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Introduction
1. The grazing ray parametrix
2. The Neumann operator
3. Fourier integral operators with folding canonical relations
4. The scattering operator
5. The corrected Kirchhoff approximation
6. A representation for the wave evolution operator

Introduction

This paper summarizes a number of developments in the study of diffractive
boundary value problems made during the period 1975–81. In the first two sec-
tions, work of Melrose [Mel1], [Mel3] and Taylor [T1], [T4] on the construction of
parametrices for such a grazing ray problem are reviewed. We restrict attention to
the Dirichlet problem for the usual scalar wave equation. In Sections 3–5 we sketch
some joint work of Melrose and Taylor [MeT] on Fourier integral operators with
folding canonical relations, and applications to some problems in scattering theory,
and on the corrected Kirchhoff approximation. Section 6 describes some results of
Farris [F2] on the solution operator to the wave equation with diffractive boundary.

Throughout this paper, we make use of pseudodifferential operators with symbols
p(x, ξ) in the class Sm

ρ,δ of Hörmander [H1], i.e., satisfying estimates

|Dβ
xDα

ξ p(x, ξ)| ≤ Cαβ(1 + |ξ|)m−ρ|α|+δ|β|.

A subclass of Sm
1,0 is Sm, consisting of p(x, ξ) asymptotic to

∑
j≥0 pm−j(x, ξ), with

pm−j(x, ξ) homogeneous of degree m− j in ξ, for |ξ| ≥ 1. Also, we say p(x, ξ, η) ∈
Nm

ρ provided

|Dβ
xDα

ξ Dj
ηp(x, ξ, η)| ≤ Cβαj |ξ|m−|α|(|ξ|ρ + |η|)−j .

This paper originally appeared as [T6]. The current version (in TeX, rather
than off an old fashioned typewriter) makes few changes to that original, other
than updating references and fixing some typos. (There are corrections to (5.14)
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and (5.19).) The paper [T6] had two additional sections (§§7–8), dealing with
systems of wave equations, which are omitted here.

We mention the monograph [MeT2], which discusses parametrix construction
for wave equations, in both the grazing and the gliding ray contexts, which was
produced after [T6]. (Chapters 11–12 of [MeT2] cover material on systems of wave
equations omitted from this version of [T6].)

In this paper we make no mention of non smooth obstacles. For a study of
diffraction of waves by cones and polyhedra, see [CT], which is summarized in [T5],
and also in Chapter 8, §8, of [T8].

1. The grazing ray parametrix

In this section we review the construction of a parametrix for the solution of the
wave equation on the exterior of a convex domain K ⊂ Rn, assumed to be smooth,
with strictly positive curvature. Such parametrices were constructed in [Mel1] and
[T1]; see also [Mel3] and [T4]. We briefly discuss some refinements (also treated in
the monograph [MeT2]).

We look for a parametrix for the solution to the problem

( ∂2

∂t2
−∆

)
u = 0 on Rn \K,(1.1)

u
∣∣
R×∂K

= f,(1.2)

u = 0 for t << 0,(1.3)

given f ∈ E ′(R × ∂K). The boundary condition (1.2) is the Dirichlet boundary
condition. Also of interest is the Neumann boundary condition

(1.4)
∂u

∂ν

∣∣∣
R×∂K

= g.

This, and a large class of other boundary conditions, is amenable to treatment,
given the discussion of the Neumann operator which we will provide in Section 2.

We will assume WF(f) is contained in a small conic neighborhood of a point in
T ∗(R×∂K) over which a grazing ray passes, since the non-grazing case is relatively
elementary. The parametrix we will construct is of the form

(1.5) u(t, x) =
∫∫ (

g
A(ξ−1/3

1 ρ)

A(−ξ
−1/3
1 η)

+ ihξ
−1/3
1

A′(ξ−1/3
1 ρ)

A(−ξ
−1/3
1 η)

)
eiθF̂ (ξ, η) dξ dη.

The phase functions ρ, θ will solve certain eikonal equations and the amplitudes
g, h will solve certain transport equations.
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The function A(s) = A±(s) is a certain Airy function, A±(s) = Ai(e±(2/3)πis),
solving the Airy equation A′′(s) − sA(s) = 0. A(s) blows up as s → +∞ and is
oscillatory as s → −∞. In fact, one has

(1.6) A±(s) = ± i

2
e∓(2/3)πiF (s)e∓iχ(s),

where F (s)−1 ∈ S
1/4
1,0 (R), χ(s) ∈ S

3/2
1,0 (R) have expressions of the form

F (s)2 ∼ 1
π
√−s

[
1− a1(−s)−3/2 + · · ·

]
, as s → −∞,

F (s) ∼ 1
π

e(2/3)s3/2
, as s → +∞,

χ(s)− π

4
∼ 2

3
(−s)3/2

[
1− b1(−s)−3/2 + · · ·

]
, as s → −∞.

χ is real, and χ′(s) = −1/πF (s)2. Background material on the Airy function can
be found in [Mil], and in Appendix A of [MeT2].

It turns out that we can find solutions to the eikonal equations

(1.7)
θ2

t − |∇xθ|2 +
ρ

ξ1
(ρ2

t − |∇xρ|2) = 0,

θtρt −∇xθ · ∇xρ = 0,

on Rn \K for η ≥ 0, and to infinite order on ∂K for η ≤ 0, such that

(1.8) ρ
∣∣∣
R×∂K

= −η,

and such that

(1.9)
∂ρ

∂ν

∣∣∣
R×∂K

< 0.

(The functions ρ, θ are real valued, smooth, and homogeneous of degree 1 in (ξ, η).)
From this, the asymptotic relation (1.6) makes sense out of (1.5) as a Fourier
integral operator with singular phase function. The unknown distribution F , with
wave front set in a small conic neighborhood of {η = 0}, is related to u|R×∂K = f
by a Fourier integral operator. Indeed, using (1.8) and the similarly derived fact
that one can arrange

(1.10) h
∣∣∣
R×∂K

= 0,

one gets, with θ0 = θ|R×∂K ,

(1.11) u
∣∣∣
R×∂K

=
∫∫

geiθ0 F̂ dξ dη = JF.
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In solving the transport equation for g one can arrange that g be nonvanishing on
a small conic set, and the phase function θ0 can be seen to yield a non-degenerate
canonical transformation J , so J is an elliptic Fourier integral operator, and hence
is microlocally invertible. Thus, the parametrix to (1.1)–(1.3) is given by (1.5) with

(1.12) F = J−1f.

