Self-Adjoint Perturbations in the Discrete Case

Michael Taylor

Contents

1. Introduction
2. Perturbation of a simple eigenspace
3. Rotationally invariant Hamiltonians
4. Kato's analyticity theorem - local version
A. Parallel transport defined by families of orthogonal projections

1. Introduction

Let $A(t)$ be an analytic family of compact, self-adjoint operators on a Hilbert space \mathcal{H}, for $t \in I=(a, b)$, with $a<0<b$. For example, we might have

$$
\begin{equation*}
A(t)=\left((H+t V)^{2}+I\right)^{-1} \tag{1.1}
\end{equation*}
$$

where H is an unbounded, self-adjoint operator with discrete spectrum and V is a bounded self-adjoint operator. Let λ be an eigenvalue of $A(0)$.

More generally, $A(t)$ can be an analytic family of bounded self-adjoint operators on \mathcal{H} with the property that λ is an isolated point of $\operatorname{Spec} A(0)$, and such that the λ-eigenspace of $A(0)$ is finite dimensional.

Let D be a closed disk centered at λ such that $\operatorname{Spec} A(0) \cap D=\{\lambda\}$. It follows tat, for $|t|$ sufficiently small, Spec $A(t) \cap \gamma=\emptyset$, where $\gamma=\partial D$. For such t, we have orthogonal projections

$$
\begin{equation*}
P(t)=\frac{1}{2 \pi i} \int_{\gamma}(\zeta-A(t))^{-1} d \zeta \tag{1.2}
\end{equation*}
$$

depending analytically on t, such that $P(0)$ is the orthogonal projection of \mathcal{H} onto the λ-eigenspace of $A(0)$. We want to analyze the range $\mathcal{H}(t)$ of $P(t)$ and the eigenvalues and eigenvectors of $\left.A(t)\right|_{\mathcal{H}(t)}$.

In case the λ-eigenspace of $A(0)$ has dimension 1 , then each $P(t)$ has rank 1 , and it is straightforward to produce a power series for nontrivial $u(t) \in \mathcal{H}(t)$ and the associated eigenvalue $\lambda(t)$, satisfying $A(t) u(t)=\lambda(t) u(t)$. We record the calculation in $\S 1$. Actually, we concentrate on the case (1.1), but extensions to more general $A(t)$ are easily done. In $\S 3$ we show how results of $\S 2$ apply to radially symmetric operators of the form $H+t V$ acting on functions on \mathbb{R}^{n}, where $H=-\Delta+W$, and W and V are both radially symmetric, with V bounded and $W(x) \rightarrow+\infty$ as $|x| \rightarrow \infty$. In such a case, H has eigenspaces of dimension >1, but $L^{2}\left(\mathbb{R}^{n}\right)$ splits into a direct sum of subspaces, invariant under $H(t)$, on which we have simple spectrum.

Generally, if the λ-eigenspace of $A(0)$ has dimension >1, matters are more complicated. The space $\mathcal{H}(t)$ splits into a number of eigenspaces $\mathcal{H}_{j}(t)$ for $\left.A(t)\right|_{\mathcal{H}(t)}$, with eigenvalues $\lambda_{j}(t)$. It is an important result of T . Kato that there is an orthonormal basis of $\mathcal{H}(t)$, consisting of eigenvectors of $A(t)$, and depending analytically on t, and the eigenvalues are hence also analytic in t. We discuss this in $\S 4$.

2. Perturbation of a simple eigenspace

Let us say

$$
\begin{equation*}
H u=\lambda u \tag{2.1}
\end{equation*}
$$

and λ is a simple eigenvalue of H. Then, for small $\varepsilon, H+\varepsilon V$ has a simple eigenvalue $\lambda(\varepsilon)$, analytic in ε, such that $\lambda(0)=\lambda$, and an associated eigenvector $u(\varepsilon)$, analytic in ε. Here we produce recursion formulas for the power series. Let us write

$$
\begin{array}{ll}
\lambda(\varepsilon)=\lambda+\varepsilon \mu(\varepsilon), & \mu(\varepsilon)=\mu_{0}+\varepsilon \mu_{1}+\cdots, \\
u(\varepsilon)=u+\varepsilon v(\varepsilon), & v(\varepsilon)=v_{0}+\varepsilon v_{1}+\cdots . \tag{2.2}
\end{array}
$$

