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1. Introduction

Let Bn ⊂ Rn be the unit ball, endowed with the hyperbolic metric tensor

(1.1) ds2 =
4

(1− |x|2)2
∑

dx2
j .

This is a complete Riemannian manifold of constant sectional curvature −1. We
want to construct the hyperbolic Poisson integral

(1.2) PIH : C(Sn−1) −→ C(B
n
) ∩ C∞(Bn),

such that u = PIH f solves

(1.2A) ∆Hu = 0 on Bn, u
∣∣
Sn−1 = f.

Here, ∆H is the Laplace-Beltrami operator on Bn, with metric tensor (1.1). We
will establish further regularity on u = PIH f when f has some further smoothness
on Sn−1, and estimate du(x), in the hyperbolic metric, as x → ∂Bn.

If n = 2, then ∆Hu = 0 if and only if ∆u = 0, where ∆ = ∂2
1 +∂2

2 is the Euclidean
Laplacian. In that case, PIH coincides with the Euclidean Poisson integral

(1.3) PI : C(S1) −→ C(B
2
) ∩ C∞(B2).

As is well known, if δ > 0,

(1.4) PI : C1+δ(S1) −→ C1(B
2
).

Hence

(1.5)
f ∈ C1+δ(S1), u = PIH f =⇒ |du(x)|E ≤ C

=⇒ |du(x)|H ≤ C(1− |x|),

where |du(x)|E is the Euclidean norm of du(x) and |du(x)|H is its norm in the
hyperbolic metric (on cotangent vectors). The latter implication holds by (1.1),
which implies

(1.6) |du(x)|H =
1
2
(1− |x|2)|du(x)|E .
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If we let ρ(x) denote the distance from 0 to x in the hyperbolic metric, (1.1) gives

(1.7) ρ(x) =
∫ |x|

0

2
1− r2

dr = log
1 + |x|
1− |x| ,

so

(1.8) 1− |x| ∼ e−ρ(x) as x → ∂Bn.

Hence, by (1.5),

(1.9) f ∈ C1+δ(S1), u = PIH f =⇒ |du(x)|H ≤ Ce−ρ(x).

Among other things, we want to get such an estimate on dPIH f(x) for higher
dimensional hyperbolic space.

In §2, we give a geometrical construction of PIH, prove that, given f ∈ C(Sn−1),
u = PIH f so constructed satisfies (1.2A), and estimate the angular derivatives of
u when f ∈ C1(Sn−1).

As the reader can see, the key formula (2.3) for PIH f is very quickly and simply
produced. We mention that there is a literature on more sophisticated generaliza-
tions. In particular, [Fur] gives a Poisson integral formula for bounded harmonic
functions on a general symmetric space G/K of noncompact type, with boundary
data on G/MAN = K/M . Further work, with an emphasis on pointwise a.e. con-
vergence for f ∈ Lp(K/M), has been done in a number of papers, including [Kn],
[K1], [K2], [HK], and [Hel]. (See also [K3] and [Ter] for expositions.) The basic
formulas (2.3) and (3.19) are special cases of results given in those papers. See also
[J] and [GJ] for regularity results that have some overlap with regularity results
discussed here. Further comments on results on other symmetric spaces are given
in Appendix E of this paper.

Studies of the Dirichlet problem at infinity for general complete, simply con-
nected Riemannian manifolds with sectional curvature bounded between −b2 and
−a2 < 0 (which holds for rank-one symmetric spaces of noncompact type) appear
in [A] and [Sul], and a simplification of the approach of [A] in [AS]. In this setting,
[CC] establish the bound

(1.9A) |du(x)| ≤ Cγe−γρ(x),

for all γ < a, given boundary data f ∈ C1(Sn−1). In the setting of hyperbolic space,
a = 1, and the bound on |du(x)| in (1.9A) is slightly weaker than that in (1.9). On
the other hand, even for 2D hyperbolic space, (1.9) fails if C1+δ is replaced by C1;
extra smoothness is required. See Appendix A for more on this.

To proceed with our quest to extend (1.9), it is convenient to move to the hy-
perbolic upper half plane Rn

+, with metric tensor

(1.10) ds2 = x−2
n

∑
dx2

j ,
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and associated Poisson integral

(1.15) PIh : C0(Rn−1) −→ C(Rn

+).

We do this in §3. We produce an explicit formula for PIh f , of convolution type.
We use this to estimate derivatives of PIh f tangent to ∂Rn

+ when f ∈ C1
0 (Rn−1).

In §4, we give a Fourier integral representation of PIh f , of the form

(1.16) PIh f(x + ten) = (2π)−(n−1)

∫

Rn−1

p̂h(tξ)f̂(ξ)eix·ξ dξ,

where p̂h(ξ) is the Fourier transform of

(1.17) ph(y) = C(|y|2 + 1)−(n−1).

We discuss some qualitative results on p̂h(ξ) and use them to analyze (1.16), in
particular for f ∈ S(Rn−1). With these results, we prove the following partial
extension of (1.9):

(1.18) f ∈ C∞(Sn−1), u = PIH f =⇒ |du(x)|H ≤ Ce−ρ(x).

We also establish the following partial extension of (1.4):

(1.19) PIH : C∞(Sn−1) −→ C1(B
n
),

for n ≥ 3, and, for n ≥ 4,

(1.20) PIH : C∞(Sn−1) −→ C2(B
n
).

In §5 we use the fact that

(1.21) p̂h(ξ) = C|ξ|(n−1)/2K(n−1)/2(|ξ|),

where Kν(r) is the modified Bessel function known as MacDonald’s function, to
produce finer results. These include the demonstration that if n ≥ 2 is even,

(1.22) PIH : C∞(Sn−1) −→ C∞(B
n
).

We show that (1.20) fails for n = 3, but just barely; cf. (5.22).
In §6, we take a still closer look at PIh, and extend (1.5) from S1 to Sn−1. We

go further, showing that

(1.23) PIH : B1
∞,1(S

n−1) −→ C1(B
n
).
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In Appendix A, we give further results along the lines of (1.3)–(1.9) for f ∈
C1(S1), and more generally for f ∈ C1

∗(S
1) (the Zygmund space). We show that

in place of (1.9), we have

(1.24) f ∈ C1
∗(S

1), u = PIH f =⇒ |du(x)|H ≤ C(1 + ρ(x))e−ρ(x),

which is sharper than (1.9A) in this context.
In Appendix B, we further improve the analysis of PIh and PIH when n is even,

showing they share the same regularity properties as the Euclidean Poisson integral
in this case. See Proposition B.1. Appendix C gives further results when n is odd.

In Appendix D, we record an asymptotic analysis of a Fourier transform that
completes the proof of Lemma 6.2.

In Appendix E, we discuss work that has been done on other symmetric spaces,
especially in rank one.

In Appendix F, we discuss further convergence results, to the effect that, if
P r
Hf(ω) = PIH f(rω), then, for a variety of banach spaces X of functions on Sn−1

(mainly Lp-Sobolev spaces),

(1.25) f ∈ X =⇒ P r
Hf → f in X.

In Appendix G, we establish some results of Fatou type, namely, with ur(ω) =
u(rω), if ∆Hu = 0 on Bn, and if {ur : 0 ≤ r < 1} is bounded in X (as above), then
there exists f ∈ X (or perhaps a larger space) such that u = PIH f .
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2. Geometric construction of PIH

If the solution operator in (1.2) exists, rotational symmetry requires

(2.1) PIH f(0) =
1

An−1

∫

Sn−1

f dS,

where dS is the standard element of surface area of Sn−1 and An−1 is its total area.
Given x ∈ Bn, let

(2.2) Cx : Bn −→ Bn, Cx(0) = x

be a conformal diffeomorphism taking 0 to x. (Such a map extends to a diffeo-
morphism of B

n
onto itself.) The map Cx is an isometry for the hyperbolic metric

(1.1), so vx = u ◦ Cx also solves ∆Hvx = 0 if ∆Hu = 0. Hence, if PIH exists, it
must satisfy

(2.3) PIH f(x) = vx(0) =
1

An−1

∫

Sn−1

f ◦ Cx dS.

