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Introduction

Here we produce formulas for the vertices of a regular pentagon in the plane,
and for a regular dodecahedron and a regular icosahedron in 3D Euclidean space.
Once the pentagon is constructed, the key to constructing the dodecahedron lies in
realizing one knows the dot product of vectors representing any pair of intersecting
edges. Carrying out the computations also involves algebraic identities crucial to
the construction of the pentagon. The icosahedron is then produced from the
dodecahedron by computing the center of each of its faces. The resulting formulas
for the vertices of the icosahedron have a pleasingly simple form.

These formulas for the vertices make it easy to establish the duality between
the dodecahedron and the icosahedron. We also use these formulas to analyze the
group of symmetries of the dodecahedron and icosahedron, and show that the group
of orientation-preserving symmetries is isomorphic to the alternating group A5.
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1. The pentagon

Let us construct the regular pentagon in the complex plane, with vertices

(1.1) zν = e2πiν/5 = cν + isν ,

where

(1.2) cν = cos
2πν

5
, sν = sin

2πν

5
.

Here ν = {0, . . . , 4}, or equivalently ν ∈ Z/(5). Note that for 1 ≤ ν ≤ 4, zν solves

(1.3) z4 + z3 + z2 + z + 1 = 0,

or equivalently

(1.4) z2 + z + 1 + z−1 + z−2 = 0.

If we set

(1.5) w = z + z−1,

then w2 = z2 + 2 + z−2, and (1.4) yields

(1.6) w2 + w − 1 = 0,

with solutions

(1.7) w± =
−1±√5

2
.

Then (1.5) can be rewritten

(1.8) z2 − wz + 1 = 0,

with solutions

(1.9) z =
w

2
± 1

2

√
w2 − 4.

Note in particular that w2 − 4 = −3− w, so

(1.10) w2
± − 4 = −5±√5

2
.
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These are negative real numbers, so we see that in (1.9)

(1.11) Re z =
w

2
.

In particular,

(1.12) c1 = cos
2π

5
=
√

5− 1
4

,

and

(1.13) c2 = cos
4π

5
=
−√5− 1

4
.

Also of course c4 = c1 and c3 = c2. Note from (1.12)–(1.13) that

(1.14) c1 + c2 = −1
2
.

The vertices of the pentagon given in (1.1) all have distance 1 from the origin.
Each edge of this pentagon has length L, satisfying

(1.15)
L2 = (c1 − 1)2 + s2

1 = 2− 2c1

=
5−√5

2
.

See Fig. 1.1 for a display of the information obtained in this section.

2. The dodecahedron

The dodecahedron has 20 vertices and twelve faces, each face being a regular
pentagon. Here we will give formulas for the vertices of a dodecahedron D with
center of mass on the z-axis and two faces parallel to the xy-plane. We take the
bottom face of D to have vertices

(2.1) pν = cνi + sνj, ν ∈ Z/(5),

where (i, j, k) is the standard orthonormal basis of R3. The coefficients cν and sν

are given by (1.2), and formulas for c1 and c2 are given in (1.12)–(1.13).
Let us set

(2.2) eν = pν − pν−1, ν ∈ Z/(5).
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If we assume the center of D lies on the positive z-axis, five more vertices of D are
given by

(2.3) qν = pν + fν ,

where each vector fν is uniquely specified by the requirements

(2.4) fν · eν+1 = −fν · eν = −eν+1 · eν , fν · k > 0.

See Fig. 2.1. Note that

(2.5) eν+1 · eν = e1 · e0, ν ∈ Z/(5).

Since

(2.6) e0 = (1− c1)i + s1j, e1 = −(1− c1)i + s1j,

we have

(2.7) eν+1 · eν = −(c1 − 1)2 + s2
1 = c1(2− 2c1).

If we compare the calculation (1.15) for the edge length, we get

(2.8) eν+1 · eν = c1L
2.

Making use of the formula (1.12) for c1, we also see that

(2.9) eν+1 · eν =
3
√

5− 5
2

.

