Jacobi's Generalization of Cramer's Formula

MICHAEL TAYLOR

If A is an invertible $n \times n$ matrix, Cramer's formula gives A^{-1} in terms of det A and the $(n-1) \times (n-1)$ minors of A (or better, of A^t). There is a generalization, due to Jacobi, relating the $k \times k$ minors of A^{-1} to the $(n-k) \times (n-k)$ minors of A^t and det A, which we derive here.

We take an invariant point of view. Let V be an n-dimensional vector space, over a field \mathbb{F} (typically \mathbb{R} or \mathbb{C}), with dual V'. Let $A:V\to V$ be linear, with transpose $A^t:V'\to V'$. Take $k\in\{1,\ldots,n-1\}$. We bring in the isomorphism

(1)
$$\kappa: \Lambda^k V \otimes \Lambda^n V' \xrightarrow{\approx} \Lambda^{n-k} V',$$

given by

(2)
$$\kappa(v_1 \wedge \cdots \wedge v_k \otimes \alpha)(w_1, \dots, w_{n-k}) = \alpha(w_1, \dots, w_{n-k}, v_1, \dots, v_k),$$

where an element of $\Lambda^k V'$ is viewed as a k-multilinear antisymmetric functional on V.

REMARK. A choice of basis of V yields isomorphisms $V \approx V'$ and $\Lambda^n V' \approx \mathbb{F}$, and then κ becomes essentially the Hodge star operator.

We aim to prove the following.

Proposition. If A is invertible, then

(3)
$$(\det A) \Lambda^k A^{-1} \otimes I = \kappa^{-1} \circ \Lambda^{n-k} A^t \circ \kappa,$$

in $\operatorname{End}(\Lambda^k V \otimes \Lambda^n V')$.

Proof. Since

(4)
$$\Lambda^n A^t = (\det A)I \text{ in } \operatorname{End}(\Lambda^n V'),$$

the desired identity (3) is equivalent to

(5)
$$(\Lambda^{n-k}A^t) \circ \kappa = \kappa \circ (\Lambda^k A^{-1} \otimes \Lambda^n A^t),$$

in $\operatorname{Hom}(\Lambda^k V \otimes \Lambda^n V', \Lambda^{n-k} V')$. Note that $\Lambda^{n-k} A^t \in \operatorname{End}(\Lambda^{n-k} V')$ is defined by

(6)
$$(\Lambda^{n-k}A^t)\beta(w_1,\ldots,w_{n-k}) = \beta(Aw_1,\ldots,Aw_{n-k}).$$

Hence, if we take $v_1 \wedge \cdots \wedge v_k \otimes \alpha \in \Lambda^k V \otimes \Lambda^n V'$, we get

(7)
$$(\Lambda^{n-k}A^t)\kappa(v_1 \wedge \cdots \wedge v_k \otimes \alpha)(w_1, \dots, w_{n-k})$$
$$= \kappa(v_1 \wedge \cdots \wedge v_k \otimes \alpha)(Aw_1, \dots, Aw_{n-k})$$
$$= \alpha(Aw_1, \dots, Aw_{n-k}, v_1, \dots, v_k).$$

On the other hand, since

$$(8) \qquad (\Lambda^k A^{-1} \otimes \Lambda^n A^t)(v_1 \wedge \dots \wedge v_k \otimes \alpha) = (A^{-1} v_1 \wedge \dots \wedge A^{-1} V_k) \otimes (\Lambda^n A^t \alpha),$$

we have

(9)
$$\kappa \circ (\Lambda^k A^{-1} \otimes \Lambda^n A^t)(v_1 \wedge \cdots \wedge v_k \otimes \alpha)(w_1, \dots, w_{n-k})$$
$$= \kappa (A^{-1} v_1 \wedge \cdots \wedge A^{-1} v_k \otimes \Lambda^n A^t \alpha)(w_1, \dots, w_{n-k})$$
$$= (\Lambda^n A^t \alpha)(w_1, \dots, w_{n-k}, A^{-1} v_1, \dots, A^{-1} v_k)$$
$$= \alpha (A w_1, \dots, A w_{n-k}, v_1, \dots, v_k),$$

which agrees with the right side of (7). This completes the proof.

REMARK. For a classical approach (I'm not saying a digestible approach), see [G], pp. 21–22. For a further generalization, see [MB].

References

- [G] F. Gantmacher, The Theory of Matrices, Vol. 1, Chelsea, 1959.
- [MB] J. Miao and A. Ben-Israel, Minors of the Moore-Penrose inverse, Linear Algebra Appl. 195 (1993), 191–208.