We briefly go over the solution to the eikonal equation (1.7), satisfying the con-
dition (1.8), which is more restrictive than the condition

ρ
∣∣
R×∂K

= −η + O
(
|ξ|

( |η|
|ξ|

)∞)
,

proved and used in [T1] and [T4]. The extra ingredient used to obtain (1.8) is
Melrose’s result on equivalence of glancing hypersurfaces [Mel2]. Melrose [Mel3] has
noted that this result leads to solutions to (1.7) such that ρ|R×∂K is independent
of (t, x). The argument we sketch here is just a little different from that one.

Let Ω = R × (Rn \ K). The pair of hypersurfaces J1 = T ∗∂Ω(Rn+1) and K1 =
{|ξ|2 − τ2 = 0} in T ∗(Rn+1) has glancing intersection, in the sense of [Mel2].
Consequently, there is a (microlocally defined) homogeneous symplectic map

(1.13) T ∗(Rn+1
+ )

χ−→ T ∗Ω,

taking the “canonical pair” of hypersurfaces to J1,K1. More precisely, J0 =
{xn+1 = 0} is taken to J1 and K0 = {p0(x, ξ) = 0} is taken to K1 by χ, where

(1.14) p0(x, ξ) = ξ2
n+1 − xn+1ξ

2
1 + ξ1ξn.

Now, on J1 and J0, the symplectic form gives a Hamilton foliation. Let this deter-
mine an equivalence relation ∼. Then J1 ∩K1/ ∼ has the structure of a symplectic
manifold with boundary, and is naturally isomorphic to the closure of the “hyper-
bolic” region in T ∗(∂Ω), the region over which real rays pass, and similarly J0∩K0

is naturally isomorphic to the closure of the hyperbolic region in T ∗(∂Rn+1
+ ). Thus

we get a homogeneous symplectic map

(1.15) T ∗(∂Rn+1
+ )

χJ−→ T ∗(∂Ω),

defined in the hyperbolic regions, smooth up to the boundary, which consists of the
grazing directions. Furthermore, χJ intertwines the “billiard ball maps” δ±0 and
δ±. Here, the billiard ball maps δ± : T ∗(∂Ω) → T ∗(∂Ω), defined on the hyperbolic
region, continuous up to the boundary, smooth in the interior, are defined at a
point (x0, ξ0) by taking the two rays that lie over this point, in the variety K1 =
{|ξ|2 − τ2 = 0}, and following the null bicharacteristics through these points until
you pass over ∂Ω again, projecting such a point onto T ∗(∂Ω); δ+ increases the
t-coordinate and δ− decreases it. δ±0 is defined similarly.
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Let v ∈ Λ′(∂Ω) be a gradient field corresponding under χJ to some (ξ1, . . . , ξn) =
const. in T ∗(Rn). Let Sv ⊂ T ∗Ω be the Hamilton flow-out, where Sv|∂Ω is identified
with the appropriate point in K1 ⊂ T ∗Ω lying over v ∈ T ∗(∂Ω). Let Sξ ⊂ T ∗Rn+1

be the analogous flow-out in T ∗Rn+1, so χ takes Sξ to Sv.
The functions θ(z, ξ), ρ(z, ξ), solving (1.7), with z = (t, x), η = ξn, are obtained

as follows. Pick Φ ∈ C∞(Sv) such that dΦ = i∗α, where α is the canonical 1-
form on T ∗Ω and i : Sv → T ∗Ω is the natural inclusion. Φ is determined up to
a term independent of z, so normalize it, e.g., by picking a point q(ξ) ∈ Sv in
some smooth convenient fashion and requiring Φ to vanish there. The convexity
hypothesis implies that the natural projection

(1.16) π : Sv −→ Ω

is a simple fold. One has a smooth involution j : Sv → Sv, interchanging points
with the same image under π. With respect to this involution, we will break up Φ
into even and odd parts. Let Ψ = Φ ◦ j. If Sv is regarded as the graph of the field
v±, over its image π(Sv), define

(1.17) θ =
1
2
(Φ + Ψ) ◦ v±, ρ = ξ

1/3
1

[3
4
(Φ−Ψ) ◦ v±

]2/3

.

It is straightforward to verify that φ± = θ ± (2/3)ξ−1/2
1 ρ3/2 satisfies the eikonal

equation (φ±t )2 = (∇xφ±)2 on π(Sv), and (1.7) follows. The point of the construc-
tion (1.17) is that ρ and θ are smooth up to the image under π of the fold set,
the “caustic.” Consequently they can be continued across in a smooth fashion. If
η = ξn ≥ 0, Sv projects onto a region containing ∂Ω; if η < 0, this is no longer the
case. Thus ρ, θ are defined on Ω for η ≥ 0 by (1.17). Using a formal power series
expansion and the Whitney extension theorem, we can smoothly extend ρ, θ to
η < 0 so that the eikonal equation (1.7) is solved to infinite order at the boundary
∂Ω. This is enough to make distributions defined by (1.5) solve the wave equation,
mod C∞, granted an analogous formal solution to the transport equation.

Now we want to look into the behavior of ρ, and verify (1.8). Note that ρ = 0
on the caustic set; in particular, on ∂Ω, ρ = 0 at η = 0. Also, we can see that ρ is
independent of x on ∂Ω, by studying the eikonal equations, which give

(1.18) v = i∗
(
dθ ±

√−ρ

ξ1
dρ

)
on ∂Ω

(where i : ∂Ω → Ω), since v is invariant under the billiard ball maps. This implies
i∗dρ = 0, so ρ|∂Ω depends on (ξ, η). To see that actually ρ∂Ω = −η, we make use of
the fact that ρ, unlike θ, is defined independently of the choice of normalization of
Φ. Now define Φ0 ∈ C∞(Sξ) in the same fashion as Φ in C∞(Sv). If we normalize
Φ0 to vanish at q0(ξ) = χ−1

J q(ξ), where Φ was normalized to vanish on q(ξ), then
Φ0 may give rise to a non-smooth θ0, but we are only concerned with the value of
ρ0, so we proceed. We see that

(1.19) Φ0 = Φ ◦ χJ .
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Now we know that (4/3)ρ3/2|∂Ω is the difference between the two values of ξ
1/2
1 Φ at

two points in Sv lying over a common image point in ∂Ω. To say these points are so
related is equivalent to saying that they both lie in J1∩K1 and are equivalent under
the relation ∼ defined above. Similarly (4/3)ρ3/2

0 |∂Rn+1
+

is the difference between

two values of ξ
1/2
1 Φ0 at points lying over a common base point in ∂Rn+1

+ , which is
to say these two points are in J0 ∩K0 and related by ∼. Thus χJ preserves this
pairing, so

(1.20) ρ
∣∣∣
∂Ω

= ρ0

∣∣∣
∂Rn+1

+

.

However, in the canonical example, one explicitly has

(1.21) ρ0 = −ξn + xn+1ξ1,

and in particular ρ0 = −ξn = −η on ∂Rn+1
+ . This establishes (1.8).

