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1. Introduction

Let X and Y be Banach spaces, assumed to be linear subspaces of a Hausdorff
locally convex space V (with continuous inclusions). We say (X,Y, V ) is a com-
patible triple. For θ ∈ (0, 1), the classical complex interpolation space [X, Y ]θ is
defined as follows. First, Z = X + Y gets a natural norm; for v ∈ X + Y ,

(1.1) ‖v‖Z = inf {‖v1‖X + ‖v2‖Y : v = v1 + v2, v1 ∈ X, v2 ∈ Y }.

One has X + Y ≈ X ⊕ Y/L, where L = {(v,−v) : x ∈ X ∩ Y } is a closed linear
subspace, so X+Y is a Banach space. Let Ω = {z ∈ C : 0 < Re z < 1}, with closure
Ω. Define HΩ(X, Y ) to be the space of functions f : Ω → Z = X + Y , continuous
on Ω, holomorphic on Ω (with values in X + Y ), satisfying f : {Im z = 0} → X
continuous, f : {Im z = 1} → Y continuous, and

(1.2) ‖u(z)‖Z ≤ C, ‖u(iy)‖X ≤ C, ‖u(1 + iy)‖Y ≤ C,

for some C < ∞, independent of z ∈ Ω and y ∈ R. Then, for θ ∈ (0, 1),

(1.3) [X,Y ]θ = {u(θ) : u ∈ HΩ(X, Y )}.

One has

(1.4) [X, Y ]θ ≈ HΩ(X,Y )/{u ∈ HΩ(X, Y ) : u(θ) = 0},

giving [X, Y ]θ the sructure of a Banach space. Here

(1.5) ‖u‖HΩ(X,Y ) = sup
z∈Ω

‖u(z)‖Z + sup
y
‖u(iy)‖X + sup

y
‖u(1 + iy)‖Y .

If I is an interval in R, one says a family of Banach spaces Xs, s ∈ I (subspaces
of V ) forms a complex interpolation scale provided that for s, t ∈ I, θ ∈ (0, 1),

(1.6) [Xs, Xt]θ = X(1−θ)s+θt.

Some very useful tools for analysis arise from the fact that many natural classes
of function spaces (and spaces of distributions) form complex interpolation scales.
We mention [Cal], [LM], and [BL], where many more references can be found.
Examples include Lp-Sobolev spaces Xs = Hs,p(M), s ∈ R, where p ∈ (1,∞) and
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M is a compact Riemannian manifold, as well as many families of Besov spaces,
Triebel-Lizorkin spaces, etc.

On the other hand, there are some important families of function spaces that
barely fail to form complex interpolation scales as defined above. One class of
examples, mentioned in [Tri], is the family of Besov spaces

(1.7) Xs = Bs
p,∞(Rn), s ∈ R,

given p ∈ (1,∞). Here [Xs, Xt]θ is not Xτ , with τ = (1 − θ)s + θt, but rather
the closure of S(Rn) in Xτ . Such a phenomenon arises frequently for families Xs

of function spaces on Rn for which S(Rn) is not dense in Xs. One sees similar
examples for families of function spaces Xs on a compact manifold M for which
C∞(M) is not dense in Xs.

There are variants of [X, Y ]θ, introduced in [CT] and discussed in [Tri], for which
such spaces as (1.7) do form interpolation scales. The specific constructions given
there are somewhat special to the context of function spaces on Euclidean spaces,
and it seems useful to extend the scope of such generalized complex interpolation
scales. There are two natural motivations for doing this. One is to treat function
(and distribution) spaces on manifolds other than Rn. The other is that one of
the major points of interpolation theory is that if a linear operator is continuous
on some spaces Xsj , then it is also continuous on the spaces Xs in between. To
produce more results of this flavor, it is desirable to have additional flexibility in
producing variants of the complex interpolation scale [X, Y ]θ.

The purpose of this paper is to explore further variants of [X,Y ]θ. In §2 we
define [X, Y ]θ;V , where (X,Y, V ) is a compatible triple as defined above, and we
derive some elementary properties, particularly regarding interpolations of continu-
ous linear operators, mapping X → X, Y → Y , and V → V . In addition, we define
a family [X,Y ]bθ when Y ⊂ X is a continuously nested pair of Banach spaces, and
record the analogous interpolation mapping property.

We then discuss several families of examples. In §3 we discuss Lp-Sobolev spaces
Xs = Hs,p(Rn), with p ∈ (1,∞), where these various interpolation spaces coincide.
In §4 we discuss Xs = Bs

∞,∞(M) = Cs
∗(M), known as Zygmund spaces, and in §5 we

discuss Hardy and bmo-Sobolev spaces. In these cases, spaces of the form [X, Y ]θ;V

and [X,Y ]bθ yield bigger (and more useful) interpolation spaces than [X,Y ]θ.