Note that Cx in (2.2) is well defined only up to a rotation:

(2.3A) C′x = Cx ◦R, R ∈ SO(n),

but altering Cx by such a factor leaves the right side of (2.3) unchanged.
Note that if x ∈ Bn and

(2.4) x → ω ∈ Sn−1

(convergence in the topology of Rn), then, for an appropriate choice of Cx,

(2.5) Cx(σ) −→ ω for σ ∈ Sn−1 \ {−ω}, locally uniformly,

so, as defined by (2.3), PIH f(x) → f(ω) if f ∈ C(Sn−1), and hence PIH :
C(Sn−1) → C(B

n
).

To show that u = PIH f satisfies (1.2A), we start with the following.

Lemma 2.1. If C : Bn → Bn is a conformal diffeomorphism, and PIH f is defined
by (2.3), then

(2.6) (PIH f) ◦ C = PIH(f ◦ C).
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Proof. We need to show that, for each x ∈ Bn,

(2.7)
∫

Sn−1

f ◦ CC(x) dS =
∫

Sn−1

f ◦ C ◦ Cx dS.

By the comment about the invariance of the right side of (2.3) under a change of
the form (2.3A), it suffices to note that CC(x) and C ◦ Cx take 0 to the same point.
Indeed, both maps take 0 to C(x), so (2.6) holds.

To proceed, since the hyperbolic ball is a rank-one symmetric space, u = PIH f
is harmonic (with respect to ∆H) if and only if it satisfies the mean value property

(2.8) u(x) = AvgΣr(x) u,

where Σr(x) consists of all points of hyperbolic distance r from x, carrying the area
element induced by the hyperbolic metric. By (2.6), it suffices to show that, for all
f ∈ C(Sn−1), (2.8) holds at x = 0 for u = PIH f . Thus we need to show that

(2.9) PIH f(0) = Avgy∈Σr(0) PIH f(y),

or equivalently

(2.10)
∫

Sn−1

f dS = Avgy∈Σr(0)

∫

Sn−1

f ◦ Cy dS.

Again exploiting the invariance of the right side of (2.3) under the change (2.3A),
we see that it suffices to pick y0 ∈ Σr(0) and show that

(2.11)
∫

Sn−1

f dS = AvgR∈SO(n)

∫

Sn−1

f ◦R ◦ Cy0 dS.

But

(2.12) AvgR∈SO(n) f ◦R ≡ 1
An−1

∫

Sn−1

f dS,

so (2.11) holds. Hence PIH f , given by (2.3), does solve the Dirichlet problem
(1.2A).

We can specialize (2.6) to the case C = R ∈ SO(n) and differentiate, to obtain

(2.13) X(PIH f) = PIH(Xf), X ∈ so(n),

given f ∈ C1(Sn−1). In order to extend the estimate (1.9) to higher dimensions, we
need to analyze the radial derivative of PIH f , for f in a suitable class of functions
on Sn−1. To do this, we find it convenient to shift to the upper half space version
of hyperbolic space.
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3. Moving to the upper half plane

The ball Bn with metric tensor (1.1) is isometric to Rn
+, with metric tensor

(3.1) ds2 = x−2
n

∑
dx2

j ,

via the conformal map

(3.2) T : Rn \ {en} → Rn, −T (x) = 2|x− en|−2(x− en) + en,

restricted to Bn, yielding

(3.2A) T : Bn → Rn
+.

The restriction S = −T |Sn−1 is given by

(3.3) S(x) = (1− xn)−1(x′, 0), S : Sn−1 \ {en} → Rn−1,

if x = (x′, xn). This is stereographic projection. A computation (cf. [T2], p. 229)
gives for y = S(x) = (1− xn)−1x′,

(3.5) S∗
n−1∑

j=1

dy2
j = (1− xn)−2

n∑

j=1

dx2
j .

Hence, for the inverse

(3.6) ψ : Rn−1 −→ Sn−1,

we have

(3.7) ψ∗
n∑

j=1

dx2
j = (1− xn)2

n−1∑

j=1

dy2
j .

A computation gives

(3.8) xn =
|y|2 − 1
|y|2 + 1

, 1− xn =
2

|y|2 + 1
,

so

(3.9) ψ∗
n∑

j=1

dx2
j =

4
(|y|2 + 1)2

n−1∑

j=1

dy2
j ,
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and hence, with dS as in (2.3),

(3.10) ψ∗dS =
C

(|y|2 + 1)n−1
dy, y ∈ Rn−1.

We have the conjugated operator

(3.11) PIh f = (PIH(f ◦ T −1)) ◦ T ,

giving

(3.12) PIh : C0(Rn−1) −→ C(Rn

+),

for which u = PIh f solves

(3.13) ∆hu = 0, u
∣∣
Rn−1 = f,

where ∆h is the Laplace-Beltrami operator on Rn, with metric tensor (3.1). From
(2.1) and (3.2)–(3.10), we have

(3.14)

PIh f(en) =
1

An−1

∫

Rn−1

f ψ∗dS

= C

∫

Rn−1

f(y)(|y|2 + 1)−(n−1) dy.

Then, if we have a have a conformal diffeomorphism of Rn
+ onto itself (which hence

is an isometry for the metric (3.1))

(3.15) CX : Rn
+ → Rn

+, CX(en) = X,

parallel to (2.3) we have

(3.16) PIh f(X) = C

∫

Rn−1

f ◦ CX(y)(|y|2 + 1)−(n−1) dy.

In this case, if X = x + ten, x ∈ Rn−1, t > 0, we can use

(3.17) CX(y) = x + ty,

so

(3.18) PIh f(x + ten) = C

∫

Rn−1

f(x + ty)(|y|2 + 1)−(n−1) dy.
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The constant C is determined by the identity

C

∫

Rn−1

(|y|2 + 1)−(n−1) dy = 1.

It is elementary that (3.18) tends to f(x) as t ↘ 0. We make a change of variable
and exploit evenness to write this as a convolution:

(3.19) PIh f(x + ten) = Ct−(n−1)

∫

Rn−1

f(x− y)
(∣∣∣y

t

∣∣∣
2

+ 1
)−(n−1)

dy.

Remark. This formula for PIh is a special case of a Poisson integral formula for
general rank-one symmetric spaces. See Appendix E for more on this.

Compare (3.19) to the Euclidean Poisson integral

(3.20) PIe f(x + ten) = C ′t−(n−1)

∫

Rn−1

f(x− y)
(∣∣∣y

t

∣∣∣
2

+ 1
)−n/2

dy.

These coincide when n = 2, but not when n > 2. Both (3.19) and (3.20) have the
form

(3.21) PIa f(x + ten) =
∫

Rn−1

f(x− y)pa(t, y) dy,

with

(3.22)
ph(t, y) = Ct−(n−1)

(∣∣∣y
t

∣∣∣
2

+ 1
)−(n−1)

= Ctn−1(|y|2 + t2)−(n−1),

pe(t, y) = Ct−(n−1)
(∣∣∣y

t

∣∣∣
2

+ 1
)−n/2

= Ct(|y|2 + t2)−n/2.

Note that, for n ≥ 3, ph(t, y) decreases as |y| → ∞ faster than pe(t, y) does. This
will have significant consequences.

Regarding the relevance of (3.19) to the analysis of PIH g, given g ∈ C(Sn−1), the
following observation is in order. Using a partition of unity, we can write g = g1+g2,
where g1 vanishes in a neighborhood of en and g2 vanishes in a neighborhood of
−en. With f1 = g1 ◦ T , we have

(3.23) PIH g1 = (PIh f1) ◦ T −1,

and f1 ∈ C(Rn−1) has compact support. A rotation reduces the study of PIH g2

to that of PIH g1, so we can concentrate on (3.19) with f compactly supported on
Rn−1.

Here is a first indication of differences between (3.19) and (3.20) when n ≥ 3.
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Proposition 3.1. Assume f ∈ C(Rn−1) is supported on a compact set K ⊂ Rn−1.
Let K̃ ⊂ Rn−1 be a compact set disjoint from K. Then

(3.24) |PIh f(x + ten)| ≤ Ctn−1 for x ∈ K̃.

