The Dirichlet Problem on the Hyperbolic Ball

Michael Taylor

1. Introduction

Let $B^{n} \subset \mathbb{R}^{n}$ be the unit ball, endowed with the hyperbolic metric tensor

$$
\begin{equation*}
d s^{2}=\frac{4}{\left(1-|x|^{2}\right)^{2}} \sum d x_{j}^{2} . \tag{1.1}
\end{equation*}
$$

This is a complete Riemannian manifold of constant sectional curvature -1 . We want to construct the hyperbolic Poisson integral

$$
\begin{equation*}
\mathrm{PI}_{\mathcal{H}}: C\left(S^{n-1}\right) \longrightarrow C\left(\bar{B}^{n}\right) \cap C^{\infty}\left(B^{n}\right) \tag{1.2}
\end{equation*}
$$

such that $u=\mathrm{PI}_{\mathcal{H}} f$ solves

$$
\begin{equation*}
\Delta_{\mathcal{H}} u=0 \quad \text { on } \quad B^{n},\left.\quad u\right|_{S^{n-1}}=f . \tag{1.2~A}
\end{equation*}
$$

Here, $\Delta_{\mathcal{H}}$ is the Laplace-Beltrami operator on B^{n}, with metric tensor (1.1). We will establish further regularity on $u=\mathrm{PI}_{\mathcal{H}} f$ when f has some further smoothness on S^{n-1}, and estimate $d u(x)$, in the hyperbolic metric, as $x \rightarrow \partial B^{n}$.

If $n=2$, then $\Delta_{\mathcal{H}} u=0$ if and only if $\Delta u=0$, where $\Delta=\partial_{1}^{2}+\partial_{2}^{2}$ is the Euclidean Laplacian. In that case, $\mathrm{PI}_{\mathcal{H}}$ coincides with the Euclidean Poisson integral

$$
\begin{equation*}
\mathrm{PI}: C\left(S^{1}\right) \longrightarrow C\left(\bar{B}^{2}\right) \cap C^{\infty}\left(B^{2}\right) . \tag{1.3}
\end{equation*}
$$

As is well known, if $\delta>0$,

$$
\begin{equation*}
\text { PI }: C^{1+\delta}\left(S^{1}\right) \longrightarrow C^{1}\left(\bar{B}^{2}\right) \tag{1.4}
\end{equation*}
$$

Hence

$$
\begin{align*}
f \in C^{1+\delta}\left(S^{1}\right), u=\operatorname{PI}_{\mathcal{H}} f & \Longrightarrow|d u(x)|_{\mathcal{E}} \leq C \\
& \Longrightarrow|d u(x)|_{\mathcal{H}} \leq C(1-|x|), \tag{1.5}
\end{align*}
$$

where $|d u(x)|_{\mathcal{E}}$ is the Euclidean norm of $d u(x)$ and $|d u(x)|_{\mathcal{H}}$ is its norm in the hyperbolic metric (on cotangent vectors). The latter implication holds by (1.1), which implies

$$
\begin{equation*}
|d u(x)|_{\mathcal{H}}=\frac{1}{2}\left(1-|x|^{2}\right)|d u(x)|_{\mathcal{E}} . \tag{1.6}
\end{equation*}
$$

If we let $\rho(x)$ denote the distance from 0 to x in the hyperbolic metric, (1.1) gives

$$
\begin{equation*}
\rho(x)=\int_{0}^{|x|} \frac{2}{1-r^{2}} d r=\log \frac{1+|x|}{1-|x|} \tag{1.7}
\end{equation*}
$$

so

$$
\begin{equation*}
1-|x| \sim e^{-\rho(x)} \text { as } x \rightarrow \partial B^{n} \tag{1.8}
\end{equation*}
$$

Hence, by (1.5),

$$
\begin{equation*}
f \in C^{1+\delta}\left(S^{1}\right), u=\operatorname{PI}_{\mathcal{H}} f \Longrightarrow|d u(x)|_{\mathcal{H}} \leq C e^{-\rho(x)} \tag{1.9}
\end{equation*}
$$

Among other things, we want to get such an estimate on $d \mathrm{PI}_{\mathcal{H}} f(x)$ for higher dimensional hyperbolic space.

In $\S 2$, we give a geometrical construction of $\mathrm{PI}_{\mathcal{H}}$, prove that, given $f \in C\left(S^{n-1}\right)$, $u=\mathrm{PI}_{\mathcal{H}} f$ so constructed satisfies (1.2A), and estimate the angular derivatives of u when $f \in C^{1}\left(S^{n-1}\right)$.

As the reader can see, the key formula (2.3) for $\mathrm{PI}_{\mathcal{H}} f$ is very quickly and simply produced. We mention that there is a literature on more sophisticated generalizations. In particular, [Fur] gives a Poisson integral formula for bounded harmonic functions on a general symmetric space G / K of noncompact type, with boundary data on $G / M A N=K / M$. Further work, with an emphasis on pointwise a.e. convergence for $f \in L^{p}(K / M)$, has been done in a number of papers, including [Kn], [K1], [K2], [HK], and [Hel]. (See also [K3] and [Ter] for expositions.) The basic formulas (2.3) and (3.19) are special cases of results given in those papers. See also [J] and [GJ] for regularity results that have some overlap with regularity results discussed here. Further comments on results on other symmetric spaces are given in Appendix E of this paper.

Studies of the Dirichlet problem at infinity for general complete, simply connected Riemannian manifolds with sectional curvature bounded between $-b^{2}$ and $-a^{2}<0$ (which holds for rank-one symmetric spaces of noncompact type) appear in $[\mathrm{A}]$ and [Sul], and a simplification of the approach of $[\mathrm{A}]$ in [AS]. In this setting, [CC] establish the bound

$$
\begin{equation*}
|d u(x)| \leq C_{\gamma} e^{-\gamma \rho(x)}, \tag{1.9A}
\end{equation*}
$$

for all $\gamma<a$, given boundary data $f \in C^{1}\left(S^{n-1}\right)$. In the setting of hyperbolic space, $a=1$, and the bound on $|d u(x)|$ in (1.9A) is slightly weaker than that in (1.9). On the other hand, even for 2D hyperbolic space, (1.9) fails if $C^{1+\delta}$ is replaced by C^{1}; extra smoothness is required. See Appendix A for more on this.

To proceed with our quest to extend (1.9), it is convenient to move to the hyperbolic upper half plane \mathbb{R}_{+}^{n}, with metric tensor

$$
\begin{equation*}
d s^{2}=x_{n}^{-2} \sum d x_{j}^{2}, \tag{1.10}
\end{equation*}
$$

and associated Poisson integral

$$
\begin{equation*}
\mathrm{PI}_{\mathfrak{h}}: C_{0}\left(\mathbb{R}^{n-1}\right) \longrightarrow C\left(\overline{\mathbb{R}}_{+}^{n}\right) \tag{1.15}
\end{equation*}
$$

We do this in $\S 3$. We produce an explicit formula for $\mathrm{PI}_{\mathfrak{h}} f$, of convolution type. We use this to estimate derivatives of $\mathrm{PI}_{\mathfrak{h}} f$ tangent to $\partial \mathbb{R}_{+}^{n}$ when $f \in C_{0}^{1}\left(\mathbb{R}^{n-1}\right)$.

In $\S 4$, we give a Fourier integral representation of $\mathrm{PI}_{\mathfrak{h}} f$, of the form

$$
\begin{equation*}
\mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{n}\right)=(2 \pi)^{-(n-1)} \int_{\mathbb{R}^{n-1}} \hat{p}_{\mathfrak{h}}(t \xi) \hat{f}(\xi) e^{i x \cdot \xi} d \xi, \tag{1.16}
\end{equation*}
$$

where $\hat{p}_{\mathfrak{h}}(\xi)$ is the Fourier transform of

$$
\begin{equation*}
p_{\mathfrak{h}}(y)=C\left(|y|^{2}+1\right)^{-(n-1)} . \tag{1.17}
\end{equation*}
$$

We discuss some qualitative results on $\hat{p}_{\mathfrak{h}}(\xi)$ and use them to analyze (1.16), in particular for $f \in \mathcal{S}\left(\mathbb{R}^{n-1}\right)$. With these results, we prove the following partial extension of (1.9):

$$
\begin{equation*}
f \in C^{\infty}\left(S^{n-1}\right), u=\mathrm{PI}_{\mathcal{H}} f \Longrightarrow|d u(x)|_{\mathcal{H}} \leq C e^{-\rho(x)} . \tag{1.18}
\end{equation*}
$$

We also establish the following partial extension of (1.4):

$$
\begin{equation*}
\mathrm{PI}_{\mathcal{H}}: C^{\infty}\left(S^{n-1}\right) \longrightarrow C^{1}\left(\bar{B}^{n}\right) \tag{1.19}
\end{equation*}
$$

for $n \geq 3$, and, for $n \geq 4$,

$$
\begin{equation*}
\mathrm{PI}_{\mathcal{H}}: C^{\infty}\left(S^{n-1}\right) \longrightarrow C^{2}\left(\bar{B}^{n}\right) \tag{1.20}
\end{equation*}
$$

In $\S 5$ we use the fact that

$$
\begin{equation*}
\hat{p}_{\mathfrak{h}}(\xi)=C|\xi|^{(n-1) / 2} K_{(n-1) / 2}(|\xi|), \tag{1.21}
\end{equation*}
$$

where $K_{\nu}(r)$ is the modified Bessel function known as MacDonald's function, to produce finer results. These include the demonstration that if $n \geq 2$ is even,

$$
\begin{equation*}
\mathrm{PI}_{\mathcal{H}}: C^{\infty}\left(S^{n-1}\right) \longrightarrow C^{\infty}\left(\bar{B}^{n}\right) . \tag{1.22}
\end{equation*}
$$

We show that (1.20) fails for $n=3$, but just barely; cf. (5.22).
In $\S 6$, we take a still closer look at $\mathrm{PI}_{\mathfrak{h}}$, and extend (1.5) from S^{1} to S^{n-1}. We go further, showing that

$$
\begin{equation*}
\mathrm{PI}_{\mathcal{H}}: B_{\infty, 1}^{1}\left(S^{n-1}\right) \longrightarrow C^{1}\left(\bar{B}^{n}\right) . \tag{1.23}
\end{equation*}
$$

In Appendix A, we give further results along the lines of (1.3)-(1.9) for $f \in$ $C^{1}\left(S^{1}\right)$, and more generally for $f \in C_{*}^{1}\left(S^{1}\right)$ (the Zygmund space). We show that in place of (1.9), we have

$$
\begin{equation*}
f \in C_{*}^{1}\left(S^{1}\right), u=\operatorname{PI}_{\mathcal{H}} f \Longrightarrow|d u(x)|_{\mathcal{H}} \leq C(1+\rho(x)) e^{-\rho(x)}, \tag{1.24}
\end{equation*}
$$

which is sharper than (1.9A) in this context.
In Appendix B, we further improve the analysis of $\mathrm{PI}_{\mathfrak{h}}$ and $\mathrm{PI}_{\mathcal{H}}$ when n is even, showing they share the same regularity properties as the Euclidean Poisson integral in this case. See Proposition B.1. Appendix C gives further results when n is odd.

In Appendix D, we record an asymptotic analysis of a Fourier transform that completes the proof of Lemma 6.2.

In Appendix E, we discuss work that has been done on other symmetric spaces, especially in rank one.

In Appendix F , we discuss further convergence results, to the effect that, if $P_{\mathcal{H}}^{r} f(\omega)=\mathrm{PI}_{\mathcal{H}} f(r \omega)$, then, for a variety of banach spaces X of functions on S^{n-1} (mainly L^{p}-Sobolev spaces),

$$
\begin{equation*}
f \in X \Longrightarrow P_{\mathcal{H}}^{r} f \rightarrow f \text { in } X \tag{1.25}
\end{equation*}
$$

In Appendix G, we establish some results of Fatou type, namely, with $u_{r}(\omega)=$ $u(r \omega)$, if $\Delta_{\mathcal{H}} u=0$ on B^{n}, and if $\left\{u_{r}: 0 \leq r<1\right\}$ is bounded in X (as above), then there exists $f \in X$ (or perhaps a larger space) such that $u=\operatorname{PI}_{\mathcal{H}} f$.