We set

$$
\begin{equation*}
(H+\varepsilon V)(u+\varepsilon v(\varepsilon))=(\lambda+\varepsilon \mu(\varepsilon))(u+\varepsilon v(\varepsilon)), \tag{2.3}
\end{equation*}
$$

expand in powers of ε, and compare like powers of ε to obtain formulas for μ_{j} and v_{j}. Of course, (2.3) defines $u+\varepsilon v(\varepsilon)$ only up to a scalar factor. One could normalize by requiring $\|u+\varepsilon v(\varepsilon)\|$ to be constant, but we find it convenient to use the following normalization:

$$
\begin{equation*}
v(\varepsilon) \perp u . \tag{2.4}
\end{equation*}
$$

From (2.3) we get

$$
\begin{equation*}
(H-\lambda) v(\varepsilon)=\mu(\varepsilon) u-V u+\varepsilon \mu(\varepsilon) v(\varepsilon)-\varepsilon V v(\varepsilon), \tag{2.5}
\end{equation*}
$$

and applying the expansion (2.2) yields

$$
\begin{align*}
\sum_{j \geq 0} \varepsilon^{j}(H-\lambda) v_{j}= & \mu_{0} u-V u+\sum_{j \geq 1} \varepsilon^{j} \mu_{j} u \tag{2.6}\\
& +\sum_{k, \ell \geq 0} \varepsilon^{1+\ell+k} \mu_{\ell} v_{k}-\sum_{j \geq 1} V v_{j-1} \varepsilon^{j} .
\end{align*}
$$

Equating multiples of ε^{0} yields

$$
\begin{equation*}
(H-\lambda) v_{0}=\left(\mu_{0}-V\right) u \tag{2.7}
\end{equation*}
$$

For this to be solvable for v_{0}, we need the right side to be in the range of $H-\lambda$, i.e., $\left(\mu_{0}-V\right) u \perp u$, or equivalently

$$
\begin{equation*}
\left.\mu_{0}=(V u, u) \quad \text { (assuming }\|u\|_{L^{2}}=1\right) . \tag{2.8}
\end{equation*}
$$

Then (2.7) is uniquely solvable for v_{0} up to a scalar multiple of u. The normalization (2.4) gives $v_{0} \perp u$, so

$$
\begin{equation*}
v_{0}=(H-\lambda)^{-1}\left[\left(\mu_{0}-V\right) u\right] \tag{2.9}
\end{equation*}
$$

with $(H-\lambda)^{-1}$ integpreted as 0 on the span of u.
To treat higher powers of ε in (2.6), let us write

$$
\begin{equation*}
\sum_{k, \ell \geq 0} \varepsilon^{1+\ell+k} \mu_{\ell} v_{k}=\sum_{j \geq 1} \varepsilon^{j} w_{j} \tag{2.10}
\end{equation*}
$$

with

$$
\begin{equation*}
w_{j}=\sum_{k=0}^{j-1} \mu_{j-1-k} v_{k}, \quad \text { for } \quad j \geq 1 \tag{2.11}
\end{equation*}
$$

Then equating factors of ε^{j} in (2.6) gives

$$
\begin{equation*}
(H-\lambda) v_{j}=\mu_{j} u+w_{j}-V v_{j-1}, \quad j \geq 1 \tag{2.12}
\end{equation*}
$$

As with (2.7), we need the right side of (2.12) to be in the range of $H-\lambda$, or equivalently, orthogonal to u, which is to say

$$
\begin{equation*}
\mu_{j}=\left(V v_{j-1}-w_{j}, u\right), \tag{2.13}
\end{equation*}
$$

as before assuming $\|u\|_{L^{2}}=1$. Then (2.12) determines v_{j} uniquely up to a multiple of u, and again (2.4) requires $v_{j} \perp u$, so

$$
\begin{equation*}
v_{j}=(H-\lambda)^{-1}\left[\mu_{j} u+w_{j}-V v_{j-1}\right], \quad \text { for } j \geq 1 \tag{2.14}
\end{equation*}
$$

3. Rotationally symmetric Hamiltonians

Let

$$
\begin{equation*}
H=-\Delta+W \tag{3.1}
\end{equation*}
$$

where $\Delta=\partial_{1}^{2}+\cdots+\partial_{n}^{2}$ is the Laplace operator on \mathbb{R}^{n} and $W \in C^{\infty}\left(\mathbb{R}^{n}\right)$ satisfies

$$
\begin{equation*}
W(x)=W(|x|), \quad W(x) \rightarrow+\infty \quad \text { as } \quad|x| \rightarrow \infty \tag{3.2}
\end{equation*}
$$

