0,

for some C0 > 0. We look for the parametrix in the form (in local coordi-
nates on ∂M)

(12.22) u(y) =

∫
A(y, x, ξ)eix·ξ f̂(ξ) dξ,

with A(y, x, ξ) in the form

(12.23) A(y, x, ξ) ∼
∑

j≥0

Aj(y, x, ξ),
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and the Aj(y, x, ξ) constructed inductively. We aim to obtain A(y, x, ξ)
bounded in S0

1,0, for y ∈ [0, 1], among other things. In such a case,

(12.24)
( ∂

∂y
− E

)
u = (2π)−n

∫ (∂A

∂y
− L(y, x, ξ)

)
eix·ξ f̂(ξ) dξ,

where

(12.25) L(y, x, ξ) ∼
∑

α≥0

1

α!
E(α)(y, x, ξ)A(α)(y, x, ξ).

We define A0(y, x, ξ) by the “transport equation”

(12.26)
∂

∂y
A0(y, x, ξ) = E(y, x, ξ)A0(y, x, ξ), A0(0, x, ξ) = I.

If E is independent of y, the solution is

A0(y, x, ξ) = eyE(x,ξ).

In general, A0(y, x, ξ) shares with this example the following important
properties.

Lemma 12.2. For y ∈ [0, 1], k, ℓ = 0, 1, 2, . . . , we have

(12.27) ykDℓ
yA0(y, x, ξ) bounded in S−k+ℓ

1,0 .

Proof. We can take C2 ∈ (0, C0) and M large, so that E(y, x, ξ) has
spectrum in the half-space Re ζ < −C2|ξ|, for |ξ| ≥ M . Fixing K ∈ (0, C2),
if S(y, σ, x, ξ) is the solution operator to ∂B/∂y = E(y, x, ξ)B, taking
B(σ, x, ξ) to B(y, x, ξ), then, for y > σ,

(12.28) |S(y, σ, x, ξ)B| ≤ C e−K(y−σ)|ξ||B|, for |ξ| ≥ M.

It follows that, for y ∈ [0, 1],

(12.29) |A0(y, x, ξ)| ≤ C e−Ky|ξ|,

which implies

|ykA0(y, x, ξ)| ≤ Ck〈ξ〉−k e−Ky|ξ|/2.

Now A0j = ∂A0/∂ξj satisfies

∂

∂y
A0j = E(y, x, ξ)A0j +

∂E

∂ξj
(y, x, ξ)A0, A0j(0, x, ξ) = 0,

so

(12.30) A0j(y, x, ξ) =

∫ y

0

S(y, σ, x, ξ)
∂E

∂ξj
(σ, x, ξ)A0(σ, x, ξ) dσ,

which in concert with (12.28) and (12.29) yields

(12.31)
∣∣∣

∂

∂ξj
A0(y, x, ξ)

∣∣∣ ≤ Cye−Ky|ξ| ≤ C〈ξ〉−1e−Ky|ξ|/2.
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Inductively, one obtains estimates on Dα
ξ Dβ

xA0(y, x, ξ) leading to the ℓ = 0
case of (12.27), and then use of (12.26) and induction on ℓ give (12.27) in
general.

For j ≥ 1, we define Aj(y, x, ξ) inductively by

(12.32)
∂Aj

∂y
= E(y, x, ξ)Aj(y, x, ξ) + Rj(y, x, ξ), Aj(0, x, ξ) = 0,

where

(12.33) Rj(y, x, ξ) =
∑

ℓ<j,ℓ+|α|=j

1

α!
E(α)(y, x, ξ)Aℓ(α)(y, x, ξ).

Then, if, as above, S(y, σ, x, ξ) is the solution operator to the equation
∂B/∂y = E(y, x, ξ)B, we have

(12.34) Aj(y, x, ξ) =

∫ y

0

S(y, σ, x, ξ)Rj(σ, x, ξ) dσ, j ≥ 1.

The arguments used to prove Lemma 12.2 also establish the following result.

Lemma 12.3. For y ∈ [0, 1], k, ℓ = 0, 1, 2, . . . , j ≥ 1, we have

(12.35) ykDℓ
yAj(y, x, ξ) bounded in S−j−k+ℓ

1,0 .

A symbol satisfying the condition (12.35) will be said to belong to P−j .
In fact, it is convenient to use the following stronger property possessed by
the symbols Aj(y, x, ξ), for j ≥ 0. Given the hypothesis (12.21) on spec
E1(y, x, ξ), let 0 < C1 < C0. Then

(12.36) Aj(y, x, ξ) = Bj(y, x, ξ)e−C1y〈ξ〉, with Bj(y, x, ξ) ∈ P−j .

We will say Aj(y, x, ξ) ∈ P−j
e if this holds or, more generally, if it holds

modulo a smooth family of symbols S(y) ∈ S−∞, y ∈ [0, 1]. The associated
families of operators will be denoted OPP−j and OPP−j

e , respectively.
Operators formed from such symbols have the following mapping prop-

erty, recapturing the Sobolev space regularity established for solutions to
regular elliptic boundary problems in Chapter 5.

Proposition 12.4. If A = A(y, x,Dx) has symbol

A(y, x, ξ) = B(y, x, ξ)e−C1y〈ξ〉, B(y, x, ξ) ∈ P−j ,

then, for s ≥ −j − 1/2,

(12.37) A : Hs(∂M) −→ Hs+j+1/2(I × ∂M).
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Proof. First consider the case s = −1/2, j = 0. As B(y, x,Dx) is bounded
in L(L2(∂M)) for y ∈ [0, 1], we have, for f ∈ H−1/2(∂M),

∫ 1

0

‖A(y)f‖2
L2(∂M)dy ≤ C

∫ 1

0

‖e−C1yΛf‖2
L2(∂M)dx

= C2‖Λ−1/2f‖2
L2(∂M) − C2‖e−C1ΛΛ−1/2f‖2

L2(∂M),

with C2 = C/(2C1), since

(e−C1yΛf, e−C1yΛf) = − 1

2C1

d

dy
(e−2C1yΛf,Λ−1f).

This proves (12.37) in this case. The extension to s = k−1/2 (k = 1, 2, . . . ),
j = 0 is straightforward, and then the result for general s ≥ −1/2, j = 0
follows by interpolation. The case of general j is reduced to that of j = 0
by forming A(y, x, ξ)〈ξ〉−j . One can take any j ∈ R.

Having constructed operators with symbols in P0
e as parametrices of

(12.20), we now complete the construction of parametrices for the system
(12.3), (12.8), when the regularity condition (12.10) holds. Using a parti-
tion of unity, write h as a sum

∑
hj , each term of which has wave front

set in a conic set Γj on which the decoupling procedure (12.12) can be
implemented. We drop the subscript j and just call the term h. Then, we
construct a parametrix for w = (I + V )U0v, so that w solves (12.19), with
w(0) = (f, 0)t. Set U = (I + V )U0, and let U−1 denote a parametrix of U .
The solution w(y) takes the form w(y) = (w1(y), 0), with

(12.38) w1(y) = A1(y, x,Dx)f, A1(y, x, ξ) ∈ P0
e ,

using the construction (12.22)–(12.34). Note that v(0) = U−1(f, 0)t =
U−1J1f , where here and below we set J1f = (f, 0)t. Then

(12.39) Bv(0) = BU−1J1f,

so the boundary condition (12.8) is achieved (mod C∞) provided f satisfies
(mod C∞)

(12.40) BU−1J1f = h.

The regularity condition (12.10) is precisely the condition that BU−1J1 is
an elliptic λ × λ system, in OPS0(∂M). Letting Q ∈ OPS0(∂M) be a
parametrix, we obtain

(12.41) v(y) = U(y)−1J1A1(y)Qh = A#(y)h.