In the constructuon described above, that of θ is not canonical. One can arrange
that θ|∂Ω generate the canonical transformation χJ . In general, whatever canonical
transformation it generates has in common with χJ that it conjugates δ± to δ±0 .

A parallel but simpler argument produces the amplitudes from certain transport
equations, to be solved exactly on Ω for η ≥ 0 and to infinite order for η < 0, with
(1.10) holding.

This sketches the construction of the parametrix (1.5). For more details, and
the study of the singularities of (1.5), see the monograph [MeT2], or the earlier
exposition in Chapter 10 of [T4], or the original papers [Mel1], [Mel2], [T1]. Of
course, the basic result on the singularities of (1.5) is that they lie over WF(JF )
and propagate forward in time along null bicharacteristics of ∂2/∂t2 − ∆, thus
verifying the geometrical optics description in the diffractive case.

2. The Neumann operator

The exact solution to the boundary value problem (1.1)–(1.3) can be written as
Kirchhoff’s integral

(2.1) u(t, x) =
∫

R×∂K

[
f(s, y)

∂G

∂ν
(t− s, x− y)− g(s, y)G(t− s, x− y)

]
ds dS(y),

where

(2.2) g =
∂u

∂ν

∣∣∣
R×∂K

= Nf
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defines the Neumann operator (also called the Dirichlet-to-Neumann map). Here,
G(t, x) is the free space fundamental solution to the wave equation on R×Rn. For
n = 3, for example, one has

G(t, x) =
δ(|x| − t)

4πt
,

for t > 0. Evidently, it is very useful to analyze the properties of N . When K is
convex, so the diffractive hypothesis is satisfied, we can analyze N as a pseudodif-
ferential operator, using the parametrix (1.5), as follows.

Differentiate (1.5) and restrict to R× ∂K. Use (1.8) and (1.10). Note that (1.8)
implies ∇ρ is normal to ∂K, so, if one takes ρ independent of t, which can be
arranged, the second half of (1.7) implies θν |∂K = 0. Thus (1.5) gives

(2.3)

∂u

∂ν

∣∣∣
R×∂K

=
∫∫

(gρν + ihν)ξ−1/3
1

A′

A
(−ξ

−1/3
1 η)F̂ (ξ, η)eiθ0 dξ dη

+
∫∫

gν F̂ (ξ, η)eiθ0 dξ dη

= K1QF + K2F,

where

(2.4) (QF )̂ (ξ, η) = ξ
−1/3
1

A′

A
(−ξ

−1/3
1 η)F̂ (ξ, η)

defines Q ∈ OPS0
1/3,0. The operators K1 and K2 are Fourier integral operators

with the same phase functions as J ; K1 is elliptic of order 1, and K2 has order 0.
Egorov’s theorem gives K1 = JA, K2 = JB, for certain A ∈ OPS1 elliptic (not to
be confused with the Airy function!), B ∈ OPS0. Comparing with (1.11), we get

(2.5) N = J(AQ + B)J−1.

Thus N is conjugated to the special form AQ+B, by a Fourier integral operator
whose associated canonical transformation is the very one χJ given in (1.15). The
fact that this transformation conjugates the billiard ball maps δ± to standard form
has deep connections with the form of the argument of the airy quotient A′/A in
(2.4), as we will see.

Now, look at the conjugate under J of another Fourier multiplier, Ai, defined by

(2.6) (Ai F )̂ (ξ, η) = Ai(−ξ
−1/3
1 η)F̂ (ξ, η).

We will see more of this in later sections, as an example of a Fourier integral
operator with folding canonical relation. For the moment, just think of it as a
Fourier integral operator defined in the conic region η > 0, via the expansion

(2.7) Ai(s) = F (s) sin χ(s),
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where F (s) and χ(s) are as in (1.6). Thus, in {η > 0}, Ai is a sum of two
Fourier integral operators, whose canonical transformations are (with η = ξn, ξ =
(ξ1, . . . , ξn))

(2.8) A±(x, ξ) =
(
x1 ± 1

3

(ξn

ξ1

)3/2

, x2, . . . , xn−1, xn ±
(ξn

ξ1

)1/2

, ξ
)
.

Compare with the “standard” billiard ball map:

(2.9) δ±0 (x, ξ) =
(
x1 ± 2

3

(ξn

ξ1

)3/2

, x2, . . . , xn−1, xn ± 2
(ξn

ξ1

)1/2

, ξ
)
.

Clearly

(2.10) (A±)2 = δ±0 .

This gives the following result. The operator J(Ai2)J−1 is an operator which, when
restricted to the “hyperbolic” region, is a sum of three Fourier integral operators,
whose three canonical relations are the two billiard ball maps, δ+ and δ−, and the
identity.

Another geometrical phenomenon, emphasized by Melrose [Mel4], involving the
canonical transformation χJ versus the argument ζ0 = ξ

−1/3
1 η, is the following.

Define ζ by ζ0 = ζ ◦ χJ . Consider the Hamiltonian vector field Hζ3/2 and consider
its time one flow, Exp Hζ3/2 . This is the map δ+.

As a further remark, we note that the Neumann boundary problem (1.1), (1.3),
and (1.4), can be solved using

(2.11) N−1 = JQ−1(A + BQ−1)−1J−1,

since Q−1 ∈ OPS
1/3
1/3,0 and A + BQ−1 ∈ OPS1

1/3,0 is elliptic. A study of the
Neumann operator is useful in considering other boundary value problems for the
wave equation, including the problem of diffraction of electromagnetic waves by a
convex perfect conductor. Details are given in Chapter 10 of [T4].

More material on operators of the form (2.5) and (2.11) can be found in [T7]
and in Chapter 9 of [MeT2].

3. Fourier integral operators with folding canonical relations

The operation of convolution by δ(x1−x3
n/3)δ(x2) · · · δ(xn−1) is a Fourier integral

operator with folding canonical relation, i.e., its canonical relation Λ′ ⊂ T ∗Rn ×
T ∗Rn projects onto each factor as a simple fold. This operation is the same as
Fourier multiplication by ξ

−1/3
1 Ai(−ξ

−1/3
1 ξn). Thus the operator Ai defined by
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(2.6) is a Fourier integral operator with folding canonical relation. So is the operator
Ai′, defined by

(3.1) (Ai′ F )̂ (ξ, η) = Ai′(−ξ
−1/3
1 η)F̂ (ξ, η).

This is (essentially) convolution by the above distribution, multiplied by xn. One
of the aims of this section is to show that, if dim X1 = dim X2 = n and Λ ⊂
T ∗X1 × T ∗X2 is a folding canonical relation, then any Fourier integral operator
A ∈ Im(X1, X2; Λ′) can be written in the form

(3.2) A = J(P1Ai + P2Ai′)K,

for some elliptic Fourier integral operators J and K (of order 0) and some

P1 ∈ OPSm+1/6, P2 ∈ OPSm−1/6.