2. Geometric construction of $\mathrm{PI}_{\mathcal{H}}$

If the solution operator in (1.2) exists, rotational symmetry requires

$$
\begin{equation*}
\mathrm{PI}_{\mathcal{H}} f(0)=\frac{1}{A_{n-1}} \int_{S^{n-1}} f d S \tag{2.1}
\end{equation*}
$$

where $d S$ is the standard element of surface area of S^{n-1} and A_{n-1} is its total area. Given $x \in B^{n}$, let

$$
\begin{equation*}
\mathcal{C}_{x}: B^{n} \longrightarrow B^{n}, \quad \mathcal{C}_{x}(0)=x \tag{2.2}
\end{equation*}
$$

be a conformal diffeomorphism taking 0 to x. (Such a map extends to a diffeomorphism of \bar{B}^{n} onto itself.) The map \mathcal{C}_{x} is an isometry for the hyperbolic metric (1.1), so $v_{x}=u \circ \mathcal{C}_{x}$ also solves $\Delta_{\mathcal{H}} v_{x}=0$ if $\Delta_{\mathcal{H}} u=0$. Hence, if $\mathrm{PI}_{\mathcal{H}}$ exists, it must satisfy

$$
\begin{equation*}
\mathrm{PI}_{\mathcal{H}} f(x)=v_{x}(0)=\frac{1}{A_{n-1}} \int_{S^{n-1}} f \circ \mathcal{C}_{x} d S \tag{2.3}
\end{equation*}
$$

Note that \mathcal{C}_{x} in (2.2) is well defined only up to a rotation:

$$
\begin{equation*}
\mathcal{C}_{x}^{\prime}=\mathcal{C}_{x} \circ R, \quad R \in S O(n), \tag{2.3~A}
\end{equation*}
$$

but altering \mathcal{C}_{x} by such a factor leaves the right side of (2.3) unchanged.
Note that if $x \in B^{n}$ and

$$
\begin{equation*}
x \rightarrow \omega \in S^{n-1} \tag{2.4}
\end{equation*}
$$

(convergence in the topology of \mathbb{R}^{n}), then, for an appropriate choice of \mathcal{C}_{x},

$$
\begin{equation*}
\mathcal{C}_{x}(\sigma) \longrightarrow \omega \text { for } \sigma \in S^{n-1} \backslash\{-\omega\}, \text { locally uniformly, } \tag{2.5}
\end{equation*}
$$

so, as defined by $(2.3), \mathrm{PI}_{\mathcal{H}} f(x) \rightarrow f(\omega)$ if $f \in C\left(S^{n-1}\right)$, and hence $\mathrm{PI}_{\mathcal{H}}$: $C\left(S^{n-1}\right) \rightarrow C\left(\bar{B}^{n}\right)$.

To show that $u=\mathrm{PI}_{\mathcal{H}} f$ satisfies (1.2A), we start with the following.
Lemma 2.1. If $\mathcal{C}: B^{n} \rightarrow B^{n}$ is a conformal diffeomorphism, and $\mathrm{PI}_{\mathcal{H}} f$ is defined by (2.3), then

$$
\begin{equation*}
\left(\mathrm{PI}_{\mathcal{H}} f\right) \circ \mathcal{C}=\mathrm{PI}_{\mathcal{H}}(f \circ \mathcal{C}) . \tag{2.6}
\end{equation*}
$$

Proof. We need to show that, for each $x \in B^{n}$,

$$
\begin{equation*}
\int_{S^{n-1}} f \circ \mathcal{C}_{\mathcal{C}(x)} d S=\int_{S^{n-1}} f \circ \mathcal{C} \circ \mathcal{C}_{x} d S \tag{2.7}
\end{equation*}
$$

By the comment about the invariance of the right side of (2.3) under a change of the form (2.3A), it suffices to note that $\mathcal{C}_{\mathcal{C}(x)}$ and $\mathcal{C} \circ \mathcal{C}_{x}$ take 0 to the same point. Indeed, both maps take 0 to $\mathcal{C}(x)$, so (2.6) holds.

To proceed, since the hyperbolic ball is a rank-one symmetric space, $u=\mathrm{PI}_{\mathcal{H}} f$ is harmonic (with respect to $\Delta_{\mathcal{H}}$) if and only if it satisfies the mean value property

$$
\begin{equation*}
u(x)=\operatorname{Avg}_{\Sigma_{r}(x)} u \tag{2.8}
\end{equation*}
$$

where $\Sigma_{r}(x)$ consists of all points of hyperbolic distance r from x, carrying the area element induced by the hyperbolic metric. By (2.6), it suffices to show that, for all $f \in C\left(S^{n-1}\right),(2.8)$ holds at $x=0$ for $u=\mathrm{PI}_{\mathcal{H}} f$. Thus we need to show that

$$
\begin{equation*}
\mathrm{PI}_{\mathcal{H}} f(0)=\operatorname{Avg}_{y \in \Sigma_{r}(0)} \mathrm{PI}_{\mathcal{H}} f(y) \tag{2.9}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\int_{S^{n-1}} f d S=\operatorname{Avg}_{y \in \Sigma_{r}(0)} \int_{S^{n-1}} f \circ \mathcal{C}_{y} d S . \tag{2.10}
\end{equation*}
$$

Again exploiting the invariance of the right side of (2.3) under the change (2.3A), we see that it suffices to pick $y_{0} \in \Sigma_{r}(0)$ and show that

$$
\begin{equation*}
\int_{S^{n-1}} f d S=\operatorname{Avg}_{R \in S O(n)} \int_{S^{n-1}} f \circ R \circ \mathcal{C}_{y_{0}} d S \tag{2.11}
\end{equation*}
$$

But

$$
\begin{equation*}
\operatorname{Avg}_{R \in S O(n)} f \circ R \equiv \frac{1}{A_{n-1}} \int_{S^{n-1}} f d S \tag{2.12}
\end{equation*}
$$

so (2.11) holds. Hence $\mathrm{PI}_{\mathcal{H}} f$, given by (2.3), does solve the Dirichlet problem (1.2A).

We can specialize (2.6) to the case $\mathcal{C}=R \in S O(n)$ and differentiate, to obtain

$$
\begin{equation*}
X\left(\mathrm{PI}_{\mathcal{H}} f\right)=\mathrm{PI}_{\mathcal{H}}(X f), \quad X \in s o(n) \tag{2.13}
\end{equation*}
$$

given $f \in C^{1}\left(S^{n-1}\right)$. In order to extend the estimate (1.9) to higher dimensions, we need to analyze the radial derivative of $\mathrm{PI}_{\mathcal{H}} f$, for f in a suitable class of functions on S^{n-1}. To do this, we find it convenient to shift to the upper half space version of hyperbolic space.

3. Moving to the upper half plane

The ball B^{n} with metric tensor (1.1) is isometric to \mathbb{R}_{+}^{n}, with metric tensor

$$
\begin{equation*}
d s^{2}=x_{n}^{-2} \sum d x_{j}^{2}, \tag{3.1}
\end{equation*}
$$

via the conformal map

$$
\begin{equation*}
\mathcal{T}: \mathbb{R}^{n} \backslash\left\{e_{n}\right\} \rightarrow \mathbb{R}^{n}, \quad-\mathcal{T}(x)=2\left|x-e_{n}\right|^{-2}\left(x-e_{n}\right)+e_{n} \tag{3.2}
\end{equation*}
$$

restricted to B^{n}, yielding

$$
\begin{equation*}
\mathcal{T}: B^{n} \rightarrow \mathbb{R}_{+}^{n} \tag{3.2~A}
\end{equation*}
$$

The restriction $\mathcal{S}=-\left.\mathcal{T}\right|_{S^{n-1}}$ is given by

$$
\begin{equation*}
\mathcal{S}(x)=\left(1-x_{n}\right)^{-1}\left(x^{\prime}, 0\right), \quad \mathcal{S}: S^{n-1} \backslash\left\{e_{n}\right\} \rightarrow \mathbb{R}^{n-1} \tag{3.3}
\end{equation*}
$$

if $x=\left(x^{\prime}, x_{n}\right)$. This is stereographic projection. A computation (cf. [T2], p. 229) gives for $y=\mathcal{S}(x)=\left(1-x_{n}\right)^{-1} x^{\prime}$,

$$
\begin{equation*}
\mathcal{S}^{*} \sum_{j=1}^{n-1} d y_{j}^{2}=\left(1-x_{n}\right)^{-2} \sum_{j=1}^{n} d x_{j}^{2} . \tag{3.5}
\end{equation*}
$$

Hence, for the inverse

$$
\begin{equation*}
\psi: \mathbb{R}^{n-1} \longrightarrow S^{n-1} \tag{3.6}
\end{equation*}
$$

we have

$$
\begin{equation*}
\psi^{*} \sum_{j=1}^{n} d x_{j}^{2}=\left(1-x_{n}\right)^{2} \sum_{j=1}^{n-1} d y_{j}^{2} . \tag{3.7}
\end{equation*}
$$

A computation gives

$$
\begin{equation*}
x_{n}=\frac{|y|^{2}-1}{|y|^{2}+1}, \quad 1-x_{n}=\frac{2}{|y|^{2}+1}, \tag{3.8}
\end{equation*}
$$

so

$$
\begin{equation*}
\psi^{*} \sum_{j=1}^{n} d x_{j}^{2}=\frac{4}{\left(|y|^{2}+1\right)^{2}} \sum_{j=1}^{n-1} d y_{j}^{2} \tag{3.9}
\end{equation*}
$$

and hence, with $d S$ as in (2.3),

$$
\begin{equation*}
\psi^{*} d S=\frac{C}{\left(|y|^{2}+1\right)^{n-1}} d y, \quad y \in \mathbb{R}^{n-1} \tag{3.10}
\end{equation*}
$$

We have the conjugated operator

$$
\begin{equation*}
\mathrm{PI}_{\mathfrak{h}} f=\left(\mathrm{PI}_{\mathcal{H}}\left(f \circ \mathcal{T}^{-1}\right)\right) \circ \mathcal{T}, \tag{3.11}
\end{equation*}
$$

giving

$$
\begin{equation*}
\mathrm{PI}_{\mathfrak{h}}: C_{0}\left(\mathbb{R}^{n-1}\right) \longrightarrow C\left(\overline{\mathbb{R}}_{+}^{n}\right), \tag{3.12}
\end{equation*}
$$

for which $u=\mathrm{PI}_{\mathfrak{h}} f$ solves

$$
\begin{equation*}
\Delta_{\mathfrak{h}} u=0,\left.\quad u\right|_{R^{n-1}}=f \tag{3.13}
\end{equation*}
$$

where $\Delta_{\mathfrak{h}}$ is the Laplace-Beltrami operator on \mathbb{R}^{n}, with metric tensor (3.1). From (2.1) and (3.2)-(3.10), we have

$$
\begin{align*}
\mathrm{PI}_{\mathfrak{h}} f\left(e_{n}\right) & =\frac{1}{A_{n-1}} \int_{\mathbb{R}^{n-1}} f \psi^{*} d S \tag{3.14}\\
& =C \int_{\mathbb{R}^{n-1}} f(y)\left(|y|^{2}+1\right)^{-(n-1)} d y
\end{align*}
$$

Then, if we have a have a conformal diffeomorphism of \mathbb{R}_{+}^{n} onto itself (which hence is an isometry for the metric (3.1))

$$
\begin{equation*}
\mathcal{C}_{X}: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}^{n}, \quad \mathcal{C}_{X}\left(e_{n}\right)=X \tag{3.15}
\end{equation*}
$$

parallel to (2.3) we have

$$
\begin{equation*}
\mathrm{PI}_{\mathfrak{h}} f(X)=C \int_{\mathbb{R}^{n-1}} f \circ \mathcal{C}_{X}(y)\left(|y|^{2}+1\right)^{-(n-1)} d y \tag{3.16}
\end{equation*}
$$

In this case, if $X=x+t e_{n}, x \in \mathbb{R}^{n-1}, t>0$, we can use

$$
\begin{equation*}
\mathcal{C}_{X}(y)=x+t y \tag{3.17}
\end{equation*}
$$

so

$$
\begin{equation*}
\mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{n}\right)=C \int_{\mathbb{R}^{n-1}} f(x+t y)\left(|y|^{2}+1\right)^{-(n-1)} d y . \tag{3.18}
\end{equation*}
$$

The constant C is determined by the identity

$$
C \int_{\mathbb{R}^{n-1}}\left(|y|^{2}+1\right)^{-(n-1)} d y=1
$$

It is elementary that (3.18) tends to $f(x)$ as $t \searrow 0$. We make a change of variable and exploit evenness to write this as a convolution:

$$
\begin{equation*}
\mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{n}\right)=C t^{-(n-1)} \int_{\mathbb{R}^{n-1}} f(x-y)\left(\left|\frac{y}{t}\right|^{2}+1\right)^{-(n-1)} d y . \tag{3.19}
\end{equation*}
$$

Remark. This formula for $\mathrm{PI}_{\mathfrak{h}}$ is a special case of a Poisson integral formula for general rank-one symmetric spaces. See Appendix E for more on this.