Recall that Q ∈ OPS0(∂M), U(y)−1 is a smooth family of operators in
OPS0(∂M), and A1(y) ∈ OPP0

e . We can then say the following about the
composition A#(y) = A#(y, x,Dx).
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Lemma 12.5. Given Pj(y), smooth families in OPSmj (∂M), and A(y) ∈
OPPµ

e , we have

(12.42) P1(y)A(y)P2(y) = B(y) ∈ OPPµ+m1+m2

e .

The proof is a straightforward application of the results on products from
§3.

Consequently, we have a solution mod C∞ to (12.3), (12.8), constructed
in the form v(y) = A#(y)h, with A#(y) ∈ OPP0

e . Finally, returning to the
boundary problem for P , we have:

Theorem 12.6. If (P,Bj , 1 ≤ j ≤ ℓ) is a regular elliptic boundary prob-
lem, then a parametrix (i.e., a solution mod C∞) for

(12.43) Pu = 0 on M, Bju = gj on ∂M

is constructed in the form

(12.44) u =

ℓ∑

j=1

Qjgj ,

where Qjgj is C∞ on the interior of M , and, on a collar neighborhood
C = [0, 1] × ∂M ,

(12.45) Qjgj = Qj(y)gj , Qj(y) ∈ OPP−mj
e .

Recall that mj is the order of Bj . Here, the meaning of solution mod
C∞ to (12.43) is that if u# is given by (12.44), then

(12.46) Pu# ∈ C∞(M), Bju
# − gj ∈ C∞(∂M).

Of course, the regularity results of Chapter 5 imply that if u is a genuine
solution to (12.43), then u − u# ∈ C∞(M).

The following is an easy route to localizing boundary regularity results.

Proposition 12.7. Take A(y, x, ξ) ∈ P−j . Let ϕ,ψ ∈ C∞(∂M), and
assume their supports are disjoint. Then

(12.47) f ∈ D′(∂M) =⇒ ϕA(y, x,D)ψf ∈ C∞([0, 1] × ∂M).

Proof. Symbol calculus gives

ϕA(y, x,D)ψ ∈ P−k, ∀ k ≥ 0.

Hence this is a smooth family of elements of OPS−∞(∂M). This readily
gives (12.47).

Proposition 12.7 immediately gives the following.
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Corollary 12.8. In the setting of Theorem 12.6, if O ⊂ ∂M is open and
gj ∈ C∞(O) for each j, then u ∈ C∞ on a neighborhood in M of O.

Exercises

1. Suppose A(y) ∈ OPPm. Show that

(12.48)
∂j

∂yj
A(y)

˛

˛

˛

y=0
= Qjf, Qj ∈ OPSm+j

1,0 (∂M).

If A(y) ∈ OPP0
e is given by the construction (12.24)–(12.34), show that Qj ∈

OPSj(∂M).
2. Applying the construction of this section to the Dirichlet problem for ∆ on

M , show that the Neumann operator N , defined by (11.31)–(11.32), satisfies

(12.49) N ∈ OPS1(∂M),

thus providing a proof different from that used in (11.36).
3. Show that A(y, x, ξ) belongs to Pm

e if and only if, for some ε > 0 and all
N < ∞,

(12.50) |Dℓ
yDβ

xDα
ξ A0(y, x, ξ)| ≤ Cαβℓ e−εy|ξ| 〈ξ〉m+ℓ−|α| + CNαβℓ〈ξ〉−N .

4. If A(y, x, ξ) ∈ P−j
e , show that, for some κ > 0, you can write

(12.51) A(y, x, D) = e−κyΛB(y, x, D), B(y, x, ξ) ∈ P−j , y ∈ [0, 1],

modulo a smooth family of smoothing operators.

5. If u = PI f is the solution to ∆u = 0, u
˛

˛

˛

∂Ω
= f , use Proposition 12.4 and

Theorem 12.6 to show that

(12.52) PI : Hs(∂Ω) −→ Hs+1/2(Ω), ∀ s ≥ −1

2
.

Compare the regularity result of Propositions 11.14–11.15 in Chapter 5.

13. Parametrix for the heat equation

Let L = L(x,D) be a second-order, elliptic differential operator, whose
principal symbol L2(x, ξ) is a positive scalar function, though lower-order
terms need not be scalar. We want to construct an approximate solution
to the initial-value problem

(13.1)
∂u

∂t
= −Lu, u(0) = f,

in the form

(13.2) u(t, x) =

∫
a(t, x, ξ)eix·ξ f̂(ξ) dξ,
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for f supported in a coordinate patch. The amplitude a(t, x, ξ) will have
an asymptotic expansion of the form

(13.3) a(t, x, ξ) ∼
∑

j≥0

aj(t, x, ξ),

and the aj(t, x, ξ) will be defined recursively, as follows. By the Leibniz
formula, write

(13.4)

L(a eix·ξ) = eix·ξ
∑

|α|≤2

i|α|

α!
L(α)(x, ξ)Dα

x a(t, x, ξ)

= eix·ξ
[
L2(x, ξ)a(t, x, ξ) +

2∑

ℓ=1

B2−ℓ(x, ξ,Dx)a(t, x, ξ)
]
,

where B2−ℓ(x, ξ,Dx) is a differential operator (of order ℓ) whose coefficients
are polynomials in ξ, homogeneous of degree 2 − ℓ in ξ.

Thus, we want the amplitude a(t, x, ξ) in (13.2) to satisfy (formally)

∂a

∂t
∼ −L2a −

2∑

ℓ=1

B2−ℓ(x, ξ,Dx)a.

If a is taken to have the form (13.3), we obtain the following equations,
called “transport equations,” for aj :

(13.5)
∂a0

∂t
= −L2(x, ξ)a0(t, x, ξ)

and, for j ≥ 1,

(13.6)
∂aj

∂t
= −L2(x, ξ)aj(t, x, ξ) + Ωj(t, x, ξ),

where

(13.7) Ωj(t, x, ξ) = −
2∑

ℓ=1

B2−ℓ(x, ξ,Dx)aj−ℓ(t, x, ξ).

By convention we set a−1 = 0. So that (6.15) reduces to Fourier inversion
at t = 0, we set

(13.8) a0(0, x, ξ) = 1, aj(0, x, ξ) = 0, for j ≥ 1.

Then we have

(13.9) a0(t, x, ξ) = e−tL2(x,ξ),

and the solution to (13.6) is

(13.10) aj(t, x, ξ) =

∫ t

0

e(s−t)L2(x,ξ)Ωj(s, x, ξ) ds.

In view of (13.7), this defines aj(t, x, ξ) inductively in terms of aj−1(t, x, ξ)
and aj−2(t, x, ξ).
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We now make a closer analysis of these terms. Define Aj(t, x, ξ) by

(13.11) aj(t, x, ξ) = Aj(t, x, ξ)e−tL2(x,ξ).

The following result is useful; it applies to Aj for all j ≥ 1.

Lemma 13.1. If µ = 0, 1, 2, . . . , ν ∈ {1, 2}, then A2µ+ν can be written in
the form

(13.12) A2µ+ν(t, x, ξ) = tµ+1A#
2µ+ν(x, ω, ξ), with ω = t1/2ξ.

The factor A#
2µ+ν(x, ω, ξ) is a polynomial in both ω and ξ. It is homo-

geneous of degree 2 − ν in ξ (i.e., either linear or constant). Further-
more, as a polynomial in ω, each monomial has even order; equivalently,
A#

2µ+ν(x,−ω, ξ) = A#
2µ+ν(x, ω, ξ).