2. The spaces [X, Y ]θ;V and [X, Y ]bθ

Let (X, Y, V ) be a compatible triple, as defined in §1, and let Ω = {z ∈ C : 0 <
Re z < 1}. We define HΩ(X, Y, V ) to be the space of functions u : Ω → X +Y = Z
such that

(2.1) u : Ω −→ Z is holomorphic,
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(2.2) ‖u(z)‖Z ≤ C, ‖u(iy)‖X ≤ C, ‖u(1 + iy)‖Y ≤ C,

and

(2.3) u : Ω −→ V is continuous.

For such u, we again use the norm (1.5). Note that the only difference with
HΩ(X, Y ) is that we are relaxing the continuity hypothesis for u on Ω. HΩ(X,Y, V )
is also a Banach space, and we have a natural isometric inclusion

(2.4) HΩ(X, Y ) ↪→ HΩ(X, Y, V ).

Now for θ ∈ (0, 1) we set

(2.5) [X, Y ]θ;V = {u(θ) : u ∈ HΩ(X, Y, V )}.
Again this space gets a Banach space structure, via

(2.6) [X,Y ]θ;V ≈ HΩ(X, Y, V )/{u ∈ HΩ(X, Y, V ) : u(θ) = 0},
and there is a natural continuous injection

(2.7) [X,Y ]θ ↪→ [X, Y ]θ;V .

Sometimes this is an isomorphism. In fact, sometimes [X,Y ]θ = [X, Y ]θ;V for
practically all reasonable choices of V . In §3 we verify this for X = Lp(Rn), Y =
Hs,p(Rn), the Lp-Sobolev space, with p ∈ (1,∞), s ∈ (0,∞). On the other hand,
we devote §§4–5 to some cases where equality in (2.7) does not hold, and where
[X, Y ]θ;V is of greater interest than [X, Y ]θ.

We next define [X, Y ]bθ. In this case we assume X and Y are Banach spaces and
Y ⊂ X (continuously). We take Ω as above, and set Ω̃ = {z ∈ C : 0 < Re z ≤ 1},
i.e., we throw in the right boundary but not the left boundary. We then define
Hb

Ω(X, Y ) to be the space of functions u : Ω̃ → X such that

(2.8)

u : Ω −→ X is holomorphic,

‖u(z)‖X ≤ C, ‖u(1 + iy)‖Y ≤ C,

u : Ω̃ −→ X is continuous.

Note that the essential difference between HΩ(X,Y ), discussed in §1, and the space
we have just introduced is that we have completely dropped any continuity require-
ment at {Re z = 0}. We also do not require continuity from {Re z = 1} to Y . The
space Hb

Ω(X,Y ) is a Banach space, with norm

‖u‖Hb
Ω(X,Y ) = sup

z∈Ω̃

‖u(z)‖X + sup
y
‖u(1 + iy)‖Y .

Now, for θ ∈ (0, 1), we set

(2.9) [X,Y ]bθ = {u(θ) : u ∈ Hb
Ω(X, Y )},

with the same sort of Banach space structure as arose in (1.4) and (2.6). We have
continuous injections

(2.10) [X, Y ]θ ↪→ [X, Y ]θ;X ↪→ [X, Y ]bθ.

To conclude this section, we extend the standard result on operator interpolation
from the setting of [X, Y ]θ to that of [X, Y ]θ;V and [X, Y ]bθ.
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Proposition 2.1. Let (Xj , Yj , Vj) be compatible triples, j = 1, 2. Assume that
T : V1 → V2 is continuous and that

(2.11) T : X1 −→ X2, T : Y1 −→ Y2,

continuously. (Continuity is automatic, by the closed graph theorem.) Then, for
each θ ∈ (0, 1),

(2.12) T : [X1, Y1]θ;V1 −→ [X2, Y2]θ;V2 .

Furthermore, if Yj ⊂ Xj (continuously) and T is a continuous linear map satisfying
(2.11), then for each θ ∈ (0, 1),

(2.13) T : [X1, Y1]bθ −→ [X2, Y2]bθ.

Proof. Given f ∈ [X1, Y2]θ;V , pick u ∈ HΩ(X1, Y1, V1) such that f = u(θ). Then
we have

(2.14) T : HΩ(X1, Y1, V1) → HΩ(X2, Y2, V2), (T u)(z) = Tu(z),

and hence

(2.15) Tf = (T u)(θ) ∈ [X2, Y2]θ;V2 .

This proves (2.12). The proof of (2.13) is similar.

Remark. In case V = X + Y , with the weak topology, [X, Y ]θ;V is what is
denoted (X,Y )w

θ in [JJ], and called the weak complex interpolation space. It is
stated in [JJ] that [X,Y ]θ = (X, Y )w

θ whenever X is separable, and also that there
is equality whenever Y ⊂ X. In light of this, we will see in §§4–5 examples where
(X,Y )w

θ 6= [X,Y ]bθ.