Then H has discrete spectrum as an unbounded self adjoint operator on $L^{2}\left(\mathbb{R}^{n}\right)$. Now assume

$$
\begin{equation*}
V \in C^{\infty}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right), \quad V(x)=V(|x|), \tag{3.3}
\end{equation*}
$$

and consider

$$
\begin{equation*}
H(\varepsilon)=H+\varepsilon V . \tag{3.4}
\end{equation*}
$$

Each $H(\varepsilon)$ also has discrete spectrum. Since $S O(n)$ leaves each eigenspace of $H(\varepsilon)$ invariant, many of these eigenspaces have dimension >1. However, the following observation greatly simplifies the study of the spectrum of $H(\varepsilon)$ and its eigenspaces. Namely, let

$$
\begin{equation*}
\left\{\varphi_{j k}: 1 \leq j \leq d_{k}, k \geq 0\right\} \tag{3.5}
\end{equation*}
$$

be an orthonormal basis of $L^{2}\left(S^{n-1}\right)$ such that, for each $k,\left\{\varphi_{j k}: 1 \leq j \leq d_{k}\right\}$ is an orthonormal basis for an eigenspace of Δ_{S}, the Laplace-Beltrami operator on S^{n-1}. Then

$$
\begin{equation*}
L^{2}\left(\mathbb{R}^{n}\right)=\bigoplus_{j, k} \mathcal{H}_{j k} \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{H}_{j k}=\left\{f \in L^{2}\left(\mathbb{R}^{n}\right): f(x)=\varphi_{j k}(\omega) \psi(r), \text { for some } \psi\right\}, \tag{3.7}
\end{equation*}
$$

where $x=r \omega, r=|x|, \omega \in S^{n-1}$. We see that

$$
\begin{equation*}
e^{i t H(\varepsilon)}: \mathcal{H}_{j k} \longrightarrow \mathcal{H}_{j k} \tag{3.8}
\end{equation*}
$$

for each $t, \varepsilon \in \mathbb{R}, k \geq 0, j \in\left\{1, \ldots, d_{k}\right\}$. Thus the problem of analyzing the eigenvalues and eigenfunctions of $H(\varepsilon)$ can be reduced to analyzing these objects on each Hilbert space $\mathcal{H}_{j k}$. That this is a great simplification follows from:

Proposition 2.1. For wach $k \geq 0, j \in\left\{1, \ldots, d_{k}\right\}$,

$$
\begin{equation*}
\left.H\right|_{\mathcal{H}_{j k}} \text { has simple spectrum. } \tag{3.9}
\end{equation*}
$$

Proof. If (3.9) fails, there is an eigenvalue λ of H and orthonormal

$$
\begin{equation*}
u_{i} \in \mathcal{H}_{j k}, \quad u_{i}(x)=\varphi_{j k}(\omega) \psi_{i}(r), \quad i=1,2, \tag{3.10}
\end{equation*}
$$

such that

$$
\begin{equation*}
H u_{i}=\lambda u_{i}, \quad i=1,2 . \tag{3.12}
\end{equation*}
$$

Then $\psi_{1}(r)$ and $\psi_{2}(r)$ satisfy the same second-order, homogeneous ODE. Rather than finish off the proof with a purely ODE argument, we proceed as follows. Given each i, for no $r>0$ can we have $\psi_{i}(r)=\psi_{i}^{\prime}(r)=0$. It follows that there exist $r_{\nu} \searrow 0$ such that $\psi_{1}\left(r_{\nu}\right)=a_{\nu} \neq 0$ and $\psi_{2}\left(r_{\nu}\right)=b_{\nu} \neq 0$. Hence

$$
\begin{equation*}
b_{\nu} u_{1}-a_{\nu} u_{2}=0 \quad \text { on }|x|=r_{\nu} . \tag{3.13}
\end{equation*}
$$

This would imply that $-\Delta+V$ would have λ as an eigenvalue when acting on functions on the ball $B_{r_{\nu}}(0)$ of radius r_{ν} centered at 0 , with the Dirichlet boundary condition. But it is readily verified that the smallest eigenvalue of such operators tends to $+\infty$ as $r_{\nu} \searrow 0$, so we cannot have such u_{1} and u_{2}. This proves Proposition 2.1.

