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Abstract

We investigate energy decay for solutions to the wave equation
∂2

t u + a(x)∂tu − ∆u = 0, with damping coefficient a ≥ 0, where ∆
is the Laplace-Beltrami operator on a compact Riemannian manifold
M . We make a weak regularity hypothesis on the metric tensor of
M , though one that guarantees the unique existence of the geodesic
flow. We then establish exponential energy decay under the natural
hypothesis that all sufficiently long geodesics pass through a region
where a(x) ≥ a0 > 0, extending the scope of previous work done in
the setting of a smooth metric tensor.

1 Introduction

We examine solutions to the wave equation with dissipation

Lu = ∂2
t u + a(x)∂tu−∆u = 0, (1.1)

on R × M , where M is a compact, connected Riemannian manifold, with
Laplace-Beltrami operator ∆, and a ∈ L∞(M) is ≥ 0. We seek conditions
that guarantee exponential decay of the energy

E(u(t)) =
1
2

∫

M

{|∇xu(t, x)|2 + |ut(t, x)|2} dV (x), (1.2)

as t ↗ +∞, given

u(0) = f ∈ H1(M), ∂tu(0) = g ∈ L2(M). (1.3)
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As is well known, (1.1), with initial data (1.3), has a unique solution

u ∈ C(R,H1(M)) ∩ C1(R, L2(M)), (1.4)

and we have the dissipation identity

d

dt
E(u(t)) = Re

∫

M

{∇xu · ∇xut + ututt

}
dV (x)

= −
∫

M

a(x)|∂tu(t, x)|2 dV (x).
(1.5)

One approach to global solvability of (1.1) is to take

Λ =
√
−∆ + 1, Λ0 = −∆Λ−1 = Λ− Λ−1, (1.6)

and set

V =
(

Λu

∂tu

)
, (1.7)

so (1.1) becomes
∂tV = GV, (1.8)

with

G =
(

0 Λ
−Λ0 −a

)
, (1.9)

which is a bounded perturbation of the skew-adjoint operator

G0 =
(

0 Λ
−Λ 0

)
, (1.10)

and hence generates a strongly continuous group of operators etG on L2(M),
so

V (t) = etG

(
Λf

g

)
. (1.11)

It is fairly easy to show that E(u(t)) decays exponentially as t ↗ +∞ for
each (f, g) ∈ H1(M)⊕L2(M), provided a ∈ L∞(M) satisfies a(x) ≥ a0 > 0
for all x ∈ M . For this, it suffices to assume the metric tensor of M is
continuous. (The proof of such decay is contained in the proof of a more
general decay result given in §2.) It is of interest to assume instead that

a(x) ≥ a0 > 0, ∀x ∈ U, (1.12)
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where U is some open subset of M , and see when this condition implies
exponential energy decay. This was treated in [21] in the case of smooth
coefficients, i.e., when M has a smooth metric tensor and a ∈ C∞(M)
is ≥ 0 on M and satisfies (1.12). In such a setting, [21] showed one has
exponential energy decay provided the following condition holds:

Control condition: There exists T0 < ∞ such that
each geodesic in M of length T0 intersects U .

(1.13)

The necessity of such a condition follows from work of [19]. In rough outline,
the argument of [21] goes as follows. First, propagation of singularity results
of [13], applied to ∂tu, which also solves (1.1), yield

∫ T0

0

∫

M

|∂tu(s, x)|2 dV (x) ds

≤ C

∫ T0

0

∫

U

|∂tu(s, x)|2 dV (x) ds + C‖ut‖H−1([0,T0]×M).

(1.14)

Then an argument incorporating functional analysis and unique continua-
tion allows one to drop the last term on the right side of (1.14), after perhaps
replacing T0 by a larger (finite) quantity T1 (and perhaps also expanding U
slightly). Then, via (1.5), one obtains

E(u(T1)) ≤ E(u(0))− C1‖∂tu‖2
L2([0,T1]×M), (1.15)

for all solutions to (1.1) and (1.3), with C1 independent of f and g. From
here, a further argument, which we will present in a more general context
in §2, allows one to pass to

E(u(T1)) ≤ E(u(0))− C2

∫ T1

0
E(u(s)) ds, (1.16)

and since E(u(s)) ↘, by (1.5), this implies

E(u(T1)) ≤ (1 + C2T1)−1E(u(0)), (1.17)

hence
E(u(kT1)) ≤ (1 + C2T1)−kE(u(0)), (1.18)

yielding exponential energy decay.
In [22], another proof was given of such exponential energy decay, mak-

ing use of Fourier integral operators. In this proof, the hypothesis a ≥ 0
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was dropped, and (1.13) was modified to a positivity condition on averages
of a(γ(t)) over sufficiently long geodesics. Both papers worked under the
hypothesis of smooth coefficients.

Our goal here is to establish exponential energy decay, for a ≥ 0 sat-
isfying (1.12), assuming (1.13), under weak smoothness hypotheses on the
metric tensor on M and on the coefficient a(x). We succeed in this for a ge-
ometrically significant class of Riemannian manifolds whose metric tensors
are rougher than C2.

In order to work with (1.13), we will want the geodesic flow on M to
be well defined. Now this flow can be regarded as a flow on the cotangent
bundle T ∗M generated by the Hamiltonian vector field

X(x, ξ) = (∇ξΦ,−∇xΦ), (1.19)

with Φ : T ∗M → R given, in local coordinates, by

Φ(x, ξ) = gjk(x)ξjξk. (1.20)

Here, (gjk) is the metric tensor on M (giving an inner product on tangent
vectors) and (gjk) its inverse (giving an inner product on cotangent vectors).
If the metric tensor is C2 in local coordinates, then X is C1, so it generates
a well defined flow. More generally, if gjk ∈ C1,1, then X is Lipschitz and it
generates a flow. Still more generally, if M has a coordinate cover on which
(gjk) has gradient with a log-Lipschitz modulus of continuity, i.e.,

|∇gjk(x)−∇gjk(y)| ≤ C|x− y| log
1

|x− y| , (1.21)

for |x − y| small, then X has a log-Lipschitz modulus of continuity, and,
by the classical Osgood theorem, it generates a flow. This latter situation
applies to the following important class of Riemannian manifolds:

If (M, g) has a bounded Ricci tensor,
then (1.21) holds in local harmonic coordinates.

(1.22)

Appendix B recalls basic results about the Ricci tensor. One point to em-
phasize is that (1.22) provides a natural, coordinate-independent condition
yielding the property (1.21). The class of Riemannian manifolds with Ricci
tensor bounds is of fundamental significance to geometric analysis. A treat-
ment of key results can be found in [6]. We mention [7] for other material
connecting Ricci tensor bounds and analysis on Riemannian manifolds.

Our principal goal in this paper is to prove the following.
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Theorem 1.1 Let M be a compact manifold with a metric tensor satisfying
(1.21), and assume a satisfies

a ∈ Cr−1(M), (1.23)

for some r > 1. Also assume a ≥ 0 on M and that (1.12) holds. If the
control condition (1.13) holds, then there is a uniform exponential rate of
decay of energy E(u(t)), for all solutions to (1.1) with initial data as in
(1.3).

Our approach to the proof of Theorem 1.1 will make use of propagation of
singularities results of the sort established in [28], Chapter 3, §11. That work
dealt with propagation of microlocal regularity for differential and pseudod-
ifferential operators with coefficients whose gradients had a log-Lipschitz
modulus of continuity. Here, we tweak those results, to allow for rougher
lower order terms.