To prove the lemma, we begin by recasting (13.10). Let Γj(t, x, ξ) be
defined by

(13.13) Ωj(t, x, ξ) = Γj(t, x, ξ)e−tL2(x,ξ).

Then the recursion (13.7) yields

(13.14) Γje
−tL2 = −

2∑

ℓ=1

B2−ℓ(x, ξ,Dx)
(
Aj−ℓe

−tL2
)
.

Applying the Leibniz formula gives

(13.15) Γj = −
2∑

ℓ=1

∑

|γ|≤ℓ

Λℓ(x, ω)B
[γ]
2−ℓ(x, ξ,Dx)Aj−ℓ(t, x, ξ),

evaluated at ω = t1/2ξ, where

(13.16) etL2(x,ξ)Dγ
xe−tL2(x,ξ) = Λγ(x, t1/2ξ).

Clearly, Λγ(x, t1/2ξ) is a polynomial in ξ and also a polynomial in t; hence
Λγ(x, ω) is an even polynomial in ω. Note also that the differential operator

B
[γ]
2−ℓ(x, ξ,Dx) is of order ℓ − |γ|, and its coefficients are polynomials in ξ,

homogeneous of degree 2 − ℓ, as were those of B2−ℓ(x, ξ,Dx). The factor
Aj is given by

(13.17) Aj(t, x, ξ) =

∫ t

0

Γj(s, x, ξ) ds.

The recursion (13.15)–(13.17) will provide an inductive proof of Lemma
13.1.
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To carry this out, assume the lemma true for Aj , for all j < 2µ + ν. We
then have

Γ2µ+ν(t, x, ξ) =
∑

1≤ℓ<ν

∑

|γ|≤ℓ

Λℓ(x, ω)B
[γ]
2−ℓ(x, ξ,Dx)A#

2µ+ν−ℓ(x, ω, ξ)tµ+1

+
∑

ν≤ℓ≤2

∑

|γ|≤ℓ

Λℓ(x, ω)B
[γ]
2−ℓ(x, ξ,Dx)A#

2µ+ν−ℓ(x, ω, ξ)tµ.(13.18)

The first sum is empty if ν = 1. In the first sum, A#
2µ+ν−ℓ(x, ω, ξ) is

homogeneous of degree 2 + ℓ − ν in ξ, so in the first sum
(13.19)

tµ+1Λγ(x, ω)B
[γ]
2−ℓ(x, ξ,Dx)A#

2µ+ν−ℓ(x, ω, ξ) = tµ+1H#
µνℓγ(x, ω, ξ),

where H#
µνℓγ(x, ω, ξ) is a polynomial in ξ, homogeneous of degree 4 − ν,

and an even polynomial in ω. We can hence write

(13.20) tµ+1H#
µνℓγ(x, ω, ξ) = tµHµνℓγ(x, ω, ξ),

where Hµνℓγ(x, ω, ξ) is a polynomial in ξ, homogeneous of degree 2 − ν,
and an even polynomial in ω.

In the last sum in (13.18), A#
2µ+ν−ℓ is homogeneous in ξ of degree ℓ− ν,

so in this sum

(13.21) tµΛγ(x, ω)B
[γ]
2−ℓ(x, ξ,Dx)A#

2µ+ν−ℓ(x, ω, ξ) = tµHµνℓγ(x, ω, ξ),

where, as in (13.20), Hµνℓγ(x, ω, ξ) is a polynomial in ξ, homogeneous of
degree 2 − ν, and an even polynomial in ω. Thus

(13.22) Γ2µ+ν(t, x, ξ) = tµ
∑

ℓ,γ

Hµνℓγ(x, ω, ξ) = tµKµν(x, ω, ξ),

where Kµν is a polynomial in ξ, homogeneous of degree 2− ν, and an even
polynomial in ω. It follows that

(13.23) A2µ+ν(t, x, ξ) =

∫ t

0

sµKµν(x, s1/2ξ, ξ) ds

has the properties stated in Lemma 13.1, whose proof is complete.
The analysis of (13.12) yields estimates on aj(t, x, ξ), easily obtained by

writing (for j = 2µ + ν, ν = 1 or 2)

(13.24) aj(t, x, ξ) = tµ+1A#
j (x, ω, ξ)e−L2(x,ω)/2e−tL2(x,ξ)/2,

and using the simple estimates

(13.25) |ω|Le−L2(x,ω)/2 ≤ CL,
(
t|ξ|2

)ℓ
e−tL2(x,ξ)/2 ≤ C2ℓ.

Note that tµ+1 = tj/2 if j is even; if j is odd, then tµ+1 = tj/2 · t1/2, and
the factor t1/2 can be paired with the linear factor of ξ in A#

j . Thus we
have estimates

(13.26) |aj(t, x, ξ)| ≤ Cjt
j/2
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and

(13.27) |aj(t, x, ξ)| ≤ Cj〈ξ〉−j .

Derivatives are readily estimated by the same method, and we obtain:

Lemma 13.2. For 0 ≤ t ≤ T , k ≥ −j, we have

(13.28) tk/2Dℓ
taj(t, x, ξ) bounded in S2ℓ−k−j

1,0 .

We can construct a function a(t, x, ξ) such that each difference a(t, x, ξ)−∑
ℓ<j aℓ(t, x, ξ) has the properties (13.28), and then, for u(t, x) given by

(13.22), we have u(0, x) = f(x) and

(13.29)
( ∂

∂t
+ L

)
u(t, x) = r(t, x),

where r(t, x) is smooth for t ≥ 0 and rapidly decreasing as t ց 0. If the
construction is made on a compact manifold M , energy estimates imply
that the difference between u(t, x) and v(t, x) = e−tLf(x) is smooth and
rapidly decreasing as t ց 0, for all f ∈ D′(M). Consequently the “heat
kernel” H(t, x, y), given by

(13.30) e−tLf(x) =

∫

M

H(t, x, y) f(y) dV (y),

and the integral kernel Q(t, x, y) of the operator constructed in the form
(13.2) differ by a function R(t, x, y), which is smooth on [0,∞) × M × M
and rapidly decreasing as t ց 0.

Look at the integral kernel of the operator

(13.31) Qj(t, x,D)f =

∫
aj(t, x, ξ)eix·ξ f̂(ξ) dξ,

which is

(13.32) Qj(t, x, y) = (2π)−n

∫

Rn

aj(t, x, ξ)ei(x−y)·ξ dξ.

For aj(t, x, ξ) in the form (13.11)–(13.12), we obtain

(13.33) Qj(t, x, y) = t(j−n)/2 qj

(
x, t−1/2(x − y)

)
,

where

(13.34) q0(x, z) = (2π)−n

∫

Rn

e−L2(x,ξ)eiz·ξ dξ

and, for j ≥ 1,

(13.35) qj(x, z) = (2π)−n

∫

Rn

A#
j (x, ξ, ξ)e−L2(x,ξ)eiz·ξ dξ.
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We can evaluate the Gaussian integral (13.34) via the method developed
in Chapter 3. If, in the local coordinate system used in (13.2), L2(x, ξ) =
L(x)ξ · ξ, for a positive-definite matrix L(x), then

(13.36) q0(x, z) =
[
det

(
4πL(x)

)]−1/2

e−G(x)z·z/4,

where G(x) = L(x)−1. Consequently,

(13.37) Q0(t, x, y) = (4πt)−n/2
[
detL(x)

]−1/2

e−G(x)(x−y)·(x−y)/4t.

The integrals (13.35) can be computed in terms of

(13.38)
(2π)−n

∫
ξβe−L2(x,ξ)eiz·ξdξ =

[
det

(
4πL(x)

)]−1/2

Dβ
z e−G(x)z·z/4

= pβ(x, z) e−G(x)z·z/4,

where pβ(x, z) is a polynomial of degree |β| in z. Clearly, pβ(x, z) is even
or odd in z according to the parity of |β|. Note also that, in (13.35),
A#

j (x, ξ, ξ) is even or odd in ξ according to the parity of j. We hence
obtain the following result.