3. Lp-Sobolev spaces

Fix p ∈ (1,∞) and s ∈ (0,∞). For present purposes, we characterize the Lp-
Sobolev spaces Hs,p(Rn) as

(3.1) Hs,p(Rn) = Λ−sLp(Rn), Λ = (I −∆)1/2

where ∆ is the Laplace operator. In this section we show that when θ ∈ (0, 1),

(3.2) [Lp(Rn),Hs,p(Rn)]θ;V = Hθs,p(Rn),
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for a broad range of spaces V , including

(3.3) Lp(Rn), S ′(Rn), D′(Rn),

with either the strong or weak∗ topology. We will also show that

(3.4) [Lp(Rn),Hs,p(Rn)]bθ = Hθs,p(Rn).

The proofs of these results are variants of the classical result

(3.5) [Lp(Rn),Hs,p(Rn)]θ = Hθs,p(Rn),

Our goal in this section is largely to provide a perspective for the following sections.
First we show the left side of (3.2) is contained in the right side. As a preliminary,

we note via Alaoglu’s theorem that if (fα : α ∈ A) is any bounded family in Lp(Rn)
indexed by a directed set A and fα → f in any of the spaces mentioned above,
then fα → f weak∗ in Lp, so each space HΩ(Lp,Hs,p, V ) is equal to (or, if V = Lp

with the strong topology, contained in) HΩ(Lp,Hs,p, V0), where V0 = Lp(Rn) with
the weak∗ topology. So it suffices to consider f ∈ [Lp, Hs,p]θ,V0 and show that
f ∈ Hθs,p(Rn). We have f = u(θ) for some u ∈ HΩ(Lp,Hs,p, V0). For ε > 0, look
at

(3.6) vε(z) = ez2
e−εΛΛszu(z).

Bounds of the type (2.2) yield

(3.7) ‖vε(iy)‖Lp , ‖vε(1 + iy)‖Lp ≤ C,

with C independent of y and of ε. Then, for each g ∈ Lp′(Rn), the function
〈vε(z), g〉 is continuous on Ω, holomorphic on Ω, and vanishes at infinity, so the
maximum principle gives

(3.8) |〈vε(θ), g〉| ≤ C‖g‖Lp′ ,

with C independent of ε, hence

(3.9) ‖e−εΛΛsθf‖Lp ≤ C,

independent of ε > 0. Taking ε ↘ 0 yields Λsθf ∈ Lp(Rn), hence f ∈ Hs,p(Rn).
Second we show that the right side of (3.2) is contained in the left side. It sufices

to treat V = Lp(Rn), with the strong topology. This is close to the standard
argument proving (3.5), and we recall this argument. If f ∈ Hθs,p(Rn), take

(3.10) u(z) = ez2
Λ(θ−z)sf.
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Then u(θ) = eθ2
f , and it remains to verify that

(3.11) u ∈ HΩ(Lp, Hs,p, Lp).

Note that

(3.12) u(x + iy) = e(x+iy)2Λ−xsΛ−iys(Λθsf).

This yields the bounds of the form (2.2). The continuity (2.3) in this setting is a
consequence of the fact that

(3.13) f ∈ Lp(Rn) =⇒ lim
x↘0,y→0

Λ−(x+iy)f = f, in Lp-norm.

This in turn is a consequence of the fact that {Λ−(x+iy) : 0 < x ≤ 1,−1 ≤ y ≤ 1}
has uniformly bounded Lp-operator norm, that (as is easily verified)

(3.14) f ∈ S(Rn) =⇒ lim
x↘0,y→0

Λ−(x+iy)f = f, in Lp-norm,

and that

(3.15) S(Rn) is dense in Lp(Rn).

In fact, we have all the ingredients to conclude that u ∈ HΩ(Lp,Hs,p), so (3.4) is
simultaneously proven.

We turn to the proof of (3.4). Since we have (2.10) and (3.5), it remains only to
consider u ∈ Hb

Ω(Lp,Hs,p) and show that u(θ) ∈ Hθs,p(Rn). To this end, consider
vε, defined by (3.6). We have vε : Ω̃ → Lp(Rn), continuous, bounded (with a bound
that might depend on ε) for each ε ∈ (0, 1], and

(3.16) ‖vε(1 + iy)‖Lp ≤ C,

with C independent of y ∈ R and of ε ∈ (0, 1]. Also

(3.17) ‖vε(ε + iy)‖Lp ≤ eε2−y2‖e−εΛΛεsΛisyu(ε + iy)‖Lp .

By hypothesis, ‖u(ε + iy)‖Lp ≤ C, independent of y and ε. The Lp-operator norm
of Λisy has an exponential bound in y, which is beaten out by the factor e−y2

.
Furthermore,

(3.18) e−εΛΛεs = e−ε(Λ−s log Λ),

and (with 〈ξ〉 = (1 + |ξ|2)1/2),

(3.19)
{

e−ε(〈ξ〉−s log〈ξ〉) : ε ∈ (0, 1]
}

is bounded in S0
1,0,
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so the family of operators in (3.18) has Lp-opertor norm bounded independent of
ε ∈ (0, 1]. Thus

(3.20) ‖vε(ε + iy)‖Lp ≤ C,

independent of y ∈ R and of ε ∈ (0, 1]. Thus, given θ ∈ (0, 1), we can apply the
maximum principle to obtain

(3.21) {e−εΛΛsθu(θ) : 0 < ε < θ} bounded in Lp(Rn).