Compare (3.19) to the Euclidean Poisson integral

$$
\begin{equation*}
\mathrm{PI}_{\mathfrak{e}} f\left(x+t e_{n}\right)=C^{\prime} t^{-(n-1)} \int_{\mathbb{R}^{n-1}} f(x-y)\left(\left|\frac{y}{t}\right|^{2}+1\right)^{-n / 2} d y \tag{3.20}
\end{equation*}
$$

These coincide when $n=2$, but not when $n>2$. Both (3.19) and (3.20) have the form

$$
\begin{equation*}
\mathrm{PI}_{a} f\left(x+t e_{n}\right)=\int_{\mathbb{R}^{n-1}} f(x-y) p_{a}(t, y) d y, \tag{3.21}
\end{equation*}
$$

with

$$
\begin{align*}
& p_{\mathfrak{h}}(t, y)=C t^{-(n-1)}\left(\left|\frac{y}{t}\right|^{2}+1\right)^{-(n-1)}=C t^{n-1}\left(|y|^{2}+t^{2}\right)^{-(n-1)}, \tag{3.22}\\
& p_{\mathfrak{e}}(t, y)=C t^{-(n-1)}\left(\left|\frac{y}{t}\right|^{2}+1\right)^{-n / 2}=C t\left(|y|^{2}+t^{2}\right)^{-n / 2}
\end{align*}
$$

Note that, for $n \geq 3, p_{\mathfrak{h}}(t, y)$ decreases as $|y| \rightarrow \infty$ faster than $p_{\mathfrak{e}}(t, y)$ does. This will have significant consequences.

Regarding the relevance of (3.19) to the analysis of $\mathrm{PI}_{\mathcal{H}} g$, given $g \in C\left(S^{n-1}\right)$, the following observation is in order. Using a partition of unity, we can write $g=g_{1}+g_{2}$, where g_{1} vanishes in a neighborhood of e_{n} and g_{2} vanishes in a neighborhood of $-e_{n}$. With $f_{1}=g_{1} \circ \mathcal{T}$, we have

$$
\begin{equation*}
\mathrm{PI}_{\mathcal{H}} g_{1}=\left(\mathrm{PI}_{\mathfrak{h}} f_{1}\right) \circ \mathcal{T}^{-1} \tag{3.23}
\end{equation*}
$$

and $f_{1} \in C\left(\mathbb{R}^{n-1}\right)$ has compact support. A rotation reduces the study of $\mathrm{PI}_{\mathcal{H}} g_{2}$ to that of $\mathrm{PI}_{\mathcal{H}} g_{1}$, so we can concentrate on (3.19) with f compactly supported on \mathbb{R}^{n-1}.

Here is a first indication of differences between (3.19) and (3.20) when $n \geq 3$.

Proposition 3.1. Assume $f \in C\left(\mathbb{R}^{n-1}\right)$ is supported on a compact set $K \subset \mathbb{R}^{n-1}$. Let $\widetilde{K} \subset \mathbb{R}^{n-1}$ be a compact set disjoint from K. Then

$$
\begin{equation*}
\left|\mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{n}\right)\right| \leq C t^{n-1} \quad \text { for } \quad x \in \widetilde{K} . \tag{3.24}
\end{equation*}
$$

The proof is a simple consequence of (3.19) (or (3.21)-(3.22)). Note by contrast that the hypotheses give

$$
\begin{equation*}
\left|\mathrm{PI}_{\mathfrak{e}} f\left(x+t e_{n}\right)\right| \leq C t \text { for } x \in \widetilde{K} . \tag{3.25}
\end{equation*}
$$

For $n=2$, (3.24) and (3.25) have the same strength (as they must), but for $n \geq 3$, (3.24) is much stronger than (3.25).

Since $\mathrm{PI}_{\mathfrak{h}}$ is a convolution operator for each t, it commutes with ∂_{j} for $1 \leq j \leq$ $n-1$. We have

$$
\begin{equation*}
\partial_{j} \mathrm{PI}_{\mathfrak{h}} f=\mathrm{PI}_{\mathfrak{h}}\left(\partial_{j} f\right), \quad 1 \leq j \leq n-1 . \tag{3.26}
\end{equation*}
$$

Hence, if $f \in C^{1}\left(\mathbb{R}^{n-1}\right)$ has compact support, $\partial_{j} \mathrm{PI}_{\mathfrak{h}} f$ is bounded and continuous on $\overline{\mathbb{R}}_{+}^{n}$, for $1 \leq j \leq n-1$. We will estimate the t-derivative in $\S 4$.

4. Fourier integral representation of $\mathrm{PI}_{\mathfrak{h}} f$

Using the Fourier transform

$$
\begin{equation*}
\hat{g}(\xi)=\int_{\mathbb{R}^{n-1}} g(y) e^{-i y \cdot \xi} d y \tag{4.1}
\end{equation*}
$$

we can write $\mathrm{PI}_{\mathfrak{h}} f$ in (3.19) as

$$
\begin{equation*}
\mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{n}\right)=(2 \pi)^{-(n-1)} \int_{\mathbb{R}^{n-1}} \hat{p}_{\mathfrak{h}}(t \xi) \hat{f}(\xi) e^{i x \cdot \xi} d \xi \tag{4.2}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{\mathfrak{h}}(y)=p_{\mathfrak{h}}(1, y)=C\left(|y|^{2}+1\right)^{-(n-1)} . \tag{4.3}
\end{equation*}
$$

The constant C is the one that makes $\hat{p}_{\mathfrak{h}}(0)=1$. As is well known, for the Euclidean Poisson integral (3.20), we have

$$
\begin{equation*}
\mathrm{PI}_{\mathfrak{e}} f\left(x+t e_{n}\right)=(2 \pi)^{-(n-1)} \int_{\mathbb{R}^{n-1}} e^{-t|\xi|} \hat{f}(\xi) e^{i x \cdot \xi} d \xi \tag{4.4}
\end{equation*}
$$

Here we want to analyze $\hat{p}_{\mathfrak{h}}(t \xi)$. Note that

$$
\begin{equation*}
\hat{p}_{\mathfrak{h}}(\xi)=C\left(1-\Delta_{\xi}\right)^{-\alpha} \delta(\xi), \quad \alpha=n-1 . \tag{4.5}
\end{equation*}
$$

From this we see that, for all $\varepsilon>0$,

$$
\begin{equation*}
\hat{p}_{\mathfrak{h}} \in H^{(3 / 2)(n-1)-\varepsilon, 2}\left(\mathbb{R}^{n-1}\right), \text { hence } \hat{p}_{\mathfrak{h}} \in C^{n-1-\varepsilon}\left(\mathbb{R}^{n-1}\right) . \tag{4.6}
\end{equation*}
$$

Also

$$
\begin{equation*}
\hat{p}_{\mathfrak{h}} \in C^{\infty}\left(\mathbb{R}^{n-1} \backslash 0\right) \text { and is exponentially decreasing as }|\xi| \rightarrow \infty \tag{4.7}
\end{equation*}
$$

Note from (4.6) that

$$
\begin{equation*}
n \geq 3 \Longrightarrow \hat{p}_{\mathfrak{h}} \in C^{1}\left(\mathbb{R}^{n-1}\right) \tag{4.8}
\end{equation*}
$$

Also, by radial symmetry, $\hat{p}_{\mathfrak{h}}$ is a radial function. Hence

$$
\begin{equation*}
\nabla_{\xi} \hat{p}_{\mathfrak{h}}(0)=0 . \tag{4.9}
\end{equation*}
$$

It follows that we can write

$$
\begin{equation*}
\hat{p}_{\mathfrak{h}}(\xi)=Q_{n}(|\xi|), \quad Q_{n} \in C^{1}([0, \infty)), \quad Q^{\prime}(0)=0 \tag{4.10}
\end{equation*}
$$

and also

$$
\begin{equation*}
Q_{n} \in C^{\infty}((0, \infty)), \quad Q_{n}(r) \text { exponentially decreasing as } r \rightarrow \infty \tag{4.11}
\end{equation*}
$$

Then (4.2) becomes

$$
\begin{equation*}
\mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{n}\right)=(2 \pi)^{-(n-1)} \int_{\mathbb{R}^{n-1}} Q_{n}(t|\xi|) \hat{f}(\xi) e^{i x \cdot \xi} d \xi \tag{4.12}
\end{equation*}
$$

and we get

$$
\begin{equation*}
\frac{\partial}{\partial t} \mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{n}\right)=(2 \pi)^{-(n-1)} \int_{\mathbb{R}^{n-1}} Q_{n}^{\prime}(t|\xi|)|\xi| \hat{f}(\xi) e^{i x \cdot \xi} d \xi \tag{4.13}
\end{equation*}
$$

The following is an immediate consequence of (4.10)-(4.13), together with the Lebesgue dominated convergence theorem.
Proposition 4.1. If $f \in \mathcal{S}\left(\mathbb{R}^{n-1}\right)$ and $n \geq 3$, then

$$
\begin{equation*}
\frac{\partial}{\partial t} \mathrm{PI}_{\mathfrak{h}} f \in C\left(\overline{\mathbb{R}}_{+}^{n}\right), \tag{4.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \backslash 0} \frac{\partial}{\partial t} \mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{n}\right)=0 . \tag{4.15}
\end{equation*}
$$

Recalling the discussion around (3.23), we have the following.
Corollary 4.2. For $n \geq 2$,

$$
\begin{equation*}
\mathrm{PI}_{\mathcal{H}}: C^{\infty}\left(S^{n-1}\right) \longrightarrow C^{1}\left(\bar{B}^{n}\right) \tag{4.16}
\end{equation*}
$$

From here, the arguments involving (1.6)-(1.8) give the following partial extension of (1.9).
Theorem 4.3. Given $f \in C^{\infty}\left(S^{n-1}\right), u=\operatorname{PI}_{\mathcal{H}} f$ satisfies

$$
\begin{equation*}
|d u(x)|_{\mathcal{H}} \leq C e^{-\rho(x)} . \tag{4.17}
\end{equation*}
$$

We next produce a sharpening of Proposition 4.1, when $n \geq 4$. In such a case, we can use (4.6) to sharpen (4.8) to

$$
\begin{equation*}
n \geq 4 \Longrightarrow \hat{p}_{\mathfrak{h}} \in C^{2}\left(\mathbb{R}^{n-1}\right) \tag{4.17}
\end{equation*}
$$

Then we can supplement (4.10) by $Q_{n} \in C^{2}([0, \infty))$, and (4.13) by

$$
\begin{equation*}
\frac{\partial^{2}}{\partial t^{2}} \mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{n}\right)=(2 \pi)^{-(n-1)} \int_{\mathbb{R}^{n-1}} Q_{n}^{\prime \prime}(t|\xi|)|\xi|^{2} \hat{f}(\xi) e^{i x \cdot \xi} d \xi \tag{4.18}
\end{equation*}
$$

Hence, if $f \in \mathcal{S}\left(\mathbb{R}^{n-1}\right)$ we have $\partial_{t}^{2} \mathrm{PI}_{\mathfrak{h}} f \in C\left(\overline{\mathbb{R}}_{+}^{n}\right)$ and

$$
\begin{equation*}
\left.\frac{\partial^{2}}{\partial t^{2}} \mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{n}\right)\right|_{t=0}=-Q_{n}^{\prime \prime}(0) \Delta f(x) \tag{4.19}
\end{equation*}
$$

where $\Delta=\partial_{1}^{2}+\cdots+\partial_{n-1}^{2}$. We have the following improvement of (4.15).

Proposition 4.4. If $n \geq 4$ and $f \in \mathcal{S}\left(\mathbb{R}^{n-1}\right)$, then $u=\mathrm{PI}_{\mathfrak{h}} f$ satisfies

$$
\begin{equation*}
\left|\partial_{t} u\left(x+t e_{n}\right)\right| \leq C t \tag{4.20}
\end{equation*}
$$

(For the case $n=3$, see (5.22).)

Corollary 4.5. For $n \geq 4$,

$$
\begin{equation*}
\mathrm{PI}_{\mathcal{H}}: C^{\infty}\left(S^{n-1}\right) \longrightarrow C^{2}\left(\bar{B}^{n}\right) \tag{4.21}
\end{equation*}
$$

We obtain a finer analysis of $\mathrm{P}_{\mathfrak{h}} f$ in the following section.