Proposition 13.3. If L is a second-order, elliptic differential operator
with positive scalar principal symbol, then the integral kernel H(t, x, y) of
the operator e−tL has the form

(13.39) H(t, x, y) ∼
∑

j≥0

t(j−n)/2 pj

(
x, t−1/2(x − y)

)
e−G(x)(x−y)·(x−y)/4t,

where pj(x, z) is a polynomial in z, which is even or odd in z according to
the parity of j.

To be precise about the strong sense in which (13.39) holds, we note
that, for any ν < ∞, there is an N < ∞ such that the difference RN (t, x, y)
between the left side of (13.39) and the sum over j ≤ N of the right side
belongs to Cν([0,∞) × M × M) and vanishes to order ν as t ց 0.

In particular, we have

(13.40) H(t, x, x) ∼
∑

j≥0

t−n/2+j p2j(x, 0),

since pj(x, 0) = 0 for j odd. Consequently, the trace of the operator e−tL

has the asymptotic expansion

(13.41) Tr e−tL ∼ t−n/2
(
a0 + a1t + a2t

2 + · · ·
)
,

with

(13.42) aj =

∫

M

p2j(x, 0) dV (x).
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Further use will be made of this in Chapters 8 and 10.
Note that the exponent in (13.39) agrees with r(x, y)2/4t, up to O(r3/t),

for x close to y, where r(x, y) is the geodesic distance from x to y. In fact,
when L = −∆, the integral operator with kernel

(13.43) H0(t, x, y) = (4πt)−n/2 e−r(x,y)2/4t, t > 0,

is in some ways a better first approximation to e−tL than is (13.2) with
a(t, x, ξ) replaced by a0(t, x, ξ) = e−tL2(x,ξ). (See Exercise 3 below.) It can
be shown that

(13.44)
( ∂

∂t
+ Lx

)
H0(t, x, y) = Q(t, x, y), t > 0,

is the integral kernel of an operator that is regularizing, and if one defines

(13.45) H0#Q(t, x, y) =

∫ t

0

∫

M

H0(t − s, x, z)Q(s, z, y) dV (z) ds,

then a parametrix that is as good as (13.39) can be obtained in the form

(13.46) ∼ H0 − H0#Q + H0#Q#Q − · · · .

This approach, one of several alternatives to that used above, is taken in
[MS].

One can also look at (13.43)–(13.46) from a pseudodifferential operator
perspective, as done in [Gr]. The symbol of ∂/∂t + L is iτ + L(x, ξ), and

(13.47) H0(x, τ, ξ) =
(
iτ + L2(x, ξ)

)−1

∈ S−1
1/2,0(R × M).

The operator with integral kernel H0(t − s, x, y) given by (13.43) belongs
to OPS−1

1/2,0(R×M) and has (13.47) as its principal symbol. This operator
has two additional properties; it is causal, that is, if v vanishes for t < T ,
so does H0v, for any T , and it commutes with translations. Denote by Cm

the class of operators in OPSm
1/2,0(R×M) with these two properties. One

easily has Pj ∈ Cmj ⇒ P1P2 ∈ Cm1+m2 . The symbol computation gives

(13.48)
( ∂

∂t
+ L

)
H0 = I + Q, Q ∈ C−1,

and from here one obtains a parametrix

(13.49) H ∈ C−1, H ∼ H0 − H0Q + H0Q
2 − · · · .

The formulas (13.46) and (13.49) agree, via the correspondence of operators
and their integral kernels.

One can proceed to construct a parametrix for the heat equation on a
manifold with boundary. We sketch an approach, using a variant of the
double-layer-potential method described for elliptic boundary problems in
§11. Let Ω be an open domain, with smooth boundary, in M , a compact
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Riemannian manifold without boundary. We construct an approximate
solution to

(13.50)
∂u

∂t
= −Lu,

for (t, x) ∈ R
+ × Ω, satisfying

(13.51) u(0, x) = 0, u(t, x) = h(t, x), for x ∈ ∂Ω,

in the form

(13.52) u = Dℓ g(t, x) =

∫ ∞

0

∫

∂Ω

g(s, y)
∂H

∂νy
(t − s, x, y) dS(y) ds,

where H(t, x, y) is the heat kernel on R
+ × M studied above. For x ∈ ∂Ω,

denote by Dℓ g+(t, x) the limit of Dℓ g from within R
+ × Ω. As in (11.7),

one can establish the identity

(13.53) Dℓ g+ =
1

2
(I + N)g,

where (1/2)Ng is given by the double integral on the right side of (13.52),
with y and x both in ∂Ω. In analogy with (11.23), we have

N ∈ OPS
−1/2
1/2,0(R+ × ∂Ω).

For u to solve (13.50)–(13.51), we need

(13.54) h =
1

2
(I + N)g.

Thus we have a parametrix for (13.50)–(13.51) in the form (13.52) with

(13.55) g ∼ 2(I − N + N2 − · · · )h.

We can use the analysis of (13.50)–(13.55) to construct a parametrix for
the solution operator to

(13.56)
∂u

∂t
= ∆u, for x ∈ Ω, u(0, x) = f(x), u(t, x) = 0, for x ∈ ∂Ω.

To begin, let v solve

(13.57)
∂v

∂t
= ∆v on R

+ × M, v(0) = f̃ ,

where

(13.58)
f̃(x) = f(x), for x ∈ Ω,

0, for x ∈ M \ Ω.

One way to obtain u would be to subtract a solution to (13.50)–(13.51),
with −L = ∆, h = v

∣∣
R+×∂Ω

. This leads to a parametrix for the solution
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operator for (13.56) of the form
(13.59)

p(t, x, y) = H(t, x, y) −
∫ ∞

0

∫

∂Ω

h(s, z, y)
∂H

∂νz
(t − s, x, z) dS(z) ds,

h(s, z, y) ∼ 2H(s, z, y) + · · · ,

where, as above, H(t, x, y) is the heat kernel on R
+ × M .

We mention an alternative treatment of (13.56) that has some advan-
tages. We will apply a reflection to v. To do this, assume that Ω is con-
tained in a compact Riemannian manifold M , diffeomorphic to the double
of Ω, and let R : M → M be a smooth involution of M , fixing ∂Ω, which
near ∂Ω is a reflection of each geodesic normal to ∂Ω, about the point
where the geodesic intersects ∂Ω. Pulling back the metric tensor on M by
R yields a metric tensor that agrees with the original on ∂Ω. Now set

(13.60) u1(t, x) = v(t, x) − v
(
t, R(x)

)
, x ∈ Ω.

We see that u1 satisfies

(13.61)
∂u1

∂t
= ∆u1 + g, u1(0, x) = f, u1(t, x) = 0, for x ∈ ∂Ω,

where

(13.62) g = Lbṽ
∣∣
R+×Ω

, ṽ(t, x) = v
(
t, R(x)

)
,

and where Lb is a second-order differential operator, with smooth co-
efficients, whose principal symbol vanishes on ∂Ω. Thus the difference
u − u1 = w solves

(13.63)
∂w

∂t
= ∆w − g, w(0) = 0, w(t, x) = 0, for x ∈ ∂Ω.

Next let v2 solve

(13.64)
∂v2

∂t
= ∆v2 − g̃ on R

+ × M, v2(0) = 0,

where

(13.65)
g̃(t, x) = g(t, x), for x ∈ Ω,

0, for x ∈ M \ Ω,

and set

(13.66) u2 = v2

∣∣
R+×Ω

.