Other works on wave propagation with rough coefficients include [23],
[18], and [17], concentrating on C1,1 and C2 coefficients, and [24], working
on a Riemannian manifold with bounded Riemann curvature tensor. The
paper [1] studied wave motion on manifolds with bounded Ricci tensor, and
nonempty boundary, with applications to some inverse spectral problems.
We also mention the recent paper [11], dealing with metric tensors with
singularities of a special type (conormal), regular of class C1+α, α ∈ (0, 1).

The rest of this paper is organized as follows. In §2 we treat a general
setting in which an estimate of the form (1.15) leads to the energy estimate
(1.16), hence to decay (1.18). Section 3 discusses the necessary modifica-
tions of the propagation of singularity results of [28] needed in the proof of
Theorem 1.1. The additional technical problems that need to be addressed
arise from the first order term a∂t, with a coefficient more singular than the
metric tensor.

In §4 we show how the results of §3 lead to the estimate (1.15), under
the hypotheses of Theorem 1.1, and hence complete the proof of Theorem
1.1.

We have three appendices. Appendix A shows how estimates on ‖u‖L2([0,T ]×M)

for a solution u to (1.1) lead automatically to stronger estimates, on a larger
time interval, and similarly for ‖u‖H1([0,T ]×M). To be precise, Propositions
A.3 and A.4 yield

‖u‖C(J,L2(M)) + ‖∂tu‖C(J,H−1(M)) ≤ C‖u‖L2(I×M), (1.24)
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and
‖u‖C(J,H1(M)) + ‖∂tu‖C(J,L2(M)) ≤ C‖u‖H1(I×M), (1.25)

respectively, where I = [0, T ] and J is a (possibly larger) bounded inter-
val. These estimates are technically useful for arguments in Sections 2
and 4. Appendix B recalls results on the Ricci tensor, leading to (1.21).
Readers interested in wave motion who are not so familiar with Rieman-
nian geometry might find identities recorded there valuable guides to why
Ricci tensor bounds have significant consequences for analysis on Rieman-
nian manifolds. Appendix C records some results involving the operation
of “symbol smoothing,” applied to symbols of pseudodifferential operators
with rough coefficients, of use in §3.

We mention some related works, which suggest further problems to
tackle. The pioneering work [4] dealt with manifolds with nonempty bound-
ary, in the smooth category. The papers [15] and [14] take this study fur-
ther. In these papers, energy dissipations include both a∂t and dissipation
resulting from boundary conditions. Results include both exponential decay,
under hypotheses that are variants of (1.13), and weaker decay results, in
the absence of such a control condition.

In [8], there is a further study of cases where (1.13) fails. In this setting,
geodesics trapped in the region where a = 0 satisfy a hyperbolicity condition,
forcing generic perturbations into the damping region. Conditions are given
yielding decay, with loss of derivatives, and at a subexponential rate, of the
form

E(u(t)) ≤ Ce−α
√

t
(‖f‖2

H1+δ(M) + ‖g‖2
Hδ(M)

)
, (1.26)

for some α, δ > 0. It would be interesting to consider such results for rougher
metrics. We note that, if one has a metric tensor rougher than C2, the issue
of what hyperbolicity might mean could become subtle.

It is natural to wonder if the regularity hypothesis (1.23) on a(x) can be
weakened further, to include more general elements of L∞(M), perhaps with
the requirement of acting as a multiplier on Hs(M) for small |s|. Regarding
bolder looks at rougher coefficients a, we mention an analysis of a singular
limit of dissipative terms in [3], for vibrating strings, which one might pursue
in higher dimensions.

Acknowledgment. Thanks to anonymous referees for valuable suggestions
to improve this paper.
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2 Preliminary energy decay estimates

We assume u satisfies (1.1), with initial data as in (1.3). We assume a ∈
L∞(M) and a ≥ 0, and consider the energy E(u(t)), given by (1.2). By (1.5),
E(u(t)) is monotonically decreasing in t. We make the following hypothesis:

There exist T1 < ∞, A0 > 0 such that

E(u(T1)) ≤ E(u(0))−A0

∫ T1

0

∫

M

|ut(s, x)|2 dV (x) ds,
(2.1)

for all solutions u ∈ C(R,H1(M)) ∩ C1(R, L2(M)) to (1.1). Clearly (2.1)
holds for all T1 > 0 if a ≥ A0 on all of M , by (1.5). As advertised in §1, we
will establish (2.1) in other settings, involving (1.12)–(1.13), in subsequent
sections. Our goal here is to prove exponential decay of E(u(t)) under the
hypotheses just stated, including (2.1). We fix such T1.

One ingredient in our analysis is an extension result, established in Ap-
pendix A. More precisely, we make use of the following, which is a special
case of Proposition A.4.

Lemma 2.1 Let I ⊂ J ⊂ R be bounded intervals. Given u ∈ H1(I ×M),
solving (1.1), u extends as a solution to R×M , and there exists C = C(I, J)
such that

‖u‖H1(J×M) ≤ C‖u‖H1(I×M). (2.2)

To proceed, given u satisfying (1.1) and (1.3), set

f(t, x) = ut(t, x), (2.3)

and use (1.1) to write

∂2
t u + ∆u = 2∂tf + a(x)f. (2.4)

Elliptic regularity gives
∫ 2T1/3

T1/3

∫

M

{|ut(s, x)|2 + |∇xu(s, x)|2 + |u(s, x)|2} dV (x) ds

≤ C

∫ T1

0

∫

M

{|f(s, x)|2 + |u(s, x)|2} dV (x) ds

= C

∫ T1

0

∫

M

{|ut(s, x)|2 + |u(s, x)|2} dV ds.

(2.5)
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It follows from Lemma 2.1 that
∫ T1

0

∫

M

{|ut(s, x)|2 + |∇xu(s, x)|2 + |u(s, x)|2} dV ds (2.6)

is bounded by a constant times the left side of (2.5). This implies

‖u‖2
H1([0,T1]×M) ≤ C‖∂tu‖2

L2([0,T1]×M) + C‖u‖2
L2([0,T1]×M), (2.7)

for all u ∈ E, where

E = {u ∈ H1([0, T1]×M) : Lu = 0}. (2.8)

Hence (2.7) takes the form

‖u‖2
E ≤ C‖Tu‖2

V + C‖Ku‖2
W , ∀u ∈ E, (2.9)

with E as in (2.8),
V = W = L2([0, T1]×M), (2.10)

Tu = ∂tu, (2.11)

and K : E ↪→ L2([0, T1]×M) is the inclusion. Thus

T : E −→ V is continuous, and K : E −→ W is compact. (2.12)

Given this structure, it is a standard Fredholm-type result (cf. [16], p. 171)
that

T : E −→ V has closed range. (2.13)

Also such T has finite dimensional kernel. In the current setting,

KerT = {ϕ(x) : ∆ϕ = 0} = C, (2.14)

the set of constant functions. From this, we obtain the estimate
∫ T1

0

∫

M

{|ut(s, x)|2 + |∇xu(s, x)|2} dV ds

≤ C

∫ T1

0

∫

M

|ut(s, x)|2 dV ds, ∀u ∈ E.