To continue the calculation of fν , we see that

(2.10) fν = apν + bk,

with a determined by the requirement f0 ·e0 = c1(2−2c1), i.e., a p0 ·e0 = 2c1(1−c1),
hence, by (2.6),

(2.11) a = 2c1.

Then b is determined by the condition b > 0 together with |fν |2 = L2, hence

(2.12) L2 = a2 + b2,

so, by (1.15) and (2.11),

(2.13) b2 = 2− 2c1 − 4c2
1.
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This implies the following striking conclusion:

(2.14) b = 1.

In fact, (2.14) would be equivalent to c = c1 satisfying

(2.15) 4c2 + 2c− 1 = 0,

a quadratic equation whose solution is

(2.16) c = −1
4
±
√

5
4

.

As seen in (1.12), c1 is indeed one of these numbers.
To summarize, we have the formulas

(2.17) fν = 2c1pν + k,

and hence the five additional vertices of D:

(2.18) qν = (1 + 2c1)pν + k.

Next we locate the geometrical center of D. This will be the point on the z-axis
hit by the line through p0 parallel to the vector

(2.19) ξ = e1 − e0 + f0 = (4c1 − 2)i + k.

In fact, this line through p0 is given by

(2.20) γ(t) = p0 + tξ = [1 + (4c1 − 2)t]i + tk.

This hits the z-axis at t = 1/(2− 4c1), so the center of D is

(2.21) γ0 =
1

2− 4c1
k = (1 + c1)k,

the latter identity, i.e., 1 = (2− 4c1)(1 + c1), by (2.15).
Let us translate the center of mass to the origin, producing a new dodecahedron

D̃, ten of whose vertices are given by

(2.22)
pb

ν = cνi + sνj − (1 + c1)k,

qb
ν = (1 + 2c1)(cνi + sνj)− c1k,

with the other ten vertices given by

(2.23) p#
ν = −pb

ν , q#
ν = −qb

ν ,
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for ν ∈ Z/(5).
Just a few additional calculations are required to justify the assertion that D̃ is

indeed a regular dodecahedron. In fact, in light of various symmetry considerations,
it will suffice to verify that

(2.24) |q#
3 − qb

0|2 = |pb
1 − pb

0|2,

and

(2.25) (q#
3 − qb

0) · (pb
0 − qb

0) = (pb
0 − qb

0) · (pb
0 − pb

1).

Look at Fig. 2.2. Note that the right side of (2.24) is equal to L2 = 2− 2c1 and the
right side of (2.25) is equal to f0 · e1 = −c1(2 − 2c1). Thus, since q#

3 = −qb
3, we

need to check

(2.26)
|qb

0 + qb
3|2 = 2− 2c1,

(qb
0 + qb

3) · f0 = −c1(2− 2c1).

From (2.22) we have

(2.27) qb
0 + qb

3 = (2c1 + 1)(c3 + 1)i + (2c1 + 1)s3j − 2c1k,

and hence

(2.28)
|qb

0 + qb
3|2 = (2c1 + 1)2(c3 + 1)2 + (2c1 + 1)2s2

3 + 4c2
1

= (2c1 + 1)2(2c3 + 2) + 4c2
1.

By (1.14) and c3 = c2, we have 2c3 + 2 = 1− 2c1, so

(2.29)

|qb
0 + qb

3|2 = (1 + 2c1)2(1− 2c1) + 4c2
1

= 1 + 2c1 − 8c3
1

= 2− 2c1,

the last identity by (2.15). This verifies the first identity in (2.26).
As for the last identity in (2.26), since f0 = 2c1i + k, we have

(2.30)
(qb

0 + qb
3) · f0 = 2c1(2c1 + 1)(c3 + 1)− 2c1

= c1(1 + 2c1)(1− 2c1)− 2c1,

the latter identity by c3 = c2 and (1.14). This in turn is equal to

(2.31) c1(1− 4c2
1)− 2c1 = 2c2

1 − 2c1,
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by (2.15), verifying the last identity in (2.26). Hence D̃ is a regular dodecahedron.
See Fig. 2.3 for a picture of D̃.