It follows that w2 = u − (u1 + u2) satisfies

(13.67)
∂w2

∂t
= ∆w2 on R

+ × Ω, w2(0) = 0, w2

∣∣
R+×∂Ω

= −v2

∣∣
R+×∂Ω

.

Now we can obtain w2 by the construction (13.52)–(13.55), with

h = −v2

∣∣
R+×∂Ω

.
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To illustrate the effect of this construction using reflection, suppose that,
in (13.56),

(13.68) f ∈ H1
0 (Ω).

Then, in (13.57)–(13.58), f̃ ∈ H1(M), so v ∈ C
(
R

+,H1(M)
)
, and hence

(13.69) u1 ∈ C
(
R

+,H1
0 (Ω)

)
.

Furthermore, given the nature of Lb and that of the heat kernel on R
+ ×

M × M , one can show that, in (13.62),

(13.70) g ∈ C
(
R

+, L2(Ω)
)
,

that is, Lb effectively acts like a first-order operator on ṽ, when one restricts
to Ω. It follows that g̃ ∈ C

(
R

+, L2(M)
)

and hence, via Duhamel’s formula
for the solution to (13.64), that v2 ∈ C

(
R

+,H2−ε(M)
)
, ∀ ε > 0. Therefore,

(13.71) u2 ∈ C
(
R

+,H2−ε(Ω)),

and, in (13.67), we have a PDE of the form (13.50)–(13.51), with h ∈
C

(
R

+,H3/2−ε(∂Ω)
)
, for all ε > 0. One can deduce from (13.52)–(13.55)

that w2 has as much regularity as that given for u2 in (13.71).
It also follows directly from Duhamel’s principle, applied to (13.63), that

(13.72) w ∈ C
(
R

+,H2−ε(Ω)
)
,

so we can see without analyzing (13.52)–(13.55) that w2 has as much regu-
larity as mentioned above. Either way, we see that when f satisfies (13.68),
the principal singularities of the solution u to (13.56) are captured by u1,
defined by (13.60). Constructions of u2 and, via (13.52)–(13.55), of w2

yield smoother corrections, at least when smoothness is measured in the
spaces used above.

The construction (13.56)–(13.67) can be compared with constructions in
§7 of Chapter 13.

Exercises

1. Let L be a positive, self-adjoint, elliptic differential operator of order 2k > 0
on a compact manifold M , with scalar principal symbol L2k(x, ξ). Show that
a parametrix for ∂u/∂t = −Lu can be constructed in the form (13.2)–(13.3),
with aj(t, x, ξ) of the following form, generalizing (13.11)–(13.12):

aj(t, x, ξ) = Aj(t, x, ξ)e−tL2k(x,ξ),

where A0(t, x, ξ) = 1 and if µ = 0, 1, 2, . . . and ν ∈ {1, . . . , 2k}, then

A2kµ+ν(t, x, ξ) = tµ+1A#
2kµ+ν(x, ω, ξ), ω = t1/2kξ,

where A#
2kµ+ν(x, ω, ξ) is a polynomial in ξ, homogeneous of degree 2k − ν,

whose coefficients are polynomials in ω, each monomial of which has degree (in
ω) that is an integral multiple of 2k, so A#

2kµ+ν(x, eπi/kω, ξ) = A#
2kµ+ν(x, ω, ξ).
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2. In the setting of Exercise 1, show that

Tr e−tL ∼ t−n/2k

„

a0 + a1t
1/k + a2t

2/k + · · ·
«

,

generalizing (13.41).
3. Let gjk(y, x) denote the components of the metric tensor at x in a normal coor-

dinate system centered at y. Suppose −Lu(x) = ∆u(x) = gjk(y, x) ∂j∂ku(x)+
bj(y, x) ∂ju(x) in this coordinate system. With H0(t, x, y) given by (13.43),
show that

„

∂

∂t
+ Lx

«

H0(t, x, y)

= H0(t, x, y)



(2t)−2
h

gjk(x, x) − gjk(y, x)
i

(xj − yj)(xk − yk)

− (2t)−1
h

gj
j(x, x) − gj

j(y, x) − bj(y, x)(xj − yj)
i

ff

= H0(t, x, y)



O

„ |x − y|4
t2

«

+ O

„ |x − y|2
t

«ff

.

Compare formula (2.10) in Chapter 5. Note that gjk(y, y) = δjk, ∂ℓgjk(y, y) =
0, and bj(y, y) = 0. Relate this calculation to the discussion involving (13.43)–
(13.49).

4. Using the parametrix, especially (13.39), show that if M is a smooth, compact
Riemannian manifold, without boundary, then

et∆ : Ck(M) −→ Ck(M)

is a strongly continuous semigroup, for each k ∈ Z
+.

14. The Weyl calculus

To define the Weyl calculus, we begin with a modification of the formula
(1.10) for a(x,D). Namely, we replace eiq·Xeip·D by ei(q·X+p·D), and set

(14.1) a(X,D)u =

∫
â(q, p)ei(q·X+p·D) u dq dp,

initially for a(x, ξ) ∈ S(R2n). Note that v(t, x) = eit(q·X+p·D)u(x) solves
the PDE

(14.2)
∂v

∂t
=

∑

j

pj
∂v

∂xj
+ i(q · x)v, v(0, x) = u(x),

and the solution is readily obtained by integrating along the integral curves
of ∂/∂t − ∑

pj ∂/∂xj , which are straight lines. We get

(14.3) ei(q·X+p·D)u(x) = eiq·x+iq·p/2 u(x + p).

Note that this is equivalent to the identity

(14.4) ei(q·X+p·D) = eiq·p/2 eiq·X eip·D.
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If we plug (14.3) into (14.1), a few manipulations using the Fourier inversion
formula yield

(14.5) a(X,D)u(x) = (2π)−n

∫
a
(x + y

2
, ξ

)
ei(x−y)·ξ u(y) dy dξ,

which can be compared with the formula (1.3) for a(x,D). Note that
a(X,D) is of the form (3.2) with a(x, y, ξ) = a

(
(x + y)/2, ξ

)
, while a(x,D)

is of the form (3.2) with a(x, y, ξ) = a(x, ξ). In particular, Proposition 3.1
is applicable; we have

(14.6) a(X,D) = b(x,D),

where

(14.7) b(x, ξ) = eiDξ·Dy a
(x + y

2
, ξ

)∣∣∣
y=x

= e(i/2)Dξ·Dx a(x, ξ).

If a(x, ξ) ∈ Sm
ρ,δ, with 0 ≤ δ < ρ ≤ 1, then b(x, ξ) also belongs to Sm

ρ,δ and,
by (3.6),

(14.8) b(x, ξ) ∼
∑

α≥0

i|α|

α!
2−|α| Dα

ξ Dα
x a(x, ξ).

Of course this relation is invertible; we have a(x, ξ) = e−(i/2)Dξ·Dxb(x, ξ)
and a corresponding asymptotic expansion. Thus, at least on a basic level,
the two methods of assigning an operator, either a(x,D) or a(X,D), to a
symbol a(x, ξ) lead to equivalent operator calculi. However, they are not
identical, and the differences sometimes lead to subtle advantages for the
Weyl calculus.

One difference is that since the adjoint of ei(q·X+p·D) is e−i(q·X+p·D), we
have the formula

(14.9) a(X,D)∗ = b(X,D), b(x, ξ) = a(x, ξ)∗,

which is somewhat simpler than the formula (3.13)–(3.14) for a(x,D)∗.
Other differences can be traced to the fact that the Weyl calculus exhibits

certain symmetries rather clearly. To explain this, we recall, from the
exercises after §1, that the set of operators

(14.10) eit eiq·X eip·D = π̃(t, q, p)

form a unitary group of operators on L2(Rn), a representation of the group
Hn, with group law

(14.11) (t, q, p) ◦ (t′, q′, p′) = (t + t′ + p · q′, q + q′, p + p′).