This in turn implies u(θ) ∈ Hθs,p(Rn), and we have (3.4).
For spaces considered in the next two sections, the first part of the argument

above goes through, but the analogue of (3.13) fails, basically because the analogue
of (3.15) fails. For this reason, [X, Y ]θ;V , for various spaces V with a weaker
topology than X + Y , and also [X,Y ]bθ, are of special interest.

4. Zygmund spaces

We begin by working on the n-torus Tn. We will define the Zygmund space
Cr
∗(Tn), for r ∈ R, as follows. Take ϕ ∈ C∞0 (Rn), radial, satisfying ϕ(ξ) = 1 for

|ξ| ≤ 1. Set ϕk(ξ) = ϕ(2−kξ). Then set ψ0 = ϕ, ψk = ϕk − ϕk−1 for k ∈ N, so
{ψk : k ≥ 0} is a Littlewood-Paley partition of unity. We define Cr

∗(Tn) to consist
of f ∈ D′(Tn) such that

(4.1) ‖f‖Cr∗ = sup
k≥0

2kr‖ψk(D)f‖L∞ < ∞.

With Λ = (I −∆)1/2 and s, t ∈ R, we have

(4.2) Λs+it : Cr
∗(Tn) −→ Cr−s

∗ (Tn).

It is classical that

(4.3) r ∈ R+ \ Z+ =⇒ Cr
∗(Tn) = Cr(Tn),

where, if r = k +α with k ∈ Z+ and 0 < α < 1, Cr(Tn) consists of functions whose
derivatives of order ≤ k are Hölder continuous of exponent α.

We aim to show that if r < s < t and 0 < θ < 1, then

(4.4) [Cs
∗(Tn), Ct

∗(Tn)]θ;Cr∗(Tn) = C
(1−θ)s+θt
∗ (Tn),

and

(4.5) [Cs
∗(Tn), Ct

∗(Tn)]bθ = C
(1−θ)s+θt
∗ (Tn).
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First, suppose f ∈ [Cs
∗ , C

t
∗]θ;Cr∗ , so f = u(θ) for some u ∈ HΩ(Cs

∗ , C
t
∗, C

r
∗). Then

consider

(4.6) v(z) = ez2
Λ(t−s)zΛsu(z).

Bounds of the type (2.2) yield

‖v(iy)‖C0∗ , ‖v(1 + iy)‖C0∗ ≤ C,

with C independent of y ∈ R. In other words,

(4.7) ‖ψk(D)v(z)‖L∞ ≤ C, Re z = 0, 1,

with C independent of Im z and k. Also, for each k ∈ Z+, ψk(D)v : Ω → L∞(Tn)
continuously, so the maximum principle implies

(4.8) ‖ψk(D)Λ(t−s)θΛsf‖L∞ ≤ C,

independent of k ∈ Z+. This gives Λ(1−θ)s+θtf ∈ C0
∗ , hence f ∈ C

(1−θ)s+θt
∗ (Tn).

Second, suppose f ∈ C
(1−θ)s+θt
∗ (Tn). Set

(4.9) u(z) = ez2
Λ(θ−z)(t−s)f.

Then u(θ) = eθ2
f . We claim that

(4.10) u ∈ HΩ(Cs
∗ , C

t
∗, C

r
∗),

as long as r < s < t. Once we establish this, we will have the reverse containment
in (4.4). Bounds of the form

(4.11) ‖u(z)‖Cs∗ ≤ C, ‖u(1 + iy)‖Ct∗ ≤ C

are straightforward, and are more than adequate versions of (2.2). It remains to
establish that

(4.12) u : Ω −→ Cr
∗(Tn), continuously.

Indeed, we know u : Ω → Cs
∗(Tn) is bounded. It is readily verified that

(4.13) u : Ω −→ D′(Tn), continuously,

and that

(4.14) r < s =⇒ Cs
∗(Tn) ↪→ Cr

∗(Tn) is compact.
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The result (4.12) follows from these observations. Thus the proof of (4.4) is com-
plete.

We turn to the proof of (4.5). If u ∈ Hb
Ω(Cs

∗ , C
t
∗), form v(z) as in (4.6), and for

ε ∈ (0, 1] set

(4.15) vε(z) = e−εΛv(z), vε : Ω̃ → C0
∗(Tn) bounded and continuous

(with bound that might depend on ε). We have

(4.16) ψk(D)vε(ε + iy) = e(ε+iy)2ψk(D)e−εΛΛ(t−s)εΛi(t−s)yΛsu(z).