The proof is a simple consequence of (3.19) (or (3.21)–(3.22)). Note by contrast
that the hypotheses give

(3.25) |PIe f(x + ten)| ≤ Ct for x ∈ K̃.

For n = 2, (3.24) and (3.25) have the same strength (as they must), but for n ≥ 3,
(3.24) is much stronger than (3.25).

Since PIh is a convolution operator for each t, it commutes with ∂j for 1 ≤ j ≤
n− 1. We have

(3.26) ∂j PIh f = PIh(∂jf), 1 ≤ j ≤ n− 1.

Hence, if f ∈ C1(Rn−1) has compact support, ∂j PIh f is bounded and continuous
on Rn

+, for 1 ≤ j ≤ n− 1. We will estimate the t-derivative in §4.
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4. Fourier integral representation of PIh f

Using the Fourier transform

(4.1) ĝ(ξ) =
∫

Rn−1

g(y)e−iy·ξ dy,

we can write PIh f in (3.19) as

(4.2) PIh f(x + ten) = (2π)−(n−1)

∫

Rn−1

p̂h(tξ)f̂(ξ)eix·ξ dξ,

where

(4.3) ph(y) = ph(1, y) = C(|y|2 + 1)−(n−1).

The constant C is the one that makes p̂h(0) = 1. As is well known, for the Euclidean
Poisson integral (3.20), we have

(4.4) PIe f(x + ten) = (2π)−(n−1)

∫

Rn−1

e−t|ξ|f̂(ξ)eix·ξ dξ.

Here we want to analyze p̂h(tξ). Note that

(4.5) p̂h(ξ) = C(1−∆ξ)−αδ(ξ), α = n− 1.

From this we see that, for all ε > 0,

(4.6) p̂h ∈ H(3/2)(n−1)−ε,2(Rn−1), hence p̂h ∈ Cn−1−ε(Rn−1).

Also

(4.7) p̂h ∈ C∞(Rn−1 \ 0) and is exponentially decreasing as |ξ| → ∞.

Note from (4.6) that

(4.8) n ≥ 3 =⇒ p̂h ∈ C1(Rn−1).

Also, by radial symmetry, p̂h is a radial function. Hence

(4.9) ∇ξp̂h(0) = 0.
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It follows that we can write

(4.10) p̂h(ξ) = Qn(|ξ|), Qn ∈ C1([0,∞)), Q′(0) = 0,

and also
(4.11) Qn ∈ C∞((0,∞)), Qn(r) exponentially decreasing as r →∞.

Then (4.2) becomes

(4.12) PIh f(x + ten) = (2π)−(n−1)

∫

Rn−1

Qn(t|ξ|)f̂(ξ)eix·ξ dξ,

and we get

(4.13)
∂

∂t
PIh f(x + ten) = (2π)−(n−1)

∫

Rn−1

Q′n(t|ξ|)|ξ|f̂(ξ)eix·ξ dξ.

The following is an immediate consequence of (4.10)–(4.13), together with the
Lebesgue dominated convergence theorem.

Proposition 4.1. If f ∈ S(Rn−1) and n ≥ 3, then

(4.14)
∂

∂t
PIh f ∈ C(Rn

+),

and

(4.15) lim
t↘0

∂

∂t
PIh f(x + ten) = 0.

Recalling the discussion around (3.23), we have the following.

Corollary 4.2. For n ≥ 2,

(4.16) PIH : C∞(Sn−1) −→ C1(B
n
).

From here, the arguments involving (1.6)–(1.8) give the following partial exten-
sion of (1.9).

Theorem 4.3. Given f ∈ C∞(Sn−1), u = PIH f satisfies

(4.17) |du(x)|H ≤ Ce−ρ(x).

We next produce a sharpening of Proposition 4.1, when n ≥ 4. In such a case,
we can use (4.6) to sharpen (4.8) to

(4.17) n ≥ 4 =⇒ p̂h ∈ C2(Rn−1).

Then we can supplement (4.10) by Qn ∈ C2([0,∞)), and (4.13) by

(4.18)
∂2

∂t2
PIh f(x + ten) = (2π)−(n−1)

∫

Rn−1

Q′′
n(t|ξ|)|ξ|2f̂(ξ)eix·ξ dξ.

Hence, if f ∈ S(Rn−1) we have ∂2
t PIh f ∈ C(Rn

+) and

(4.19)
∂2

∂t2
PIh f(x + ten)

∣∣
t=0

= −Q′′n(0)∆f(x),

where ∆ = ∂2
1 + · · ·+ ∂2

n−1. We have the following improvement of (4.15).
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Proposition 4.4. If n ≥ 4 and f ∈ S(Rn−1), then u = PIh f satisfies

(4.20) |∂tu(x + ten)| ≤ Ct.

(For the case n = 3, see (5.22).)

Corollary 4.5. For n ≥ 4,

(4.21) PIH : C∞(Sn−1) −→ C2(B
n
).

We obtain a finer analysis of PIh f in the following section.
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5. Finer analysis of PIh f

Recall that

(5.1) PIh f(x + ten) = (2π)−(n−1)

∫

Rn−1

p̂h(tξ)f̂(ξ)eix·ξ dξ,

with

(5.2)
p̂h(ξ) = C(1−∆ξ)−(n−1)δ(ξ)

= Qn(|ξ|).

We have (4.6)–(4.7) for p̂h and (4.10)–(4.11) for Qn. We now want to go further.
It is classical (and most of the supporting calculations are given in [St]) that, for
ξ ∈ Rn−1, α > 0,

(5.3) (1−∆ξ)−αδ(ξ) = C|ξ|α−(n−1)/2K(n−1)/2−α(|ξ|),

where Kν(r) is the modified Bessel function called MacDonald’s function. Hence
(using K−ν = Kν) we have

(5.4) Qn(|ξ|) = C|ξ|(n−1)/2K(n−1)/2(|ξ|).

If n is an even integer, then ν = (n − 1)/2 is a half-integer, while if n is an odd
integer, then ν = (n − 1)/2 is an integer. We discuss some properties of Kν for
such ν. Details can be found in [Leb]. First,

(5.5) K1/2(r) =
( π

2r

)1/2

e−r,

so for n = 2 the formula

(5.6) PIh f(x + ten) = (2π)−(n−1)

∫

Rn−1

Qn(t|ξ|)f̂(ξ)eix·ξ dξ

agrees with (4.4). We can proceed from here via the recurrence relation

(5.7) Kν+1(r) = −rν d

dr

(
r−νKν(r)

)
,

which implies

(5.8) rν+1Kν+1(r) = −r
d

dr

(
rνKν(r)

)
+ 2νrνKν(r).
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Starting with (5.5), we get, for example,

(5.9) r3/2K3/2(r) =
√

π

2
(
re−r + e−r

)
.

It follows inductively from (5.8) that if ` ∈ Z+,

(5.10) r`+1/2K`+1/2(r) ∈ C∞([0,∞)),

and hence

(5.11) n ≥ 2 even =⇒ Qn ∈ C∞([0,∞)).

Consequently, for n even, Propositions 4.1–4.2 readily extend as follows.

Proposition 5.1. If n ≥ 2 is even, then

(5.12) PIh : S(Rn−1) −→ C∞(Rn

+),

and, for all ` ∈ Z+,

(5.13)
∂`

∂t`
PIh f(x + ten) = (2π)−(n−1)

∫

Rn−1

Q(`)(t|ξ|)|ξ|`f̂(ξ)eix·ξ dξ.

Hence, for such n,

(5.14) PIH : C∞(Sn−1) −→ C∞(B
n
).

Next, if n = 2` + 1 is odd, then ν = (n− 1)/2 = ` is an integer. In such a case
(cf. [Leb]) we have
(5.15)(r

2

)`

K`(r)

=
1
2

`−1∑

k=0

(−1)k(`− k − 1)!
k!

(r

2

)2k

+
(−1)`

2

(r

2

)2` ∞∑

k=0

1
k!(k + `)!