5. Finer analysis of $\mathrm{PI}_{\mathfrak{h}} f$

Recall that

$$
\begin{equation*}
\mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{n}\right)=(2 \pi)^{-(n-1)} \int_{\mathbb{R}^{n-1}} \hat{p}_{\mathfrak{h}}(t \xi) \hat{f}(\xi) e^{i x \cdot \xi} d \xi, \tag{5.1}
\end{equation*}
$$

with

$$
\begin{align*}
\hat{p}_{\mathfrak{h}}(\xi) & =C\left(1-\Delta_{\xi}\right)^{-(n-1)} \delta(\xi) \tag{5.2}\\
& =Q_{n}(|\xi|)
\end{align*}
$$

We have (4.6)-(4.7) for $\hat{p}_{\mathfrak{h}}$ and (4.10)-(4.11) for Q_{n}. We now want to go further. It is classical (and most of the supporting calculations are given in [St]) that, for $\xi \in \mathbb{R}^{n-1}, \alpha>0$,

$$
\begin{equation*}
\left(1-\Delta_{\xi}\right)^{-\alpha} \delta(\xi)=C|\xi|^{\alpha-(n-1) / 2} K_{(n-1) / 2-\alpha}(|\xi|) \tag{5.3}
\end{equation*}
$$

where $K_{\nu}(r)$ is the modified Bessel function called MacDonald's function. Hence (using $K_{-\nu}=K_{\nu}$) we have

$$
\begin{equation*}
Q_{n}(|\xi|)=C|\xi|{ }^{(n-1) / 2} K_{(n-1) / 2}(|\xi|) \tag{5.4}
\end{equation*}
$$

If n is an even integer, then $\nu=(n-1) / 2$ is a half-integer, while if n is an odd integer, then $\nu=(n-1) / 2$ is an integer. We discuss some properties of K_{ν} for such ν. Details can be found in [Leb]. First,

$$
\begin{equation*}
K_{1 / 2}(r)=\left(\frac{\pi}{2 r}\right)^{1 / 2} e^{-r} \tag{5.5}
\end{equation*}
$$

so for $n=2$ the formula

$$
\begin{equation*}
\mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{n}\right)=(2 \pi)^{-(n-1)} \int_{\mathbb{R}^{n-1}} Q_{n}(t|\xi|) \hat{f}(\xi) e^{i x \cdot \xi} d \xi \tag{5.6}
\end{equation*}
$$

agrees with (4.4). We can proceed from here via the recurrence relation

$$
\begin{equation*}
K_{\nu+1}(r)=-r^{\nu} \frac{d}{d r}\left(r^{-\nu} K_{\nu}(r)\right) \tag{5.7}
\end{equation*}
$$

which implies

$$
\begin{equation*}
r^{\nu+1} K_{\nu+1}(r)=-r \frac{d}{d r}\left(r^{\nu} K_{\nu}(r)\right)+2 \nu r^{\nu} K_{\nu}(r) \tag{5.8}
\end{equation*}
$$

Starting with (5.5), we get, for example,

$$
\begin{equation*}
r^{3 / 2} K_{3 / 2}(r)=\sqrt{\frac{\pi}{2}}\left(r e^{-r}+e^{-r}\right) \tag{5.9}
\end{equation*}
$$

It follows inductively from (5.8) that if $\ell \in \mathbb{Z}^{+}$,

$$
\begin{equation*}
r^{\ell+1 / 2} K_{\ell+1 / 2}(r) \in C^{\infty}([0, \infty)) \tag{5.10}
\end{equation*}
$$

and hence

$$
\begin{equation*}
n \geq 2 \text { even } \Longrightarrow Q_{n} \in C^{\infty}([0, \infty)) \tag{5.11}
\end{equation*}
$$

Consequently, for n even, Propositions 4.1-4.2 readily extend as follows.
Proposition 5.1. If $n \geq 2$ is even, then

$$
\begin{equation*}
\mathrm{PI}_{\mathfrak{h}}: \mathcal{S}\left(\mathbb{R}^{n-1}\right) \longrightarrow C^{\infty}\left(\overline{\mathbb{R}}_{+}^{n}\right), \tag{5.12}
\end{equation*}
$$

and, for all $\ell \in \mathbb{Z}^{+}$,

$$
\begin{equation*}
\frac{\partial^{\ell}}{\partial t^{\ell}} \mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{n}\right)=(2 \pi)^{-(n-1)} \int_{\mathbb{R}^{n-1}} Q^{(\ell)}(t|\xi|)|\xi|^{\ell} \hat{f}(\xi) e^{i x \cdot \xi} d \xi \tag{5.13}
\end{equation*}
$$

Hence, for such n,

$$
\begin{equation*}
\mathrm{PI}_{\mathcal{H}}: C^{\infty}\left(S^{n-1}\right) \longrightarrow C^{\infty}\left(\bar{B}^{n}\right) \tag{5.14}
\end{equation*}
$$

Next, if $n=2 \ell+1$ is odd, then $\nu=(n-1) / 2=\ell$ is an integer. In such a case (cf. [Leb]) we have

$$
\begin{align*}
& \left(\frac{r}{2}\right)^{\ell} K_{\ell}(r) \tag{5.15}\\
& \quad=\frac{1}{2} \sum_{k=0}^{\ell-1} \frac{(-1)^{k}(\ell-k-1)!}{k!}\left(\frac{r}{2}\right)^{2 k} \\
& \quad+\frac{(-1)^{\ell}}{2}\left(\frac{r}{2}\right)^{2 \ell} \sum_{k=0}^{\infty} \frac{1}{k!(k+\ell)!}\left(\frac{r}{2}\right)^{2 k}\left[2 \log \frac{r}{2}-\psi(k+1)-\psi(k+\ell+1)\right]
\end{align*}
$$

where (with γ denoting the Euler constant)

$$
\begin{equation*}
\psi(1)=-\gamma, \quad \psi(\ell+1)=-\gamma+1+\frac{1}{2}+\cdots+\frac{1}{\ell}, \quad \ell=1,2,3 \ldots \tag{5.16}
\end{equation*}
$$

For example,

$$
\begin{align*}
Q_{3}(|\xi|) & =C|\xi| K_{1}(|\xi|) \\
& =A_{1}\left(|\xi|^{2}\right)+B_{1}\left(|\xi|^{2}\right)|\xi|^{2} \log |\xi|, \tag{5.17}
\end{align*}
$$

with $A_{1}, B_{1} \in C^{\infty}([0, \infty))$. More generally,

$$
\begin{align*}
Q_{2 \ell+1}(|\xi|) & =C|\xi|^{\ell} K_{\ell}(|\xi|) \\
& =A_{\ell}\left(|\xi|^{2}\right)+B_{\ell}\left(|\xi|^{2}\right)|\xi|^{2 \ell} \log |\xi|, \tag{5.18}
\end{align*}
$$

with $A_{\ell}, B_{\ell} \in C^{\infty}([0, \infty))$. Here we see that the conclusion for regularity on Q_{n} on $[0, \infty)$ that follows from (4.6) is fairly sharp:

$$
\begin{equation*}
n=2 \ell+1 \Longrightarrow Q_{n} \in C^{2 \ell-\varepsilon}([0, \infty)), \quad Q_{n} \notin C^{2 \ell}([0, \infty)) \tag{5.19}
\end{equation*}
$$

Note from (5.17) that

$$
\begin{equation*}
Q_{3}^{\prime}(|\xi|)=\widetilde{A}(|\xi|)+\widetilde{B}(|\xi|)|\xi| \log |\xi| \tag{5.20}
\end{equation*}
$$

with $\widetilde{A}, \widetilde{B} \in C^{\infty}([0, \infty))$. Hence, for $f \in \mathcal{S}\left(\mathbb{R}^{2}\right)$,

$$
\begin{equation*}
\frac{\partial}{\partial t} \mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{3}\right)=(2 \pi)^{-2} \int_{\mathbb{R}^{2}} Q_{3}^{\prime}(t|\xi|)|\xi| \hat{f}(\xi) e^{i x \cdot \xi} d \xi \tag{5.21}
\end{equation*}
$$

yields

$$
\begin{equation*}
\left|\frac{\partial}{\partial t} \mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{3}\right)\right| \leq C t \log \frac{1}{t}, \tag{5.22}
\end{equation*}
$$

which takes the place of (4.20) when $n=3$ and improves on (4.15) in that case.

6. Slightly better than C^{1} boundary data

Recall that

$$
\begin{align*}
\mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{n}\right) & =t^{-(n-1)} \int_{\mathbb{R}^{n-1}} f(x-y) p_{\mathfrak{h}}\left(\frac{y}{t}\right) d y \\
& =(2 \pi)^{-(n-1)} \int_{\mathbb{R}^{n-1}} Q_{n}(t|\xi|) \hat{f}(\xi) e^{i x \cdot \xi} d \xi, \tag{6.1}
\end{align*}
$$

with

$$
\begin{equation*}
p_{\mathfrak{h}}(y)=C\left(|y|^{2}+1\right)^{-(n-1)}, \quad Q_{n}(|\xi|)=\hat{p}_{\mathfrak{h}}(\xi) . \tag{6.2}
\end{equation*}
$$

Using (5.4), we saw that

$$
\begin{equation*}
n \geq 2 \text { even } \Longrightarrow Q_{n} \in C^{\infty}([0, \infty)) \tag{6.3}
\end{equation*}
$$

while

$$
\begin{equation*}
n=2 \ell+1 \Longrightarrow Q_{n}(|\xi|)=A_{\ell}\left(|\xi|^{2}\right)+B_{\ell}\left(|\xi|^{2}\right)|\xi|^{2 \ell} \log |\xi|, \tag{6.4}
\end{equation*}
$$

with $A_{\ell}, B_{\ell} \in C^{\infty}([0, \infty))$. Also, in all cases,

$$
\begin{equation*}
Q_{n} \in C^{\infty}((0, \infty)), \quad \text { exponentially decreasing at } \infty . \tag{6.5}
\end{equation*}
$$

We mention that one could avoid (5.4) and special function theory, and deduce (6.3)-(6.4) from asymptotic analysis developed in Chapter 3, $\S 8$ of [T3].

It is clear from (6.1)-(6.2) that if f is bounded and continuous on \mathbb{R}^{n-1}, then $\mathrm{PI}_{\mathfrak{h}} f \in C\left(\overline{\mathbb{R}}_{+}^{n}\right)$. Since, for $1 \leq j \leq n-1, \partial_{j} \mathrm{PI}_{\mathfrak{h}} f=\mathrm{PI}_{\mathfrak{h}}\left(\partial_{j} f\right)$, if also $\partial_{j} f$ is bounded and continuous on \mathbb{R}^{n-1}, then $\partial_{j} \mathrm{PI}_{\mathfrak{h}} f \in C\left(\overline{\mathbb{R}}_{+}^{n}\right)$. As noted in $\S 5$, it follows from (6.4) that $Q_{n} \in C^{1}([0, \infty))$ in all cases, and

$$
\begin{equation*}
\frac{\partial}{\partial t} \mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{n}\right)=(2 \pi)^{-(n-1)} \int_{\mathbb{R}^{n-1}} Q^{\prime}(t|\xi|)|\xi| \hat{f}(\xi) e^{i x \cdot \xi} d \xi \tag{6.6}
\end{equation*}
$$

Since Q_{n}^{\prime} is bounded and continuous on $[0, \infty)$ it readily follows that $\partial_{t} \mathrm{PI}_{\mathfrak{h}} f \in$ $C\left(\overline{\mathbb{R}}_{+}^{n}\right)$ whenever $f \in \mathcal{S}\left(\mathbb{R}^{n-1}\right)$, and more generally whenever $|\xi| \hat{f}(\xi) \in L^{1}\left(\mathbb{R}^{n-1}\right)$. We want to establish the following stronger result.

Proposition 6.1. Given $f \in C^{1}\left(\mathbb{R}^{n-1}\right)$ with compact support, define $g \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n-1}\right)$ by

$$
\begin{equation*}
\hat{g}(\xi)=|\xi| \hat{f}(\xi) \tag{6.7}
\end{equation*}
$$

If g is bounded and continuous on \mathbb{R}^{n-1}, then

$$
\begin{equation*}
\frac{\partial}{\partial t} \mathrm{PI}_{\mathfrak{h}} f \in C\left(\overline{\mathbb{R}}_{+}^{n}\right) . \tag{6.8}
\end{equation*}
$$

Proof. We have

$$
\begin{align*}
\frac{\partial}{\partial t} \mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{n}\right) & =(2 \pi)^{-(n-1)} \int_{\mathbb{R}^{n-1}} Q_{n}^{\prime}(t|\xi|) \hat{g}(\xi) e^{i x \cdot \xi} d \xi \\
& =t^{-(n-1)} \int_{\mathbb{R}^{n-1}} g(x-y) r_{n}\left(\frac{y}{t}\right) d y \tag{6.9}
\end{align*}
$$

where

$$
\begin{equation*}
\hat{r}_{n}(\xi)=Q_{n}^{\prime}(|\xi|) . \tag{6.10}
\end{equation*}
$$

The continuity result (6.8) is an immediate consequence of the result

$$
\begin{equation*}
r_{n} \in L^{1}\left(\mathbb{R}^{n-1}\right) \tag{6.11}
\end{equation*}
$$

so it remains to prove (6.11). Given (6.3)-(6.5), it suffices to prove the following.
Lemma 6.2. Given $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n-1}\right)$, define

$$
\begin{equation*}
\psi_{0}(\xi)=\varphi(\xi)|\xi|, \quad \psi_{1}(\xi)=\varphi(\xi)|\xi| \log |\xi| \tag{6.12}
\end{equation*}
$$

Then

$$
\begin{equation*}
\hat{\psi}_{0}, \hat{\psi}_{1} \in L^{1}\left(\mathbb{R}^{n-1}\right) \tag{6.13}
\end{equation*}
$$

Proof. It follows from asymptotic analysis of Fourier transforms developed in Chapter 3, $\S 8$ of [T3] that

$$
\begin{equation*}
\left|\hat{\psi}_{0}(y)\right| \leq C(1+|y|)^{-n} \tag{6.14}
\end{equation*}
$$

which gives (6.13) for $\hat{\psi}_{0}$. The asymptotic analysis of $\hat{\psi}_{1}(y)$ will be given in Appendix D.

