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1. Introduction

Let A(t) be an analytic family of compact, self-adjoint operators on a Hilbert
space H, for t ∈ I = (a, b), with a < 0 < b. For example, we might have

(1.1) A(t) = ((H + tV )2 + I)−1,

where H is an unbounded, self-adjoint operator with discrete spectrum and V is a
bounded self-adjoint operator. Let λ be an eigenvalue of A(0).

More generally, A(t) can be an analytic family of bounded self-adjoint operators
on H with the property that λ is an isolated point of Spec A(0), and such that the
λ-eigenspace of A(0) is finite dimensional.

Let D be a closed disk centered at λ such that Spec A(0) ∩D = {λ}. It follows
tat, for |t| sufficiently small, Spec A(t)∩ γ = ∅, where γ = ∂D. For such t, we have
orthogonal projections

(1.2) P (t) =
1

2πi

∫

γ

(ζ −A(t))−1 dζ,

depending analytically on t, such that P (0) is the orthogonal projection of H onto
the λ-eigenspace of A(0). We want to analyze the range H(t) of P (t) and the
eigenvalues and eigenvectors of A(t)|H(t).

In case the λ-eigenspace of A(0) has dimension 1, then each P (t) has rank 1, and
it is straightforward to produce a power series for nontrivial u(t) ∈ H(t) and the
associated eigenvalue λ(t), satisfying A(t)u(t) = λ(t)u(t). We record the calculation
in §1. Actually, we concentrate on the case (1.1), but extensions to more general
A(t) are easily done. In §3 we show how results of §2 apply to radially symmetric
operators of the form H + tV acting on functions on Rn, where H = −∆ + W ,
and W and V are both radially symmetric, with V bounded and W (x) → +∞ as
|x| → ∞. In such a case, H has eigenspaces of dimension > 1, but L2(Rn) splits
into a direct sum of subspaces, invariant under H(t), on which we have simple
spectrum.

Generally, if the λ-eigenspace of A(0) has dimension > 1, matters are more com-
plicated. The space H(t) splits into a number of eigenspaces Hj(t) for A(t)|H(t),
with eigenvalues λj(t). It is an important result of T. Kato that there is an orthonor-
mal basis of H(t), consisting of eigenvectors of A(t), and depending analytically on
t, and the eigenvalues are hence also analytic in t. We discuss this in §4.
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2. Perturbation of a simple eigenspace

Let us say

(2.1) Hu = λu,

and λ is a simple eigenvalue of H. Then, for small ε, H+εV has a simple eigenvalue
λ(ε), analytic in ε, such that λ(0) = λ, and an associated eigenvector u(ε), analytic
in ε. Here we produce recursion formulas for the power series. Let us write

(2.2)
λ(ε) = λ + εµ(ε), µ(ε) = µ0 + εµ1 + · · · ,

u(ε) = u + εv(ε), v(ε) = v0 + εv1 + · · · .

We set

(2.3) (H + εV )(u + εv(ε)) = (λ + εµ(ε))(u + εv(ε)),

expand in powers of ε, and compare like powers of ε to obtain formulas for µj

and vj . Of course, (2.3) defines u + εv(ε) only up to a scalar factor. One could
normalize by requiring ‖u + εv(ε)‖ to be constant, but we find it convenient to use
the following normalization:

(2.4) v(ε) ⊥ u.

From (2.3) we get

(2.5) (H − λ)v(ε) = µ(ε)u− V u + εµ(ε)v(ε)− εV v(ε),

and applying the expansion (2.2) yields

(2.6)

∑

j≥0

εj(H − λ)vj = µ0u− V u +
∑

j≥1

εjµju

+
∑

k,`≥0

ε1+`+kµ`vk −
∑

j≥1

V vj−1ε
j .

Equating multiples of ε0 yields

(2.7) (H − λ)v0 = (µ0 − V )u.

For this to be solvable for v0, we need the right side to be in the range of H − λ,
i.e., (µ0 − V )u ⊥ u, or equivalently

(2.8) µ0 = (V u, u) (assuming ‖u‖L2 = 1).