(2.15)

Plugging this into (2.1) yields

E(u(T1)) ≤ E(u(0))−A1

∫ T1

0
E(s) ds. (2.16)
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Since E(u(s)) ↘, this gives

E(u(T1)) ≤ (1 + A1T1)−1E(u(0)), (2.17)

whenever u ∈ C(R, H1(M)) ∩ C1(R, L2(M)) solves (1.1). Iterating gives

E(u(kT1)) ≤ (1 + A1T1)−kE(u(0)), (2.18)

for all such u. This gives the asserted decay result. We record this formally.

Proposition 2.2 Let M be a compact, connected Riemannian manifold
with a continuous metric tensor, and let a ∈ L∞(M) satisfy a ≥ 0. As-
sume (2.1) holds for all solutions u ∈ C(R,H1(M))∩C(R, L2(M)) to (1.1).
Then there exist T1 < ∞ and α > 0 such that, for all such u,

E(u(t)) ≤ e−αtE(u(0)), ∀ t ≥ T1. (2.19)

We do not assert that u(t) → 0 in L2(M) as t → +∞. In fact, u ≡ 1
solves (1.1); its energy is ≡ 0, but obviously its amplitude does not decay.
In light of this observation, the following result is natural.

Proposition 2.3 In the setting of Proposition 2.2, given u ∈ C(R,H1(M))∩
C1(R, L2(M)) solving (1.1), there exists κ(u) ∈ C such that

‖u(t)− κ(u)‖L2(M) ≤ Ce−αt/2E(u(0)), (2.20)

for t ≥ T1.

Proof. We have

‖u((k + 1)T1)− u(kT1)‖L2 ≤
∫ (k+1)T1

kT1

‖∂tu(s)‖L2 ds, (2.21)

hence

‖u((k + 1)T1)− u(kT1)‖2
L2 ≤ T1

∫ (k+1)T1

kT1

‖∂tu(s)‖2
L2 ds

≤ T1

∫ (k+1)T1

kT1

E(u(s)) ds

≤ T 2
1 e−αkT1E(u(0)).

(2.22)

Thus uk = u(kT1) is a Cauchy sequence in L2(M) as k → +∞, so there exists
κ(u) ∈ L2(M) such that (2.20) holds. Since E(uk) → 0, it follows that (uk)
is bounded in H1(M), so a subsequence converges weak∗ in H1(M) to κ(u),
which must be constant. ¤
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3 Propagation of singularities results

In Chapter 3, §11 of [28] there are several results on propagation of singular-
ities for differential and pseudodifferential operators with rough coefficients,
both in nondivergence form and in divergence form. Here, before discussing
a needed extension, we recall Proposition 11.4 of that chapter. It deals with
a second order, divergence form operator

Pu = ∂jA
jk(x)∂ku. (3.1)

Note that the wave equation (∂2
t − ∆)u = 0, which is (1.1) without the

dissipative term a(x)∂tu, can be written in local coordinates as

∂tg
1/2∂tu− ∂j(g1/2gjk∂ku) = 0, (3.2)

the left side having the form (3.1), with ∂0 = ∂t.
We assume Ω is an open subset of Rn+1, e.g., for (3.2), Ω = (a, b) × U ,

where (a, b) is a t-interval and U is a coordinate patch on the Riemannian
manifold M . As in Proposition 11.4 of [28], we assume Ajk are real valued,
Ajk = Akj , and

Ajk ∈ Cr(Ω), r ∈ (1, 2]. (3.3)

We assume
u ∈ H1+σ−rδ

loc (Ω), (3.4)

where
δ ∈ (0, 1), δr > 1, (3.5)

and
−(1− δ)r < σ < r. (3.6)

We assume O, Γ̃, and Γ are open conic subsets of T ∗Ω \ 0, and that

u ∈ Hσ
mcl(O), Pu ∈ Hσ−1

mcl (Γ̃), O, Γ ⊂ Γ̃. (3.7)

We characterize the space Hσ
mcl(O) as follows.

Definition. A distribution u on Ω belongs to Hσ
mcl(O) provided ϕ(x,D)u ∈

Hσ for each ϕ(x,D) ∈ OPS0
1,0 with total symbol supported in O.

Proposition 11.4 of [28] gives conditions under which one can conclude
that

u ∈ Hσ
mcl(Γ), (3.8)
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which is a result on propagation of microlocal regularity from O, along Γ.
We describe the conditions relating O, Γ̃, and Γ, leading to the propa-

gation result (3.7) ⇒ (3.8). Let

p1(x, ξ) = Ajkξjξk|ξ|−1. (3.9)

We assume we have smooth symbols

d(x, ξ) ∈ Sµ
cl, f(x, ξ) ∈ S0

cl, g(x, ξ) ∈ S1
cl, (3.10)

all homogeneous in ξ for |ξ| large, with

µ > 0, µ ≤ r − 1
r + 1

, µ ≤ 1− δ

2
. (3.11)

We assume
supp d ⊂ Γ̃, g(x, ξ) ≥ c|ξ| > 0 on Γ̃, (3.12)

and
Hp1d ≥ 0 on Γ̃ \ O, Hp1d ≥ C|ξ|µ > 0 on Γ \ O, (3.13)

where Hp1d = {p1, d} is the Poisson bracket. Furthermore, we assume

Hp1f ≥ 1, Hp1g ≤ 0 on Γ̃. (3.14)

The content of Proposition 11.4 of [28], Chapter 3, is that, under these
hypotheses, one has the propagation result (3.7) ⇒ (3.8).

Note that this result works with coefficients somewhat less regular than
advertised in (1.21), which here takes the form

|∇Ajk(x)−∇Ajk(y)| ≤ C|x− y| log
1

|x− y| , (3.15)

for |x−y| small. Where this additional regularity plays a role is in replacing
the conditions (3.10)–(3.14) by natural geometrical conditions on O, Γ, and
Γ̃, involving the flow generated by Hp1 , which is well defined if (3.15) holds.

To be more precise, let (x0, ξ0) ∈ T ∗Ω \ 0, and assume

(x0, ξ0) ∈ Char(P ) = {(x, ξ) : p1(x, ξ) = 0}. (3.16)

Assume ∇x,ξp1(x0, ξ0) 6= 0. Assuming Hp1 generates a flow, let γ be its
orbit through (x0, ξ0), and assume Pu ∈ Hσ−1, microlocally on some conic
neighborhood Γ̃ of γ, and that u ∈ Hσ

mcl(O), for some open conic neighbor-
hood O of (x0, ξ0). We want to deduce that u ∈ Hσ, microlocally on a conic
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neighborhood of γ. This comes down to the following. Let I be an open
interval in γ and assume u ∈ Hσ, microlocally on a conic neighborhood of
I. Then we want to conclude that u ∈ Hσ microlocally on a conic neigh-
borhood of each endpoint of I, assuming (3.7) holds. As shown in Chapter
3, §11 of [28], one can make constructions of d, f , and g, and deduce this
microlocal regularity from the implication (3.7) ⇒ (3.8), provided the coef-
ficients Ajk satisfy (3.15). The argument proceeds in stages, first treating
the case Ajk ∈ C2, then Ajk ∈ C1,1, and then Ajk satisfying (3.15).

Our goal here is to extend such microlocal propagation results to certain
first order perturbations of P . Before getting to this, we find it convenient
to recall some techniques that were applied to P alone in [28], involving
symbol smoothing. The reader can refer to Appendix C for basic definitions,
including the symbol classes rSm

1,δ and CrSm
1,δ, used below.