Now {Λsu(z) : z ∈ Ω̃} is bounded in C0
∗(Tn), and the operator norm of Λi(t−s)y on

C0
∗(Tn) is exponentially bounded in |y|. As in (3.19), we have

(4.17) {e−εΛΛε(t−s) : 0 < ε ≤ 1} bounded in OPS0
1,0(Tn),

hence bounded in operator norm on C0
∗(Tn). We deduce that

(4.18) ‖ψk(D)vε(ε + iy)‖L∞ ≤ C,

independent of y ∈ R and ε ∈ (0, 1]. The hypothesis on u also implies

(4.19) ‖ψk(D)vε(1 + iy)‖L∞ ≤ C,

independent of y ∈ R and ε ∈ (0, 1]. Now the maximum principle applies. Given
θ ∈ (0, 1),

(4.20) ‖ψk(D)e−εΛv(θ)‖L∞ ≤ C,

independent of ε. Taking ε ↘ 0 yields v(θ) ∈ C0
∗(Tn), hence u(ε) ∈ C

(1−θ)s+θt
∗ (Tn).

This proves one inclusion in (4.5). The proof of the reverse inclusion is similar
to that for (4.4). Given f ∈ C

(1−θ)s+θt
∗ (Tn), take u(z) as in (4.9). The claim is

that u ∈ Hb
Ω(Cs

∗ , C
t
∗). We already have (4.11), and the only thing that remains is

to check that

(4.21) u : Ω̃ −→ Cs
∗(Tn) continuously,

and this is straightforward. (What fails is continuity of u : Ω → Cs
∗(Tn) at the left

boundary of Ω.)
If OPSm

1,0(Tn) denotes the class of pseudodifferential operators on Tn with sym-
bols in Sm

1,0, then for all s,m ∈ R,

(4.22) P ∈ OPSm
1,0(Tn) =⇒ P : Cs

∗(Tn) → Cs−m
∗ (Tn).
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Cf. [T2], Chapter 13, Proposition 8.6. Using coordinate invariance of OPSm
1,0 and

of Cr(Tn) for r ∈ R+ \Z+, we deduce invariance of Cs
∗(Tn) under diffeomorphisms,

for all s ∈ R.
If M is a smooth compact manifold (without boundary) we have a natural def-

inition of Zygmund spaces Cr
∗(M) for s ∈ R, using a partition of unity and local

coordinate charts (identifying patches on M with patches on Tn), making use of
the material given above. We have

(4.23) r ∈ R+ \ Z+ =⇒ Cr
∗(M) = Cr(M),

and, for all s,m ∈ R,

(4.24) P ∈ OPSm
1,0(M) =⇒ P : Cs

∗(M) → Cs−m
∗ (M).

In particular, if M is given a smooth Riemannian metric and Laplace-Beltrami
operator ∆, then, with Λ = (I −∆)1/2, for each r, s ∈ R,

(4.25) Cr
∗(M) = Λs−rCs

∗(M).

Furthermore, a standard argument using partitions of unity, local coordinate charts,
and (4.4) shows that, if r < s < t and 0 < θ < 1, then

(4.26) [Cs
∗(M), Ct

∗(M)]θ;Cr∗(M) = C
(1−θ)s+θt
∗ (M).

Also

(4.27) [Cs
∗(M), Ct

∗(M)]bθ = C
(1−θ)s+θt
∗ (M).

Now let Ω be a smooth compact manifold with boundary. Using the material
above, we can develop a theory of Zygmund spaces Cr

∗(Ω). The material below
is a corrected version of the presentation in (8.37)–(8.42) of [T2], Chapter 13. As
before, if r = k + α ∈ R+ \ Z+, k ∈ Z+, 0 < α < 1, let Cr(Ω) denote the space
of functions whose derivatives of order ≤ k are Hölder continuous of exponent α.
Given r ∈ (0,∞), the idea is to define Cr

∗(Ω) by interpolation:

(4.28) Cr
∗(Ω) = [Cs1(Ω), Cs2(Ω)]θ;Cs0 (Ω),

where 0 < s0 < s1 < r < s2, 0 < θ < 1, r = (1 − θ)s1 + θs2 (and sj /∈ Z). It is
necessary to show that this is independent of choices of such sj . To see this, we
make use of a classical construction, giving, for each N ∈ Z+, an extension operator

(4.29) E : Cs(Ω) −→ Cs(M), s ∈ (0, N) \ Z,

providing a right inverse for the surjective restriction operator

(4.30) ρ : Cs(M) −→ Cs(Ω).
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Here M is a smooth compact manifold without boundary, containing Ω, i.e., the
double of Ω. We have from (4.23)–(4.26) that

(4.31) Cr
∗(M) = [Cs1(M), Cs2(M)]θ;C

s0∗ (M),

where r, sj and θ are as in (4.28). Applying Proposition 2.1, we have

(4.32) E : Cr
∗(Ω) → Cr

∗(M), ρ : Cr
∗(M) → Cr

∗(Ω),

if Cr
∗(Ω) is given by (4.28). One also has ρE = I on Cr

∗(Ω). Hence

(4.33) Cr
∗(Ω) ≈ Cr

∗(M)/{u ∈ Cr
∗(M) : u|Ω = 0}.