We discuss when (6.7) defines a bounded continuous g. Note that

$$
\begin{equation*}
g=\sum_{j} R_{j} \partial_{j} f \tag{6.15}
\end{equation*}
$$

where R_{j} (a Riesz transform) is Fourier multiplication by $-i \xi_{j} /|\xi|$, hence convolution by a principal value kernel on $\mathbb{R}^{-(n-1)}$ that is homogeneous of degree $-(n-1)$. Given $f \in C_{0}^{1}\left(\mathbb{R}^{n-1}\right), \partial_{j} f$ is continuous and has compact support. Clearly g is bounded and continuous outside any neighborhood of supp f, so whether g is bounded and continuous on \mathbb{R}^{n-1} is a local question. It is well known that if a function h has compact support in \mathbb{R}^{n-1} and is Hölder continuous with positive exponent, then $R_{j} h$ is bounded and continuous. Hence Proposition 6.1 applies to compactly supported $f \in C^{1+\varepsilon}\left(\mathbb{R}^{n-1}\right)$, given $\varepsilon>0$. More generally, given f compactly supported, if

$$
\begin{equation*}
f \in B_{\infty, 1}^{1}\left(\mathbb{R}^{n-1}\right) \tag{6.16}
\end{equation*}
$$

where one has

$$
\begin{equation*}
f \in B_{\infty, 1}^{s}\left(\mathbb{R}^{n-1}\right) \Longleftrightarrow \sum_{\ell \geq 0} 2^{\ell s}\left\|\psi_{\ell}(D) f\right\|_{L^{\infty}}<\infty \tag{6.17}
\end{equation*}
$$

where $\left\{\psi_{\ell}: \ell \geq 0\right\}$ is a Littlewood-Paley partition of unity, then $R_{j} \partial_{j} f$ is bounded and continuous, so Proposition 6.1 applies to such functions.

Moving over to the setting of B^{n}, we have the following.
Proposition 6.3. Given $\varepsilon>0$,

$$
\begin{equation*}
\operatorname{PI}_{\mathcal{H}}: C^{1+\varepsilon}\left(S^{n-1}\right) \longrightarrow C^{1}\left(\bar{B}^{n}\right) . \tag{6.18}
\end{equation*}
$$

More generally,

$$
\begin{equation*}
\mathrm{PI}_{\mathcal{H}}: B_{\infty, 1}^{1}\left(S^{n-1}\right) \longrightarrow C^{1}\left(\bar{B}^{n}\right) . \tag{6.19}
\end{equation*}
$$

A. C^{1} boundary data and beyond

For now, we restrict attention to B^{n} with $n=2$, so $\mathrm{PI}_{\mathcal{H}}$ and PI coincide. As noted in the introduction, it is not the case that PI : $C^{1}\left(S^{1}\right) \rightarrow C^{1}\left(\bar{B}^{2}\right)$. One does have

$$
\begin{equation*}
\text { PI : } C^{1}\left(S^{1}\right) \longrightarrow C^{\alpha}\left(\bar{B}^{2}\right), \quad \forall \alpha<1, \tag{A.1}
\end{equation*}
$$

which implies for $u=\operatorname{PI} f=\operatorname{PI}_{\mathcal{H}} f$,

$$
\begin{equation*}
|d u(x)|_{\mathcal{E}} \leq C_{\varepsilon}(1-|x|)^{-\varepsilon}, \quad \forall \varepsilon>0, \tag{A.2}
\end{equation*}
$$

hence, via (1.6) and (1.8),

$$
\begin{equation*}
|d u(x)|_{\mathcal{H}} \leq C_{\varepsilon} e^{(1-\varepsilon) \rho(x)}, \quad \forall \varepsilon>0 \tag{A.3}
\end{equation*}
$$

a result consistent with (1.9A). Here we go further, and produce a sharper estimate for a broader class of boundary data. Namely, we take

$$
\begin{equation*}
f \in C_{*}^{1}\left(S^{1}\right)=B_{\infty, \infty}^{1}\left(S^{1}\right) \tag{A.4}
\end{equation*}
$$

One definition of $C_{*}^{\alpha}\left(S^{1}\right)=B_{\infty, \infty}^{\alpha}\left(S^{1}\right)$ is that a distribution f on S^{1} belongs to this space if and only if

$$
\begin{equation*}
\left\|\psi_{\ell}(D) f\right\|_{L^{\infty}} \leq C 2^{-\ell \alpha} \tag{A.5}
\end{equation*}
$$

where $\left\{\psi_{\ell}: \ell \geq 0\right\}$ is a Littlewood-Paley partition of unity and $\psi_{\ell}(D)$ is Fourier multiplication by ψ_{ℓ}. Given $f \in C_{*}^{1}\left(S^{1}\right)$, we have

$$
\begin{equation*}
\frac{\partial}{\partial \theta} \operatorname{PI} f=\operatorname{PI} \frac{\partial f}{\partial \theta}, \quad r \frac{\partial}{\partial r} \operatorname{PI} f=-\operatorname{PI}(\Lambda f) \tag{A.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda f(\theta)=\sum_{k}|k| \hat{f}(k) e^{i k \theta} . \tag{A.7}
\end{equation*}
$$

As is well known,

$$
\begin{equation*}
f \in C_{*}^{1}\left(S^{1}\right) \Longrightarrow \partial_{\theta} f, \Lambda f \in C_{*}^{0}\left(S^{1}\right) \tag{A.8}
\end{equation*}
$$

We have the following.

Lemma A.1. If $g \in C_{*}^{0}\left(S^{1}\right)$, then

$$
\begin{equation*}
\left|\operatorname{PI} g\left(r e^{i \theta}\right)\right| \leq C \log \frac{1}{1-r} \tag{A.9}
\end{equation*}
$$

Granted this lemma, we have

$$
\begin{equation*}
f \in C_{*}^{1}\left(S^{1}\right) \Longrightarrow|d \operatorname{PI} f(x)|_{\mathcal{E}} \leq C \log \frac{1}{1-|x|} \approx C \rho(x) \tag{A.10}
\end{equation*}
$$

and hence $u=\mathrm{PI}_{\mathcal{H}} f$ satisfies

$$
\begin{equation*}
|d u(x)|_{\mathcal{H}} \leq C(1+\rho(x)) e^{-\rho(x)} \tag{A.11}
\end{equation*}
$$

an estimate that is stronger than (A.3).
To prove (A.9), write

$$
\operatorname{PI} g\left(r e^{i \theta}\right)=\sum_{\ell \geq 0} G_{\ell r}(\theta)
$$

$$
\begin{equation*}
G_{\ell r}(\theta)=\sum_{k} \psi_{\ell}(k) r^{|k|} \hat{g}(k) e^{i k \theta} \tag{A.12}
\end{equation*}
$$

Then

$$
\begin{align*}
\left\|G_{\ell r}\right\|_{L^{\infty}\left(S^{1}\right)} & \leq C r^{2^{\ell}}\left\|\psi_{\ell}(D) g\right\|_{L^{\infty}} \\
& \leq C r^{2^{\ell}}\|g\|_{C_{*}^{0}}, \tag{A.13}
\end{align*}
$$

so

$$
\begin{equation*}
\left|\operatorname{PI} g\left(r e^{i \theta}\right)\right| \leq C\|g\|_{C_{*}^{0}} \sum_{\ell \geq 0} r^{2^{\ell}} \tag{A.14}
\end{equation*}
$$

Now, with $r=e^{-t}, t \in(0,1 / 2]$,

$$
\begin{align*}
\sum_{\ell \geq 0} r^{2^{\ell}} & \leq C \int_{1}^{\infty} e^{-t e^{s}} d s \\
& \leq C \int_{1}^{\infty} e^{-t y} \frac{d y}{y} \tag{A.15}\\
& \leq C \log \frac{1}{t} \\
& \approx C \log \frac{1}{1-r}
\end{align*}
$$

yielding (A.9).

B. Finer results for even n

Recall that

$$
\begin{equation*}
\mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{n}\right)=(2 \pi)^{-(n-1)} \int_{\mathbb{R}^{n-1}} Q_{n}(t|\xi|) \hat{f}(\xi) e^{i x \cdot \xi} d \xi, \tag{B.1}
\end{equation*}
$$

with

$$
\begin{equation*}
Q_{n}(r)=C_{n} r^{(n-1) / 2} K_{(n-1) / 2}(r), \tag{B.2}
\end{equation*}
$$

so if $n=2 \ell+2$ is even,

$$
\begin{equation*}
Q_{2 \ell+2}(r)=C_{\ell}^{\prime} r^{\ell+1 / 2} K_{\ell+1 / 2}(r) \tag{B.3}
\end{equation*}
$$

For $\ell=0$ we have (5.5), and for larger $\ell \in \mathbb{Z}^{+}$we can apply the recursion (5.8). This can be rewritten as follows. Define $q_{\ell}(r)$ by

$$
\begin{equation*}
Q_{2 \ell+2}(r)=q_{\ell}(r) e^{-r} . \tag{B.4}
\end{equation*}
$$

Then it follows from (5.4)-(5.5) and the fact that

$$
\begin{equation*}
Q_{n}(0)=1, \quad \text { hence } \quad q_{\ell}(0)=1, \tag{B.5}
\end{equation*}
$$

that

$$
\begin{equation*}
q_{0}(r)=1 . \tag{B.6}
\end{equation*}
$$

Then it follows from the recursion (5.8) together with (B.5) that

$$
\begin{equation*}
q_{\ell+1}(r)=q_{\ell}(r)+\frac{r}{2 \ell+1}\left(q_{\ell}(r)-q_{\ell}^{\prime}(r)\right) . \tag{B.7}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
q_{1}(r)=1+r, \quad q_{2}(r)=1+r+\frac{r^{2}}{3} \tag{B.8}
\end{equation*}
$$

Generally, $q_{\ell}(r)$ is a polynomial of degree ℓ in r :

$$
\begin{equation*}
q_{\ell}(t)=\sum_{j=0}^{r} \alpha_{\ell j} r^{j} \tag{B.9}
\end{equation*}
$$

so, for $n=2 \ell+2$,

$$
\begin{equation*}
\mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{n}\right)=(2 \pi)^{-(n-1)} \sum_{j=0}^{\ell} \alpha_{\ell j} t^{j} \int|\xi|^{j} e^{-t|\xi|} \hat{f}(\xi) e^{i x \cdot \xi} d \xi . \tag{B.10}
\end{equation*}
$$

Comparison with (4.4) for the Euclidean Poisson integral gives the following.

Proposition B.1. If $n=2 \ell+2$ and f is given on \mathbb{R}^{n-1},

$$
\begin{equation*}
\mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{n}\right)=\sum_{\ell=0}^{\ell} \alpha_{\ell j} t^{j}\left(-\frac{\partial}{\partial t}\right)^{j} \mathrm{PI}_{\mathfrak{e}} f\left(x+t e_{n}\right) . \tag{B.11}
\end{equation*}
$$

Note that the right side of (B.11) can be written

$$
\begin{equation*}
\sum_{j=0}^{\ell} \beta_{\ell j}\left(t \frac{\partial}{\partial t}\right)^{j} \mathrm{PI}_{\mathfrak{e}} f\left(x+t e_{n}\right) \tag{B.12}
\end{equation*}
$$

with $\beta_{\ell j} \in \mathbb{R}$. This allows us to apply standard ellpitic regularity results for $\mathrm{PI}_{\mathfrak{e}}$. For example, if f has compact support in \mathbb{R}^{n-1} and $u=\mathrm{PI}_{\mathfrak{e}} f$, then

$$
\begin{equation*}
f \in C^{r}\left(\mathbb{R}^{n-1}\right) \Rightarrow u,\left(t \partial_{t}\right)^{j} u \in C^{r}\left(\overline{\mathbb{R}}_{+}^{n}\right), \quad \forall j \in \mathbb{N}, \tag{B.13}
\end{equation*}
$$

if $r>0, r \notin \mathbb{Z}$, with a Zygmund space replacement for $r \in \mathbb{Z}^{+}$. Hence the same regularity result holds for $u=\mathrm{PI}_{\mathfrak{h}} f$. This regularity result carries over to the setting of the ball, yielding the following sharpeninig of (5.14) and (6.18).
Proposition B.2. If n is even, then, for $r>0$,

$$
\begin{equation*}
\mathrm{PI}_{\mathcal{H}}: C_{*}^{r}\left(S^{n-1}\right) \longrightarrow C_{*}^{r}\left(\bar{B}^{n}\right) \tag{B.14}
\end{equation*}
$$

Similarly, other standard elliptic regularity results for $u=\mathrm{PI}_{\mathfrak{e}} f$ extend. We have

$$
\begin{equation*}
\mathrm{PI}_{\mathcal{H}}: H^{s, 2}\left(S^{n-1}\right) \longrightarrow H^{s+1 / 2,2}\left(B^{n}\right) \tag{B.15}
\end{equation*}
$$

for $s \geq-1 / 2$, and, more generally, for $1<p<\infty$,

$$
\begin{equation*}
\mathrm{PI}_{\mathcal{H}}: B_{p, p}^{s}\left(S^{n-1}\right) \longrightarrow H^{s+1 / p, p}\left(B^{n}\right) \tag{B.16}
\end{equation*}
$$

provided $n \geq 2$ is even.
Remark 1. Let us be more explicit about (B.12) when $n=4$. We then have

$$
\begin{equation*}
\mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{n}\right)=\mathrm{PI}_{\mathfrak{e}} f\left(x+t e_{n}\right)-t \partial_{t} \mathrm{PI}_{\mathfrak{e}} f\left(x+t e_{n}\right) . \tag{B.17}
\end{equation*}
$$

Note that this implies

$$
\begin{equation*}
\partial_{t} \mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{n}\right)=t\left(\partial_{1}^{2}+\partial_{2}^{2}+\partial_{3}^{2}\right) \mathrm{PI}_{\mathfrak{e}} f\left(x+t e_{n}\right), \tag{B.18}
\end{equation*}
$$

which is consistent with Proposition 3.1 and with Proposition 4.1.
Remark 2. A correspondence between $\mathrm{PI}_{\mathcal{H}}$ and its Euclidean counterpart on S^{n-1} analogous to (B.11) is given in [GJ], which also noted (B.14) as a consequence.