(r

2

)2k[
2 log

r

2
− ψ(k + 1)− ψ(k + ` + 1)

]
,

where (with γ denoting the Euler constant)

(5.16) ψ(1) = −γ, ψ(` + 1) = −γ + 1 +
1
2

+ · · ·+ 1
`
, ` = 1, 2, 3 . . . .
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For example,

(5.17)
Q3(|ξ|) = C|ξ|K1(|ξ|)

= A1(|ξ|2) + B1(|ξ|2)|ξ|2 log |ξ|,

with A1, B1 ∈ C∞([0,∞)). More generally,

(5.18)
Q2`+1(|ξ|) = C|ξ|`K`(|ξ|)

= A`(|ξ|2) + B`(|ξ|2)|ξ|2` log |ξ|,

with A`, B` ∈ C∞([0,∞)). Here we see that the conclusion for regularity on Qn on
[0,∞) that follows from (4.6) is fairly sharp:

(5.19) n = 2` + 1 =⇒ Qn ∈ C2`−ε([0,∞)), Qn /∈ C2`([0,∞)).

Note from (5.17) that

(5.20) Q′3(|ξ|) = Ã(|ξ|) + B̃(|ξ|)|ξ| log |ξ|,

with Ã, B̃ ∈ C∞([0,∞)). Hence, for f ∈ S(R2),

(5.21)
∂

∂t
PIh f(x + te3) = (2π)−2

∫

R2

Q′3(t|ξ|)|ξ|f̂(ξ)eix·ξ dξ

yields

(5.22)
∣∣∣ ∂

∂t
PIh f(x + te3)

∣∣∣ ≤ C t log
1
t
,

which takes the place of (4.20) when n = 3 and improves on (4.15) in that case.
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6. Slightly better than C1 boundary data

Recall that

(6.1)

PIh f(x + ten) = t−(n−1)

∫

Rn−1

f(x− y)ph

(y

t

)
dy

= (2π)−(n−1)

∫

Rn−1

Qn(t|ξ|)f̂(ξ)eix·ξ dξ,

with

(6.2) ph(y) = C(|y|2 + 1)−(n−1), Qn(|ξ|) = p̂h(ξ).

Using (5.4), we saw that

(6.3) n ≥ 2 even =⇒ Qn ∈ C∞([0,∞)),

while

(6.4) n = 2` + 1 =⇒ Qn(|ξ|) = A`(|ξ|2) + B`(|ξ|2)|ξ|2` log |ξ|,

with A`, B` ∈ C∞([0,∞)). Also, in all cases,

(6.5) Qn ∈ C∞((0,∞)), exponentially decreasing at ∞.

We mention that one could avoid (5.4) and special function theory, and deduce
(6.3)–(6.4) from asymptotic analysis developed in Chapter 3, §8 of [T3].

It is clear from (6.1)–(6.2) that if f is bounded and continuous on Rn−1, then
PIh f ∈ C(Rn

+). Since, for 1 ≤ j ≤ n−1, ∂j PIh f = PIh(∂jf), if also ∂jf is bounded
and continuous on Rn−1, then ∂j PIh f ∈ C(Rn

+). As noted in §5, it follows from
(6.4) that Qn ∈ C1([0,∞)) in all cases, and

(6.6)
∂

∂t
PIh f(x + ten) = (2π)−(n−1)

∫

Rn−1

Q′(t|ξ|)|ξ|f̂(ξ)eix·ξ dξ.

Since Q′n is bounded and continuous on [0,∞) it readily follows that ∂t PIh f ∈
C(Rn

+) whenever f ∈ S(Rn−1), and more generally whenever |ξ|f̂(ξ) ∈ L1(Rn−1).
We want to establish the following stronger result.
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Proposition 6.1. Given f ∈ C1(Rn−1) with compact support, define g ∈ S ′(Rn−1)
by

(6.7) ĝ(ξ) = |ξ|f̂(ξ).

If g is bounded and continuous on Rn−1, then

(6.8)
∂

∂t
PIh f ∈ C(Rn

+).

Proof. We have

(6.9)

∂

∂t
PIh f(x + ten) = (2π)−(n−1)

∫

Rn−1

Q′
n(t|ξ|)ĝ(ξ)eix·ξ dξ

= t−(n−1)

∫

Rn−1

g(x− y)rn

(y

t

)
dy,

where

(6.10) r̂n(ξ) = Q′n(|ξ|).

The continuity result (6.8) is an immediate consequence of the result

(6.11) rn ∈ L1(Rn−1),

so it remains to prove (6.11). Given (6.3)–(6.5), it suffices to prove the following.

Lemma 6.2. Given ϕ ∈ C∞0 (Rn−1), define

(6.12) ψ0(ξ) = ϕ(ξ)|ξ|, ψ1(ξ) = ϕ(ξ)|ξ| log |ξ|.

Then

(6.13) ψ̂0, ψ̂1 ∈ L1(Rn−1).

Proof. It follows from asymptotic analysis of Fourier transforms developed in Chap-
ter 3, §8 of [T3] that

(6.14) |ψ̂0(y)| ≤ C(1 + |y|)−n,

which gives (6.13) for ψ̂0. The asymptotic analysis of ψ̂1(y) will be given in Ap-
pendix D.
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We discuss when (6.7) defines a bounded continuous g. Note that

(6.15) g =
∑

j

Rj∂jf,

where Rj (a Riesz transform) is Fourier multiplication by −iξj/|ξ|, hence convolu-
tion by a principal value kernel on R−(n−1) that is homogeneous of degree −(n−1).
Given f ∈ C1

0 (Rn−1), ∂jf is continuous and has compact support. Clearly g is
bounded and continuous outside any neighborhood of supp f , so whether g is
bounded and continuous on Rn−1 is a local question. It is well known that if a
function h has compact support in Rn−1 and is Hölder continuous with positive
exponent, then Rjh is bounded and continuous. Hence Proposition 6.1 applies
to compactly supported f ∈ C1+ε(Rn−1), given ε > 0. More generally, given f
compactly supported, if

(6.16) f ∈ B1
∞,1(Rn−1),

where one has

(6.17) f ∈ Bs
∞,1(Rn−1) ⇐⇒

∑

`≥0

2`s‖ψ`(D)f‖L∞ < ∞,

where {ψ` : ` ≥ 0} is a Littlewood-Paley partition of unity, then Rj∂jf is bounded
and continuous, so Proposition 6.1 applies to such functions.

Moving over to the setting of Bn, we have the following.

Proposition 6.3. Given ε > 0,

(6.18) PIH : C1+ε(Sn−1) −→ C1(B
n
).

More generally,

(6.19) PIH : B1
∞,1(S

n−1) −→ C1(B
n
).
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A. C1 boundary data and beyond

For now, we restrict attention to Bn with n = 2, so PIH and PI coincide. As
noted in the introduction, it is not the case that PI : C1(S1) → C1(B

2
). One does

have

(A.1) PI : C1(S1) −→ Cα(B
2
), ∀α < 1,

which implies for u = PI f = PIH f ,

(A.2) |du(x)|E ≤ Cε(1− |x|)−ε, ∀ ε > 0,

hence, via (1.6) and (1.8),

(A.3) |du(x)|H ≤ Cεe
(1−ε)ρ(x), ∀ ε > 0,

a result consistent with (1.9A). Here we go further, and produce a sharper estimate
for a broader class of boundary data. Namely, we take

(A.4) f ∈ C1
∗(S

1) = B1
∞,∞(S1).

One definition of Cα
∗ (S1) = Bα

∞,∞(S1) is that a distribution f on S1 belongs to
this space if and only if

(A.5) ‖ψ`(D)f‖L∞ ≤ C2−`α,

where {ψ` : ` ≥ 0} is a Littlewood-Paley partition of unity and ψ`(D) is Fourier
multiplication by ψ`. Given f ∈ C1

∗(S
1), we have

(A.6)
∂

∂θ
PI f = PI

∂f

∂θ
, r

∂

∂r
PI f = −PI(Λf),

where

(A.7) Λf(θ) =
∑

k

|k|f̂(k)eikθ.

As is well known,

(A.8) f ∈ C1
∗(S

1) =⇒ ∂θf, Λf ∈ C0
∗(S

1).

We have the following.
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Lemma A.1. If g ∈ C0
∗(S

1), then

(A.9) |PI g(reiθ)| ≤ C log
1

1− r
.