Remark. We therefore see that each $\left.H(\varepsilon)\right|_{\mathcal{H}_{j k}}$ has simple spectrum.

4. Kato's analyticity theorem - local version

As in $\S 1$, we assume $A(t)$ is an analytic family of bounded self-adjoint operators on a Hilbert space \mathcal{H}, for $t \in(a, b), a<0<b$. We assume that λ is an isolated point of $\operatorname{Spec} A(0)$, and that the λ-eigenspace of $A(0)$ is finite dimensional. We have a small closed disk D about λ such that Spec $A(0) \cap D=\{\lambda\}$ and such that, for $|t|$ small, $\operatorname{Spec} A(t) \cap \gamma=\emptyset$, where $\gamma=\partial D$, and we have the orthogonal projections

$$
\begin{equation*}
P(t)=\frac{1}{2 \pi i} \int_{\gamma}(\zeta-A(t))^{-1} d \zeta \tag{4.1}
\end{equation*}
$$

with range $\mathcal{H}(t)$, depending analytically on t. We discuss the spectral behavior of $\left.A(t)\right|_{\mathcal{H}(t)}$.

For this, it is useful to bring in the analytic family of unitary operators

$$
\begin{equation*}
U(t): \mathcal{H}(0) \stackrel{\approx}{\approx} \mathcal{H}(t), \tag{4.2}
\end{equation*}
$$

defined by $U(t) u(0)=u(t)$, where

$$
\begin{equation*}
u^{\prime}(t)=P^{\prime}(t) u(t) \tag{4.3}
\end{equation*}
$$

This construction was used in [K2]. It arose in [K1], in another setting, that of the quantum adiabatic theorem. See Appendix A for a discussion of how solving (4.3) with $u(0) \in \mathcal{H}(0)$ yields the unitary operators $U(t)$ in (4.2). As emphasized in Appendix A, this construction has a natural interpretation in terms of parallel transport of sections of the vector bundle associated to $\{P(t)\}$. Such a geometrical context was not considered in [K1] and [K2], but knowing the geometrical setting naturally leads one to the "Berry phase." See Appendix U of [T] for further discussion of this.

Having (4.2), we see that $\left.A(t)\right|_{\mathcal{H}(t)}$ is unitarily equivalent to

$$
\begin{equation*}
B(t): \mathcal{H}(0) \longrightarrow \mathcal{H}(0), \quad B(t)=U(t)^{-1} A(t) U(t) \tag{4.4}
\end{equation*}
$$

an analytic family of self-adjoint operators on $\mathcal{H}(0)$. Note that $B(0)=\lambda I$. Let us write

$$
\begin{equation*}
B(t)=B_{0}(t)+\beta(t) I, \tag{4.5}
\end{equation*}
$$

with

$$
\begin{equation*}
\beta(t)=\frac{1}{n} \operatorname{Tr} B(t)=\frac{1}{n} \operatorname{Tr} A(t) P(t), \tag{4.6}
\end{equation*}
$$

where $n=\operatorname{dim} \mathcal{H}(0)$. We see that $\beta(t)$ is analytic in t, and

$$
\begin{equation*}
B_{0}(0)=0, \quad \operatorname{Tr} B_{0}(t)=0 . \tag{4.7}
\end{equation*}
$$

There are two cases to consider.

CASE I. $B_{0}(t) \equiv 0$.
In this case, $B(t)=\beta(t) I$, and we are done. All the eigenvalues of $B(t)$ (hence of $\left.\left.A(t)\right|_{\mathcal{H}(t)}\right)$ are $\beta(t)$, analytic in t. Picking an orthonormal basis u_{1}, \ldots, u_{n} of $\mathcal{H}(0)$, we get the orthonormal basis $u_{1}(t), \ldots, u_{n}(t)$ of $\mathcal{H}(t)$ by solving $u_{j}^{\prime}(t)=P_{j}^{\prime}(t) u_{j}(t)$, and these are eigenvectors of $A(t)$, depending analytically on t.