3. The icosahedron

We can form a regular icosahedron Ĩ whose twelve vertices consist of the centers
of the twelve faces of the dodecahedron D̃, constructed in §2. In particular, the
bottom vertex is

(3.1) W = −(1 + c1)k.

The center of the face of D̃ whose intersection with the bottom face is the edge
joining pb

0 to pb
1 is given by V , where

(3.2) 5V = pb
0 + pb

1 + qb
0 + qb

1 − qb
3.

See Fig. 2.2. Formulas derived in §2 yield

(3.3) 5V = (2 + 2c1)p0 + (2 + 2c1)p1 − (1 + 2c1)p3 − (2 + 3c1)k.

To simplify this, note that

(3.4) p0 + p1 = −(1 + 2c1)p3,

which is equivalent to

(3.5) z2 + z3 = −(1 + 2c1),

itself a consequence of (1.14); see also Fig. 1.1. Then further calculation, using
(2.15) and (1.12), gives

(3.6) V = −2 + 3c1

5
(2p3 + k) = −1 + c1√

5
(2p3 + k).

Having (3.6), we set

(3.7) Vν = −1 + c1√
5

(2pν + k).

Then six of the twelve vertices of Ĩ are given by W and Vν , and the other six by
−W and −Vν .

Finally, it is natural to re-scale, producing an icosahedron I, with six vertices
given by

(3.8) w = k, vν =
1√
5
(2pν + k),
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and the other six by

(3.9) wb = −k, vb
ν = − 1√

5
(2pν + k).

See Fig. 3.1.
There is an important duality between the dodecahedron D̃ and the icosahedron

I. Namely, if we take the center of each face of I, this collection of points is the
set of vertices of another dodecahedron, a dilated version of D̃. To be precise, the
following identities hold:

(3.10)
k + vν + vν+1 = Ap#

ν+3,

vν + vν+1 − vν+3 = Aq#
ν+3,

for ν ∈ Z/(5), associating 10 of the faces of I with vertices of a dilate of D̃, and
there are similar identities associating the other 10 faces of I and the other 10
vertices of this dilate of D̃. Here,

(3.11) A = 1 +
1√
5
.

Verification of (3.10) is straightforward, given the formulas (3.8) for vν , (2.22)–
(2.23) for p#

ν and q#
ν , and (1.12)–(1.13) for c1 and c2. Checking this out involves

using the identity

(3.12) pν + pν+1 = 2c2pν+3, ν ∈ Z/(5),

which follows from p2 + p3 = 2c2i plus rotational symmetry of the pentagon. From
here, it is an exercise to verify (3.10).

4. Symmetries of the icosahedron

The icosahedron I is of interest because it is a regular polyhedron. Here we
verify this fact directly from the list of vertices (3.8)–(3.9) and look at the group of
symmetries that arises. In view of the relationship between the vertices of I and
the centers of the faces of D̃, and the dual relationship between the centers of the
faces of I and the vertices of D̃ established in §3, it will be apparent that the group
we describe is also the group of symmetries of D̃.

From the list of vertices (3.8)–(3.9) plus the formulas for pν discussed in previ-
ous sections, it is clear that a rotation through 2π/5 about the k-axis produces a
symmetry of I. We have a unique R ∈ SO(3) satisfying

(4.1) Rk = k, Rvν = vν+1, ν ∈ Z/(5).
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We claim there are rotations about each vν-axis that are symmetries of I. For
example, we claim there is a unique S0 ∈ SO(3) satisfying

(4.2) S0v0 = v0, S0v1 = k,

and that such S0 has the further properties:

(4.3) S0k = v4, S0v4 = −v2, S0(−v2) = −v3, S0(−v3) = v1.

To show this, it is convenient to use the following elementary linear algebra result.

Lemma 4.1. Let e1, e2, e3 be linearly independent unit vectors in R3, and let
f1, f2, f3 be unit vectors in R3. Assume

(4.4) f1 · f2 = e1 · e2.

Then there exists a unique T ∈ SO(3) such that

(4.5) Tej = fj , j = 1, 2.