We also want to understand the behavior of A∗A.
Suppose Λ′ ⊂ T ∗X1 × T ∗X2 is a folding canonical relation. We give a condition

that guarantees that two elements A1, A2 ∈ Im(X1, X2; Λ′) generate them all, as a
module over OPS0, at least locally near a point on the image of the fold set L ⊂ Λ′,
projected onto X1. First we introduce some geometry. The projection πj of Λ′ to
T ∗Xj determines an involution, which we denote Jj , such that

(3.3) Jj(ζ) = ζ ′ if πj(ζ) = πj(ζ ′).

Note that, for any P ∈ OPS0, PA has principal symbol which is a multiple p of
that of A1, and J ∗2 p = p on Λ′. This explains why two operators are needed to
generate Im(X1, Xs; Λ′). Indeed, we have the following.

Proposition 3.1. Let ζ ∈ L (the fold set in Λ′), and suppose σA1 6= 0 at ζ. Let
σA2 = βσA1 and suppose β − J ∗2 β vanishes to precisely first order on L, near ζ.
Then, microlocally near π1ζ, for any A ∈ Iν(X1, X2; Λ′), you can write, modulo a
smoothing operator,

(3.4) A = P1A1 + P2A2, Pj ∈ OPSν−m.

Here σAj denotes the principal symbol of Aj, a section of the Keller-Maslov line
bundle over Λ′, and β is scalar.

Proof. The hypothesis implies that any homogeneous (scalar) function g on Λ′ can
(near ζ) be written in the form

g = g1 + g2β,

where g1 and g2 are homogeneous of the appropriate degree and even with respect
to J2; hence gj = π∗2pj . Letting Pj have principal symbol pj , if σA = gσA1 , we get
(3.4), modulo Iν−1(X1, X2; Λ′). An inductive argument finishes the proof.
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It is easy to see that the operators Ai, Ai′ satisfy the hypotheses of Proposition
3.1, after normalization of their order.

The next thing we want to do is show that, given a folding canonical relation Λ′ ⊂
T ∗X1 × T ∗X2 (dimXj = n), there exist homogeneous canonical transformations

χj : T ∗Rn −→ T ∗Xj

such that
χ−1

2 ◦ Λ′ ◦ χ1 ⊂ T ∗Rn × T ∗Rn

is the “standard” folding canonical relation associated to Ai:

(3.5) C0(x, ξ) =
(
x1 ± 1

3

(ξn

ξ1

)3/2

, x2, . . . , xn−1, xn ±
(ξn

ξ1

)1/2

, ξ
)
.

First we introduce some geometric objects associated with Λ′, in addition to the
involutions Jj discussed above. We also have “boundary maps”

(3.6) δ±1 = π1 ◦ J2 ◦ π−1
1 , δ±2 = π2 ◦ J1 ◦ π−1

2 ,

where ± depends on the choice of continuous inverse of π1 or π2. The domain and
range of δ±j is the image under πj of Λ′ in T ∗Xj . These boundary maps have the
same properties as the billiard ball maps discussed in §1. Indeed, in applications
we will see later, X1 = R× ∂K and δ±1 will be the billiard ball map. Furthermore,
in the special case when Λ′ = C0, δ±1 = δ±2 = δ±0 , the billiard ball map for the
canonical example discussed in §1. There is a simple formula for δ±0 :

(3.7) δ±0 (x, ξ) =
(
x1 ± 2

3

(ξn

ξ1

)3/2

, x2, . . . , xn−1, xn ± 2
(ξn

ξ1

)1/2

, ξ
)
.

In §1 we showed that, if X1 = R× ∂K and δ±1 is the billiard ball map, there is
a canonical transformation χ1 = χJ which conjugates δ±1 to δ±0 . This holds gen-
erally. In fact, Proposition 7.14 of [Mel2] says there exist homogeneous symplectic
coordinates (x, ξ) on T ∗X1 with ξn ≥ 0 on π1(Λ′), such that in these coordinates
δ±1 takes the form (3.7). We are now ready to state the main geometrical result.

Proposition 3.2. If Λ′ ⊂ T ∗X1×T ∗X2 is a folding canonical relation, and if χ1 :
T ∗Rn → T ∗X1 conjugates δ±1 to δ±0 , then there exists a canonical transformation
χ2 : T ∗Rn → T ∗X2 such that

(3.8) χ−1
2 ◦ Λ′ ◦ χ1 = C0.

Proof. Replacing Λ′ by Λ′ ◦χ1, we can suppose δ±1 = δ±0 . We look for χ2 such that
χ2 ◦ Λ′ = C0. First note that there exist natural maps

(3.9) χ± : Λ′ −→ C0,
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defined as follows. For p ∈ π1(Λ′) = π1(C0) ⊂ T ∗(Rn), there are two points
q1(p), q2(p) ∈ Λ′ and two points r1(p), r2(p) ∈ C0 mapped to p by π1, these two
points degenerating to one for p ∈ {ξn = 0}, the image of the fold sets. We
can suppose that q1(p) (resp., r1(p)) belongs to one selected component of the
complement of the fold set in Λ′ (resp., in C0), and that q2(p) (resp. r2(p)) belongs
to the other. Then χ± is defined by χ+(qj(p)) = rj(p), and χ−(qj(p)) = rj′(p),
where 1′ = 2, 2′ = 1. It is not hard to see that χ± are C∞ and preserve the “folded
symplectic forms” on Λ′ and C0, which are the pull backs by π∗1 of the symplectic
form on T ∗(Rn). Note that, since χ± each conjugate δ±1 to δ±0 , these maps take
the involution J2 on Λ′ to the analogous involution J2 on C0.

We are ready to define χ2. First we define χ−1
2 on the image π2(Λ′) in T ∗X2, as

follows. Let p ∈ π2(Λ′) ⊂ T ∗X2. Let π2(p1) = π2(p2) = p, pj ∈ Λ′, let p̃j = χ+(pj).
we claim that

(3.10) π2(p̃1) = π2(p̃2) ∈ T ∗(Rn).

Indeed, (3.10) holds if and only if J2 interchanges p̃1 and p̃2. But by the same
token J2 does interchange p1 and p2, and since χ+ conjugates one J2 to the other,
we have (3.10). So set

(3.11) χ−1
2 (p) = π2(p̃1) = π2(p̃2).

From he structure of π2 as a fold, it follows from (3.11) that χ−1
2 is C∞ on the region

with boundary π1(Λ′). Hence there exists a smooth extension to a neighborhood
of the boundary. Pick any one, to define χ−1

2 . This completes the proof.