To start, we take

Aj = Ajk∂k = A#
j + Ab

j ,

A#
j ∈ OP rS1

1,δ, Ab
j ∈ OPCrS1−rδ

1,δ .
(3.17)

Then
P = ∂jA

#
j + ∂jA

b
j

= A#
j ∂j + [∂j , A

#
j ] + ∂jA

b
j .

(3.18)

We have
A#

j ∂j ∈ OP rS2
1,δ, [∂j , A

#
j ] ∈ OP r−1S1

1,δ. (3.19)

Note that the total symbol of A#
j ∂j is real, and that of [∂j , A

#
j ] is purely

imaginary. Also, (3.4)–(3.6) imply Ab
ju ∈ Hσ

loc, hence

∂jA
b
ju ∈ Hσ−1

loc , (3.20)

so if also (3.7) holds,

(A#
j ∂j + [∂j , A

#
j ])u ∈ Hσ−1

mcl (Γ̃). (3.21)

It is convenient to switch to first order pseudodifferential operators, so,
with (Λu)̂ (ξ) = (1 + |ξ|2)1/2û(ξ) = 〈ξ〉û(ξ), we set

P#
1 = A#

j ∂jΛ−1, P#
0 = [∂j , A

#
j ]Λ−1, P# = P#

1 + P#
0 , (3.22)

so
P#

1 ∈ OP rS1
1,δ, P#

0 ∈ OP r−1S0
1,δ, (3.23)
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and the total symbol of P#
1 is real, while that of P#

0 is purely imaginary. In
fact,

σ
P#

1
(x, ξ) = A#

j (x, ξ)ξj〈ξ〉−1, σ
P#

0
(x, ξ) = i∂xjA

#
j (x, ξ)〈ξ〉−1. (3.24)

Now we set
v = Λu, so ∂jA

#
j u = P#v, (3.25)

and the hypotheses (3.4) and (3.7) on u imply (in light of (3.21))

v ∈ Hσ−rδ
loc (Ω), v ∈ Hσ−1

mcl (O), P#v ∈ Hσ−1
mcl (Γ̃), (3.26)

and the desired conclusion (3.8) is equivalent to

v ∈ Hσ−1
mcl (Γ). (3.27)

We note that, at this point, the restriction on σ given in (3.6), which was
used to pass from (3.4) and (3.7) to (3.26), via (3.20)–(3.21), is no longer
needed. We can rephrase the hypotheses in (3.26) as

v ∈ D′(Ω), v ∈ Ht
mcl(O), P#v ∈ Ht

mcl(Γ̃), (3.28)

and the desired conclusion (3.27) is

v ∈ Ht
mcl(Γ). (3.29)

The content of Proposition 11.1 in [28], Chapter 3, is that (3.28) ⇒ (3.29),
provided (3.10)–(3.14) hold, with t ∈ R arbitrary.

In order to set up the positive commutator argument used to prove
Proposition 11.1 of [28], we decompose P# into its self-adjoint and skew-
adjoint parts:

P# = A + iB, A = A∗, B = B∗. (3.30)

Recall the results (3.22)–(3.24) on the symbol of P#. We have the symbol
expansions for the adjoints:

σ
(P#

j )∗(x, ξ) ∼ σ
P#

j
(x, ξ) +

∑

|β|≥1

i|β|

β!
Dβ

ξ Dβ
xσ

P#
j

(x, ξ), (3.31)

with j = 1, 0. We deduce that

A ∈ OP rS1
1,δ, B ∈ OP r−1S0

1,δ, (3.32)
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and also, with p1 as in (3.9),

a(x, ξ)− p1(x, ξ) ∈ CrS0
1,δ. (3.33)

The proof of Proposition 11.1 of [28] uses the positive commutator method,
adapted from [13]. It starts with the following basic commutator identity:

Im(CP#v, Cv) = Re({−iC∗[C, A] + C∗BC + C∗[B, C]}v, v), (3.34)

with A and B as in (3.30)–(3.32), and C ∈ OPSµ
1,0 to be described below.

Since B has order 0, we obtain from (3.34) the basic commutator inequality,

Re({−iC∗[C, A]−MC∗C}v, v) ≤ ‖CP#v‖2 + |(Wv, v)|, (3.35)

where
M = ‖B‖+

1
4
, W = Re C∗[B, C], (3.36)

with Re T = (T + T ∗)/2. For C, we actually use a family of operators
Cε = cε(x,D), with

cε(x, ξ) = d(x, ξ)eλf(x,ξ)
(
1 + ε2g(x, ξ)2

)−1/2
, (3.37)

where λ > 0 is taken sufficiently large, ε ↘ 0, and d(x, ξ), f(x, ξ), and
g(x, ξ) are as in (3.10)–(3.14). For details on how to achieve the implication
(3.28) ⇒ (3.29), see pp. 205–209 of [28]. We mention that a version of the
sharp G̊arding inequality (given on p. 208) is involved.

We now tackle first order perturbations of P . We start with

Pu + Qu = ∂jA
jk∂ku + bj∂ju, (3.38)

with Ajk = Akj real valued and satisfying (3.3), and bj real valued, satisfying

bj ∈ Cr. (3.39)

We show how this more general set-up can be given a parallel treatment.
We augment the decomposition (3.18) of P by

Q = Q# + Qb, Q# ∈ OP rS1
1,δ, Qb ∈ OPCrS1−rδ

1,δ . (3.40)

Note that the total symbol of Q# is purely imaginary. Our hypotheses are
now

u ∈ H1+σ−rδ
loc (Ω), u ∈ Hσ

mcl(O), Pu + Qu ∈ Hσ−1
mcl (Γ̃). (3.41)
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Now, in place of (3.20), we have

∂jA
b
ju, Qbu ∈ Hσ−1

loc , (3.42)

so, in place of (3.21),

(A#∂j + [∂j , A
#
j ] + Q#)u ∈ Hσ−1

mcl (Γ̃). (3.43)

Consequently, in place of (3.22), we can set

P#
1 = A#

j ∂jΛ−1, P#
0 = [∂j , A

#
j ]Λ−1 + Q#Λ−1, P# = P#

1 + P#
0 , (3.44)

so P#
1 (actually unchanged from (3.22)) and P#

0 again satisfy (3.23), with,
respectively, real and purely imaginary total symbols. For v = Λu, we again
get (3.26), and desire to conclude that (3.27) holds.

We are now in the same setting as discussed above, so the positive com-
mutator argument involving (3.30)–(3.37) applies, with no further change.
We state the following resulting propagation result, which will be applied in
§4.