Granted this lemma, we have

(A.10) f ∈ C1
∗(S

1) =⇒ |dPI f(x)|E ≤ C log
1

1− |x| ≈ Cρ(x),

and hence u = PIH f satisfies

(A.11) |du(x)|H ≤ C(1 + ρ(x))e−ρ(x),

an estimate that is stronger than (A.3).
To prove (A.9), write

(A.12)

PI g(reiθ) =
∑

`≥0

G`r(θ),

G`r(θ) =
∑

k

ψ`(k)r|k|ĝ(k)eikθ.

Then

(A.13)
‖G`r‖L∞(S1) ≤ Cr2`‖ψ`(D)g‖L∞

≤ Cr2`‖g‖C0∗ ,

so

(A.14) |PI g(reiθ)| ≤ C‖g‖C0∗

∑

`≥0

r2`

.

Now, with r = e−t, t ∈ (0, 1/2],

(A.15)

∑

`≥0

r2` ≤ C

∫ ∞

1

e−tes

ds

≤ C

∫ ∞

1

e−ty dy

y

≤ C log
1
t

≈ C log
1

1− r
,

yielding (A.9).
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B. Finer results for even n

Recall that

(B.1) PIh f(x + ten) = (2π)−(n−1)

∫

Rn−1

Qn(t|ξ|)f̂(ξ)eix·ξ dξ,

with

(B.2) Qn(r) = Cnr(n−1)/2K(n−1)/2(r),

so if n = 2` + 2 is even,

(B.3) Q2`+2(r) = C ′`r
`+1/2K`+1/2(r).

For ` = 0 we have (5.5), and for larger ` ∈ Z+ we can apply the recursion (5.8).
This can be rewritten as follows. Define q`(r) by

(B.4) Q2`+2(r) = q`(r)e−r.

Then it follows from (5.4)–(5.5) and the fact that

(B.5) Qn(0) = 1, hence q`(0) = 1,

that

(B.6) q0(r) = 1.

Then it follows from the recursion (5.8) together with (B.5) that

(B.7) q`+1(r) = q`(r) +
r

2` + 1
(q`(r)− q′`(r)).

In particular,

(B.8) q1(r) = 1 + r, q2(r) = 1 + r +
r2

3
.

Generally, q`(r) is a polynomial of degree ` in r:

(B.9) q`(t) =
r∑

j=0

α`jr
j ,

so, for n = 2` + 2,

(B.10) PIh f(x + ten) = (2π)−(n−1)
∑̀

j=0

α`jt
j

∫
|ξ|je−t|ξ|f̂(ξ)eix·ξ dξ.

Comparison with (4.4) for the Euclidean Poisson integral gives the following.
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Proposition B.1. If n = 2` + 2 and f is given on Rn−1,

(B.11) PIh f(x + ten) =
∑̀

`=0

α`jt
j
(
− ∂

∂t

)j

PIe f(x + ten).

Note that the right side of (B.11) can be written

(B.12)
∑̀

j=0

β`j

(
t
∂

∂t

)j

PIe f(x + ten),

with β`j ∈ R. This allows us to apply standard ellpitic regularity results for PIe.
For example, if f has compact support in Rn−1 and u = PIe f , then

(B.13) f ∈ Cr(Rn−1) ⇒ u, (t∂t)ju ∈ Cr(Rn

+), ∀ j ∈ N,

if r > 0, r /∈ Z, with a Zygmund space replacement for r ∈ Z+. Hence the same
regularity result holds for u = PIh f . This regularity result carries over to the
setting of the ball, yielding the following sharpeninig of (5.14) and (6.18).

Proposition B.2. If n is even, then, for r > 0,

(B.14) PIH : Cr
∗(S

n−1) −→ Cr
∗(B

n
).

Similarly, other standard elliptic regularity results for u = PIe f extend. We
have

(B.15) PIH : Hs,2(Sn−1) −→ Hs+1/2,2(Bn),

for s ≥ −1/2, and, more generally, for 1 < p < ∞,

(B.16) PIH : Bs
p,p(S

n−1) −→ Hs+1/p,p(Bn),

provided n ≥ 2 is even.

Remark 1. Let us be more explicit about (B.12) when n = 4. We then have

(B.17) PIh f(x + ten) = PIe f(x + ten)− t∂t PIe f(x + ten).

Note that this implies

(B.18) ∂t PIh f(x + ten) = t(∂2
1 + ∂2

2 + ∂2
3) PIe f(x + ten),

which is consistent with Proposition 3.1 and with Proposition 4.1.

Remark 2. A correspondence between PIH and its Euclidean counterpart on Sn−1

analogous to (B.11) is given in [GJ], which also noted (B.14) as a consequence.
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C. Further results for odd n

As seen in §5, if n = 2` + 1 is odd, we can write

(C.1) Qn(|ξ|) = A(|ξ|) + B(|ξ|) log |ξ|,
with

(C.2) A,B ∈ C∞([0,∞)), exponentially decreasing,

and furthermore,

(C.3) B(|ξ|) = B#(|ξ|)|ξ|2`,

where B# has property (C.2). Also, by (5.18),

(C.3A) A and B# are smooth functions of |ξ|2.
It follows that, for f ∈ L1(Rn−1),

(C.4) PIh f = PIa f + PIbl f,

with

(C.5)
PIa f(x + ten) = (2π)−(n−1)

∫
A(t|ξ|)f̂(ξ)eix·ξ dξ,

PIbl f(x + ten) = (2π)−(n−1)

∫
B(t|ξ|)(log |tξ|)f̂(ξ)eix·ξ dξ.

Note that

(C.6) PIbl f = (log t) PIb f + PIl f,

where

(C.7)
PIb f(x + ten) = (2π)−(n−1)

∫
B(t|ξ|)f̂(ξ)eix·ξ dξ,

PIl f(x + ten) = (2π)−(n−1)

∫
B(t|ξ|)(log |ξ|)f̂(ξ)eix·ξ dξ.

Also,

(C.8)
PIl f(x + ten) = t2` PI#l f(x + ten)

= (2π)−(n−1)t2`

∫
B#(t|ξ|)|ξ|2`(log |ξ|)f̂(ξ)eix·ξ dξ.

It is elementary that

(C.9) PIa,PIb, PIl,PI#l : S(Rn−1) −→ C∞(Rn

+).

Transforming to the setting of the ball, we have the following.
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Proposition C.1. Assume n ≥ 3 is odd. Given f ∈ C∞(Sn−1), we have

(C.10) PIH f(x) = u(x) + v(x)(1− |x|2)n−1 log(1− |x|2), u, v ∈ C∞(B
n
).

We establish the following Zygmund space mapping properties.

Proposition C.2. Assume n ≥ 3 is odd. Take ϕ ∈ C∞0 (Rn

+), and let f be a
compactly supported function on Rn−1. Then

(C.11) f ∈ Cr
∗(Rn−1) =⇒ ϕ PIa f ∈ Cr

∗(R
n

+), ∀ r ∈ (0,∞),

and

(C.11A) f ∈ Cr
∗(Rn−1) =⇒ ϕ PIbl f ∈ Cr

∗(R
n

+), ∀ r ∈ (0, n− 1).

As the stated result for PIa f is relatively straightforward, we concentrate on
PIbl f . We start with the case 0 < r < 1. We have

(C.12)

t∂t PIbl f(x + ten)

= (2π)(n−1)

∫
B′(t|ξ|)|tξ|(log |tξ|)f̂(ξ)eix·ξ dξ

+ (2π)(n−1)

∫
B1(t|ξ|) |tξ| f̂(ξ)eix·ξ dξ,

where

(C.13) B1(r) = r−1B(r) = O(r2`−1), as r → 0.

Using the notation

(C.14)
PIte f(x) = PIe f(x + ten)

= (2π)−(n−1)

∫
e−t|ξ|f̂(ξ)eix·ξ dξ,

and

(C.15) P t
F f(x) = (2π)−(n−1)

∫
F (tξ)f̂(ξ)eix·ξ dξ,

we see that the first term on the right side of (C.12) is equal to

(C.16) P t
F t∂t PIt/2

e f(x),

where

(C.17) F (ξ) = B′(|ξ|)(log |ξ|)e|ξ|/2.
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Note that F (ξ) is smooth on (0,∞) and exponentially decreasing as |ξ| → ∞.
Furthermore, since B′(0) = 0, Lemma 6.2 implies

(C.18) F̂ ∈ L1(Rn−1).