Then (2.7) is uniquely solvable for v0 up to a scalar multiple of u. The normalization
(2.4) gives v0 ⊥ u, so

(2.9) v0 = (H − λ)−1
[
(µ0 − V )u

]
,
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with (H − λ)−1 integpreted as 0 on the span of u.
To treat higher powers of ε in (2.6), let us write

(2.10)
∑

k,`≥0

ε1+`+kµ`vk =
∑

j≥1

εjwj ,

with

(2.11) wj =
j−1∑

k=0

µj−1−kvk, for j ≥ 1.

Then equating factors of εj in (2.6) gives

(2.12) (H − λ)vj = µju + wj − V vj−1, j ≥ 1.

As with (2.7), we need the right side of (2.12) to be in the range of H − λ, or
equivalently, orthogonal to u, which is to say

(2.13) µj = (V vj−1 − wj , u),

as before assuming ‖u‖L2 = 1. Then (2.12) determines vj uniquely up to a multiple
of u, and again (2.4) requires vj ⊥ u, so

(2.14) vj = (H − λ)−1
[
µju + wj − V vj−1

]
, for j ≥ 1.
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3. Rotationally symmetric Hamiltonians

Let

(3.1) H = −∆ + W,

where ∆ = ∂2
1 + · · ·+ ∂2

n is the Laplace operator on Rn and W ∈ C∞(Rn) satisfies

(3.2) W (x) = W (|x|), W (x) → +∞ as |x| → ∞.

Then H has discrete spectrum as an unbounded self adjoint operator on L2(Rn).
Now assume

(3.3) V ∈ C∞(Rn) ∩ L∞(Rn), V (x) = V (|x|),

and consider

(3.4) H(ε) = H + εV.

Each H(ε) also has discrete spectrum. Since SO(n) leaves each eigenspace of H(ε)
invariant, many of these eigenspaces have dimension > 1. However, the following
observation greatly simplifies the study of the spectrum of H(ε) and its eigenspaces.
Namely, let

(3.5) {ϕjk : 1 ≤ j ≤ dk, k ≥ 0}

be an orthonormal basis of L2(Sn−1) such that, for each k, {ϕjk : 1 ≤ j ≤ dk} is
an orthonormal basis for an eigenspace of ∆S , the Laplace-Beltrami operator on
Sn−1. Then

(3.6) L2(Rn) =
⊕

j,k

Hjk,

where

(3.7) Hjk = {f ∈ L2(Rn) : f(x) = ϕjk(ω)ψ(r), for some ψ},

where x = rω, r = |x|, ω ∈ Sn−1. We see that

(3.8) eitH(ε) : Hjk −→ Hjk,

for each t, ε ∈ R, k ≥ 0, j ∈ {1, . . . , dk}. Thus the problem of analyzing the
eigenvalues and eigenfunctions of H(ε) can be reduced to analyzing these objects
on each Hilbert space Hjk. That this is a great simplification follows from:
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Proposition 2.1. For wach k ≥ 0, j ∈ {1, . . . , dk},

(3.9) H
∣∣∣
Hjk

has simple spectrum.

Proof. If (3.9) fails, there is an eigenvalue λ of H and orthonormal

(3.10) ui ∈ Hjk, ui(x) = ϕjk(ω)ψi(r), i = 1, 2,

such that

(3.12) Hui = λui, i = 1, 2.

Then ψ1(r) and ψ2(r) satisfy the same second-order, homogeneous ODE. Rather
than finish off the proof with a purely ODE argument, we proceed as follows. Given
each i, for no r > 0 can we have ψi(r) = ψ′i(r) = 0. It follows that there exist rν ↘ 0
such that ψ1(rν) = aν 6= 0 and ψ2(rν) = bν 6= 0. Hence

(3.13) bνu1 − aνu2 = 0 on |x| = rν .

This would imply that −∆ + V would have λ as an eigenvalue when acting on
functions on the ball Brν (0) of radius rν centered at 0, with the Dirichlet boundary
condition. But it is readily verified that the smallest eigenvalue of such operators
tends to +∞ as rν ↘ 0, so we cannot have such u1 and u2. This proves Proposition
2.1.