This characterization is clearly independent of the choices made in (4.28). Note
also that the right side of (4.33) is meaningful even for r ≤ 0. One can also check
that setting

(4.34) Cr
∗(Ω) = [Cs1(Ω), Cs2(Ω)]bθ

also leads to (4.33), and hence agrees with (4.28).
As we have seen, Cr

∗(M) = Cr(M) for r ∈ R+ \ Z+, so we deduce that

(4.35) Cr
∗(Ω) = Cr(Ω), for r ∈ R+ \ Z+.

Using the spaces Cr
∗(Ω), we can fill in the gaps (at r ∈ Z+) in various Schauder-

type regularity results. The following is an illustrative example. Let Ω have a
smooth Riemannian metric and Laplace-Beltrami operator ∆. Then the Dirichlet
problem

(4.36) ∆u = 0, u
∣∣
∂Ω

= f,

has a unique solution,

(4.37) u = PI f, PI : C(∂Ω) → C(Ω).

The classical Schauder regularity results give

(4.38) PI : Cs(∂Ω) −→ Cs(Ω), s ∈ R+ \ Z+.

The extension is:
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Proposition 4.1. Given r > 0,

(4.39) PI : Cr
∗(∂Ω) −→ Cr

∗(Ω).

Proof. Pick sj ∈ R+ \ Z+, 0 < s0 < s1 < r < s2, and θ ∈ (0, 1) such that
r = (1− θ)s1 + θs2. By (4.26) we have

Cr
∗(∂Ω) = [Cs1(∂Ω), Cs2(∂Ω)]θ;Cs0 (∂Ω),

and we also have (4.28). Hence (4.39) follows from (4.38) (with s = sj) and Propo-
sition 2.1. Instead of using (4.26) and (4.28), we could use (4.27) and (4.34).

Remark. One can also use real interpolation to develop material on the spaces
Cr
∗(Ω). Cf. [Tri], §4.3.4. However, it was our goal here to show that a version of

complex interpolation does the job.

5. Hardy and bmo-Sobolev spaces

Again we start with functions on the n-dimensional torus Tn. One way to define
the Hardy space h1(Tn) is via a Littlewood-Paley characterization:

(5.1) ‖f‖h1 =
∥∥∥
{∑

k≥0

|ψk(D)f |2
}1/2∥∥∥

L1
,

where ψk(D) are as in (4.1). There is an equivalent characterization in terms of
an atomic decomposition, which provides a convenient path to show that h1(Tn) is
invariant under C1+δ diffeomorphisms of Tn, given δ > 0. It is well known that

(5.2) P ∈ OPS0
1,0(Tn) =⇒ P : h1(Tn) → h1(Tn).

Furthermore, h1(Tn) is a module over the algebra of Hölder continuous functions
on Tn, under pointwise multiplication. Another characterization of h1(Tn) (cf. [G])
is that

(5.3) ‖f‖h1 ≈ ‖f‖L1 +
n∑

k=1

‖Rkf‖L1 ,

where Rk = rk(D), rk(ξ) = ξk|ξ|−1 on Zn \ 0. Using (5.3) one sees that if ϕ ∈
C∞0 (Rn), ϕ(ξ) = 1 for |ξ| ≤ 1, then

(5.4) f ∈ h1(Tn) =⇒ lim
ε→0

‖f − ϕ(εD)f‖h1 = 0,
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hence

(5.5) C∞(Tn) is dense in h1(Tn).

The space bmo(Tn) consists of functions f ∈ L1(Tn) such that

(5.6) ‖f‖∗ = sup
R

1
m(R)

∫
|f − fR| dx < ∞,

where R ranges over the set of n-cubes in Tn, m(R) is the volume of R, and fR

= m(R)−1
∫

f dx. One sets ‖f‖bmo = ‖f‖L1 + ‖f‖∗. A central result from [FS]
(with complements in [D]) is that

(5.7) h1(Tn)∗ = bmo(Tn).

It follows that

(5.8) P ∈ OPS0
1,0(Tn) =⇒ P : bmo(Tn) → bmo(Tn),

and that bmo(Tn) is invariant under C1+δ diffeomorphisms of Tn. The space
C∞(Tn) is not dense in bmo(Tn); rather the space

(5.9) vmo(Tn) = closure of C∞(Tn) in bmo(Tn)

is of interest. An important counterpart to (5.7) is that

(5.10) vmo(Tn)∗ = h1(Tn).

We define Hardy and bmo-Sobolev spaces as follows. As before, set Λ = (I −
∆)1/2, where ∆ is the Laplace operator on Tn. Then for s ∈ R we set

(5.11)
hs,1(Tn) = Λ−sh1(Tn),

bmos(Tn) = Λ−sbmo(Tn).