Hence

(C.19) ‖P t
F t∂t PIt/2

e f‖L∞(Rn−1) ≤ C‖t∂t PIt/2
e f‖L∞(Rn−1).

Now if f ∈ Cr
∗(Rn−1) is compactly supported (and r ∈ (0, 1)), it is classical that

(C.20) ‖t∂t PIt/2
e f‖L∞ ≤ Ctr.

This, together with (C.19) and a similar (but simpler) analysis of the second term
on the right side of (C.12), yields

(C.21) sup
x
|t∂t PIbl f(x + ten)| ≤ Ctr,

in this case. A similar argument gives

(C.22) sup
x
|t∂j PIbl f(x + ten)| ≤ Ctr, 1 ≤ j ≤ n− 1.

The result (C.11A), for r ∈ (0, 1), follows from (C.21)–(C.22), by a standard argu-
ment.

Next, let us assume r ∈ (1, 2). We have

(C.23)

t∂2
t PIbl f(x + ten)

= (2π)−(n−1)

∫
B′′(t|ξ|)|tξ|(log |tξ|)|ξ|f̂(ξ)eix·ξ dξ

+ (2π)−(n−1)

∫
B2(t|ξ|)|tξ| |ξ|f̂(ξ) dξ,

where (with B1 as in (C.13)),

(C.24) B2(r) = r−1B′(r) + B′
1(r) = O(r2`−2), as r → 0.

Parallel to (C.16), the first term on the right side of (C.23) is equal to

(C.25) P t
G t∂2

t PIt/2
e f(x),

where

(C.26) G(ξ) = B′′(|ξ|)(log |ξ|)e|ξ|/2.
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If n ≥ 5, so ` ≥ 2, we have B′′(0) = 0 and hence Ĝ ∈ L1(Rn−1), and arguments as
in (C.19)–(C.21) yield

(C.27) sup
x
|t∂2

t PIbl f(x + ten)| ≤ Ctr−1.

A similar argument (more parallel to (C.21)-(C.22) actually) gives

(C.28) sup
x
|t∂t∂j PIbl f(x + ten)| ≤ tr−1,

and

(C.29) sup
x
|t∂j∂k PIbl f(x + ten)| ≤ Ctr−1,

and (C.27)–(C.29) yields∇x,t PIbl f ∈ Cr−1
∗ (Rn

+), thus giving (C.11A) for r ∈ (1, 2),
at least if ` ≥ 2. The result for r = 1 follows by interpolation.

When n = 3 (so ` = 1), B′′(0) 6= 0, and we do not have Ĝ ∈ L1(Rn−1). To treat
this case, we use

(C.30)

t2∂3
t PIbl f(x + ten)

= (2π)−(n−1)

∫
B′′′(t|ξ|)|tξ|2(log |tξ|)|ξ|f̂(ξ)eix·ξ dξ

+ (2π)−(n−1)
∫

B′′(t|ξ|)|tξ| |ξ|f̂(ξ)eix·ξ dξ

+ (2π)−(n−1)

∫
B′

2(t|ξ|) |tξ|2 |ξ| f̂(ξ)eix·ξ dξ,

with B2 as in (C.24); in particular, B′
2 has properties as in (C.2). As before, the

firest term on the right side of (C.30) is the toughest. It is equal to

(C.31) P t
H t2∂3

t PIt/2
e f(x),

where

(C.32) H(ξ) = B′′′(|ξ|)(log |ξ|)e|ξ|/2.

This time, by (C.3A), B′′′(0) = 0, so

(C.33) Ĥ ∈ L1(Rn−1)), (n = 3).

Hence

(C.34) ‖P t
H t2∂3

t PIt/2
e f‖L∞ ≤ C‖t2∂3 PIt/2

e f‖L∞ ,
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which, for compactly supported f ∈ Cr
∗ , r ∈ (1, 2), is ≤ Ctr−1. This plus simpler

analyses of the rest of the terms in the right side of (C.30) gives

(C.35) sup
x
|t2∂3

t PIbl f(x + ten)| ≤ Ctr−1,

for n = 3, replacing (C.27). This plus analogues of (C.28)–(C.29) give (C.11A), for
n = 3, r ∈ (1, 2).

For n = 3 (or for r ∈ (0, 2)), the proof of Proposition C.2 is done. For n ≥ 5 and
r ∈ (2, n − 1), analogous arguments work, to prove Proposition C.2. We omit the
details.

From here we have the following, which was proven in [GJ], via different argu-
ments.

Proposition C.3. Assume n ≥ 3 is odd. Then

(C.36) PIH : Cr
∗(S

n−1) −→ Cr
∗(B

n
), for r ∈ (0, n− 1).

Here is a result that is true for all r > 0. Let f ∈ Cr
∗(Rn−1) be compactly

supported. Then (C.4)–(C.6) hold, and

(C.37)

u = ϕPIa f ∈ Cr
∗(R

n

+),

v = ϕPIb f ∈ Cr
∗(R

n

+),

w = ϕPIl f ∈ Cs
∗(R

n

+), ∀ s < r.

Also

(C.38) ∂j
t v

∣∣
t=0

= ∂j
t w

∣∣
t=0

= 0, for 0 ≤ j ≤ min(n− 1, r).

Transfer to the ball gives the following.

Proposition C.4. Assume n ≥ 3 is odd. Then, for all r > 0,

(C.39) f ∈ Cr
∗(S

n−1) =⇒ PIH f(x) = u(x) + w(x) + v(x) log(1− |x|2),

with

(C.40) u, v ∈ Cr
∗(B

n
), w ∈ Cs

∗(B
n
), ∀ s < r,

and

(C.41) ∂j
νv

∣∣
Sn−1 = ∂j

νw
∣∣
Sn−1 = 0, for 0 ≤ j ≤ min(n− 1, r).

According to Proposition C.3, it seems there is some cancellation of singularities
in the last two terms of (C.39) if r < n− 1, but not if r > n− 1.
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D. Asymptotic analysis of ψ̂1 in (6.12)–(6.13)

Here we produce an asymptotic analysis of ψ̂1(x) that will complete the proof
of Lemma 6.2. Recall that

(D.1) ψ1(ξ) = ϕ(ξ)|ξ| log |ξ|, ϕ ∈ C∞0 (Rn−1).

Note that

(D.2) ψ̂1(x) = ϕ̂ ∗ ψ̂L(x), ψL(ξ) = |ξ| log |ξ|,

and ϕ̂ ∈ S(Rn−1), so it suffices to identify ψ̂L. We get this from the following well
known formula (cf. [T3], Chapter 3, (8.33)).

(D.3) On Rn−1, σs(ξ) = |ξ|s =⇒ σ̂s(x) = F (s)|x|−s−(n−1),

with

(D.4) F (s) = 2s+(n−1)/2 Γ((s + n− 1)/2)
Γ(−s/2)

,

provided s ∈ C satisfies

(D.5) s /∈ {−(n− 1)− 2j : j ∈ Z+} ∪ {2j : j ∈ Z+},

where Z+ = {0, 1, 2, . . . }. Applying ∂/∂s gives

(D.6)
ψs,L(ξ) = |ξ|s log |ξ|
=⇒ ψ̂s,L(x) = F ′(s)|x|−s−(n−1) − F (s)|x|−s−(n−1) log |x|,

provided (D.5) holds. Setting s = 1 gives

(D.7) ψ̂L(x) = F ′(1)|x|−n − F (1)|x|−n log |x|.

This is clearly integrable on Rn−1 \B1(0), so ψ̂1 ∈ L1(Rn−1).
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E. Complex hyperbolic space and other symmetric spaces

Let Bn ⊂ Cn be the unit ball, endowed with the metric tensor

(E.1) ds2 =
1

1− r2

∑
(dx2

j + dy2
j ) +

r2(dr2 + (J dr)2)
(1− r2)2

, r = |z|.