If in addition we have

(4.6) fj · f3 = ej · e3, j = 1, 2,

and

(4.7) det(f1, f2, f3) = det(e1, e2, e3),

i.e., both sides of (4.7) have the same sign, then

(4.8) Te3 = f3.

We leave the proof of this lemma as an exercise for the reader and proceed. To
obtain S0 ∈ SO(3) satisfying (4.2), we take e1 = v0, e2 = v1, f1 = v0, and f2 = k.
The formula (3.8) gives

(4.9) v0 · v1 =
1
5
(4c1 + 1), v0 · k =

1√
5
,

and the formula (1.12) for c1 readily yields v0 · v1 = v0 · k, so we have (4.2). To
verify (4.3), we successively apply the lemma to the following cases:

e1, e2, e3 f1, f2, f3(4.10)
v0, v1, k v0, k, v4

v0, k, v4 v0, v4,−v2

v0, v4,−v2 v0,−v2,−v3

v0,−v2,−v3 v0,−v3, v1.
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To verify (4.6) in each of these cases it remains to show that

(4.11)
v0 · k = v1 · k = v0 · v4 = k · v4 = v0 · (−v2)

= v4 · (−v2) = v0 · (−v3) = (−v2) · (−v3) = (−v3) · v1.

Direct computation from (3.8) gives

(4.12) v0 · k = v1 · k = k · v4 =
1√
5
,

(4.13) v0 ·v4 =
1
5
(4c1 +1), v0 · (−v2) = −1

5
(4c2 +1), v0 · (−v3) = −1

5
(4c3 +1),

(4.14)

v4 · (−v2) = −1
5
(4c2c4 + 4s2s4 + 1), (−v2) · (−v3) =

1
5
(4c2c3 + 4s2s3 + 1),

(−v3) · v1 = −1
5
(4c1c3 + 4s1s3 + 1).

The quantities in (4.12) are all good. The analysis used for (4.9) also applies to
the first quantity in (4.13), then the identity c2 = −1/2− c1 (cf. (1.14)) treats the
second quantity, and then the identity c3 = c2 treats the third.

It remains to treat (4.14). Note that

(4.15) c2c4 + s2s4 = c1c2 − s1s2.

Furthermore (working with complex numbers, as in §1),

(4.16)
(c1 + is1)(c2 + is2) = c3 + is3 = c2 − is2

=⇒ c1c2 − s1s2 = c2,

which treats the first quantity in (4.14). As for the second, we have

(4.17) c2c3 + s2s3 = c2
2 − s2

2,

and

(4.18)
(c2 + is2)(c2 + is2) = c4 + is4 = c1 − is1

=⇒ c2
2 − s2

2 = c1.

As for the third quantity in (4.14), since c1c3 + s1s3 = c1c2 − s1s2, (4.16) applies.
The agreement of signs of the two sides of (4.7) are also readily verified (all signs

are positive). Thus we have S0 ∈ SO(3) satisfying (4.2)–(4.3), and these formulas
guarantee that S0 : I → I.
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More generally, we have unique Sν ∈ SO(3) satisfying

(4.19) Sνvν = vν , Sνvν+1 = k, ν ∈ Z/(5),

and Sν preserves I. In fact we see that

(4.20) Sν = RSν−1R
−1,

since both sides give elements of SO(3) that satisfy (4.19). Hence

(4.21) Sν = RνS0R
−ν .

Let G+ be the subgroup of SO(3) generated by R and S0. We then see that
Sν ∈ G+ for each ν ∈ Z/(5), and G+ is a group of symmetries of I. We claim that

(4.22) G+ acts transitively on the vertices of I.

To see this, look at the orbit Ok of k under this group action. Of course k ∈ Ok,
and we also have

v4,−v2,−v3, v1 ∈ Ok,

by (4.3). Applying powers of R yields

vν ,−vν ∈ Ok, ν ∈ Z/(5),

and then
S0(−v1) = −k =⇒ −k ∈ Ok.