In light of (5.9), it is also useful to consider

(5.12) vmos(Tn) = Λ−svmo(Tn).

We note that s < t ⇒ bmot(Tn) ⊂ vmos(Tn).
Classical complex interpolation applies smoothly to the spaces hs,1(Tn), yielding

(5.13) [hs,1(Tn), ht,1(Tn)]θ = h(1−θ)s+θt,1(Tn),

for θ ∈ (0, 1), s, t ∈ R. The proof works just as for Lp-Sobolev spaces in §3, with
(5.5) taking the place of (3.15). For bmo-Sobolev spaces, the situation is different.
The next two propositions provide a correction to Proposition 3.1(d) of [Str].
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Proposition 5.1. Given s < t and 0 < θ < 1,

(5.14) [bmos(Tn), bmot(Tn)]θ = vmo(1−θ)s+θt(Tn).

Proof. First we show that the right side of (5.14) is contained in the left side. For
starters, take f ∈ bmo(1−θ)s+θt(Tn). (We will specialize shortly.) Then, as in (4.9),
consider

(5.15) u(z) = ez2
Λ(θ−z)(t−s)f.

Then u(θ) = eθ2
f . We check whether u ∈ HΩ(bmos, bmot). Bounds of the form

(5.16) ‖u(z)‖bmos ≤ C, ‖u(1 + iy)‖bmot ≤ C

are straightforward. It remains to show that

(5.17) u : Ω −→ bmos(Tn), continuously,

and also u : {Re z = 1} → bmot(Tn), continuously. This comes down to showing
that

(5.18) lim
x↘0

Λ−xg = g and lim
y→0

Λiyg = g, in bmo-norm,

given g = Λ(1−θ)s+θtf . Our current hypothesis on f implies g ∈ bmo(Tn). However,
(5.18) does not hold for every g ∈ bmo. For example, for each x > 0, Λ−xg ∈ vmo.
We do have (5.18) whenever g ∈ vmo. This gives one containment in (5.14).

Next we establish the reverse inclusion in (5.14). Suppose f = u(θ) for some
u ∈ HΩ(bmos, bmot), and consider

(5.19) v(z) = ez2
Λ(t−s)zΛsu(z).

Bounds of the form (2.2) yield

(5.20) ‖v(iy)‖bmo, ‖v(1 + iy)‖bmo ≤ C,

with C independent of y ∈ R. The maximum principle then gives ‖e−εΛv(z)‖bmo ≤
C, for each ε > 0, with C independent of z ∈ Ω, and of ε. Taking ε ↘ 0 then gives
v(z) ∈ bmo for each z ∈ Ω and

(5.21) ‖v(z)‖bmo ≤ C.

This implies u(θ) = e−θ2
Λ(s−t)θΛ−sv(θ) ∈ bmo(1−θ)s+θt(Tn). It remains to show

that actually v(θ) ∈ vmo(Tn).
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Indeed, since u ∈ HΩ(bmos,bmot) and s < t, we have u(x+iy) → u(iy) in bmos-
norm as x ↘ 0, and by the results established above, u(x+iy) ∈ bmo(1−x)s+xt(Tn).
This implies u(iy) ∈ vmos(Tn), for each y ∈ R. In other words, actually

(5.22) u : Ω −→ vmos(Tn), continuously,

as well as u : {Re z = 1} → bmot(Tn), boundedly and continuously. Thus we have

(5.23) ‖(I − e−εΛ)v(z)‖bmo ≤ C, ∀ z ∈ Ω, ε ∈ (0, 1],

and

(5.24) ‖(I − e−εΛ)v(iy)‖bmo ≤ δ(ε) → 0 as ε → 0.

Then Hadamard’s three lines lemma applies, to give

(5.25) ‖(I − e−εΛ)v(θ)‖bmo ≤ Cθδ(ε)1−θ → 0, as ε → 0.

This implies that v(θ) ∈ vmo(Tn), hence u(θ) ∈ vmo(1−θ)s+θt(Tn). The proof of
Proposition 5.1 is complete.

The following result complements Proposition 5.1.

Proposition 5.2. Given s < t and 0 < θ < 1,

(5.26) [bmos(Tn),bmot(Tn)]θ;V = bmo(1−θ)s+θt(Tn),

when V is any one of the following spaces:

(5.27)

bmor(Tn), r < s,

Hr,p(Tn), p < ∞, r ≤ s,

bmos(Tn), with the weak∗ topology.

Furthermore,

(5.28) [bmos(Tn), bmot(Tn)]bθ = bmo(1−θ)s+θt(Tn).