Remark. We therefore see that each H(ε)|Hjk
has simple spectrum.
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4. Kato’s analyticity theorem – local version

As in §1, we assume A(t) is an analytic family of bounded self-adjoint operators
on a Hilbert space H, for t ∈ (a, b), a < 0 < b. We assume that λ is an isolated
point of Spec A(0), and that the λ-eigenspace of A(0) is finite dimensional. We have
a small closed disk D about λ such that Spec A(0)∩D = {λ} and such that, for |t|
small, SpecA(t) ∩ γ = ∅, where γ = ∂D, and we have the orthogonal projections

(4.1) P (t) =
1

2πi

∫

γ

(ζ −A(t))−1 dζ,

with range H(t), depending analytically on t. We discuss the spectral behavior of
A(t)|H(t).

For this, it is useful to bring in the analytic family of unitary operators

(4.2) U(t) : H(0) ≈−→ H(t),

defined by U(t)u(0) = u(t), where

(4.3) u′(t) = P ′(t)u(t).

This construction was used in [K2]. It arose in [K1], in another setting, that of
the quantum adiabatic theorem. See Appendix A for a discussion of how solving
(4.3) with u(0) ∈ H(0) yields the unitary operators U(t) in (4.2). As emphasized
in Appendix A, this construction has a natural interpretation in terms of parallel
transport of sections of the vector bundle associated to {P (t)}. Such a geomet-
rical context was not considered in [K1] and [K2], but knowing the geometrical
setting naturally leads one to the “Berry phase.” See Appendix U of [T] for further
discussion of this.

Having (4.2), we see that A(t)|H(t) is unitarily equivalent to

(4.4) B(t) : H(0) −→ H(0), B(t) = U(t)−1A(t)U(t),

an analytic family of self-adjoint operators on H(0). Note that B(0) = λI. Let us
write

(4.5) B(t) = B0(t) + β(t)I,

with

(4.6) β(t) =
1
n

TrB(t) =
1
n

TrA(t)P (t),

where n = dimH(0). We see that β(t) is analytic in t, and

(4.7) B0(0) = 0, TrB0(t) = 0.

There are two cases to consider.
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Case I. B0(t) ≡ 0.
In this case, B(t) = β(t)I, and we are done. All the eigenvalues of B(t) (hence of
A(t)|H(t)) are β(t), analytic in t. Picking an orthonormal basis u1, . . . , un of H(0),
we get the orthonormal basis u1(t), . . . , un(t) of H(t) by solving u′j(t) = P ′j(t)uj(t),
and these are eigenvectors of A(t), depending analytically on t.

Case II. B0(t) not identically 0.
In this case, there is a positive integer k such that

(4.8) B0(t) = tkB1(t),

where

(4.9) B1(t) : H(0) −→ H(0) is analytic in t, B1(0) 6= 0.

Note that

(4.10) TrB1(0) = 0,

so the eigenspaces of B1(0) all have dimension < n.
Now we can apply the analysis of A(t) described above to the analytic family

of operators B1(t), about each eigenspace of B1(0), and continue. In view of the
dimensional considerations, this must terminate after a finite number of steps, yield-
ing an analytic, orthonormal family u1(t), . . . , un(t) of eigenvectors of A(t), with
eigenvalues λj(t), such that u1(0), . . . , un(0) form an orthonormal basis of H(0) and
λj(0) = λ.

The analysis just described works for sufficiently small t, so we call it a local
analysis. Under appropriate conditions, one can proceed to a global analysis.
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A. Parallel transport defined by families of orthogonal projections

LetH be a hilbert space (real or complex), M a smooth manifold, and E = M×H
the trivial vector bundle with fiber H. Assume we have orthogonal projections

(A.1) Pk(x) : H −→ H, 1 ≤ k ≤ m,

depending smoothly of x ∈ M , with range Ek,x ⊂ H, defining smooth vector
bundles Ek → M , such that E = E1 ⊕ · · · ⊕ Em. Each Ek has a natural covariant
derivative ∇k, defined by

(A.2) ∇k
Xu(x) = Pk(x)DXu, for u ∈ C∞(M,Ek),

where X is a vector field on M and D is the standard flat covariant derivative on
E. Let γ(t) be a smooth path in M , and, for short, set Pk(t) = Pk(γ(t)). Now
parallel transport anong γ for a section u of Ek over γ is defined by

(A.2A) u(t) = Pk(t)u(t), Pk(t)u′(t) = 0.