C. Further results for odd n

As seen in $\S 5$, if $n=2 \ell+1$ is odd, we can write

$$
\begin{equation*}
Q_{n}(|\xi|)=A(|\xi|)+B(|\xi|) \log |\xi|, \tag{C.1}
\end{equation*}
$$

with
(C.2) $\quad A, B \in C^{\infty}([0, \infty))$, exponentially decreasing,
and furthermore,

$$
\begin{equation*}
B(|\xi|)=B^{\#}(|\xi|)|\xi|^{2 \ell}, \tag{C.3}
\end{equation*}
$$

where $B^{\#}$ has property (C.2). Also, by (5.18),

$$
\begin{equation*}
A \text { and } B^{\#} \text { are smooth functions of }|\xi|^{2} . \tag{C.3A}
\end{equation*}
$$

It follows that, for $f \in L^{1}\left(\mathbb{R}^{n-1}\right)$,

$$
\begin{equation*}
\mathrm{PI}_{\mathfrak{h}} f=\mathrm{PI}_{\mathfrak{a}} f+\mathrm{PI}_{\mathfrak{b} \mathfrak{l}} f, \tag{C.4}
\end{equation*}
$$

with

$$
\begin{align*}
\mathrm{PI}_{\mathfrak{a}} f\left(x+t e_{n}\right) & =(2 \pi)^{-(n-1)} \int A(t|\xi|) \hat{f}(\xi) e^{i x \cdot \xi} d \xi \\
\mathrm{PI}_{\mathfrak{b}} f\left(x+t e_{n}\right) & =(2 \pi)^{-(n-1)} \int B(t|\xi|)(\log |t \xi|) \hat{f}(\xi) e^{i x \cdot \xi} d \xi \tag{C.5}
\end{align*}
$$

Note that

$$
\begin{equation*}
\mathrm{PI}_{\mathfrak{b r}} f=(\log t) \mathrm{PI}_{\mathfrak{b}} f+\mathrm{PI}_{\mathfrak{r}} f, \tag{C.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{PI}_{\mathfrak{b}} f\left(x+t e_{n}\right)=(2 \pi)^{-(n-1)} \int B(t|\xi|) \hat{f}(\xi) e^{i x \cdot \xi} d \xi \tag{C.7}
\end{equation*}
$$

$$
\mathrm{PI}_{\mathfrak{l}} f\left(x+t e_{n}\right)=(2 \pi)^{-(n-1)} \int B(t|\xi|)(\log |\xi|) \hat{f}(\xi) e^{i x \cdot \xi} d \xi
$$

Also,

$$
\begin{align*}
\mathrm{PI}_{\mathfrak{l}} f\left(x+t e_{n}\right) & =t^{2 \ell} \mathrm{PI}_{\mathfrak{l}}^{\#} f\left(x+t e_{n}\right) \\
& =(2 \pi)^{-(n-1)} t^{2 \ell} \int B^{\#}(t|\xi|)|\xi|^{2 \ell}(\log |\xi|) \hat{f}(\xi) e^{i x \cdot \xi} d \xi \tag{C.8}
\end{align*}
$$

It is elementary that

$$
\begin{equation*}
\mathrm{PI}_{\mathfrak{a}}, \mathrm{PI}_{\mathfrak{b}}, \mathrm{PI}_{\mathfrak{l}}, \mathrm{PI}_{\mathfrak{l}}^{\#}: \mathcal{S}\left(\mathbb{R}^{n-1}\right) \longrightarrow C^{\infty}\left(\overline{\mathbb{R}}_{+}^{n}\right) . \tag{C.9}
\end{equation*}
$$

Transforming to the setting of the ball, we have the following.

Proposition C.1. Assume $n \geq 3$ is odd. Given $f \in C^{\infty}\left(S^{n-1}\right)$, we have

$$
\begin{equation*}
\mathrm{PI}_{\mathcal{H}} f(x)=u(x)+v(x)\left(1-|x|^{2}\right)^{n-1} \log \left(1-|x|^{2}\right), \quad u, v \in C^{\infty}\left(\bar{B}^{n}\right) . \tag{C.10}
\end{equation*}
$$

We establish the following Zygmund space mapping properties.
Proposition C.2. Assume $n \geq 3$ is odd. Take $\varphi \in C_{0}^{\infty}\left(\overline{\mathbb{R}}_{+}^{n}\right)$, and let f be a compactly supported function on \mathbb{R}^{n-1}. Then

$$
\begin{equation*}
f \in C_{*}^{r}\left(\mathbb{R}^{n-1}\right) \Longrightarrow \varphi \mathrm{PI}_{\mathfrak{a}} f \in C_{*}^{r}\left(\overline{\mathbb{R}}_{+}^{n}\right), \quad \forall r \in(0, \infty) \tag{C.11}
\end{equation*}
$$

and

$$
\begin{equation*}
f \in C_{*}^{r}\left(\mathbb{R}^{n-1}\right) \Longrightarrow \varphi \mathrm{PI}_{\mathfrak{b} r} f \in C_{*}^{r}\left(\overline{\mathbb{R}}_{+}^{n}\right), \quad \forall r \in(0, n-1) . \tag{C.11A}
\end{equation*}
$$

As the stated result for $\mathrm{PI}_{\mathfrak{a}} f$ is relatively straightforward, we concentrate on $\mathrm{PI}_{\mathfrak{b r}} f$. We start with the case $0<r<1$. We have

$$
\begin{align*}
& t \partial_{t} \mathrm{PI}_{\mathfrak{b l}} f\left(x+t e_{n}\right) \\
& =(2 \pi)^{(n-1)} \int B^{\prime}(t|\xi|)|t \xi|(\log |t \xi|) \hat{f}(\xi) e^{i x \cdot \xi} d \xi \tag{C.12}\\
& \quad+(2 \pi)^{(n-1)} \int B_{1}(t|\xi|)|t \xi| \hat{f}(\xi) e^{i x \cdot \xi} d \xi,
\end{align*}
$$

where

$$
\begin{equation*}
B_{1}(r)=r^{-1} B(r)=O\left(r^{2 \ell-1}\right), \quad \text { as } \quad r \rightarrow 0 . \tag{C.13}
\end{equation*}
$$

Using the notation

$$
\begin{align*}
\mathrm{PI}_{\mathfrak{e}}^{t} f(x) & =\mathrm{PI}_{\mathfrak{e}} f\left(x+t e_{n}\right) \\
& =(2 \pi)^{-(n-1)} \int e^{-t|\xi|} \hat{f}(\xi) e^{i x \cdot \xi} d \xi \tag{C.14}
\end{align*}
$$

and

$$
\begin{equation*}
P_{F}^{t} f(x)=(2 \pi)^{-(n-1)} \int F(t \xi) \hat{f}(\xi) e^{i x \cdot \xi} d \xi \tag{C.15}
\end{equation*}
$$

we see that the first term on the right side of (C.12) is equal to

$$
\begin{equation*}
P_{F}^{t} t \partial_{t} \mathrm{PI}_{\mathfrak{e}}^{t / 2} f(x), \tag{C.16}
\end{equation*}
$$

where

$$
\begin{equation*}
F(\xi)=B^{\prime}(|\xi|)(\log |\xi|) e^{|\xi| / 2} \tag{C.17}
\end{equation*}
$$

Note that $F(\xi)$ is smooth on $(0, \infty)$ and exponentially decreasing as $|\xi| \rightarrow \infty$. Furthermore, since $B^{\prime}(0)=0$, Lemma 6.2 implies

$$
\begin{equation*}
\widehat{F} \in L^{1}\left(\mathbb{R}^{n-1}\right) \tag{C.18}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left\|P_{F}^{t} t \partial_{t} \mathrm{PI}_{\mathfrak{e}}^{t / 2} f\right\|_{L^{\infty}\left(\mathbb{R}^{n-1}\right)} \leq C\left\|t \partial_{t} \mathrm{PI}_{\mathfrak{e}}^{t / 2} f\right\|_{L^{\infty}\left(\mathbb{R}^{n-1}\right)} \tag{C.19}
\end{equation*}
$$

Now if $f \in C_{*}^{r}\left(\mathbb{R}^{n-1}\right)$ is compactly supported (and $r \in(0,1)$), it is classical that

$$
\begin{equation*}
\left\|t \partial_{t} \mathrm{PI}_{\mathfrak{e}}^{t / 2} f\right\|_{L^{\infty}} \leq C t^{r} \tag{C.20}
\end{equation*}
$$

This, together with (C.19) and a similar (but simpler) analysis of the second term on the right side of (C.12), yields

$$
\begin{equation*}
\sup _{x}\left|t \partial_{t} \mathrm{PI}_{\mathfrak{b r}} f\left(x+t e_{n}\right)\right| \leq C t^{r} \tag{C.21}
\end{equation*}
$$

in this case. A similar argument gives

$$
\begin{equation*}
\sup _{x}\left|t \partial_{j} \mathrm{PI}_{\mathfrak{b r}} f\left(x+t e_{n}\right)\right| \leq C t^{r}, \quad 1 \leq j \leq n-1 \tag{C.22}
\end{equation*}
$$

The result (C.11A), for $r \in(0,1)$, follows from (C.21)-(C.22), by a standard argument.

Next, let us assume $r \in(1,2)$. We have

$$
\begin{align*}
& t \partial_{t}^{2} \mathrm{PI}_{\mathfrak{b l}} f\left(x+t e_{n}\right) \\
& =(2 \pi)^{-(n-1)} \int B^{\prime \prime}(t|\xi|)|t \xi|(\log |t \xi|)|\xi| \hat{f}(\xi) e^{i x \cdot \xi} d \xi \tag{C.23}\\
& \quad+(2 \pi)^{-(n-1)} \int B_{2}(t|\xi|)|t \xi||\xi| \hat{f}(\xi) d \xi,
\end{align*}
$$

where (with B_{1} as in (C.13)),

$$
\begin{equation*}
B_{2}(r)=r^{-1} B^{\prime}(r)+B_{1}^{\prime}(r)=O\left(r^{2 \ell-2}\right), \text { as } r \rightarrow 0 \tag{C.24}
\end{equation*}
$$

Parallel to (C.16), the first term on the right side of (C.23) is equal to

$$
\begin{equation*}
P_{G}^{t} t \partial_{t}^{2} \mathrm{PI}_{\mathfrak{e}}^{t / 2} f(x), \tag{C.25}
\end{equation*}
$$

where

$$
\begin{equation*}
G(\xi)=B^{\prime \prime}(|\xi|)(\log |\xi|) e^{|\xi| / 2} \tag{C.26}
\end{equation*}
$$

If $n \geq 5$, so $\ell \geq 2$, we have $B^{\prime \prime}(0)=0$ and hence $\widehat{G} \in L^{1}\left(\mathbb{R}^{n-1}\right)$, and arguments as in (C.19)-(C.21) yield

$$
\begin{equation*}
\sup _{x}\left|t \partial_{t}^{2} \mathrm{PI}_{\mathfrak{b r}} f\left(x+t e_{n}\right)\right| \leq C t^{r-1} \tag{C.27}
\end{equation*}
$$

A similar argument (more parallel to (C.21)-(C.22) actually) gives

$$
\begin{equation*}
\sup _{x}\left|t \partial_{t} \partial_{j} \mathrm{PI}_{\mathfrak{b l}} f\left(x+t e_{n}\right)\right| \leq t^{r-1} \tag{C.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{x}\left|t \partial_{j} \partial_{k} \mathrm{PI}_{\mathfrak{b r}} f\left(x+t e_{n}\right)\right| \leq C t^{r-1} \tag{C.29}
\end{equation*}
$$

and (C.27)-(C.29) yields $\nabla_{x, t} \mathrm{PI}_{\mathfrak{b r}} f \in C_{*}^{r-1}\left(\overline{\mathbb{R}}_{+}^{n}\right)$, thus giving (C.11A) for $r \in(1,2)$, at least if $\ell \geq 2$. The result for $r=1$ follows by interpolation.