Case II. $B_{0}(t)$ not identically 0 .
In this case, there is a positive integer k such that

$$
\begin{equation*}
B_{0}(t)=t^{k} B_{1}(t) \tag{4.8}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{1}(t): \mathcal{H}(0) \longrightarrow \mathcal{H}(0) \text { is analytic in } t, \quad B_{1}(0) \neq 0 \tag{4.9}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\operatorname{Tr} B_{1}(0)=0, \tag{4.10}
\end{equation*}
$$

so the eigenspaces of $B_{1}(0)$ all have dimension $<n$.
Now we can apply the analysis of $A(t)$ described above to the analytic family of operators $B_{1}(t)$, about each eigenspace of $B_{1}(0)$, and continue. In view of the dimensional considerations, this must terminate after a finite number of steps, yielding an analytic, orthonormal family $u_{1}(t), \ldots, u_{n}(t)$ of eigenvectors of $A(t)$, with eigenvalues $\lambda_{j}(t)$, such that $u_{1}(0), \ldots, u_{n}(0)$ form an orthonormal basis of $\mathcal{H}(0)$ and $\lambda_{j}(0)=\lambda$.

The analysis just described works for sufficiently small t, so we call it a local analysis. Under appropriate conditions, one can proceed to a global analysis.

A. Parallel transport defined by families of orthogonal projections

Let \mathcal{H} be a hilbert space (real or complex), M a smooth manifold, and $E=M \times \mathcal{H}$ the trivial vector bundle with fiber \mathcal{H}. Assume we have orthogonal projections

$$
\begin{equation*}
P_{k}(x): \mathcal{H} \longrightarrow \mathcal{H}, \quad 1 \leq k \leq m, \tag{A.1}
\end{equation*}
$$

depending smoothly of $x \in M$, with range $E_{k, x} \subset \mathcal{H}$, defining smooth vector bundles $E_{k} \rightarrow M$, such that $E=E_{1} \oplus \cdots \oplus E_{m}$. Each E_{k} has a natural covariant derivative ∇^{k}, defined by

$$
\begin{equation*}
\nabla_{X}^{k} u(x)=P_{k}(x) D_{X} u, \quad \text { for } u \in C^{\infty}\left(M, E_{k}\right), \tag{A.2}
\end{equation*}
$$

where X is a vector field on M and D is the standard flat covariant derivative on E. Let $\gamma(t)$ be a smooth path in M, and, for short, set $P_{k}(t)=P_{k}(\gamma(t))$. Now parallel transport anong γ for a section u of E_{k} over γ is defined by

$$
\begin{equation*}
u(t)=P_{k}(t) u(t), \quad P_{k}(t) u^{\prime}(t)=0 . \tag{A.2A}
\end{equation*}
$$

Differentiating the first of these equations and using the second, we get

$$
\begin{equation*}
u^{\prime}(t)=P_{k}^{\prime}(t) u(t) . \tag{A.3}
\end{equation*}
$$

We claim that (A.3) itself defines such parallel transport. To see this, we check that

$$
\begin{equation*}
u(0) \in E_{k, \gamma(0)} \Longrightarrow u(t) \in E_{k, \gamma(t)} \tag{A.4}
\end{equation*}
$$

when u solves (A.3). This is equivalent to

$$
\begin{equation*}
\left(I-P_{k}(t)\right) u(t) \equiv 0, \quad \text { given } \quad P_{k}(0) u(0)=u(0) \tag{A.5}
\end{equation*}
$$

To see this, set $w(t)=\left(I-P_{k}(t)\right) u(t)$, and compute

$$
\begin{align*}
w^{\prime}(t) & =\frac{d}{d t}\left(I-P_{k}(t)\right) u(t) \\
& =u^{\prime}(t)-P_{k}^{\prime}(t) u(t)-P_{k}(t) u^{\prime}(t) \tag{A.6}\\
& =P_{k}^{\prime}(t) u(t)-P_{k}^{\prime}(t) u(t)-P_{k}(t) P_{k}^{\prime}(t) u(t) \\
& =-P_{k}^{\prime}(t) w(t),
\end{align*}
$$

since

$$
\begin{align*}
P_{k}(t)=P_{k}(t)^{2} & \Longrightarrow P_{k}^{\prime}(t)=P_{k}^{\prime}(t) P_{k}(t)+P_{k}(t) P_{k}^{\prime}(t) \tag{A.6A}\\
& \Longrightarrow P_{k}(t) P_{k}^{\prime}(t)=P_{k}^{\prime}(t)\left(I-P_{k}(t)\right) .
\end{align*}
$$

Since $w(0)=0$, we see that the ODE $w^{\prime}(t)=-P_{k}^{\prime}(t) w(t)$ yields $w(t) \equiv 0$. Having (A.5), we see that (A.3) plus $P_{k}(0) u(0)=u(0)$ implies the first identity in (A.2A).