This complete Riemannian manifold has a transitive group G of isometries, which
are biholomorphic maps on Bn. Unitary operators on Cn provide a subgroup of G,
preserving 0, making Bn a rank-one symmetric space. Its Poisson integral

(E.2) PIB : C(S2n−1) −→ C(Bn
) ∩ C∞(Bn),

has the property that u = PIB f solves

(E.3) ∆Bu = 0 on Bn, u
∣∣
S2n−1 = f,

where ∆B is the Laplace-Beltrami operator on Bn, with metric tensor (E.1). This
can be constructed by a process similar to that used in §2. First, parallel to (2.1),
we have

(E.4) PIB f(0) =
1

A2n−1

∫

S2n−1

f dS.

Then, given z ∈ Bn, let

(E.5) Cz : Bn −→ Bn, Cz(0) = z,

be an element of G taking 0 to z. (Such a map dexends to a diffeomorphism of Bn

onto itself.) If vz = u ◦ Cz, then ∆Bu = 0 ⇒ ∆Bvz = 0, so

(E.6) PIB f(z) = vz(0) =
1

A2n−1

∫

S2n−1

f ◦ Cz dS.

Now Cz in (E.5) is well defined only up to a factor in U(n):

(E.7) C′z = Cz ◦R, R ∈ U(n),

but altering Cz by such a factor leaves the right side of (E.6) unchanged. A proof
that (E.6) gives the solution to (E.3) is analogous to arguments given in §2.

There is a Cayley transform of Bn onto the Siegel upper half space Ωn ⊂ Cn. and
a corresponding analogue of the Poisson integral of §3. The group G ≈ SU(n, 1),



31

which acts on Bn, also acts on Ωn. It has an Iwasawa decomposition G = NAK.
The nilpotent group N is isomorphic to the Heisenberg group Hn−1; this group acts
simply transitively on ∂Ωn, and NA acts simply transitively on Ωn. The analogue
of (3.19) is a map

(E.7A) PIch : C∞0 (Hn−1) −→ C(Ω
n
).

The formula for PIch is a special case of a more general class of formulas we
briefly describe, in the setting of a rank-one symmetric space X = G/K. Again
the Iwasawa decomposition G = NAK plays a role, together with the associated
Lie algebra decomposition g = n⊕ a⊕ k. In the rank one setting,

(E.8) n = g−α ⊕ g−2α,

and if

(E.9) h = exp(X + Y ), X ∈ g−α, Y ∈ g−2α,

one has (cf. [Hel], pp. 65–67)

(E.9A) PIN : C∞0 (N) −→ C(X),

given by

(E.10) PIN f(gK) =
∫

N

P (gK, h)f(h) dh,

where dh is Haar measure on N , and with as = exp(sH) ∈ A (which is one-
dimensional here), and h̃ ∈ N ,

(E.11) P (h̃asK,h) = P (asK, h̃−1h),

with

(E.12) P (asK,h) =
( e2s

(1 + c‖esX‖2)2 + 4c‖e2sY ‖2
)p/2+q

,

where

(E.13) p = dim g−α, q = dim g−2α, c =
1

4(p + 4q)
.

Taking t = e−s gives

(E.14) P (asK, h) = t−(p+2q)
[(

1 + c
∥∥∥X

t

∥∥∥
2)2

+ 4c
∥∥∥Y

t2

∥∥∥
2]−(p/2+q)

.
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We see that the Poisson integral of f ∈ Lp(N) is a one-parameter family of
convolution operators on the nilpotent group N . In case X = Bn is the real
hyperbolic ball, N = Rn−1 is abelian, p = n − 1, q = 0, and (E.14) reduces to
(3.19) (up to a scaling of the norm). In case X = Bn is the complex hyperbolic
ball, p = 2(n − 1), q = 1, and N is the (2n − 1)-dimensional Heisenberg group
Hn−1. In such a case, (E.14) yields

(E.15) P (t, h) = t−2n
[(

1 + c
∥∥∥X

t

∥∥∥
2)2

+ 4c
∥∥∥Y

t2

∥∥∥
2]−n

,

which has the same scaling as the “Heisenberg heat semigroup”

(E.16) et2L0 ,

where L0 is the “Heisenberg Laplacian,” a subelliptic operator on Hn−1. (Cf. [T2],
Chapter 1, §7.) This suggests the usefulness of the analysis developed in [FS],
followed by works such as [RS] and [T1]. Other work on the Dirichlet problem on the
complex hyperbolic ball includes [K1], [Fol], and [Gr1]. Further results, including
the Dirichlet problem on a strongly pseudoconvex domain with the Bergman metric
and related metrics are given in [Gr2] and [LM].
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F. Further convergence results

Let us set, for t > 0, f ∈ Lp(Rn−1), x ∈ Rn−1,

(F.1) P t
hf(x) = PIh f(x + ten),

and, for r ∈ [0, 1), f ∈ Lp(Sn−1), ω ∈ Sn−1,

(F.2) P r
Hf(ω) = PIH f(rω).

The explicit formula (3.19) for PIh fits in with standard results to yield the following.

Proposition F.1. Given p ∈ [1,∞),

(F.3) f ∈ Lp(Rn−1) =⇒ ‖P t
hf − f‖Lp → 0 as t ↘ 0.

Also P t
hf → f a.e. on Rn−1, and if Nαf is the nontangential maximal function

(F.4) Nαf(x) = sup{|PIh f(x + y + ten)| : 0 < t ≤ 1, |y| ≤ αt},
then

(F.5) ‖Nαf‖Lp ≤ Cαp‖f‖Lp , for α ∈ (0,∞), p ∈ (1,∞].

From here, the relation (3.23) plus the arguments given in that paragraph yield
the following.

Proposition F.2. Given p ∈ (1,∞], f ∈ Lp(Sn−1), β ∈ (1,∞), if we set

(F.6) Nβf(ω) = sup{|PIH f(x)| : |x− ω| ≤ βdist(x, Sn−1)},
we have

(F.7) ‖Nβf‖Lp ≤ Cβp‖f‖Lp .

Since |P r
Hf(ω)| ≤ Nβf(ω), Proposition F.2 implies

(F.8) ‖P r
Hf(ω)‖Lp ≤ Cp‖f‖Lp , 1 < p ≤ ∞, 0 < r < 1,

with Cp independent of r.

Remark. A computation of the integral kernel in (2.3), parallel to that in (3.19),
would no doubt yield Proposition F.2 directly, and extend it to the case p = 1.

Since

(F.9) f ∈ C(Sn−1) =⇒ P r
Hf → f uniformly as r ↗ 0,

(F.8) and the denseness of C(Sn−1) in Lp(Sn−1) for p < ∞ give the following.
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Proposition F.3. Given 1 < p < ∞,

(F.10) f ∈ Lp(Sn−1) =⇒ P r
Hf → f in Lp-norm, as r ↗ 1.

Let

(F.11) Λ = (−∆S + 1)1/2,

where ∆S is the Laplace-Beltrami operator on Sn−1. Symmetry implies that P r
H

commutes with the natural action of SO(n) on Lp(Sn−1), hence with Λ and all its
powers. Now we have Lp-Sobolev spaces

(F.12) Hs,p(Sn−1) = Λ−sLp(Sn−1), p ∈ (1,∞), s ∈ R.

The fact that

(F.13) P r
HΛ−s = Λ−sP r

H,

plus Proposition F.3, then gives the following.

Proposition F.4. For 1 < p < ∞, s ∈ R,

(F.14) f ∈ Hs,p(Sn−1) =⇒ P r
Hf → f in Hs,p-norm, as r ↗ 1.
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G. Fatou type theorems

Given u ∈ C∞(Bn), set

(G.1) ur(ω) = u(rω), r ∈ [0, 1), ω ∈ Sn−1.

We aim to show that if ∆Hu = 0 on Bn and {ur : 0 ≤ r < 1} is bounded, in a
certain Banach space X of functions (or distributions), then

(G.2) u = PIH f,

with f ∈ X (or occasionally, a larger space). We start with the following.