Propositions 3.1 and 3.2 together easily give the following main result.

Theorem 3.3. If A ∈ Im(X1, X2; Λ′) with Λ′ a folding canonical relation, then
there exist elliptic Fourier integral operators J and K, corrseponding to the canon-
ical transformations χ2 and χ1 of Proposition 3.2, such that

(3.12) A = J(P1Ai + P2Ai′)K,

for some P1 ∈ OPSm+1/6, P2 ∈ OPSm−1/6. Furthermore one can fix the canon-
ical transformation associated with K (alternatively, with J) to be any one which
conjugates the appropriate boundary maps to the standard form δ±0 .

One simple corollary to Theorem 3.3 gives the sharp order of continuity of these
FIOs on Sobolev spaces.

Corollary 3.4. If A ∈ Im(X1, X2; Λ′) as in Theorem 3.3, then

A : Hs(X1) −→ Hs−m−1/6(X2),

for all s ∈ R. Furthermore, A : Hs(X1) → Hs−m(X2), if and only if σA|L = 0,
where L ⊂ Λ′ is the fold set.
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Proof. This follows from the representation (3.12) by standard continuity results
for the FIOs J and K, the pseudodifferential operators P1 and P2, and the Fourier
multipliers Ai and Ai′.

Finally, we analyze A∗PA, given P ∈ OPSµ. By Theorem 3.3, we have

A∗PA = K∗(AiP ∗1 +Ai′P ∗2 )J∗PJ(P1Ai + P2Ai′)K,

with P1, P
∗
1 ∈ OPSm+1/6, P2P

∗
2 ∈ OPSm−1/6. By Egorov’s theorem, J∗PJ ∈

OPSµ. By Proposition 3.1, all the pseudodifferential operators can be pushed to
the left of Ai and Ai′, and we get

(3.13) A∗PA = K∗(P11Ai2 + P12AiAi′ + P22(Ai)2)K,

with

(3.14) P11 ∈ OPSµ+2m+1/3, P12 ∈ OPSµ+2m, P22 ∈ OPSµ+2m−1/3.

This puts A∗PA in a standard form. Note that

(3.15) WF(A∗PAu) ⊂ C ◦WF(u),

where the “canonical relation” C is the union of two Lagrangian manifolds:

(3.16) C = Λ̃ ∪∆+.

Λ̃ is a folding canonical relation and ∆+ is a Lagrangian manifold with boundary
(a subset of the diagonal) transversally intersecting Λ̃, the intersection coinciding
with the fold set for Λ̃.

4. The scattering operator

The scattering operator gives information on the behavior at infinity of solutions
to the wave equation. It is related to the scattering amplitude as(θ, ω, λ), which
gives the large x behavior of the “outgoing” solution to the boundary value problem
for us = us(λ, x, ω):

(4.1) (∆ + λ2)us = 0 on R3 \K, us

∣∣∣
∂K

= e−iλx·ω,

namely

(4.2) as(θ, ω, λ) = lim
r→∞

re−iλrus(λ, rθ, ω).
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The scattering operator is the operator with kernel âs(θ, ω, s− t), where

(4.3) âs(θ, ω, t) =
∫ ∞

−∞
as(θ, ω, λ)e−iλt dλ.

Since the outgoing solution to (4.1) can be written

(4.4) us(x) =
∫

∂K

[
us(y)

∂Gλ

∂ν
(x− y)− ∂us

∂ν
Gλ(x− y)

]
dS(y),

where Gλ(x) = eiλ|x|/|x|, applying (4.2) gives

(4.5) as(θ, ω, λ) =
∫

∂K

e−iλθ·y
[
iλ(ν · θ)us(λ, y, ω) +

∂

∂ν
us(λ, y, ω)

]
dS(y).

From (4.3) we get a formula for the kernel of the scattering operator:

(4.6) âs(θ, ω, t) =
∫

∂K

( ∂

∂ν
− (ν · θ) ∂

∂t

)
w(t + y · θ, y, ω) dS(y),

where w solves the boundary value problem

( ∂2

∂t2
−∆

)
w = 0, w

∣∣∣
R×∂K

= δ(t− y · ω), w = 0 for t << 0.

We can write (4.6) as

(4.7) S = T (N + P )U,

where N is the Neumann operator of §2, P = −(ν ·θ)∂t ∈ OPS1, and the operators
T and U are defined as follows. T : E ′(R× ∂K) → E ′(R× S2) is given by

(4.8) TF (t, θ) =
∫

∂K

F (t + y · θ, y) dS(y),

and U : E ′(R× S2) → E ′(R× ∂K) is given by

(4.9) Uf(t, y) =
∫

S2

f(t− y · ω, ω) dω.

We first point out some basic geometric properties of the operators T and U , so
that the results of §3 will be seen to apply. We assume K ⊂ R3 is convex, with
smooth boundary and strictly positive curvature.
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Proposition 4.1. T and U are Fourier integral operators of order −1 with folding
canonical relations, which are inverses of each other. The boundary maps δ± on
T ∗(R× ∂K) are the billiard ball maps.

Proof. Direct consequence of the formulas (4.8) and (4.9).

Consequently, we have

U = J(P1Ai + P2Ai′)K,

T = K−1(P̃1Ai + P̃2Ai′)J−1,

for certain P1, P̃1 ∈ OPS−1+1/6 and P2, P̃2 ∈ OPS−1−1/6. Here J is the same
elliptic FIO that puts the Neumann operator in standard form; see (2.5). Thus
(4.7) yields

(4.11) S = K−1(P̃1Ai + P̃2Ai′)(AQ + B + J−1PJ)(P1Ai + P2Ai′)K.

Collapsing terms gives

(4.12) S = K−1(P00Ai2 + P01AiAi′ + P11(Ai′)2)K,

where P00 ∈ OPN−1+1/3
1/3 has the form

(4.13) P00 = P c
00 +

∑

α≥0

P00αQ(α),

with P c
00, P00α ∈ OPS−1+1/3, Q(α) having symbol Dα

ξ,ησQ, and similarly P01 ∈
OPN−1

1/3, P11 ∈ OPN−1−1/3
1/3 , with asymptotic expansions similar to (4.13).

We next investigate the fact that the wave front relation of S is smaller than
that of general operators whose form is given by the right side of (4.12). Indeed, in
the shadow region one has (N + (ν · ω)∂t)δ(t − y · ω) ∈ C∞. Meanwhile, Green’s
theorem implies

∫

∂K

ν · (ω + θ)δ′(t− x · (ω − θ)) dS(x) = 0,

so
Sδ(0,ω) = T

(
N + (ν · ω)

∂

∂t

)
δ(t− y · ω).

Thus Sδ(0,ω) is singular at t = miny∈∂K y · (θ − ω), but the singularity at t =
maxy∈∂K y · (θ − ω), which would occur for most distributions of the form (4.12),
is absent.