Now, using (14.4), one easily computes that

(14.12) ei(t+q·X+p·D) ei(t′+q′·X+p′·D) = ei(s+u·X+v·D),

with u = q + q′, v = p + p′, and

(14.13) s = t + t′ +
1

2
(p · q′ − q · p′) = t + t′ +

1

2
σ
(
(p, q), (p′, q′)

)
,
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where σ is the natural symplectic form on R
n × R

n. Thus

(14.14) π(t, q, p) = ei(t+q·X+p·D)

defines a unitary representation of a group we’ll denote Hn, which is R×R
2n

with group law

(14.15) (t, w) · (t′, w′) =
(
t + t′ +

1

2
σ(w,w′), w + w′

)
,

where we have set w = (q, p). Of course, the groups Hn and Hn are
isomorphic; both are called the Heisenberg group. The advantage of using
the group law (14.15) rather than (14.11) is that it makes transparent the
existence of the action of the group Sp(n, R) of linear symplectic maps on
R

2n, as a group of automorphisms of Hn. Namely, if g : R
2n → R

2n is
a linear map preserving the symplectic form, so σ(gw, gv) = σ(w, v) for
v, w ∈ R

2n, then

(14.16) α(g) : Hn → Hn, α(g)(t, w) = (t, gw)

defines an automorphism of Hn, so

(14.17) (t, w) · (t′, w′) = (s, v) ⇒ (t, gw) · (t′, gw′) = (s, gv)

and α(gg′) = α(g)α(g′). The associated action of Sp(n, R) on Hn has a
formula that is less clean.

This leads to an action of Sp(n, R) on operators in the Weyl calculus.
Setting

(14.18) ag(x, ξ) = a
(
g−1(x, ξ)

)
,

we have

(14.19) a(X,D)b(X,D) = c(X,D) ⇒ ag(X,D)bg(X,D) = cg(X,D),

for g ∈ Sp(n, R).
In fact, let us rewrite (14.1) as

a(X,D) =

∫
â(w)π(0, w) dw.

Then

(14.20)

a(X,D)b(X,D)

=

∫∫
â(w)b̂(w′)π(0, w)π(0, w′) dw dw′

=

∫∫
â(w)b̂(w′)eσ(w,w′)/2π(0, w + w′) dw dw′,

so c(X,D) in (14.19) has symbol satisfying

(14.21) ĉ(w) = (2π)−n

∫
â(w − w′)b̂(w′)eiσ(w,w′)/2 dw′.
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The implication in (14.19) follows immediately from this formula. Let us
write c(x, ξ) = (a ◦ b)(x, ξ) when this relation holds.

From (14.21), one easily obtains the product formula

(14.22) (a ◦ b)(x, ξ) = e(i/2)(Dy·Dξ−Dx·Dη)a(x, ξ)b(y, η)
∣∣∣
y=x,η=ξ

.

If a ∈ Sm
ρ,δ, b ∈ Sµ

ρ,δ, 0 ≤ δ < ρ ≤ 1, we have the following asymptotic
expansion:

(14.23) (a ◦ b)(x, ξ) ∼ ab +
∑

j≥1

1

j!
{a, b}j(x, ξ),

where

(14.24) {a, b}j(x, ξ) =
(
− i

2

)j(
∂y · ∂ξ − ∂x · ∂η

)j
a(x, ξ)b(y, η)

∣∣∣
y=x,η=ξ

.

For comparison, recall the formula for

(14.25) a(x,D)b(x,D) = (a#b)(x,D)

given by (3.16)–(3.20):

(14.26)

(a#b)(x, ξ) = eiDη·Dξa(x, η)b(y, ξ)
∣∣∣
y=x,η=ξ

∼ ab +
∑

α>0

(−i)|α|

α!
∂α

ξ a(x, ξ)∂α
x b(x, ξ).

In the respective cases, (a ◦ b)(x, ξ) differs from the sum over j < N by an
element of S

m+µ−N(ρ−δ)
ρ,δ and (a#b)(x, ξ) differs from the sum over |α| < N

by an element of the same symbol class.
In particular, for ρ = 1, δ = 0, we have

(14.27) (a ◦ b)(x, ξ) = a(x, ξ)b(x, ξ) +
i

2
{a, b}(x, ξ) mod Sm+µ−2

1,0 ,

where {a, b} is the Poisson bracket, while

(14.28) (a#b)(x, ξ) = a(x, ξ)b(x, ξ) − i
∑ ∂a

∂ξj

∂b

∂xj
mod Sm+µ−2

1,0 .

Consequently, in the scalar case,

(14.29)
[a(X,D), b(X,D)] = [a(x,D), b(x,D)]

= e(x,D) = e(X,D) mod OPSm+µ−2
1,0 ,

with

(14.30) e(x, ξ) = i{a, b}(x, ξ).

Now we point out one of the most useful aspects of the difference between
(14.27) and (14.28). Namely, one starts with an operator A = a(X,D) =
a1(x,D), maybe a differential operator, and perhaps one wants to construct
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a parametrix for A, or perhaps a “heat semigroup” e−tA, under appropriate
hypotheses. In such a case, the leading term in the symbol of the operator
b(X,D) = b1(x,D) used in (14.20) or (14.25) is a function of a(x, ξ), for
example, a(x, ξ)−1, or e−ta(x,ξ). But then, at least when a(x, ξ) is scalar,
the last term in (14.27) vanishes! On the other hand, the last term in
(14.28) generally does not vanish. From this it follows that, with a given
amount of work, one can often construct a more accurate approximation
to a parametrix using the Weyl calculus, instead of using the constructions
of the previous sections.

In the remainder of this section, we illustrate this point by reconsidering
the parametrix construction for the heat equation, made in §13. Thus, we
look again at

(14.31)
∂u

∂t
= −Lu, u(0) = f.

This time, set

(14.32) Lu = a(X,D)u + b(x)u,

where

(14.33)
a(x, ξ) =

∑
gjk(x)ξjξk +

∑
ℓj(x)ξj

= g(x, ξ) + ℓ(x, ξ).

We assume g(x, ξ) is scalar, while ℓ(x, ξ) and b(x) can be K × K matrix-
valued. As the notation indicates, we assume (gjk) is positive-definite,
defining an inner product on cotangent vectors, corresponding to a Rie-
mannian metric (gjk). We note that a symbol that is a polynomial in ξ
also defines a differential operator in the Weyl calculus. For example,

(14.34)

ℓ(x,D)u =
∑

ℓj(x) ∂ju =⇒

ℓ(X,D)u =
∑

ℓj(x) ∂ju +
1

2

∑
(∂jℓj)u

and

(14.35)

a(x,D) =
∑

ajk(x)∂j∂ku =⇒

a(X,D)u =
∑[

ajk(x)∂j∂ku + (∂jajk)∂ku +
1

4
(∂j∂kajk)u

]

=
∑[

∂j(ajk∂ku) +
1

4
(∂j∂kajk)u

]
.

We use the Weyl calculus to construct a parametrix for (14.31). We will
begin by treating the case when all the terms in (14.33) are scalar, and
then we will discuss the case when only g(x, ξ) is assumed to be scalar.

We want to write an approximate solution to (14.31) as

(14.36) u = E(t,X,D)f.
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We write

(14.37) E(t, x, ξ) ∼ E0(t, x, ξ) + E1(t, x, ξ) + · · ·
and obtain the various terms recursively. The PDE (14.31) requires

(14.38)
∂

∂t
E(t,X,D) = −LE(t,X,D) = −(L ◦ E)(t,X,D),

where, by the Weyl calculus,

(14.39) (L ◦ E)(t, x, ξ) ∼ L(x, ξ)E(t, x, ξ) +
∑

j≥1

1

j!
{L,E}j(t, x, ξ).