Then differentiating this first identity and using (A.3) yields the second identity in (A.2A).

Now we can put the covariant derivatives ∇^{k} on E_{k} together to produce a new covariant derivative on E :

$$
\begin{equation*}
\widetilde{\nabla}=\nabla^{1} \oplus \cdots \oplus \nabla^{m} \tag{A.7}
\end{equation*}
$$

typically different from the trivial covariant derivative D. Then $\widetilde{\nabla}$ defines a parallel transport, along a curve γ in M, for \mathcal{H}-valued functions, which preserves sections of each sub-bundle E_{k}. In fact, we go from (A.3) to

$$
\begin{equation*}
u^{\prime}(t)=C(t) u(t), \quad C(t)=\sum_{k=1}^{m} P_{k}^{\prime}(t) P_{k}(t) . \tag{A.8}
\end{equation*}
$$

Note that since $\sum_{k} P_{k}(t)=I$ and each $P_{k}(t)=P_{k}(t)^{2}$, we have

$$
\begin{align*}
0 & =\frac{d}{d t} \sum_{k=1}^{m} P_{k}(t)^{2} \tag{A.9}\\
& =\sum_{k=1}^{m}\left[P_{k}^{\prime}(t) P_{k}(t)+P_{k}(t) P_{k}^{\prime}(t)\right] .
\end{align*}
$$

Also

$$
\begin{equation*}
P_{k}(t)^{*}=P_{k}(t) \Longrightarrow P_{k}^{\prime}(t)^{*}=P_{k}^{\prime}(t), \tag{A.10}
\end{equation*}
$$

so

$$
\begin{equation*}
C(t)^{*}=-C(t), \tag{A.11}
\end{equation*}
$$

In other words, $C(t)$ in (A.8) is skew-adjoint for each t, so the solution operator acting on functions with values in \mathcal{H} is

$$
\begin{equation*}
u(t)=U(t) u(0), \quad U(t): \mathcal{H} \rightarrow \mathcal{H} \text { is unitary, for each } t \tag{A.12}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
U(t): E_{k, \gamma(0)} \longrightarrow E_{k, \gamma(t)} \tag{A.13}
\end{equation*}
$$

is unitary, for each $t \in\{1, \ldots, m\}$.
Such results as discussed above can be found in Chapter 2, §4.4 of [K2], except for the differential geometric interpretation, which we pursue a little further here. Regarding the relation between the covariant derivatives D and $\widetilde{\nabla}$, parallel to (A.2) we have

$$
\begin{align*}
\widetilde{\nabla}_{X} u & =\sum_{k=1}^{m} P_{k}(x) D_{X}\left(P_{k}(x) u\right) \\
& =\sum_{k} P_{k}(x)^{2} D_{X} u+\sum_{k} P_{k}(x)\left(D_{X} P_{k}(x)\right) u \tag{A.14}\\
& =D_{X} u+\Gamma_{X} u
\end{align*}
$$

for a smooth \mathcal{H}-valued function u on M. Thus we have the connection form

$$
\begin{equation*}
\Gamma_{X}=\sum_{k} P_{k}(x) D_{X} P_{k}(x) \tag{A.15}
\end{equation*}
$$

or

$$
\begin{equation*}
\Gamma=\sum_{k=1}^{m} P_{k} d P_{k} \tag{A.16}
\end{equation*}
$$

Now the curvature of $\widetilde{\nabla}$ is given by

$$
\begin{equation*}
\Omega=d \Gamma+\Gamma \wedge \Gamma \tag{A.17}
\end{equation*}
$$

from which a calculation gives

$$
\begin{equation*}
\Omega=\sum_{k=1}^{m} P_{k} d P_{k} \wedge d P_{k} P_{k} . \tag{A.18}
\end{equation*}
$$

The k th term in this sum is the curvature of the bundle E_{k}.

References

[K1] T. Kato, On the adiabatic theorem of quantum mechanics, J. Phys. Soc. Japan 5 (1950), 207-212.
[K2] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.
[T] M. Taylor, Differential Geometry, Lecture Notes, available at http://www.unc.edu/math/Faculty/met/diffg.html