In fact, we can get an alternative formula for S = T (N + P )U whose form more
closely reflects this restriction on the wave front relation of S, as follows. We have

(4.14) Sδ(0,ω) = T (N + (ν · ω)∂t)Uδ(0,ω),
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and, for certain P#
1 ∈ OPS−1+1/6, P#

2 ∈ OPS−1−1/6, we have

(4.15) A−1J−1(N + (ν · ω)∂t)UK−1 = Q(P1Ai + P2Ai′) + P#
1 Ai + P#

2 Ai′.

Rewrite the right side of (4.15) as

(4.16) Q(AiP̃1 +Ai′P̃2) +AiP̃3 +Ai′P̃4.

Using the Wronskian relation

Ai′ =
α

A−
+

A′−
A−

Ai, α 6= 0,

write (4.16) as

(4.17) Ai(Q2P̂2 + Q(P̃1 + P̂4) + P3) + αA−1
− (QP̃2 + P̃4).

We now use the following result.

Lemma 4.2. Suppose A,B,C ∈ OPS0 and

(4.18) V = AQ2 + BQ + C ∈ OPS−∞ on {η > 0}.

Then the terms in the asymptotic expansion of the symbols of A, B, and C all vanish
to infinite order at η = 0 and

(4.19) (AQ2 + BQ + C)Ai ∈ OPS−∞.

Proof. Note that the symbols of Q and Q2 have, respectively, the asymptotic ex-
pansions

q ∼ ξ
−1/3
1

(
β0(ξ

−1/3
1 η)1/2 + β1(ξ

−1/3
1 η)−1 + β2(ξ

−1/3
1 η)−5/2 + · · ·

)
,

q2 ∼ ξ
−2/3
1

(
γ0ξ

−1/3
1 η + γ1(ξ

−1/3
1 η)−1/2 + γ2(ξ

−1/3
1 η)−2 + · · ·

)
.

Let the symbol of A be asymptotic to
∑

Aj , etc. Then the part homogeneous of
degree −j in the expansion of V in η > 0 is

Vj = Aj + β0ξ
−1/2
1 η1/2Bj + γ0ξ

−1
1 ηCj

+ β1η
−1Bj−1 + γ1ξ

−1/2
1 η−1/2Cj−1

+ · · ·
+ βjξ

−1/2+j/2
1 η1/2−3j/2B0 + γjξ

−1+j/2
1 η1−3j/2C0

= 0.
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Separating terms into integer or non-integer powers of η, we get a pair of equations
holding to infinite order at η = 0, for each j. For each k, we get 2j equations in 3k
unknowns η`A`, η

`B`, η
`C`, mod O(ηk) (0 ≤ ` ≤ k − 1) and if j is picked so j > k,

one has uniqueness: η`A` = η`B` = η`C` = 0 mod O(ηk), 0 ≤ ` < k. Taking k
arbitrarily large gives Aj , Bj , Cj all vanishing to infinite order at η = 0. From this
fact, (4.19) is a simple consequence.

To see how the lemma applies to (4.17), note that the first term must have wave
front relation constained in that of A−1

− , and since Ai is a sum of two elliptic FIOs
in the open cone η > 0, this implies that Q2P̂2 + Q(P̃1 + P̂4) + P3 belongs to
OPS−∞ on η > 0. Taking adjoints, we can apply the lemma, and taking adjoints
back implies

(4.20) Ai(Q2P̂2 + Q(P̃1 + P̂4) + P3) ∈ OPS−∞.

We also have all the terms in the asymptotic expansion of P̂2, and hence of P̃2,
vanishing to infinite order at η = 0, which gives

α(QP̃2 + P̃4) = P5 ∈ OPS−1−1/6.

Thus (4.15) gives

(4.21) (N + (ν · ω)∂t)U = JAA−1
− P5K.

Consequently, using the representation

T = K−1(P̃1Ai + P̃2Ai′)J−1,

we get
S = K−1(P̃1Ai + P̃2Ai′)AA−1

− P5K,

or

(4.22) S = K−1(P b
1Ai + P b

2Ai′)A−1
− P5K.

We remark that P5 is elliptic. This follows from the ellipticity of P̃4, or of P̂4, which
in turn follows from the ellipticity of P̃1, hence of P1. Thus one could replace P5K
by K in (4.22) and effectively absorb the P5 factor. We summarize as follows.

Theorem 4.3. The scattering operator has the form

(4.23) S = K−1(P#
1 Ai + P#

2 Ai′)A−1
− K,

where K is an elliptic FIO of order 0, and

(4.24) P#
1 ∈ OPS−1, P#

2 ∈ OPS−1−1/3.
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For further details, and results on the scattering amplitude, we refer to [MeT].

5. The corrected Kirchhoff approximation

As one can see from §4, it is desirable to have a good hold on the normal derivative
∂us/∂ν of the solution to the boundary value problem

(5.1) (∆ + λ2)us = 0 on R3 \K, us

∣∣∣
∂K

= e−iλx·ω,

satisfying the outgoing condition

(5.2) us(x) = O(|x|−1),
∂us

∂r
− iλus = o(|x|−1),

as |x| → ∞. This is a classical problem, and a classical tool used in calculations in
non-rigorous scattering theory is the Kirchhoff approximation:

(5.3)
∂us

∂ν

∣∣∣
∂K

≈ iλ|ν · ω|e−iλx·ω.

This approximation was proposed by G. Kirchhoff in [Kir], in an effort to cast light
on the Fresnel theory of diffraction. It was motivated by the idea that the scattered
field, for large λ, is approximately obtained, at a point x ∈ ∂K where ν · ω > 0
(the “illuminated region”) by replacing ∂K by its tangent plane at x and solving
the wave equation exactly, and at a point x ∈ ∂K where ν · ω < 0 (the “shadow
region”) by the consideration that the total field should be essentially zero.

Rigorous affirmation of (5.3), for K smooth and strictly convex, with positive
curvature, was first given in [T4], where it was shown that, with

(5.4)
∂us

∂ν

∣∣∣
∂K

= K(x, λ, ω)e−iλx·ω,

there is the estimate
∣∣∣K(x, λ, ω)− iλ|ν · ω|

∣∣∣ ≤ Cελ
3/4+ε,

for each ε > 0. This estimate made use of Lp estimates for operators in OPN 0
ρ ,

and pushed techniques developed in [MjT]. An analogous estimate for the validity
of the Kirchhoff approximation for the Neumann boundary condition and for the
natural boundary problem for Maxwell’s equations was given by Yingst [Y].