When $n=3$ (so $\ell=1$), $B^{\prime \prime}(0) \neq 0$, and we do not have $\widehat{G} \in L^{1}\left(\mathbb{R}^{n-1}\right)$. To treat this case, we use

$$
\begin{align*}
t^{2} \partial_{t}^{3} & \mathrm{PI}_{\mathfrak{b r}} f\left(x+t e_{n}\right) \\
= & (2 \pi)^{-(n-1)} \int B^{\prime \prime \prime}(t|\xi|)|t \xi|^{2}(\log |t \xi|)|\xi| \hat{f}(\xi) e^{i x \cdot \xi} d \xi \\
& \left.+(2 \pi)^{-(n-1}\right) \int B^{\prime \prime}(t|\xi|)|t \xi||\xi| \hat{f}(\xi) e^{i x \cdot \xi} d \xi \tag{С.30}\\
& +(2 \pi)^{-(n-1)} \int B_{2}^{\prime}(t|\xi|)|t \xi|^{2}|\xi| \hat{f}(\xi) e^{i x \cdot \xi} d \xi,
\end{align*}
$$

with B_{2} as in (C.24); in particular, B_{2}^{\prime} has properties as in (C.2). As before, the firest term on the right side of (C.30) is the toughest. It is equal to

$$
\begin{equation*}
P_{H}^{t} t^{2} \partial_{t}^{3} \mathrm{PI}_{\mathfrak{e}}^{t / 2} f(x) \tag{C.31}
\end{equation*}
$$

where

$$
\begin{equation*}
H(\xi)=B^{\prime \prime \prime}(|\xi|)(\log |\xi|) e^{|\xi| / 2} \tag{C.32}
\end{equation*}
$$

This time, by (C.3A), $B^{\prime \prime \prime}(0)=0$, so

$$
\begin{equation*}
\widehat{H} \in L^{1}\left(\mathbb{R}^{n-1)}\right), \quad(n=3) \tag{C.33}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left\|P_{H}^{t} t^{2} \partial_{t}^{3} \mathrm{PI}_{\mathfrak{e}}^{t / 2} f\right\|_{L \infty} \leq C\left\|t^{2} \partial^{3} \mathrm{PI}_{e}^{t / 2} f\right\|_{L^{\infty}} \tag{C.34}
\end{equation*}
$$

which, for compactly supported $f \in C_{*}^{r}, r \in(1,2)$, is $\leq C t^{r-1}$. This plus simpler analyses of the rest of the terms in the right side of (C.30) gives

$$
\begin{equation*}
\sup _{x}\left|t^{2} \partial_{t}^{3} \mathrm{PI}_{\mathfrak{b r}} f\left(x+t e_{n}\right)\right| \leq C t^{r-1} \tag{C.35}
\end{equation*}
$$

for $n=3$, replacing (C.27). This plus analogues of (C.28)-(C.29) give (C.11A), for $n=3, r \in(1,2)$.

For $n=3$ (or for $r \in(0,2)$), the proof of Proposition C. 2 is done. For $n \geq 5$ and $r \in(2, n-1)$, analogous arguments work, to prove Proposition C.2. We omit the details.

From here we have the following, which was proven in [GJ], via different arguments.

Proposition C.3. Assume $n \geq 3$ is odd. Then

$$
\begin{equation*}
\mathrm{PI}_{\mathcal{H}}: C_{*}^{r}\left(S^{n-1}\right) \longrightarrow C_{*}^{r}\left(\bar{B}^{n}\right), \text { for } r \in(0, n-1) \tag{C.36}
\end{equation*}
$$

Here is a result that is true for all $r>0$. Let $f \in C_{*}^{r}\left(\mathbb{R}^{n-1}\right)$ be compactly supported. Then (C.4)-(C.6) hold, and

$$
\begin{align*}
u & =\varphi \mathrm{PI}_{\mathfrak{a}} f \in C_{*}^{r}\left(\overline{\mathbb{R}}_{+}^{n}\right), \\
v & =\varphi \mathrm{PI}_{\mathfrak{b}} f \in C_{*}^{r}\left(\overline{\mathbb{R}}_{+}^{n}\right), \tag{C.37}\\
w & =\varphi \mathrm{PI}_{\mathfrak{l}} f \in C_{*}^{s}\left(\overline{\mathbb{R}}_{+}^{n}\right), \quad \forall s<r .
\end{align*}
$$

Also

$$
\begin{equation*}
\left.\partial_{t}^{j} v\right|_{t=0}=\left.\partial_{t}^{j} w\right|_{t=0}=0, \quad \text { for } \quad 0 \leq j \leq \min (n-1, r) \tag{C.38}
\end{equation*}
$$

Transfer to the ball gives the following.
Proposition C.4. Assume $n \geq 3$ is odd. Then, for all $r>0$,

$$
\begin{equation*}
f \in C_{*}^{r}\left(S^{n-1}\right) \Longrightarrow \mathrm{PI}_{\mathcal{H}} f(x)=u(x)+w(x)+v(x) \log \left(1-|x|^{2}\right) \tag{C.39}
\end{equation*}
$$

with

$$
\begin{equation*}
u, v \in C_{*}^{r}\left(\bar{B}^{n}\right), \quad w \in C_{*}^{s}\left(\bar{B}^{n}\right), \forall s<r \tag{C.40}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\partial_{\nu}^{j} v\right|_{S^{n-1}}=\left.\partial_{\nu}^{j} w\right|_{S^{n-1}}=0, \quad \text { for } 0 \leq j \leq \min (n-1, r) \tag{C.41}
\end{equation*}
$$

According to Proposition C.3, it seems there is some cancellation of singularities in the last two terms of (C.39) if $r<n-1$, but not if $r>n-1$.

D. Asymptotic analysis of $\hat{\psi}_{1}$ in (6.12)-(6.13)

Here we produce an asymptotic analysis of $\hat{\psi}_{1}(x)$ that will complete the proof of Lemma 6.2. Recall that

$$
\begin{equation*}
\psi_{1}(\xi)=\varphi(\xi)|\xi| \log |\xi|, \quad \varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n-1}\right) \tag{D.1}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\hat{\psi}_{1}(x)=\hat{\varphi} * \hat{\psi}_{L}(x), \quad \psi_{L}(\xi)=|\xi| \log |\xi| \tag{D.2}
\end{equation*}
$$

and $\hat{\varphi} \in \mathcal{S}\left(\mathbb{R}^{n-1}\right)$, so it suffices to identify $\hat{\psi}_{L}$. We get this from the following well known formula (cf. [T3], Chapter 3, (8.33)).

$$
\begin{equation*}
\text { On } \mathbb{R}^{n-1}, \quad \sigma_{s}(\xi)=|\xi|^{s} \Longrightarrow \hat{\sigma}_{s}(x)=F(s)|x|^{-s-(n-1)} \tag{D.3}
\end{equation*}
$$

with

$$
\begin{equation*}
F(s)=2^{s+(n-1) / 2} \frac{\Gamma((s+n-1) / 2)}{\Gamma(-s / 2)} \tag{D.4}
\end{equation*}
$$

provided $s \in \mathbb{C}$ satisfies

$$
\begin{equation*}
s \notin\left\{-(n-1)-2 j: j \in \mathbb{Z}^{+}\right\} \cup\left\{2 j: j \in \mathbb{Z}^{+}\right\}, \tag{D.5}
\end{equation*}
$$

where $\mathbb{Z}^{+}=\{0,1,2, \ldots\}$. Applying $\partial / \partial s$ gives

$$
\begin{align*}
& \psi_{s, L}(\xi)=|\xi|^{s} \log |\xi| \\
& \Longrightarrow \hat{\psi}_{s, L}(x)=F^{\prime}(s)|x|^{-s-(n-1)}-F(s)|x|^{-s-(n-1)} \log |x| \tag{D.6}
\end{align*}
$$

provided (D.5) holds. Setting $s=1$ gives

$$
\begin{equation*}
\hat{\psi}_{L}(x)=F^{\prime}(1)|x|^{-n}-F(1)|x|^{-n} \log |x| \tag{D.7}
\end{equation*}
$$

This is clearly integrable on $\mathbb{R}^{n-1} \backslash B_{1}(0)$, so $\hat{\psi}_{1} \in L^{1}\left(\mathbb{R}^{n-1}\right)$.

E. Complex hyperbolic space and other symmetric spaces

Let $\mathcal{B}^{n} \subset \mathbb{C}^{n}$ be the unit ball, endowed with the metric tensor

$$
\begin{equation*}
d s^{2}=\frac{1}{1-r^{2}} \sum\left(d x_{j}^{2}+d y_{j}^{2}\right)+\frac{r^{2}\left(d r^{2}+(J d r)^{2}\right)}{\left(1-r^{2}\right)^{2}}, \quad r=|z| . \tag{E.1}
\end{equation*}
$$

This complete Riemannian manifold has a transitive group G of isometries, which are biholomorphic maps on \mathcal{B}^{n}. Unitary operators on \mathbb{C}^{n} provide a subgroup of G, preserving 0 , making \mathcal{B}^{n} a rank-one symmetric space. Its Poisson integral

$$
\begin{equation*}
\mathrm{PI}_{\mathcal{B}}: C\left(S^{2 n-1}\right) \longrightarrow C\left(\overline{\mathcal{B}}^{n}\right) \cap C^{\infty}\left(\mathcal{B}^{n}\right) \tag{E.2}
\end{equation*}
$$

has the property that $u=\mathrm{PI}_{\mathcal{B}} f$ solves

$$
\begin{equation*}
\Delta_{\mathcal{B}} u=0 \quad \text { on } \mathcal{B}^{n},\left.\quad u\right|_{S^{2 n-1}}=f \tag{E.3}
\end{equation*}
$$

where $\Delta_{\mathcal{B}}$ is the Laplace-Beltrami operator on \mathcal{B}^{n}, with metric tensor (E.1). This can be constructed by a process similar to that used in $\S 2$. First, parallel to (2.1), we have

$$
\begin{equation*}
\mathrm{PI}_{\mathcal{B}} f(0)=\frac{1}{A_{2 n-1}} \int_{S^{2 n-1}} f d S \tag{E.4}
\end{equation*}
$$

Then, given $z \in \mathcal{B}^{n}$, let

$$
\begin{equation*}
\mathcal{C}_{z}: \mathcal{B}^{n} \longrightarrow \mathcal{B}^{n}, \quad \mathcal{C}_{z}(0)=z \tag{E.5}
\end{equation*}
$$

be an element of G taking 0 to z. (Such a map dexends to a diffeomorphism of $\overline{\mathcal{B}}^{n}$ onto itself.) If $v_{z}=u \circ \mathcal{C}_{z}$, then $\Delta_{\mathcal{B}} u=0 \Rightarrow \Delta_{\mathcal{B}} v_{z}=0$, so

$$
\begin{equation*}
\mathrm{PI}_{\mathcal{B}} f(z)=v_{z}(0)=\frac{1}{A_{2 n-1}} \int_{S^{2 n-1}} f \circ \mathcal{C}_{z} d S \tag{E.6}
\end{equation*}
$$

Now \mathcal{C}_{z} in (E.5) is well defined only up to a factor in $U(n)$:

$$
\begin{equation*}
\mathcal{C}_{z}^{\prime}=\mathcal{C}_{z} \circ R, \quad R \in U(n) \tag{E.7}
\end{equation*}
$$

but altering \mathcal{C}_{z} by such a factor leaves the right side of (E.6) unchanged. A proof that (E.6) gives the solution to (E.3) is analogous to arguments given in $\S 2$.