It is natural to set

(14.40) E0(t, x, ξ) = e−ta(x,ξ),

as in (13.9). Note that the Weyl calculus applied to this term provides a
better approximation than the previous calculus, because

(14.41) {a, e−ta}1 = 0!.

If we plug (14.37) into (14.39) and collect the highest order nonvanishing
terms, we are led to define E1(t, x, ξ) as the solution to the “transport
equation”

(14.42)
∂E1

∂t
= −aE1 −

1

2
{a,E0}2 − b(x)E0, E1(0, x, ξ) = 0.

Let us set

(14.43) Ω1(t, x, ξ) = −1

2
{a, e−ta}2 − b(x)e−ta(x,ξ).

Then the solution to (14.42) is

(14.44) E1(t, x, ξ) =

∫ t

0

e(s−t)a(x,ξ)Ω1(s, x, ξ) ds.

Higher terms Ej(t, x, ξ) are then obtained in a straightforward fashion.
This construction is similar to (13.6)–(13.10), but there is the following
important difference. Once you have E0(t, x, ξ) and E1(t, x, ξ) here, you
have the first two terms in the expansion of the integral kernel of e−tL on
the diagonal:

(14.45) K(t, x, x) ∼ c0(x)t−n/2 + c1(x)t−n/2+1 + · · · .

To get so far using the method of §13, it is necessary to go further and com-
pute the solution a2(t, x, ξ) to the next transport equation. Since the for-
mulas become rapidly more complicated, the advantage is with the method
of this section. We proceed with an explicit determination of the first two
terms in (14.45).
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Thus we now evaluate the integral in (14.44). Clearly,

(14.46)

∫ t

0

e(s−t)a(x,ξ)b(x)e−sa(x,ξ) ds = tb(x)e−ta(x,ξ).

Now, a straightforward calculation yields

(14.47) {a, e−sa}2 =
s

2
Q(∇2a)e−sa − s2

4
T (∇a,∇2a)e−sa,

where

(14.48) Q(∇2a) =
∑

k,ℓ

{
(∂ξk

∂ξℓ
a)(∂xk

∂xℓ
a) − (∂ξk

∂xℓ
a)(∂xk

∂ξℓ
a)

}

and

(14.49)

T (∇a,∇2a)

=
∑

k,ℓ

{
(∂ξk

∂ξℓ
a)(∂xk

a)(∂xℓ
a)

+ (∂xk
∂xℓ

a)(∂ξk
a)(∂ξℓ

a) − 2(∂ξk
∂xℓ

a)(∂xk
a)(∂ξℓ

a)
}

.

Therefore,

(14.50)

∫ t

0

e(s−t)a{a, e−sa}2 ds =
t2

4
Q(∇2a)e−ta − t3

12
T (∇a,∇2a)e−ta.

We get E1(t, x, ξ) in (14.44) from (14.46) and (14.50).
Suppose for the moment that ℓ(x, ξ) = 0 in (14.33), that is, a(X,D) =

g(X,D). Suppose also that, for some point x0,

(14.51) ∇x gjk(x0) = 0, gjk(x0) = δjk.

Then, at x0,

(14.52)

Q(∇2a) =
∑

k,ℓ

(
∂ξk

∂ξℓ
a
)(

∂xk
∂xℓ

a
)

= 2
∑

j,k,ℓ

∂2gjk

∂x2
ℓ

(x0)ξjξk

and

(14.53)

T (∇a,∇2a) =
∑

k,ℓ

(
∂xk

∂xℓ
a
)(

∂ξk
a
)(

∂ξℓ
a
)

= 4
∑

j,k,ℓ,m

∂2gjk

∂xℓ∂xm
(x0)ξjξkξℓξm.

Such a situation as (14.51) arises if gjk(x) comes from a metric tensor
gjk(x), and one uses geodesic normal coordinates centered at x0. Now the
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Laplace-Beltrami operator is given by

(14.54) ∆u = g−1/2
∑

∂jg
jkg1/2∂k u,

where g = det(gjk). This is symmetric when one uses the Riemannian
volume element dV =

√
g dx1 · · · dxn. To use the Weyl calculus, we want

an operator that is symmetric with respect to the Euclidean volume element
dx1 · · · dxn, so we conjugate ∆ by multiplication by g1/4:

(14.55) −Lu = g1/4 ∆
(
g−1/4u

)
= g−1/4

∑
∂jg

jkg1/2 ∂k

(
g−1/4u

)
.

Note that the integral kernel kt
L(x, y) of etL is g1/4(x)kt

∆(x, y)g−1/4(y); in
particular, of course, the two kernels coincide on the diagonal x = y. To
compare L with g(X,D), note that

(14.56) −Lu =
∑

∂jg
jk ∂ku + Φ(x)u,

where

(14.57) Φ(x) =
∑

∂j

(
gjkg1/2 ∂kg−1/4

)
−

∑
gjkg1/2

(
∂jg

−1/4
)(

∂kg−1/4
)
.

If gjk(x) satisfies (14.51), we see that

(14.58) Φ(x0) =
∑

j

∂2
j g−1/4(x0) = −1

4

∑

ℓ

∂2
ℓ g(x0).

Since g(x0 + heℓ) = det
(
δjk + (1/2)h2 ∂2

ℓ gjk

)
+ O(h3), we have

(14.59) Φ(x0) = −1

4

∑

j,ℓ

∂2
ℓ gjj(x0).

By comparison, note that, by (14.35),

(14.60)

g(X,D)u = −
∑

∂jg
jk ∂ku + Ψ(x)u,

Ψ(x) = −1

4

∑
∂j∂kgjk(x).

If x0 is the center of a normal coordinate system, we can express these
results in terms of curvature, using

(14.61) ∂ℓ∂mgjk(x0) =
1

3
Rjℓkm(x0) +

1

3
Rjmkℓ(x0),

in terms of the components of the Riemann curvature tensor, which follows
from formula (3.51) of Appendix C. Thus we get

(14.62)

Φ(x0) = −1

4
· 2

3

∑

j,ℓ

Rjℓjℓ(x0) = −1

6
S(x0),

Ψ(x0) = −1

4
· 1

3

∑

j,k

[
Rjjkk(x0) + Rjkkj(x0)

]
=

1

12
S(x0).
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Here S is the scalar curvature of the metric gjk.
When a(X,D) = g(X,D), we can express the quantities (14.52) and

(14.53) in terms of curvature:

(14.63) Q(∇2g) = 2 · 2

3

∑

j,k,ℓ

Rjℓkℓ(x0)ξjξk =
4

3

∑

j,k

Ricjk(x0)ξjξk,

where Ricjk denotes the components of the Ricci tensor, and

(14.64) T (∇g,∇2g) = 4 · 2

3

∑

j,k,ℓ,m

Rjℓkm(x0)ξjξkξℓξm = 0,

the cancellation here resulting from the antisymmetry of Rjℓkm in (j, ℓ)
and in (k,m).

Thus the heat kernel for (14.31) with

(14.65) Lu = g(X,D)u + b(x)u

is of the form (14.36)–(14.37), with E0 = e−tg(x,ξ) and

(14.66)
E1(t, x, ξ) =

(
−tb(x) − t2

8
Q(∇2g) +

t3

24
T (∇g,∇2g)

)
e−tg

= −
(
tb(x) +

t2

6
Ric(ξ, ξ)

)
e−tg(x,ξ),

at x = x0. Note that g(x0, ξ) = |ξ|2.
Now the integral kernel of Ej(t,X,D) is

(14.67) Kj(t, x, y) = (2π)−n

∫
Ej

(
t,

x + y

2
, ξ

)
ei(x−y)·ξ dξ.