Proposition 3.1 Assume u ∈ H1+σ−rδ
loc (Ω) solves

∂jA
jk∂ku + bj∂ju = 0 (3.45)

on Ω, where Ajk = Akj are real and (3.15) holds, and bj are real and bj ∈
Cr(Ω), for some r > 1. Assume σ and δ satisfy (3.5)–(3.6). Assume
O ⊂ T ∗Ω \ 0 is a conic open set, and

u ∈ Hσ
mcl(O). (3.46)

Take p1(x, ξ) as in (3.17), and let (x0, ξ0) ∈ O satisfy p1(x0, ξ0) = 0. Let γ
be the orbit of the Hamiltonian vector field Hp1 through (x0, ξ0). Then there
is a conic neighborhood Γ of γ such that

u ∈ Hσ
mcl(Γ). (3.47)

Proposition 3.1 requires more smoothness on bj than we want for a result
that is applicable to the proof of Theorem 1.1. We would like to replace the
hypothesis bj ∈ Cr by

bj ∈ Cr−1. (3.48)

In such a case, (3.40) is replaced by

Q = Q# + Qb, Q# ∈ OP r−1S1
1,δ, (3.49)
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and
Qb ∈ OPCr−1S

1−(r−1)δ
1,δ . (3.50)

Now P# = P#
1 + P#

0 , given by (3.44), continues to satisfy (3.23). (The
extra regularity of Q# in (3.40) is overkill.) The problem is with Qbu. For
u ∈ H1+σ−rδ

loc , σ = 0, δ close to 1, and r − 1 > 0 small, we cannot conclude
that Qbu belongs to Hσ−1

loc , or is even well defined (an issue related to whether
bj∂ju is well defined).

To get an improved result, we make use of some special structure for
(1.1). In that setting, we have bj = 0 for j 6= 0 and b0 = g1/2a, which is
independent of x0 = t. Hence we can switch from (3.38) to

Pu + Qu = ∂jA
jk∂ku + ∂j(bju). (3.51)

Now symbol smoothing yields (3.49), with

Qb = ∂jB
b
j , Bb

j ∈ OPCr−1S
−(r−1)δ
1,δ . (3.52)

To proceed, we strengthen the hypothesis (3.6) to

−(1− δ)(r − 1) < σ < r − 1. (3.53)

Consequently
u ∈ H1+σ−rδ

loc =⇒ Bb
ju ∈ Hσ

loc

=⇒ Qbu ∈ Hσ−1
loc .

(3.54)

We are again in the setting (3.41)–(3.44), with P# = P#
1 + P#

0 satisfy-
ing (3.23). As before, P#

1 has real total symbol; this time P#
0 has purely

imaginary principal symbol. This still leads to (3.30)–(3.32) and subsequent
arguments, yielding the following variant of Proposition 3.1.

Proposition 3.2 Assume u ∈ H1+σ−rδ
loc (Ω) solves

∂jA
jk∂ku + ∂j(bju) = 0 (3.55)

on Ω, where Ajk = Akj are real and (3.15) holds, and bj are real and bj ∈
Cr−1(Ω), for some r > 1. Assume δ satisfies (3.5) and σ satisfies (3.53).
Assume O ⊂ T ∗Ω \ 0 is a conic open set and

u ∈ Hσ
mcl(O). (3.56)

Form γ as in Proposition 3.1. Then there is a conic neighborhood Γ of γ
such that

u ∈ Hσ
mcl(Γ). (3.57)
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In particular, this conclusion holds for

σ = 0. (3.58)

Remark. Microlocal elliptic regularity applies on

N = {(x, ξ) ∈ T ∗Ω \ 0 : p1(x, ξ) 6= 0}. (3.59)

Given that (3.45) holds, Ajk, bj ∈ Cr, r > 1, or that (3.55) holds, Ajk ∈
Cr, bj ∈ Cr−1, we have P#Λu ∈ Hσ−1

loc , and hence

u ∈ H1+σ
mcl (N ). (3.60)

Compare remarks below Proposition 11.4 of [28].

4 Proof of Theorem 1.1

Under the hypotheses of Theorem 1.1, and given T ≥ T0 + 2, we can use
Proposition 3.2 to deduce that there exists σ0 > 0 such that, if 0 < σ < σ0

and v ∈ H−σ([0, T ]×M) solves Lv = 0, then, with U as in (1.12)–(1.13),

v ∈ H−σ([0, T ]×M) ∩ L2([0, T ]× U) =⇒ v ∈ L2([1, 2]×M), (4.1)

with associated estimate

‖v‖L2([1,2]×M) ≤ C‖v‖L2([0,T ]×U) + C‖v‖H−σ([0,T ]×M). (4.2)

We now bring in the extension result of Appendix A, Proposition A.3, which
implies that we have an estimate

‖v‖L2([0,T ]×M) ≤ CT ‖v‖L2([1,2]×M). (4.3)

Hence

‖v‖L2([0,T ]×M) ≤ CT ‖v‖L2([0,T ]×U) + CT ‖v‖H−σ([0,T ]×M). (4.4)

We can write this as

‖v‖E ≤ CT ‖Rv‖V + CT ‖Kv‖W , ∀ v ∈ E, (4.5)

where

E = {v ∈ L2([0, T ]×M) : Lv = 0}, V = L2([0, T ]× U),
W = H−σ([0, T ]×M),

(4.6)
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and
R : E → V is restriction, K : E → W is inclusion. (4.7)

Since R is continuous and K is compact, standard Fredholm theory (compare
(2.9)–(2.13)) implies

R : E −→ V has closed range, and finite dimensional kernel. (4.8)

Note that

KT = KerR = {v ∈ L2([0, T ]×M) : Lv = 0, v = 0 on [0, T ]× U}. (4.9)

To proceed, let us set

O = {x ∈ M : a(x) > 0}, (4.10)

so, with a0 as in (1.12),

O =
⋃

j≥1

Uj , Uj = {x ∈ M : a(x) > 2−ja0}. (4.11)

In fact,
U ⊂ U1 ⊂ U2 ⊂ · · · ⊂ Uj ↗ O. (4.12)

We can replace U by Uj in (4.4), for the same range of T and constants CT ,
obtaining

‖v‖E ≤ CT ‖Rv‖Vj + CT ‖Kv‖W , (4.13)

with E and W as in (4.6), and

Vj = L2([0, T ]× Uj). (4.14)

Parallel to (4.8)–(4.10), we have

R : E −→ Vj has closed range, and finite dimensional kernel, (4.15)

with

KT,j = KerR = {v ∈ L2([0, T ] : Lv = 0, v = 0 on [0, T ]× Uj}. (4.16)

Lemma 4.1 There exist T1 < ∞ and ` ∈ N such that KT1,` = 0.

18



Proof. For each j ∈ N, the family {KT,j : T ≥ T0 + 2} is a decreasing family
of finite dimensional spaces (T < T̃ ⇒ K

T̃ ,j
⊂ KT,j). Hence this family

stabilizes. There exist Sj < ∞ such that

KT,j = KSj ,j , ∀T ≥ Sj , (4.17)

in the sense that each v ∈ KSj ,j , continued as an element of C(R, L2(M)),
via (A.45), restricts to an element of KT,j on [0, T ]×M . Thus we have the
natural identification

KSj ,j = Lj = {v ∈ C(R, L2(M)) : Lv = 0, v = 0 on [0,∞)× Uj}, (4.18)

and each such space is finite dimensional. In turn, {Lj : j ∈ N} is a decreas-
ing family of spaces (j < k ⇒ Lk ⊂ Lj). Hence this family stabilizes. There
exists ` ∈ N such that Lj = L` for all j ≥ `. Hence

KS`,` = L` = {v ∈ C(R, L2(M)) : Lv = 0, v = 0 on [0,∞)×O}. (4.19)

Set T1 = S`.
To proceed, we have the group of translations τsv(t) = v(t+s) acting on