Here we sketch work in [MeT], yielding a complete asymptotic expansion for the
coefficient K in (5.4), giving a corrected form of the Kirchhoff approximation. A
byproduct is a sharpening of the estimate (5.5) to

(5.6)
∣∣∣K(x, λ, ω)− iλ|ν · ω|

∣∣∣ ≤ Cλ2/3.
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Of course, the most interesting aspect of the result is the analysis of the nature
of the transition of the normal derivative of the scattered wave across the shadow
boundary.

We apply our study of the Neumann operator. First, a simple calculation gives
the formula

(5.7) N
(
e−iλ(x·ω−t)

)
= eiλt ∂us

∂ν

∣∣∣
∂K

.

So, with ψ = x · ω − t|R×∂K , we have

(5.8)
∂us

∂ν
= e−iλtN(e−iλψ).

We are led to apply the Neumann operator N to the oscillatory term e−iλψ. Because
the Neumann operator is not a pseudodifferential operator of classical type, the
main technical problem is to figure out how to do this. The first key result, about
the geometrical relation between the phase function ψ and the operator J , proved
by Melrose in [Mel4], is the following.

Lemma 5.1. The Neumann operator can be written in the form (2.5) with J so
chosen that

(5.9) J−1(e−iλψ) = a(x, y, λ)e−iλψ̃,

where a ∈ S0 and

(5.10) ψ̃(x, y) = x1 +
y3

3
.

Here, x represents the variables to which ξ are dual, with η dual to y.

The next step is to examine (A′/A)(e−iλψ̃). A calculation gives

(5.11)
A′
A (e−iλψ̃) = e−iλx1Φ(λ1/3y),

where Φ is given by an integral of Fock type:

(5.12) Φ(τ) =
∫

A′

A
(s) Ai(s) e−iτs ds =

A′

A
(Dτ )(eiτ3/3).

The asymptotic expansion of Φ(τ) is given as follows. Set

(5.13) r(s) =
A′

A
(s).

We have r ∈ S1/2(R), i.e.,

r(s) ∼
∑

j≥0

r±j s1/2−j , as s → ±∞.
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Lemma 5.2. Φ(τ) = eiτ3/3Ψ(τ) with Ψ ∈ S1(R). Indeed, as |τ | → ∞,

(5.14) Ψ(τ) ∼
∑

k≥0

ik

k!
∂k

s a(0, τ)r(k)(τ2),

where

(5.14A) a(s, τ) = e−is3/3−iτs2
.

Proof. We can rewrite the far right side of (5.12) as

(5.14B) eiτ3/3 r(Ds)
(
b(s, λ)eiλs

)∣∣∣
s=0,λ=τ2

,

where
b(s, λ) = a(s, λ1/2) ∈ S0

1/2,1/2.

Mod O(λ−∞), all the contribution comes from a small neighborhood of s = 0, and
the pseudodifferential calculus yields (5.14) from (5.14B).

Note that the term k = 1 in (5.14) vanishes, and

(5.15) Ψ(τ) =
A′

A
(τ2) + ρ(τ), ρ ∈ S−2(R).

So far, we have

(5.16)
A′
A (e−iλψ̃) = Ψ(λ1/3y)e−iλψ̃.

It follows that

(5.17) (AQ + B)(J−1e−iλψ) = b̃(x, y, λ)e−iλψ̃,

with

(5.18) b̃ ∼
∑

j,k,`≥0

σjk`(x, y, λ)Ψ(`)
jk (λ1/3y) +

∑

j≥0

τj(x, y, λ),

where
σjk` ∈ S2/3−j/3−k−2`/3, τj ∈ S−j , Ψjk ∈ S1−2j(R).

Here, Ψjk is defined by

(5.19)

Ψjk(τ) = e−iτ3/3rjk(Dτ )(eiτ3/3)

∼
∑

`≥0

i`

`!
∂`

sa(0, τ)r(`)
jk (τ2),

where a(s, τ) is as in (5.14A) and

(5.20) rjk(λ) = λkr(j+k)(λ).

It remains to apply the Fourier integral operator J to the right side of (5.17).
We have b̃ ∈ S1

2/3,1/3. Since 2/3 > 1/2, classical methods apply to the asymptotic

expansion of J(b̃e−iλψ̃), and one achieves the following result.
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Theorem 5.3. The corrected Kirchhoff formula is

(5.21)
∂us

∂ν

∣∣∣
∂K

= K(x, λ, ω)e−iλx·ω,

where K ∈ S1
2/3,1/3 has the expansion

(5.22) K(x, λ, ω) ∼
∑

j,k,`≥0

κjk`(x, λ, ω)Ψ(`)
jk (λ1/3Z) + Kc(x, λ, ω),

with
Kc ∈ S0, κjk` ∈ S2/3−j/3−k−2`/3+a(`),

where a(0) = a(1) = 0 and a(`) = 1 for ` ≥ 2. Furthermore,

(5.23) Z vanishes to first order on {ν · ω = 0}.

We record all the terms of order greater than zero. We have

(5.24)

K = − ν · ω
Z

λ2/3
[A′

A
(λ2/3Z2) + ρ(λ1/3Z)

]

+ κ100Ψ10(λ1/3Z) + κ002Ψ
(2)
00 (λ1/3Z),

mod S0
2/3,1/3.

Here, ρ is given by (5.15), Ψ10 and Ψ00 by (5.19), and κ100, κ002 ∈ S1/3. From
(5.24) it is apparent that λ2/3 is the best possible power of λ that could go on the
right side in (5.6).

6. A representation for the wave evolution operator

This section discusses some results of Farris [F1], [F2], to which we refer for
further details. We want to look at the structure of the solution operator eiT

√−∆

at a fixed time T . Here, ∆ is the Laplace operator on Rn \K, with the Dirichlet
boundary condition on ∂K. More generally, ∆ could be defined on a complete
Riemannian manifold M with compact diffractive boundary. Let O be bounded
away from ∂M , and suppose T is picked so that, if we consider all the geodesics
issuing from O, reflecting off ∂M by the usual rules of geometrical optics, the set
U of endpoints of distance T from their origins, avoids ∂M . It follows that, for
u ∈ E ′(O), eiT

√−∆u is C∞ near ∂M . The goal here is to show that this operator
is of the form (mod C∞)

(6.1) eiT
√−∆u = K2

A+

A−K1u, u ∈ E ′(O),
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where K1,K2 are elliptic FIOs (depending on T ) and the operatorA+/A− is Fourier
multiplication:

(6.2)
(A+

A−F
)

(̂ξ, η) =
A+

A−
(−ξ

−1/3
1 η)F̂ (ξ, η).

To start, let ∆0 be the free space Laplacian, on Rn, or more generally on some
complete, boundaryless manifold M̃ containing M . Let

F = eiT
√−∆0 ,

and let R : E ′(O) → D′(R× ∂M) be given by

(6.3) Ru = eit
√−∆0u

∣∣∣
R×∂M

.