Differentiating the first of these equations and using the second, we get

(A.3) u′(t) = P ′k(t)u(t).

We claim that (A.3) itself defines such parallel transport. To see this, we check
that

(A.4) u(0) ∈ Ek,γ(0) =⇒ u(t) ∈ Ek,γ(t),

when u solves (A.3). This is equivalent to

(A.5) (I − Pk(t))u(t) ≡ 0, given Pk(0)u(0) = u(0).

To see this, set w(t) = (I − Pk(t))u(t), and compute

(A.6)

w′(t) =
d

dt
(I − Pk(t))u(t)

= u′(t)− P ′k(t)u(t)− Pk(t)u′(t)

= P ′k(t)u(t)− P ′k(t)u(t)− Pk(t)P ′k(t)u(t)

= −P ′k(t)w(t),

since

(A.6A)
Pk(t) = Pk(t)2 =⇒ P ′k(t) = P ′k(t)Pk(t) + Pk(t)P ′k(t)

=⇒ Pk(t)P ′k(t) = P ′k(t)(I − Pk(t)).

Since w(0) = 0, we see that the ODE w′(t) = −P ′k(t)w(t) yields w(t) ≡ 0. Having
(A.5), we see that (A.3) plus Pk(0)u(0) = u(0) implies the first identity in (A.2A).
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Then differentiating this first identity and using (A.3) yields the second identity in
(A.2A).

Now we can put the covariant derivatives ∇k on Ek together to produce a new
covariant derivative on E:

(A.7) ∇̃ = ∇1 ⊕ · · · ⊕ ∇m,

typically different from the trivial covariant derivative D. Then ∇̃ defines a parallel
transport, along a curve γ in M , for H-valued functions, which preserves sections
of each sub-bundle Ek. In fact, we go from (A.3) to

(A.8) u′(t) = C(t)u(t), C(t) =
m∑

k=1

P ′k(t)Pk(t).

Note that since
∑

k Pk(t) = I and each Pk(t) = Pk(t)2, we have

(A.9)

0 =
d

dt

m∑

k=1

Pk(t)2

=
m∑

k=1

[
P ′k(t)Pk(t) + Pk(t)P ′k(t)

]
.

Also

(A.10) Pk(t)∗ = Pk(t) =⇒ P ′k(t)∗ = P ′k(t),

so

(A.11) C(t)∗ = −C(t),

In other words, C(t) in (A.8) is skew-adjoint for each t, so the solution operator
acting on functions with values in H is

(A.12) u(t) = U(t)u(0), U(t) : H → H is unitary, for each t.

It follows that

(A.13) U(t) : Ek,γ(0) −→ Ek,γ(t)

is unitary, for each t ∈ {1, . . . , m}.
Such results as discussed above can be found in Chapter 2, §4.4 of [K2], except

for the differential geometric interpretation, which we pursue a little further here.
Regarding the relation between the covariant derivatives D and ∇̃, parallel to (A.2)
we have

(A.14)

∇̃Xu =
m∑

k=1

Pk(x)DX(Pk(x)u)

=
∑

k

Pk(x)2DXu +
∑

k

Pk(x)(DXPk(x))u

= DXu + ΓXu,
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for a smooth H-valued function u on M . Thus we have the connection form

(A.15) ΓX =
∑

k

Pk(x)DXPk(x),

or

(A.16) Γ =
m∑

k=1

Pk dPk.

Now the curvature of ∇̃ is given by

(A.17) Ω = dΓ + Γ ∧ Γ,

from which a calculation gives

(A.18) Ω =
m∑

k=1

Pk dPk ∧ dPk Pk.

The kth term in this sum is the curvature of the bundle Ek.
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