Lemma G.1. Take p ∈ (1,∞]. Assume ∆Hu = 0 on Bn and

(G.3) {ur : 0 ≤ r < 1} is relatively compact in Lp(Sn−1).

(For p = ∞, we can replace L∞(Sn−1) by C(Sn−1).) Then there exists f ∈
Lp(Sn−1) such that (G.2) holds.

Proof. Set fr = ur ∈ C∞(Sn−1) ⊂ Lp(Sn−1), and

(G.4) vr = PIH fr, vrs(ω) = vr(sω) = P s
Hfr(ω).

The uniform estimates (F.8), plus (F.10), imply that P s
H → I uniformly on com-

pact subsets of Lp(Sn−1) (resp., C(Sn−1) if p = ∞). Hence, by the compactness
hypothesis, given k ∈ N, there exists rk < 1 such that

(G.5) ‖P s
Hfr − fr‖Lp ≤ 2−k, ∀r ∈ [0, 1), s ≥ rk.

(We can assume rk ↗ 1.) It follows that

(G.6) ‖vrkrk
− urk

‖Lp ≤ 2−k,

and hence, by elliptic regularity, given ε > 0,

(G.7) ‖vrk
− u‖C(Bn

(1−ε)rk
) ≤ Cε2−k,

where Bn
ρ = {x ∈ Bn : |x| < ρ}. Consequently, as k →∞,

(G.8) vrk
−→ u locally uniformly on Bn.
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Now, the compactness hypothesis (G.3) also implies that, perhaps passing to a
further subsequence, we have f ∈ Lp(Sn−1) (f ∈ C(Sn−1) if p = ∞) such that

(G.9) frk
−→ f in Lp-norm.

Hence

(G.10) P s
Hfrk

−→ P s
Hf in Lp-norm, as k →∞,

uniformly for s ∈ [0, 1), and therefore

(G.11) vrk
−→ PIH f.

Comparison with (G.8) gives (G.2).

Remark. In the Euclidean case, a dilation argument gives (G.8) directly, without
need for (G.5)–(G.7). This allows one to get (G.2) when (G.3) is weakened to
boundedness (with a natural modification when p = 1), thus directly yielding the
result we will establish in Proposition G.4. In the hyperbolic case (for n ≥ 3) such
a dilation argument is not available.

Lemma G.1 yields the following extension.

Corollary G.2. Given p ∈ (1,∞), s ∈ R, ∆Hu = 0 on Bn, and

(G.12) {ur : 0 ≤ r < 1} relatively compact in Hs,p(Sn−1),

there exists f ∈ Hs,p(Sn−1) such that (G.2) holds.

Proof. With Λ as in (F.11), we have

(G.13) Λsur = wr, relatively compact in Lp(Sn−1),

with ∆Hw = 0. Hence, by Lemmma G.1, w = PIH g, g ∈ Lp(Sn−1). Then

(G.14) u = PIH f, f = Λ−sg ∈ Hs,p(Sn−1).

Here is a significant improvement of Corollary G.2.

Proposition G.3. Given p ∈ (1,∞), σ ∈ R, ∆Hu = 0 on Bn, and

(G.15) {ur : 0 ≤ r < 1} bounded in Hσ,p(Sn−1),

there exists f ∈ Hσ,p(Sn−1) such that (G.2) holds.

Proof. By Rellich’s theorem, (G.15) implies (G.12) for s < σ, so there exists f ∈
Hs,p(Sn−1) such that (G.2) holds. Then, with fr = ur as in (G.1), we have fr → f
in Hs,p-norm, as r ↗ 1, by Proposition F.4. But (G.15) implies that, for some
subsequence,

(G.16) frk
−→ g, weakly, in Hσ,p(Sn−1).

Hence f = g ∈ Hσ,p(Sn−1).

Now we can record an improvement of Lemma G.1.
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Proposition G.4. Assume p ∈ [1,∞], ∆Hu = 0 on Bn, and

(G.17) {ur : 0 ≤ r < 1} is bounded in Lp(Sn−1).

If p ∈ (1,∞], there exists f ∈ Lp(Sn−1) such that (G.2) holds. If p = 1, there exists
a finite measure µ on Sn−1 such that

(G.18) u = PIH µ.

Proof. If 1 < p < ∞, the conclusion is the σ = 0 case of Proposition G.3. Hence,
in case (G.17) holds with p = ∞, we have, for each q < ∞, f ∈ Lq(Sn−1) such that
u = PIH f . Then ur → f in Lq-norm. But the uniform boundedness of ur then
gives f ∈ L∞(Sn−1).

If (G.17) holds with p = 1, Corollary G.2 gives u = PIH f for some f ∈
H−δ,q(Sn−1), δ > 0, q > 1, and we have

(G.19) ur −→ f in H−δ,q-norm.

But the L1 bound implies for a subsequence

(G.20) urk
−→ µ,

a finite measure on Sn−1, in the weak∗ topology. We have convergence in D′(Sn−1)
in both (G.19) and (G.20), so f = µ, and (G.18) holds.

Question. Assume ∆Hu = 0 on Bn and

(G.21) |u(x)| ≤ C(1− |x|)−N ,

for some C, N ∈ (0,∞). Can one show that (G.15) holds for some σ ∈ R?
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for the ball, Proc. AMS 47 (1975), 401–408.

[FS] G. Folland and E. Stein, Estimates for the ∂b complex and analysis on the
Heisenberg group, Comm. PDE 27 (1974), 429–522.

[Fur] H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of
Math. 77 (1963), 335–386.

[Gr1] C.R. Graham, The Dirichlet problem for the Bergman Laplacian I, Comm.
PDE 8 (1983), 433–476.

[Gr2] C.R. Graham, The Dirichlet problem for the Bergman Laplacian II, Comm.
PDE 8 (1983), 563–641.

[GJ] S. Grellier and P. Jaming, Harmonic functions on the hyperbolic ball II:
Hardy-Sobolev and Lipschitz spaces, Math. Nachr. 268 (2004), 50–77.

[Hel] S. Helgason, A duality for symmetric spaces with applications to group
representations, Advances in Math. 5 (1970), 1–154.

[HK] S. Helgason and A. Koranyi, A Fatou-type theorem for harmonic functions
on symmetric spaces, Bull. AMS 74 (1968), 258–263.

[J] P. Jaming, Harmonic functions on the real hyperbolic ball I: boundary val-
ues and atomic decomposition of Hardy spaces, Colloq. Math. 80 (1999),
63–82.

[Kn] A. Knapp, Fatou’s theorem on symmetric spaces I, Ann. of Math. 88
(1968), 106–127.

[K1] A. Koranyi, Harmonic functions on Hermitian hyperbolic space, Trans.
AMS 135 (1969), 507–516.

[K2] A. Koranyi, Boundary behavior of Poisson integrals on symmetric spaces,
Trans. AMS 140 (1969), 393–409.

[K3] A. Koranyi, A survey of harmonic functions on symmetric spaces, Proc.
Symp. Pure Math. (AMS) 35 (1979), 323–344.

[Leb] N. Lebedev, Special Functions and Their Applications, Dover, New York,
1972.

[LM] J. Lee and R. Melrose, Boundary behavior of the complex Monge-Ampere
equation, Acta Math. 148 (1982), 159–192.

[RS] L. Rothschild and E. Stein, Hypoelliptic differential operators and nilpotent
groups, Acta Math. 137 (1976), 247–320.

[St] E. Stein, Singular Integrals and Smoothness Properties of Functions, Prince-



39

ton Univ. Press, Princeton NJ, 1970.
[Sul] D. Sullivan, The Dirichlet problem at infinity for a negatively curved man-

ifold, J. Diff. Geom. 18 (1983), 723–732.
[T1] M. Taylor, Noncommutative Microlocal Analysis I, Memoir AMS #313,

1984.
[T2] M. Taylor, Noncommutative Harmonic Analysis, Math. Surv. and Monogr.

#22, American Math. Soc., Providence RI, 1986.
[T3] M. Taylor, Partial Differential Equations, Vol. 1, Springer-Verlag, New

York, 1996 (2nd Ed., 2011).
[Ter] A. Terras, Harmonic Analysis on Symmetric Spaces and Applications II,

Springer-Verlag, New York, 1988.