This proves (4.22).
We now make some observations about the geometry of I. It is clear from (3.8)

that the vertex k has five nearest neighbors, namely vν , ν ∈ Z/(5). Each vν is
joined to k by a line segment, called an edge of I. It follows from (4.22) that
each vertex x ∈ I (e.g., x = vν , or −vν , or −k) has five nearest neighbors, each
connected to x by an edge. Furthermore, a vertex y of I is a nearest neighbor of x
if and only if |x− y| = |k− v0|, and in such a case x is also a nearest neighbor of y.

If x and y are nearest neighbors, we consider the oriented line segment, going
from x to y, and call it an oriented edge. Apparently each of the twelve vertices of
I has five oriented edges issuing from it, so I has 60 oriented edges. (Each edge of
I has two orientations, so I has 30 edges.)

Suppose that e is an oriented edge of I, going from the vertex x to y. By (4.22)
there exists U ∈ G+ such that Ux = k. Then Uy is a nearest neighbor of k, say
Uy = vµ, and then R−µUy = v0. Setting Te = (R−µU)−1 and invoking Lemma 4.1
once more, we have:
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Proposition 4.2. Given an oriented edge e of I, going from the vertex x to y,
there is a unique Te ∈ SO(3) such that

(4.23) Tek = x, Tev0 = y.

Furthermore,

(4.24) Te ∈ G+.

Hence we have a one-to-one correspondence between G+ and the set of oriented
edges of I.
Corollary 4.3. Given any two oriented edges ej of I, going from vertices xj to
yj, there is a unique Te1e2 ∈ SO(3) such that

(4.25) Te1e2x1 = x2, Te1e2y1 = y2.

Furthermore,

(4.26) Te1e2 = Te2T
−1
e1

∈ G+.

There are other useful descriptions of members of G+. Any element of SO(3),
other than the identity I, is a rotation about a uniquely determined axis. As we
have seen, R is a rotation about the k-axis and Sν is a rotation about the vν-axis.
These rotations about axes through the vertices of I and their powers (including
the identity) provide 1 + 4 · 6 = 25 elements of G+. We have rotations about other
axes of symmetry of I. There is an axis of symmetry through the center of each
edge e (and its opposite edge −e). If we denote by e1 and e2 the two orientations
of e, this is given by Je = Te1e2 , the element of G+ described by Corollary 4.3.
Note that J2

e = I. There are 15 edge pairs, so we get 15 additional symmetries this
way. Also there is an axis of symmetry through each triangular face f of I (and
its opposite face −f). Say x1, x2, x3 are the vertices of f, running counterclockwise,
and joined by oriented edges e12, e23, e31, with e12 going from x1 to x2, etc. Then
such a rotation is given by Kf = Te12e23 . Note that K2

f = Te12e31 and K3
f = I.

There are 20 faces, hence 10 face pairs, so this provides 20 additional symmetries.
Note that 25 + 15 + 20 = 60, so this gives all the elements of G+ (as expected).

The transformation −I, which belongs to O(3) but not to SO(3), is also a
symmetry of I. More generally, if we set

(4.27) G− = {−T : T ∈ G+},

then

(4.28) G = G+ ∪ G−
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is a group of symmetries of I, of order 120, containing both orientation-preserving
symmetries (in G+) and orientation-reversing symmetries (in G−).

5. Five cubes inscribed in D̃

Here we describe some cubes that are inscribed in the dodecahedron D̃. We
begin with a look at a frame of three vectors based at pb

1, namely

(5.1) E1 = pb
4 − pb

1, E2 = q#
3 − pb

1, E3 = qb
2 − pb

1.

See Fig. 5.1. Clearly these three vectors have the same length, since a rotation
through 2π/3 about the axis through the origin and pb

1 is a symmetry of D̃ that
permutes the vertices pb

4, q
#
3 , and qb

2. We claim that

(5.2) E1 · E2 = E2 · E3 = E1 · E3 = 0.

To see this, note that

(5.3) E1 = −2s1j,

while

(5.4)
E2 = −(1 + 2c1)(c3i + s3j) + c1k − (c1i + s1j) + (1 + 2c1)k

= −[c1 + (1 + 2c1)c3]i− [s1 + (1 + 2c1)s3]j + (1 + 2c1)k.