C(R, L2(M)), and τs : L` → L` for each s ≥ 0. Since each such operator is
injective, it is an isomorphism on L`, and taking s ↗ +∞, we deduce that

KT1,` = L` = {v ∈ C(R, L2(M)) : Lv = 0, v = 0 on R×O}. (4.20)

We now bring in an argument from [20] and, for ε > 0, v ∈ L`, set

vε(t) = (4πε)−1/2

∫ ∞

−∞
e−(t−s)2/4εv(s) ds, (4.21)

which is well defined due to exponential bounds on ‖v(s)‖L2(M) (cf. (A.32)).
Clearly vε ∈ L` for each ε > 0, and

vε −→ v in C(R, L2(M)), as ε → 0. (4.22)

Now (4.20) is actually an entire holomorphic function of t ∈ C, with values
in L2(M). We have

wε(t) = vε(it) solves (∂2
t + ∆)wε = 0 on R×M, (4.23)

since wε = 0 on R×O, hence a(x)∂twε = 0. Unique continuation results of
[2] and [10] imply wε ≡ 0, hence vε ≡ 0, for each ε > 0. Then, by (4.15),
v ≡ 0 for all v ∈ L`, proving the lemma. ¤
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Remark. An alternative proof of Lemma 4.1, giving a more precise value
of T1, can be given, using the unique continuation result of [25].

We conclude from (4.15)–(4.16) and Lemma 4.1 that

R : E −→ L2([0, T1]× U`) is an isomorphism onto its range, (4.24)

which implies
∫ T1

0

∫

M

|v(s, x)|2 dV ds ≤ C

∫ T1

0

∫

U`

|v(s, x)|2 dV ds, (4.25)

for all v ∈ L2([0, T1]×M) solving Lv = 0.

We now tackle the proof of Theorem 1.1. If u ∈ C(R,H1(M))∩C1(R, L2(M))
solves (1.1), we take v = ∂tu, which also solves Lv = 0, and apply (4.25), to
get ∫ T1

0

∫

M

|ut(s, x)|2 dV ds ≤ C

∫ T1

0

∫

U`

|ut(s, x)|2 dV ds. (4.26)

By (1.5) and the fact that a(x) ≥ 2−`a0 on U`, we have

E(u(T1)) ≤ E(u(0))−A0

∫ T1

0

∫

M

|ut(s, x)|2 dV ds, (4.27)

which is the hypothesis (2.1). The results of §2, collected in Proposition 2.2,
finish the proof of Theorem 1.1.

A Extension of solutions in L2(I ×M)

Given a bounded interval I = [a, b] and a compact, n-dimensional Rieman-
nian manifold M , we seek to establish that a solution u ∈ L2(I ×M) to

Lu = ∂2
t u + a(x)∂tu−Au = 0, A = ∆− λ (λ ∈ R), (A.1)

extends to R×M and belongs to C(R, L2(M)) ∩ C1(R,H−1(M)). We also
want to establish estimates of the form

‖u‖C(J,L2(M)) + ‖∂tu‖C(J,H−1(M)) ≤ C‖u‖L2(I×M), (A.2)
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for all such solutions to Lu = 0, where J is a (possibly larger) bounded
interval in R.

Since we want to deal with non-smooth coefficients, it is natural to write
Lu = 0 in a local coordinate patch U ⊂ M as

∂2
t (g1/2u) + ∂t(ag1/2u)− ∂j(g1/2gjk∂ku) + λg1/2u = 0. (A.3)

The first and second terms on the left side of (A.3) are well defined distri-
butions provided gjk, a ∈ L∞(U). The third is well defined provided g1/2gjk

is a multiplier in H1(U), hence on H−1(U), which holds provided

gjk ∈ H1,q(U), for some q > n, (A.4)

a condition that implies Hölder continuity of (gjk).
To proceed, we take u ∈ L2(I ×M), solving (A.1), and “smooth it out”

as follows. Take δ << (b − a)/4 and ψ ∈ C0(−δ, δ), smooth on (−δ, δ) \ 0,
equal to −|x|/2 on (−δ/2, δ/2), and let

w(t) = ψ ∗ u(t) =
∫

ψ(s)u(t− s) ds, for t ∈ J = [a + 2δ, b− 2δ]. (A.5)

Then Lw = 0 on J ×M ,

w, ∂tw, ∂2
t w ∈ L2(J ×M), (A.6)

with norms bounded by C‖u‖L2(I×M), and

u = ∂2
t w + ϕ ∗ u on J ×M, ϕ ∈ C∞

0 (−δ, δ). (A.7)

Note that
Aw = ∂2

t w + a∂tw ∈ L2(J, L2(M)), (A.8)

so
w ∈ L2(J,D(∆)). (A.9)

Lemma A.1 After possibly shrinking J ,

∂tw ∈ L2(J,D((−∆)1/2)) = L2(J,H1(M)), (A.10)

with norm bounded by C‖u‖L2(I×M).
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Proof. Multiplying w by a cutoff β(t) and periodizing, we reduce the task
of proving (A.10) to that of showing that

w ∈ L2(T1,D(∆)), ∂2
t w ∈ L2(T1, L2(M))

⇒ ∂tw ∈ L2(T1,D((−∆)1/2)).
(A.11)

If ŵ(k) =
∫
T1 w(t)e−ikt dt, the hypotheses of (A.11) are equivalent to

∞∑

k=−∞
‖ŵ(k)‖2

D(∆),
∞∑

k=−∞
k4‖ŵ(k)‖2

L2(M) ≤ CB2, (A.12)

where we can take B = ‖u‖L2(I×M). Now

k2‖ŵ(k)‖2
D((−∆)1/2)

≤ k2‖ŵ(k)‖D(∆)‖ŵ(k)‖L2(M)

≤ 1
2
‖ŵ(k)‖2

D(∆) +
1
2
k4‖ŵ(k)‖2

L2(M),
(A.13)

so (A.12) implies ∑

k

k2‖ŵ(k)‖2
D((−∆)1/2)

≤ CB2, (A.14)

and we have the implication (A.11). ¤

Now consider
v = ∂tw. (A.15)

We have

v ∈ L2(J,H1(M)), ∂tv ∈ L2(J, L2(M)), Lv = 0 on J ×M, (A.16)

and, with ϕ as in (A.7),
u = ∂tv + ϕ ∗ u. (A.17)

The following is a major step towards the proof of (A.2).

Lemma A.2 After possibly shrinking J further,

v ∈ C(J,H1(M)), ∂tv ∈ C(J, L2(M)), (A.18)

with norms bounded by C‖u‖L2(I×M).
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Proof. Take a non-negative ξ ∈ C∞
0 (−1, 1) such that

∫
ξ(t) dt = 1, set

ξε(t) = ε−1ξ(t/ε), and then set

vε(t) = ξε ∗ v(t) =
∫

ξε(s)v(t− s) ds, (A.19)

so, on a slightly shrunken J ,

vε ∈ C∞(J,H1(M)), Lvε = 0. (A.20)

If we set

Λ =
√
−∆ + 1, Λ1 = −AΛ−1 = Λ + (λ− 1)Λ−1, (A.21)

and then set

Vε =
(

Λvε

∂tvε

)
, (A.22)

we have Vε ∈ C∞(J, L2(M)), and, as ε → 0,

Vε −→ V =
(

Λv

∂tv

)
in L2(J, L2(M)). (A.23)

Furthermore, for ε > 0 sufficiently small, we have

Vε(t) = U(t− t0)Vε(t0), t, t0 ∈ J, (A.24)

where

U(s) = esG, G =
(

0 Λ
−Λ1 −a

)
, (A.25)

is a strongly continuous group of operators on L2(M), since, for a ∈ L∞(M),
G is a bounded perturbation of the skew-adjoint operator

G0 =
(

0 Λ
−Λ 0

)
. (A.26)

The standard vector-valued version of Hardy-Littlewod theory implies that
Vε → V , in L2(M)-norm, almost everywhere in t ∈ J .