In particular, on the diagonal we have

(14.68) Kj(t, x, x) = (2π)−n

∫
Ej(t, x, ξ) dξ.

We want to compute these quantities, for j = 0, 1, and at x = x0. First,

(14.69) K0(t, x0, x0) = (2π)−n

∫
e−t|ξ|2 dξ = (4πt)−n/2,

since, as we know, the Gaussian integral in (14.69) is equal to (π/t)n/2.
Next,

(14.70)

(2π)nK1(t, x0, x0)

= −tb(x0)

∫
e−t|ξ|2dξ − t2

6

∑
Ricjk(x0)

∫
ξjξke−t|ξ|2dξ.
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We need to compute more Gaussian integrals. If j 6= k, the integrand is an
odd function of ξj , so the integral vanishes. On the other hand,

(14.71)

∫
ξ2
j e−t|ξ|2dξ =

1

n

∫
|ξ|2e−t|ξ|2dξ

= − 1

n

d

dt

∫
e−t|ξ|2dξ =

1

2
πn/2t−n/2−1.

Thus

(14.72) K1(t, x0, x0) = −(4πt)−n/2
(
tb(x0) +

t

12
S(x0)

)
,

since
∑

Ricjj(x) = S(x).
As noted above, the Laplace operator ∆ on scalar functions, when con-

jugated by g1/4, has the form (14.65), with b(x0) = Φ(x0) − Ψ(x0) =
−S(x0)/4. Thus, for the keat kernel et∆ on scalars, we have

(14.73) K1(t, x0, x0) = (4πt)−n/2 t

6
S(x0).

We now generalize this, setting

(14.74) a(x, ξ) = g(x, ξ) + ℓ(x, ξ), ℓ(x, ξ) =
∑

ℓj(x)ξj .

Continue to assume that a(x, ξ) is scalar and consider L = a(X,D) + b(x).
We have

(14.75) E0(t, x, ξ) = e−ta(x,ξ) = e−tℓ(x,ξ) e−tg(x,ξ),

and E1(t, x, ξ) is still given by (14.42)–(14.50). A point to keep in mind
is that we can drop ℓ(x, ξ) from the computation involving {a, e−ta}2, al-
tering K1(t, x, x) only by o(t−n/2+1) as t ց 0. Thus, mod o(t−n/2+1),
K1(t, x0, x0) is still given by (14.73). To get K0(t, x0, x0), expand e−tℓ(x,ξ)

in (14.75) in powers of t:

(14.76) E0(t, x, ξ) ∼
[
1 − tℓ(x, ξ) +

t2

2
ℓ(x, ξ)2 + · · ·

]
e−tg(x,ξ).

When doing the ξ-integral, the term tℓ(x, ξ) is obliterated, of course, while,
by (14.71),

(14.77)
t2

2

∫
ℓ(x0, ξ)

2e−t|ξ|2 dξ =
1

4
πn/2t−n/2+1

∑
ℓj(x0)

2.

Hence, in this situation,

(14.78)
K0(t, x0, x0) + K1(t, x0, x0)

= (4πt)−n/2
[
1 + t

(∑
ℓj(x0)

2 − b(x0) −
1

12
S(x0)

)
+ O(t2)

]
.

Finally, we drop the assumption that ℓ(x, ξ) in (14.74) be scalar. We still
assume that g(x, ξ) defines the metric tensor. There are several changes
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whose effects on (14.78) need to be investigated. In the first place, (14.41)
is no longer quite true. We have

(14.79) {a, e−ta}1 =
i

2

∑{ ∂a

∂xj

∂

∂ξj
e−ta − ∂a

∂ξj

∂

∂xj
e−ta

}
.

In this case, with a(x, ξ) matrix-valued, we have

(14.80)

∂

∂xj
e−ta = −te−ta Ξ

(
ad(−ta)

)( ∂a

∂xj

)

= −te−ta Ξ
(
ad(−tℓ)

)( ∂a

∂xj

)
,

where Ξ(z) = (1 − e−z)/z, so

(14.81)

∂

∂xj
e−ta = te−ta

( ∂a

∂xj
+

t

2

[
ℓ,

∂ℓ

∂xj

]
+ · · ·

)

= −t
∂a

∂xj
+ O(t2|ξ|)e−ta + · · · ,

and so forth. Hence

(14.82) {a, e−ta}1 = − i

2
t
∑[ ∂ℓ

∂xj
,

∂ℓ

∂ξj

]
e−ta + · · · .

This is smaller than any of the terms in the transport equation (14.42) for
E1, so it could be put in a higher transport equation. It does not affect
(14.78).

Another change comes from the following modification of (14.46):

(14.83)

∫ t

0

e(s−t)a(x,ξ)b(x)e−sa(x,ξ) ds

=
[∫ t

0

e(s−t)ℓ(x,ξ)b(x)e−sℓ(x,ξ) ds
]
· e−tg(x,ξ).

This time, b(x) and ℓ(x, ξ) may not commute. We can write the right side
as

(14.84)

∫ t

0

es ad ℓ(x,ξ)
[
b(x)

]
ds e−tℓ(x,ξ)e−tg(x,ξ)

= t
{

b(x) − t

2

(
ℓ(x, ξ)b(x) + b(x)ℓ(x, ξ)

)
+ · · ·

}
e−tg(x,ξ).

Due to the extra power of t with the anticommutator, this does not lead
to a change in (14.78).

The other change in letting ℓ(x, ξ) be nonscalar is that the quantity
ℓ(x, ξ)2 =

∑
ℓj(x)ℓk(x)ξjξk generally has noncommuting factors, but this

also does not affect (14.78). Consequently, allowing ℓ(x, ξ) to be nonscalar
does not change (14.78). We state our conclusion:
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Theorem 14.1. If Lu = a(X,D)u + b(x)u, with

(14.85) a(x, ξ) =
∑

gjk(x)ξjξk +
∑

ℓj(x)ξj ,

where (gjk) is the inverse of a metric tensor (gjk), and ℓj(x) and b(x) are
matrix-valued, and if gjk(x0) = δjk, ∇gjk(x0) = 0, then the integral kernel
K(t, x, y) of e−tL has the property
(14.86)

K(t, x0, x0) = (4πt)−n/2
[
1 + t

(∑
ℓj(x0)

2 − b(x0) −
1

12
S(x0)

)
+ O(t2)

]
.

Exercises

1. If a(x, ξ) =
P

aα(x)ξα is a polynomial in ξ, so that a(x, D) is a differential
operator, show that a(X, D) is also a differential operator, given by

a(X, D)u(x) =
X

α

Dα
y

»

aα

„

x + y

2

«

u(y)

–˛

˛

˛

˛

y=x

=
X

α

X

β+γ=α

 

α

β

!

2−|γ| Dγaα(x) Dβu(x).

Verify the formulas (14.34) and (14.35) as special cases.
2. If p ∈ Sm

1,0 and q ∈ Sµ
1,0 are scalar symbols and p ◦ q is defined so that the

product p(X, D)q(X, D) = (p ◦ q)(X, D), as in (14.22)–(14.23), show that

q ◦ p ◦ q = q2p mod Sm+2µ−2
1,0 .

More generally, if pjk ∈ Sm
1,0, pjk = pkj , and qj ∈ Sµ

1,0, show that
X

j,k

qj ◦ pjk ◦ qk =
X

j,k

qjpjkqk mod Sm+2µ−2
1,0 .

Relate this to the last identity in (14.35), comparing a second-order differential
operator in the Weyl calculus and in divergence form.
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