The identity E1 ·E2 = 0 then follows from the identity s1 + (1 + 2c1)s3 = 0, which
is equivalent to

(5.5) s1 = (1 + 2c1)s2,

or, since (by (1.14)) 1 + 2c1 = −2c2, to

(5.6) s1 = −2c2s2.

To establish (5.6), we have, complementary to (4.18),

(5.7)
(c2 + is2)(c2 + is2) = c1 − is1

=⇒ 2c2s2 = −s1.

This gives E1 ·E2 = 0. The rest of the identities in (5.2) follow from the symmetry
of D̃ mentioned above.

The frame just constructed forms one corner of a cube, with vertices

(5.8) pb
1, pb

4, q#
3 , qb

2, and q#
3 + E1, q#

3 + E3, qb
2 + E1, q#

3 + E3 + E1.
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In fact, each of these vertices is a vertex of D̃. This follows from the identities

(5.9)

q#
3 + pb

4 − pb
1 = q#

2

q#
3 + qb

2 − pb
1 = p#

4

pb
4 + qb

2 − pb
1 = qb

3

q#
3 + qb

2 − pb
1 + pb

4 − pb
1 = p#

1 .

These all follow from the formulas (2.22)–(2.23). For example, regarding the first
identity in (5.9), we have

(5.10)
q#
3 + pb

4 − pb
1 = −(1 + 2c1)p3 + p4 − p1 + c1k,

q#
2 = −(1 + 2c1)p2 + c1k,

so the desired identity is equivalent to

(5.11) p1 − p4 = (1 + 2c1)(p2 − p3),

hence to

(5.12) s1 = (1 + 2c1)s2,

which is (5.5) again. The next two identities in (5.9) have similar proofs. The last
identity in (5.9) is then established by using the second identity to write the left
side as p#

4 + pb
4 − pb

1 and recalling that p#
ν = −pb

ν . Refer to Fig. 5.2 for a picture of
the cube we have produced. Call this cube Q0.

Note that Q0 has twelve edges and D̃ has twelve faces. It is clear that no one
face of D̃ can contain two different edges of Q0, so each face of D̃ has exactly one
edge of Q0 lying in it, connecting two non-adjacent vertices of such a face.

We will call a line between two non-adjacent vertices of a regular pentagon a
“diagonal” of the pentagon. Thus each pentagon has five distinct diagonals. We
can say that the edges of Q0 consist of one diagonal in each face of D̃.

Consider the group of rotations through 2π/5 about the k-axis, which is a group
of symmetries of D̃, namely the subgroup of G+ generated by R. Each element Rν

takes Q0 to a cube, which we will denote Qν , and as ν runs over Z/(5), the edge
of Qν contained in the bottom face of D̃ runs over the five diagonals of this face.

At this point we make another observation aboutQ0. Namely, the diagonal along
the bottom face, from pb

1 to pb
4, parallel to E1, uniquely determines the diagonals in

the other two faces of D̃ with vertex pb
1, which make the corners of Q0 with vertex

pb
1. Hence this one diagonal uniquely determines Q0.

It follows that as ν runs over Z/(5), the edges of Qν contained in any fixed face
of D̃ run once over all the diagonals in that face.
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6. The isomorphism of G+ and A5

The material developed in §5 enables us to recognize the group G+ as being
isomorphic to the group A5, the subgroup of the group S5 of permutations of a set
of five objects, consisting of even permutations. Our treatment here is an amalgam
of results presented on pp. 17–20 of [K] and on p. 36 of [G]. In these texts the
results on I and D̃ that we have derived in §§2–5 were taken as “given.”

Recall the five cubes Qν , ν ∈ Z/(5) constructed in §5. Each T ∈ G+ takes
each cube Qα to some cube Qβ , and Qα 6= Qα′ ⇒ T (Qα) 6= T (Qα′). Hence G+

acts as a group of permutations of Σ = {Qν : ν ∈ Z/(5)}. Thus we have a group
homomorphism

(6.1) γ : G+ −→ S5.

In fact, G acts on Σ, but −I acts trivially, so G does not act effectively on this set.
We claim that G+ does act effectively:

Lemma 6.1. The homomorphism γ in (6.1) is injective.