In more detail, if V ∈ L2(J, L2(M)) and Vε = ξε ∗ V , then, given ε0 > 0,

M(V )(t) = sup
0<ε≤ε0

∣∣ξε ∗ V (t)
∣∣ ≤ CM(‖V ‖)(t),

where M is the Hardy-Littlewood maximal function. The associated clas-
sical estimates on M(‖V ‖) together with the denseness of C(J, L2(M)) in
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L2(J, L2(M)) yield the pointwise a.e. convergence, just as in the case of
scalar functions.

Consequently, there exist t0 ∈ J and V0 ∈ L2(M) such that

Vε(t0) −→ V0 in L2(M)-norm, as ε → 0. (A.27)

By (A.23)–(A.24), we have

V (t) = U(t− t0)V0, (A.28)

hence
V ∈ C(J, L2(M)), (A.29)

which implies (A.18). In (A.27), we can pick t0 ∈ J such that

‖V0‖2
L2(M) ≤

1
`(J)

∫

J

‖V (t)‖2
L2(M) dt, (A.30)

so we have the asserted bounds on v and ∂tv in (A.18). ¤

Note that the formula (A.28) extends V to

V ∈ C(R, L2(M)), (A.31)

satisfying
‖V (t)‖L2 ≤ eK|t−t0|‖V0‖L2 , (A.32)

for some K < ∞. (We can omit the exponential factor when t ≥ t0, provided
λ = 1 and a ≥ 0.) In turn (A.31) leads to the global extension

v ∈ C(R,H1(M)), ∂tv ∈ C(R, L2(M)), (A.33)

satisfying analogous estimates.
The formula (A.17) immediately gives, for u ∈ L2(I × M) satisfying

(A.1),
u ∈ C(J, L2(M)), (A.34)

estimable by C‖u‖L2(I×M). We also have

∂tu = ∂2
t v + ϕ′ ∗ u, (A.35)

and, since Lv = 0,

∂2
t v = Av − a∂tv ∈ C(J,H−1(M)), (A.36)
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by (A.18), so
∂tu ∈ C(J,H−1(M)), (A.37)

estimable by C‖u‖L2(I×M).
This establishes (A.2), except for having to shrink I slightly. We now

continue u(t) to all t ∈ R, again using (A.17), which writes u as a sum of
two terms. For the first term, ∂tv, we already have (A.33), and hence we
can expand (A.36) to

∂2
t v ∈ C(R,H−1(M)). (A.38)

Since u(t) = ∂tv(t) + ϕ ∗ u(t) for t ∈ J , it remains to extend

u2(t) = ϕ ∗ u(t) (A.39)

from t ∈ J to t ∈ R. This is easily accomplished, since

u2 ∈ C∞(J, L2(M)), Lu2 = 0, (A.40)

hence
Au2 = ∂2

t u2 + a∂tu2 ∈ C∞(J, L2(M)), (A.41)

so
u2 ∈ C∞(J,D(∆)) ⊂ C∞(J,H1(M)). (A.42)

Thus we can pick t0 ∈ J and set

V2(t0) =
(

Λu2(t0)
∂tu2(t0)

)
, (A.43)

and then

V2(t) = e(t−t0)GV2(t0) =
(

Λu2(t)
∂tu2(t)

)
(A.44)

extends u2 to

u2 ∈ C(R,H1(M)), ∂tu2 ∈ C(R, L2(M)), (A.45)

so we have extended u from L2(I ×M) to

u ∈ C(R, L2(M)), ∂tu ∈ C(R, H−1(M)), (A.46)

as long as gjk satisfies (A.4) and a ∈ L∞(M). We formally state the result
just established.
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Proposition A.3 Assume u ∈ L2(I ×M) solves (A.1). Assume that a ∈
L∞(M) and that the metric tensor satisfies (A.4). Then u extends to a so-
lution to (A.1) on R×M , satisfying (A.46). Furthermore, for each bounded
interval J ⊂ R, there is an estimate

‖u‖C(J,L2(M)) + ‖∂tu‖C(J,H−1(M)) ≤ C(J)‖u‖L2(I×M). (A.47)

Remark. The hypothesis a ∈ L∞(M) is weaker than one would require for
well posedness of (A.1) given arbitrary

u(0) = f ∈ L2(M), ∂tu(0) = g ∈ H−1(M). (A.48)

A sufficient condition for U(s), given by (A.25), to yield a strongly contin-
uous group of operators on H−1(M) would be for multiplication by a to
preserve H1(M), hence H−1(M), which would hold if (parallel to (A.4))
we had a ∈ H1,q(M) for some q > n. It is interesting that, if we have
u ∈ L2(I ×M), satisfying (A.1), we do not need this extra regularity of a
(beyond a ∈ L∞(M)) to pass to (A.46).

We complement Proposition A.3 with the following slightly easier result,
which is of use in §2.

Proposition A.4 Take L as in the previous proposition. Given u ∈ H1(I×
M), solving (A.1), it follows that u extends to R ×M , solving (A.1). Fur-
thermore, given a bounded interval J ⊂ R, there exists C = C(J) such
that

‖u‖C(J,H1(M)) + ‖∂tu‖C(J,L2(M)) ≤ C‖u‖H1(I×M). (A.49)

In fact, taking uε = ξε ∗u (as in (A.19)) gives uε ∈ C∞(J,H1(M)), with
slightly shrunken J ⊂ I, and for Vε = (Λuε, ∂tuε), we have (A.24). This leads
to (A.27) for almost every t0 ∈ J , and hence to (A.28), for V = (Λu, ∂tu),
hence to (A.29)–(A.30), and then to (A.49). Once we have (A.49) for J ⊂ I,
we can extend it to larger J , via (A.28).

B Curvature of rough metric tensors

Here we recall some results on the Riemann tensor and Ricci tensor on a
Riemannian manifold M with rough metric tensor. Details can be found in
[28], Chapter 3, §10, with complements in §2 of [1].