Proof. The argument is parallel to the proof of Proposition 5.1. To show the right
side of (5.26) is contained in the left side, take f ∈ bmo(1−θ)s+θt(Tn) and form u(z)
as in (5.15). The estimates (5.16) arise as before, and it remains to show that

(5.29) u : Ω −→ V, continuously,

for each space V listed in (5.27). For V = bmor, r < s, (5.29) holds whenever f ∈
vmo(1−θ)r+θt(Tn) ⊃ bmo(1−θ)s+θt(Tn). For V = Hr,p, p ∈ (1,∞), r ≤ s, (5.29)



16

holds whenever f ∈ H(1−θ)s+θt,p(Tn) ⊃ bmo(1−θ)s+θt(Tn). For V = bmos(Tn)
with the weak∗ topology, we are claiming that

(5.30) g ∈ h−s,1(Tn), zk → z ∈ Ω =⇒ 〈u(zk), g〉 → 〈u(z), g〉.
We have {u(zk)} bounded in bmos(Tn), and by the observations just made u(zk) →
u(z) in Hs,p(Tn), provided p < ∞. Hence (5.30) certainly holds for each g ∈
C∞(Tn). Since C∞(Tn) is dense in h−s,1(Tn), by (5.5), we have (5.30).

To establish the reverse inclusion in (5.26), we suppose f = u(θ) for some u ∈
HΩ(bmos,bmot, V ), with V as in (5.27). It suffices to consider V = Hr,p(Tn).
Again we form v(z) as in (5.19), and we obtain the estimates (5.20)–(5.21), and
hence the desired result that f ∈ bmo(1−θ)s+θt(Tn).

We turn to the proof of (5.28). First, if f ∈ bmo(1−θ)s+θt(Tn), we again form
u(z) as in (5.15), and this time it remains to show that

(5.31) u : Ω̃ −→ bmos(Tn), continuously,

which is straightforward (as in (4.21), what fails is the continuity of u : Ω →
bmos(Tn) at the left boundary of Ω). To establish the reverse inclusion in (5.28),
we argue as in (3.16) and (4.15). Namely, given u ∈ Hb

Ω(bmos, bmot), we set

(5.32) vε(z) = e−εΛv(z),

with v(z) given by (5.19). Thus for each ε ∈ (0, 1], vε : Ω̃ → bmo(Tn) is continuous
and bounded (with a bound that might depend on ε), we have

(5.33) ‖vε(1 + iy)‖bmo ≤ C,

with C independent of y ∈ R and ε ∈ (0, 1]. By the bound (4.17), {e−εΛΛ(t−s)ε : 0 <
ε ≤ 1} has uniformly bounded bmo-operator norm. Furthermore {Λi(t−s)y : y ∈ R}
has bmo-operator norm bounded by AeB|y|. Since

(5.34) vε(ε + iy) = e(ε+iy)2e−εΛΛ(t−s)εΛi(t−s)yΛsu(z),

we have

(5.35) ‖vε(ε + iy)‖bmo ≤ C,

independent of y ∈ R and ε ∈ (0, 1]. Hence the maximum principle gives for each
θ ∈ (0, 1),

(5.36) {e−εΛΛ(t−s)θΛsu(θ) : 0 < ε < θ} bounded in bmo(Tn),

and taking ε ↘ 0 then gives Λ(t−s)θΛsu(θ) ∈ bmo(Tn), hence u(θ) ∈ bmo(1−θ)s+θt(Tn).
This finishes the proof of (5.28).

If M is a compact smooth manifold, one can extend the results given above to
bmos(M), etc., via arguments using partitions of unity and local coordinate charts.
This works essentially as sketched in [Str], so we will not dwell on it here.

The next proposition illustrates the results established in this section. We give
two proofs, the first using Proposition 5.2 and the second using Proposition 5.1.
This result in turn is of use in work on commutator estimates in [T4].
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Proposition 5.3. Assume s < t and p ∈ (1,∞). Suppose we have a continuous
map

(5.37) T : bmos(Tn) → Hs,p(Tn), T : bmot(Tn) → Ht,p(Tn).

Then, if s < r < t,

(5.38) T : bmor(Tn) → Hr,p(Tn).

Proof. Take θ ∈ (0, 1) such that r = (1− θ)s + θt. Then (5.28) implies

(5.39) [bmos(Tn),bmot(Tn)]bθ = bmor(Tn).

We also have

(5.40) [Hs,p(Tn),Ht,p(Tn)]bθ = Hr,p(Tn),

via the same sort of argument used for (3.4). Now the result (5.38) follows from
Proposition 2.1.

For a second proof, we use the interpolation functor [X, Y ]θ and Proposition 5.1
to deduce from (5.37) that

(5.41) T : vmor(Tn) −→ Hr,p(Tn).

This result is weaker than (5.38), but we can recover the full strength of (5.38) as
follows. Given f ∈ bmor(Tn), we have

(5.42)
{e−εΛf : 0 < ε ≤ 1} bounded in vmor(Tn),

lim
ε→0

e−εΛf = f in bmos-norm.

Hence, given (5.37) plus (5.41), we have

(5.43)
{Te−εΛf : 0 < ε ≤ 1} bounded in Hr,p(Tn),

lim
ε→0

Te−εΛf = Tf in Hs,p-norm,

which then gives Tf ∈ Hr,p(Tn).
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