Proof. We can characterize how each T ∈ G+ acts on D̃, in a fashion parallel to our
analysis of the action on I in §4, and use this to study π(T ). For example, if T is a
rotation about the k-axis, hence a power of R, then as mentioned near the end of
§5 we certainly have T moving about each element of Σ. The same will hold when
T is a rotation about any other axis through the center of a face of D̃ (in which
case T is conjugate to a power of R).

Next, suppose T is a rotation through ±2π/3 about an axis through a vertex x0

of D̃. Let f be a face of D̃ containing the vertex x0 and let Qα be the element of
Σ with an edge joining the two vertices of f on either side of x0. It follows readily
that T (Qα) 6= Qα.

Finally, if T is a rotation through π about an axis through the center of an edge
e of D̃, we can let Qα be an element of Σ with a vertex at one end of this edge, and
see that T (Qα) 6= Qα. This proves Lemma 6.1.

Given Lemma 6.1, we are in position to establish the main result of this section.

Proposition 6.2. We have an isomorphism

(6.2) γ : G+
≈−→ A5.

Proof. Since γ(G+) is a subgroup of S5 of order 60, it suffices to show that γ(G+) ⊂
A5. Thus if we set

(6.3) σ : G+ −→ {1,−1}, σ(T ) = sgn γ(t),
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it suffices to show that Ker σ = G+. Of course Ker σ is a subgroup of G+, so its
order divides 60.

Clearly if T ∈ G+ is a rotation about the axis through the center of a face of
D̃, then T 5 = I ⇒ σ(T )5 = 1 ⇒ σ(T ) = 1, so this gives σ(T ) = 1 for 25 elements
of G+. Also if T ∈ G+ is a rotation about the axis through a vertex of D̃, then
T 3 = I ⇒ σ(T )3 = 1 ⇒ σ(T ) = 1, so this gives σ(T ) = 1 for an additional 20
elements of G+, hence for at least 45 elements of G+. This is enough to show that
σ(T ) = 1 for all T ∈ G+, and completes the proof of Proposition 6.2.

A. Geometric solution of x2 = ab

Let a and b be positive numbers. We want to describe the geometric approach
to solving

(A.1) x2 = ab,

for x > 0, a la Euclid, but woth the advantage of the use of algebra. To start, (A.1)
is equivalent to

(A.2)
x

a
=

b

x
.

To solve (A.2), we will find two similar right triangles, one with sides of length x
and a, the other with sides of length b and x. We describe a construction depicted
in Fig. A.1.

With α = (a + b)/2, consider the line segment in the real axis of C from −α to
α, of total length a + b. Mark off β = −α + a, so the segment from −α to β has
length a and the segment from β to α has length b. Draw the circle of radius α,
centered at the origin 0.

Draw the vertical line segment up from β. Say it hits this circle at ω. We have
three triangles:

(A.3)

41, vertices − α, ω, α,

42, vertices − α, β, ω,

43, vertices α, β, ω.

We claim they are all similar, i.e., they all have the same angles. In particular, we
claim that

(A.4) 42 is similar to 43,

which implies that (A.2) holds with

(A.5) x = Im ω.



17

This is the geometrical construction of the solution to (A.1).
Now (A.4) holds provided

(A.6) 42 is similar to 41

and

(A.7) 43 is similar to 41.

Furthermore, each of these assertions follows provided

ϕ2 + θ2 is a right angle,

i.e., provided

(A.8) ω + α is orthogonal to ω − α.

It remains to establish (A.8).
Now if z = x + iy, w = u + iv ∈ C, with x, y, u, v ∈ R, the Euclidean inner

product of z and w is given by

(A.9) (z, w) = Re zw = xu + yv.

In the case of (A.8), since α > 0 and |ω|2 = α2,

(A.10)

(ω + α, ω − α) = Re(ω + α)(ω − α)

= Re(|ω|2 + αω − αω − α2)

= α Re(ω − ω)
= 0.

This ends the proof of (A.8), hence of (A.6)–(A.7), so we do have the positive
solution to (A.1), given by (A.5).
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