To begin, let us asume that, on a coordinate patch U ⊂ M , we have a
metric tensor (gjk) satisfying

gjk ∈ C(U) ∩H1,2(U). (B.1)
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We claim the Riemann tensor and Ricci tensor are well defined distributions
on U . To see this, we start with the formula for the connection 1-form
Γ =

∑
j Γj dxj , where Γj is an n× n matrix (Γa

bj), if n = dim M :

Γa
bj =

1
2
gam(∂jgbm + ∂bgjm − ∂mgbj). (B.2)

The hypothesis (B.1) implies

Γ ∈ L2(U). (B.3)

The Riemann tensor is then given by

R = dΓ + Γ ∧ Γ. (B.4)

It is a matrix valued 2-form, with components Ra
bjk. From (B.3), we have

Ra
bjk ∈ H−1,2(U) + L1(U). (B.5)

Hence the Ricci tensor, with components

Ricbk = Rj
bjk, (B.6)

is well defined:
Ricbk ∈ H−1,2(U) + L1(U). (B.7)

To proceed, we strengthen the hypothesis (B.1) slightly, to

gjk ∈ Cs(U) ∩H1,2(U), (B.8)

with s > 0. In such a case, local harmonic coordinates (of class C1+s∩H2,2)
exist on U , and in such coordinates (B.8) still holds. In such coordinates,
the formula for Ricbk simplifies substantially. One has

2 Ric`m = −∆g`m + B`m(g,∇g), (B.9)

where B`m is a quadratic form in ∇g with coefficients that are rational
functions of gjk, and ∆ acts componentwise on g`m as

∆u = g−1/2∂j(g1/2gjku), g = det(gjk). (B.10)

As noted in [12], one can turn (B.9) around, and regard it as a semilinear
elliptic PDE for the metric tensor:

∆g`m = B`m(g,∇g)− 2 Ric`m . (B.11)
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These results apply as follows. Suppose that, in original coordinates,
one has (B.8) and that the Ricci tensor is bounded. Then, in new harmonic
coordinates, the transformation law of tensor fields implies the Ricci tensor
is also bounded, so (B.11) holds with Ric`m ∈ L∞(U). Now generally,
solutions to a second order semilinear elliptic PDE tend to have two orders
of regularity more than the source term. This works for Lp-Sobolev space
regularity when p ∈ (1,∞), but it can fail when p = ∞. As shown in
Proposition 10.2 in Chapter 3 of [28], one has the following.

Proposition B.1 If U has a metric tensor satisfying (B.8), for which the
Ricci tensor is bounded, then, in local harmonic coordinates,

∂2gjk ∈ bmo . (B.12)

Here bmo denotes the localized John-Nirenberg space (cf. [28], p. 27). It
is classical that (B.12) implies

|∇gjk(x)−∇gjk(y)| ≤ C|x− y| log
1

|x− y| , (B.13)

for |x− y| small, which leads us to (1.21).

C Rough symbols and symbol smoothing

We give definitions of various symbol classes and state some mapping prop-
erties of associated pseudodifferential operators. Proofs of these results, and
references to basic papers, can be found in Chapter 13 of [27], or in Chapters
1–2 of [26].

First, we recall some classes of smooth symbols on Euclidean space Rd.
If p : Rd × Rd → C is smooth, we say

p(x, ξ) ∈ Sm
1,δ ⇔ |Dβ

xDα
ξ p(x, ξ)| ≤ Cαβ〈ξ〉m−|α|+δ|β|. (C.1)

Here, m ∈ R, δ ∈ [0, 1], and 〈ξ〉 = (1 + |ξ|2)1/2. We say

p(x, ξ) ∈ Sm
cl (Rd) (C.2)

if p(x, ξ) ∈ Sm
1,0 and it has an asymptotic expansion as |ξ| → ∞,

p(x, ξ) ∼
∑

j≥0

pj(x, ξ), (C.3)
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with each pj(x, ξ) homogeneous of degree m− j, for |ξ| large. The relation
“∼” means that p(x, ξ)−∑N

j=0 pj(x, ξ) ∈ Sm−N−1
1,0 . If p(x, ξ) ∈ Sm

1,δ, we set

p(x,D)f = (2π)−d/2

∫
p(x, ξ)f̂(ξ)eix·ξ dξ, (C.4)

where f̂(ξ) is the Fourier transform of f . We say

p(x,D) ∈ OPSm
1,δ. (C.5)

A basic mapping property on Lp-Sobolev spaces is that

p(x,D) ∈ OPSm
1,δ, m ∈ R, δ ∈ [0, 1)

=⇒ p(x,D) : Hs+m,p(Rd) → Hs,p(Rd),
(C.6)

for all s ∈ R, p ∈ (1,∞).
The most basic classes of symbols with limited smoothness we deal with

in §3 are the classes CrSm
1,δ, with r ∈ (0,∞), m ∈ R, δ ∈ [0, 1], defined as

follows.

p(x, ξ) ∈ CrSm
1,δ ⇔ |Dα

ξ p(x, ξ)| ≤ Cα〈ξ〉m−|α|,
‖Dα

ξ p(·, ξ)‖Cr ≤ Cα〈ξ〉m−|α|+rδ, and

‖Dα
ξ p(·, ξ)‖Cj ≤ Cα〈ξ〉m−|α|+jδ, for 0 ≤ j ≤ r,

(C.7)

the last condition in effect provided r ≥ 1.
In order to deal with the operator p(x,D) associated to such symbols

p(x, ξ), it is convenient to split p(x, ξ) into two pieces:

p(x, ξ) = p#(x, ξ) + pb(x, ξ), (C.8)

where p#(x, ξ) is obtained from p(x, ξ) by “symbol smoothing,” and pb(x, ξ)
is the remainder. We define p#(x, ξ) as follows. Let {ψk(ξ) : k ≥ 0} denote
a Littlewood-Paley partition of unity. Set

p#(x, ξ) =
∞∑

k=0

Jεk
p(x, ξ)ψk(ξ), (C.9)

where
Jεf(x) = ψ0(εD)f(x). (C.10)

Take δ ∈ (0, 1], and set

εk = 2−kδ, (or, if δ = 1), εk = 2−(k−3). (C.11)
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In §3, we take δ ∈ (0, 1). The first basic symbol smoothing result is

p(x, ξ) ∈ CrSm
1,0 ⇒ p#(x, ξ) ∈ Sm

1,δ, pb(x, ξ) ∈ CrSm−rδ
1,δ . (C.12)

A more precise result on p# is that

p(x, ξ) ∈ CrSm
1,0 =⇒ p#(x, ξ) ∈ rSm

1,δ, (C.13)

where, given r > 0, we say

q(x, ξ) ∈ rSm
1,δ ⇔ Dβ

xq(x, ξ) ∈ Sm
1,δ, |β| ≤ r,

S
m+δ(|β|−r)
1,δ , |β| > r.

(C.14)

These results on p#(x, ξ) and pb(x, ξ) are crucial to the analysis described
in §3. We also use the p = 2 case of the following mapping property.

Proposition C.1 If δ ∈ [0, 1), r > 0, and p(x, ξ) ∈ CrSm
1,δ, then

p(x,D) : Hs+m,p(Rd) −→ Hs,p(Rd), (C.15)

provided 1 < p < ∞, m ∈ R, and

−(1− δ)r < s < r. (C.16)

Mapping properties for the case δ = 1 are more subtle, and will not be
mentioned here, though they are of fundamental use in problems in PDE,
arising, for example, in the pioneering work of [5]. Such results can also be
found in [26] and [27].
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Asterisque #57, Soc. Math. de France, Paris, 1978.

[10] H. Cordes, Uber die eindeutige bestimmtheit der losungen elliptischen
differentialgleichungen durch anfangsvorgaben, Nachr. Acad. Wiss.
Göttingen Math.-Phys. Kl, IIa, No. 11 (1956), 239–258.

[11] M. De Hoop, G. Uhlmann, and A. Vasy, Diffraction from conormal
singularities, Preprint, 2012.

[12] D. DeTurck and J. Kazdan, Some regularity theorems in Riemannian
geometry, Ann. Sci. Ecole Norm. Sup. 14 (1981), 249–260.
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