Also, let E : E ′(R× ∂M) → D′(M) be defined as follows: Ef is the value at t = T
of the outgoing solution w to the wave equation on R×M (w = 0 for t << 0) with
boundary condition w|R×∂M = f . Then ER is well defined and

(6.4) eiT
√−∆ = F − ER.

The map E is produced by taking (1.5) (with F = J−1f) and evaluating at
t = T . Note that, if WF(F ) is in a small conic neighborhood of η = 0, which
we may assume without loss of generality, then away from ∂M one can replace
A(ξ−1/3

1 ρ) and A′(ξ−1/3
1 ρ) by their asymptotic expansions, by (1.9), and write

(6.5) E = LA−1
− J−1,

where (using a cutoff φ(ξ−1
1 η))

(6.6) LF =
∫ [

gA−(ξ−1/3
1 ρ) + ihξ

−1/3
1 A′−(ξ−1/3

1 ρ)
]
eiθF̂ dξ dη,

the integral being evaluated at t = T and restricted to x ∈ U . L is a classical FIO,
and if we restrict our attention to near the boundary ∂M , L is elliptic.

The map R is a Fourier integral operator with folding canonical relation, and
the boundary maps δ± on T ∗(R× ∂M) are easily seen to coincide with the billiard
ball maps. Thus, by §3, one can write

(6.7) J−1RK = P̃1Ai + P̃2Ai′,

for some pseudodifferential operators P̃j and some elliptic Fourier integral operators
J and K, and in fact J can be taken to be the operator (1.11), which enters into
the formula for the Neumann operator (2.5). Combining (6.5) and (6.7) gives

(6.8) ER = LA−1
− (P̃1Ai + P̃2Ai′)K−1.
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In fact, we claim that K can be taken to be the operator

(6.9) KF =
∫ [

gA+(ξ−1/3
1 ρ) + ihA′+(ξ−1/3

1 ρ)
]
eiθF̂ dξ dη,

the integral evaluated at t = 0. Note that

(6.10) E− = KA−1
+ J−1,

where E−f is the value at t = 0 of the incoming solution w̃ to the wave equation on
R ×M (w̃ = 0 for t >> 0) with boundary condition w̃|R×∂M = f . A study of the
geometry of these operators shows that J−1RK is a FIO whose folding canonical
relation is the standard model C0. One use of this explicit representation of K is
to prove the following.

Lemma 6.1. L−1FK and its inverse K−1F−1L are elliptic pseudodifferential op-
erators on {η ≥ 0}.
Proof. (Recall that we know these operators are elliptic FIOs.) It suffices to prove
the assertion for {η > 0}. Use the representation

FK = FE−JA+, L = EJA− on {η > 0}.

Each of these is an elliptic FIO in this region, and to see that they move wave front
sets in the same fashion, it suffices to note that

(6.11) J
A−
A+

J−1

has, in J{η > 0}, the canonical transformation equal to the billiard ball map δ+.
This is established by the same argument used to treat JAi2J−1 in §2.

Given this lemma, we have, in addition to (6.3),

J−1R(F−1L) = P1Ai + P2Ai′,

and hence, as a convenient modification of (6.8), we have

(6.12) ER = LA−1
− (P1Ai + P2Ai′)L−1F.

Returning to (6.4), we see that, acting on E ′(O),

(6.13) eiT
√−∆ = L[I −A−1

− (P1Ai + P2Ai′)]L−1F.

In order to simplify the factor in brackets, let us note that, by virtue of the known
propagation of singularities for the operator eiT

√−∆, the factor in brackets must
move wave front sets the same way A+/A− does. Using

Ai = −ωA− − ωA+, ω = e(2/3)πi,
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one gets

(6.14)
I −A−1

− (P1Ai + P2Ai′)

=
A+

A−
[−ω2 −A−1

+ ((P1 + ω)Ai + P2Ai′)
]
,

and using the Wronskian relation

A′−Ai−A−Ai′ = α, α 6= 0,

we rewrite the factor in brackets on the right side of (6.14) as

(6.15) −ω2 − αA−1
+ P2A−1

− −A−1
+

(
P1 + ω − P2

A′−
A−

)
Ai.

Now this operator, which in the region {η > 0} is a classical FIO, is supposed
to preserve wave front sets. In particular, the last term in (6.15) is supposed to
preserve wave front sets. This implies that

(6.16) P1 + ω − P2
A′−
A− ∈ OPS−∞ on {η > 0}.

Since P1 and P2 are classical pseudodifferential operators, (6.16) is a very stringent
condition. Indeed, one has the following, which is in fact a special case of Lemma
4.2.

Lemma 6.2. Let A,B ∈ OPSm. Suppose

(6.17) A + BQ ∈ OPS−∞ on {η > 0}.
Then all the terms in the asymptotic expansions of the symbols of A and B must
vanish to infinite order at η = 0, and

(6.18) (A + BQ)A−1
± , (A + BQ)Ai ∈ OPS−∞.

Proof. Replacing (A′/A)(−ξ
−1/3
1 η) by its asymptotic expansion gives an infinite set

of identities, from (6.17), a priori satisfied for η > 0, hence, by continuity, satisfied
for η ≥ 0. For the principal symbols one gets

a0 + b0

√
η

ξ1
= 0,

which implies a0 and b0 vanish to infinite order at η = 0. Such vanishing of higher
order terms follows inductively, and from this, (6.18) is an elementary consequence.

Applying the lemma to (6.16), we conclude that the expression (6.15) is equal
to

(6.19) −ω2 − αA−1
+ P2A−1

− , mod OPS−∞,

and that

(6.20) P2 vanishes to infinite order at η = 0.

From (6.20), one can adapt a proof of Egorov’s theorem to get

(6.21) αA−1
+ P2A−1

− = P3 ∈ OPS0.

Putting together (6.13)–(6.15) with (6.19)–(6.21), we have the main result:
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Theorem 6.3. Acting on E ′(O),

(6.22) eiT
√−∆ = L

A+

A− (−ω2 − P3)L−1eiT
√−∆0 ,

mod OPS−∞. Here, L is the elliptic FIO arising in (6.6) and P3 ∈ OPS0 is given
by (6.21).

This representation allows one to analyze

(6.23) eiT
√−∆ P e−iT

√−∆,

given P ∈ OPSm(M), with symbol supported in O, as a pseudodifferential op-
erator, of non-classical type, with symbol essentially supported in U . This new
operator can be regarded as having a “principal symbol” which is continuous, but
not smooth, on the cosphere bundle of M , and then Egorov’s theorem holds; the
two principal symbols are related by the (non smooth) canonical transformation
associated with eiT

√−∆. For details, see [F2].
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