There is a Cayley transform of \mathcal{B}^{n} onto the Siegel upper half space $\Omega^{n} \subset \mathbb{C}^{n}$. and a corresponding analogue of the Poisson integral of $\S 3$. The group $G \approx S U(n, 1)$,
which acts on \mathcal{B}^{n}, also acts on Ω^{n}. It has an Iwasawa decomposition $G=N A K$. The nilpotent group N is isomorphic to the Heisenberg group \mathbb{H}^{n-1}; this group acts simply transitively on $\partial \Omega^{n}$, and $N A$ acts simply transitively on Ω^{n}. The analogue of (3.19) is a map

$$
\begin{equation*}
\mathrm{PI}_{\mathfrak{c h}}: C_{0}^{\infty}\left(\mathbb{H}^{n-1}\right) \longrightarrow C\left(\bar{\Omega}^{n}\right) \tag{E.7A}
\end{equation*}
$$

The formula for $\mathrm{PI}_{\mathfrak{c h}}$ is a special case of a more general class of formulas we briefly describe, in the setting of a rank-one symmetric space $X=G / K$. Again the Iwasawa decomposition $G=N A K$ plays a role, together with the associated Lie algebra decomposition $\mathfrak{g}=\mathfrak{n} \oplus \mathfrak{a} \oplus \mathfrak{k}$. In the rank one setting,

$$
\begin{equation*}
\mathfrak{n}=\mathfrak{g}_{-\alpha} \oplus \mathfrak{g}_{-2 \alpha} \tag{E.8}
\end{equation*}
$$

and if

$$
\begin{equation*}
h=\exp (X+Y), \quad X \in \mathfrak{g}_{-\alpha}, \quad Y \in \mathfrak{g}_{-2 \alpha}, \tag{E.9}
\end{equation*}
$$

one has (cf. [Hel], pp. 65-67)

$$
\begin{equation*}
\mathrm{PI}_{N}: C_{0}^{\infty}(N) \longrightarrow C(\bar{X}), \tag{E.9A}
\end{equation*}
$$

given by

$$
\begin{equation*}
\mathrm{PI}_{N} f(g K)=\int_{N} P(g K, h) f(h) d h \tag{E.10}
\end{equation*}
$$

where $d h$ is Haar measure on N, and with $a_{s}=\exp (s H) \in A$ (which is onedimensional here), and $\tilde{h} \in N$,

$$
\begin{equation*}
P\left(\tilde{h} a_{s} K, h\right)=P\left(a_{s} K, \tilde{h}^{-1} h\right) \tag{E.11}
\end{equation*}
$$

with

$$
\begin{equation*}
P\left(a_{s} K, h\right)=\left(\frac{e^{2 s}}{\left(1+c\left\|e^{s} X\right\|^{2}\right)^{2}+4 c\left\|e^{2 s} Y\right\|^{2}}\right)^{p / 2+q} \tag{E.12}
\end{equation*}
$$

where

$$
\begin{equation*}
p=\operatorname{dim} \mathfrak{g}_{-\alpha}, \quad q=\operatorname{dim} \mathfrak{g}_{-2 \alpha}, \quad c=\frac{1}{4(p+4 q)} \tag{E.13}
\end{equation*}
$$

Taking $t=e^{-s}$ gives

$$
\begin{equation*}
P\left(a_{s} K, h\right)=t^{-(p+2 q)}\left[\left(1+c\left\|\frac{X}{t}\right\|^{2}\right)^{2}+4 c\left\|\frac{Y}{t^{2}}\right\|^{2}\right]^{-(p / 2+q)} . \tag{E.14}
\end{equation*}
$$

We see that the Poisson integral of $f \in L^{p}(N)$ is a one-parameter family of convolution operators on the nilpotent group N. In case $X=B^{n}$ is the real hyperbolic ball, $N=\mathbb{R}^{n-1}$ is abelian, $p=n-1, q=0$, and (E.14) reduces to (3.19) (up to a scaling of the norm). In case $X=\mathcal{B}^{n}$ is the complex hyperbolic ball, $p=2(n-1), q=1$, and N is the $(2 n-1)$-dimensional Heisenberg group \mathbb{H}^{n-1}. In such a case, (E.14) yields

$$
\begin{equation*}
P(t, h)=t^{-2 n}\left[\left(1+c\left\|\frac{X}{t}\right\|^{2}\right)^{2}+4 c\left\|\frac{Y}{t^{2}}\right\|^{2}\right]^{-n} \tag{E.15}
\end{equation*}
$$

which has the same scaling as the "Heisenberg heat semigroup"

$$
\begin{equation*}
e^{t^{2} \mathcal{L}_{0}} \tag{E.16}
\end{equation*}
$$

where \mathcal{L}_{0} is the "Heisenberg Laplacian," a subelliptic operator on \mathbb{H}^{n-1}. (Cf. [T2], Chapter 1, §7.) This suggests the usefulness of the analysis developed in [FS], followed by works such as [RS] and [T1]. Other work on the Dirichlet problem on the complex hyperbolic ball includes [K1], [Fol], and [Gr1]. Further results, including the Dirichlet problem on a strongly pseudoconvex domain with the Bergman metric and related metrics are given in [Gr2] and [LM].

F. Further convergence results

Let us set, for $t>0, f \in L^{p}\left(\mathbb{R}^{n-1}\right), x \in \mathbb{R}^{n-1}$,

$$
\begin{equation*}
P_{\mathfrak{h}}^{t} f(x)=\mathrm{PI}_{\mathfrak{h}} f\left(x+t e_{n}\right), \tag{F.1}
\end{equation*}
$$

and, for $r \in[0,1), f \in L^{p}\left(S^{n-1}\right), \omega \in S^{n-1}$,

$$
\begin{equation*}
P_{\mathcal{H}}^{r} f(\omega)=\mathrm{PI}_{\mathcal{H}} f(r \omega) \tag{F.2}
\end{equation*}
$$

The explicit formula (3.19) for $\mathrm{PI}_{\mathfrak{h}}$ fits in with standard results to yield the following.
Proposition F.1. Given $p \in[1, \infty)$,

$$
\begin{equation*}
f \in L^{p}\left(\mathbb{R}^{n-1}\right) \Longrightarrow\left\|P_{\mathfrak{h}}^{t} f-f\right\|_{L^{p}} \rightarrow 0 \text { as } t \searrow 0 \tag{F.3}
\end{equation*}
$$

Also $P_{\mathfrak{h}}^{t} f \rightarrow f$ a.e. on \mathbb{R}^{n-1}, and if $N_{\alpha} f$ is the nontangential maximal function

$$
\begin{equation*}
N_{\alpha} f(x)=\sup \left\{\left|\mathrm{PI}_{\mathfrak{h}} f\left(x+y+t e_{n}\right)\right|: 0<t \leq 1,|y| \leq \alpha t\right\}, \tag{F.4}
\end{equation*}
$$

then

$$
\begin{equation*}
\left\|N_{\alpha} f\right\|_{L^{p}} \leq C_{\alpha p}\|f\|_{L^{p}}, \text { for } \alpha \in(0, \infty), p \in(1, \infty] \tag{F.5}
\end{equation*}
$$

From here, the relation (3.23) plus the arguments given in that paragraph yield the following.
Proposition F.2. Given $p \in(1, \infty], f \in L^{p}\left(S^{n-1}\right), \beta \in(1, \infty)$, if we set

$$
\begin{equation*}
\mathcal{N}_{\beta} f(\omega)=\sup \left\{\left|\mathrm{PI}_{\mathcal{H}} f(x)\right|:|x-\omega| \leq \beta \operatorname{dist}\left(x, S^{n-1}\right)\right\} \tag{F.6}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left\|\mathcal{N}_{\beta} f\right\|_{L^{p}} \leq C_{\beta p}\|f\|_{L^{p}} \tag{F.7}
\end{equation*}
$$

Since $\left|P_{\mathcal{H}}^{r} f(\omega)\right| \leq \mathcal{N}_{\beta} f(\omega)$, Proposition F. 2 implies

$$
\begin{equation*}
\left\|P_{\mathcal{H}}^{r} f(\omega)\right\|_{L^{p}} \leq C_{p}\|f\|_{L^{p}}, \quad 1<p \leq \infty, 0<r<1 \tag{F.8}
\end{equation*}
$$

with C_{p} independent of r.
Remark. A computation of the integral kernel in (2.3), parallel to that in (3.19), would no doubt yield Proposition F. 2 directly, and extend it to the case $p=1$.

Since

$$
\begin{equation*}
f \in C\left(S^{n-1}\right) \Longrightarrow P_{\mathcal{H}}^{r} f \rightarrow f \text { uniformly as } r \nearrow 0, \tag{F.9}
\end{equation*}
$$

(F.8) and the denseness of $C\left(S^{n-1}\right)$ in $L^{p}\left(S^{n-1}\right)$ for $p<\infty$ give the following.

Proposition F.3. Given $1<p<\infty$,
(F.10) $\quad f \in L^{p}\left(S^{n-1}\right) \Longrightarrow P_{\mathcal{H}}^{r} f \rightarrow f$ in L^{p}-norm, as $r \nearrow 1$.

Let

$$
\begin{equation*}
\Lambda=\left(-\Delta_{S}+1\right)^{1 / 2} \tag{F.11}
\end{equation*}
$$

where Δ_{S} is the Laplace-Beltrami operator on S^{n-1}. Symmetry implies that $P_{\mathcal{H}}^{r}$ commutes with the natural action of $S O(n)$ on $L^{p}\left(S^{n-1}\right)$, hence with Λ and all its powers. Now we have L^{p}-Sobolev spaces

$$
\begin{equation*}
H^{s, p}\left(S^{n-1}\right)=\Lambda^{-s} L^{p}\left(S^{n-1}\right), \quad p \in(1, \infty), s \in \mathbb{R} \tag{F.12}
\end{equation*}
$$

The fact that

$$
\begin{equation*}
P_{\mathcal{H}}^{r} \Lambda^{-s}=\Lambda^{-s} P_{\mathcal{H}}^{r}, \tag{F.13}
\end{equation*}
$$

plus Proposition F.3, then gives the following.
Proposition F.4. For $1<p<\infty, s \in \mathbb{R}$,

$$
\begin{equation*}
f \in H^{s, p}\left(S^{n-1}\right) \Longrightarrow P_{\mathcal{H}}^{r} f \rightarrow f \text { in } H^{s, p} \text {-norm, as } r \nearrow 1 \tag{F.14}
\end{equation*}
$$

G. Fatou type theorems

Given $u \in C^{\infty}\left(B^{n}\right)$, set

$$
\begin{equation*}
u_{r}(\omega)=u(r \omega), \quad r \in[0,1), \omega \in S^{n-1} \tag{G.1}
\end{equation*}
$$

We aim to show that if $\Delta_{\mathcal{H}} u=0$ on B^{n} and $\left\{u_{r}: 0 \leq r<1\right\}$ is bounded, in a certain Banach space X of functions (or distributions), then

$$
\begin{equation*}
u=\mathrm{PI}_{\mathcal{H}} f \tag{G.2}
\end{equation*}
$$

with $f \in X$ (or occasionally, a larger space). We start with the following.
Lemma G.1. Take $p \in(1, \infty]$. Assume $\Delta_{\mathcal{H}} u=0$ on B^{n} and

$$
\begin{equation*}
\left\{u_{r}: 0 \leq r<1\right\} \text { is relatively compact in } L^{p}\left(S^{n-1}\right) . \tag{G.3}
\end{equation*}
$$

(For $p=\infty$, we can replace $L^{\infty}\left(S^{n-1}\right)$ by $C\left(S^{n-1}\right)$.) Then there exists $f \in$ $L^{p}\left(S^{n-1}\right)$ such that (G.2) holds.

Proof. Set $f_{r}=u_{r} \in C^{\infty}\left(S^{n-1}\right) \subset L^{p}\left(S^{n-1}\right)$, and

$$
\begin{equation*}
v_{r}=\mathrm{PI}_{\mathcal{H}} f_{r}, \quad v_{r s}(\omega)=v_{r}(s \omega)=P_{\mathcal{H}}^{s} f_{r}(\omega) \tag{G.4}
\end{equation*}
$$

The uniform estimates (F.8), plus (F.10), imply that $P_{\mathcal{H}}^{s} \rightarrow I$ uniformly on compact subsets of $L^{p}\left(S^{n-1}\right)$ (resp., $C\left(S^{n-1}\right)$ if $p=\infty$). Hence, by the compactness hypothesis, given $k \in \mathbb{N}$, there exists $r_{k}<1$ such that

$$
\begin{equation*}
\left\|P_{\mathcal{H}}^{s} f_{r}-f_{r}\right\|_{L^{p}} \leq 2^{-k}, \quad \forall r \in[0,1), s \geq r_{k} \tag{G.5}
\end{equation*}
$$

(We can assume $r_{k} \nearrow$ 1.) It follows that

$$
\begin{equation*}
\left\|v_{r_{k} r_{k}}-u_{r_{k}}\right\|_{L^{p}} \leq 2^{-k}, \tag{G.6}
\end{equation*}
$$

and hence, by elliptic regularity, given $\varepsilon>0$,

$$
\begin{equation*}
\left\|v_{r_{k}}-u\right\|_{C\left(B_{(1-\varepsilon) r_{k}}^{n}\right)} \leq C_{\varepsilon} 2^{-k} \tag{G.7}
\end{equation*}
$$

where $B_{\rho}^{n}=\left\{x \in B^{n}:|x|<\rho\right\}$. Consequently, as $k \rightarrow \infty$,

$$
\begin{equation*}
v_{r_{k}} \longrightarrow u \text { locally uniformly on } B^{n} . \tag{G.8}
\end{equation*}
$$

Now, the compactness hypothesis (G.3) also implies that, perhaps passing to a further subsequence, we have $f \in L^{p}\left(S^{n-1}\right)\left(f \in C\left(S^{n-1}\right)\right.$ if $\left.p=\infty\right)$ such that

$$
\begin{equation*}
f_{r_{k}} \longrightarrow f \text { in } L^{p} \text {-norm. } \tag{G.9}
\end{equation*}
$$

Hence

$$
\begin{equation*}
P_{\mathcal{H}}^{s} f_{r_{k}} \longrightarrow P_{\mathcal{H}}^{s} f \text { in } L^{p} \text {-norm, as } k \rightarrow \infty \tag{G.10}
\end{equation*}
$$

uniformly for $s \in[0,1)$, and therefore

$$
\begin{equation*}
v_{r_{k}} \longrightarrow \mathrm{PI}_{\mathcal{H}} f \tag{G.11}
\end{equation*}
$$

Comparison with (G.8) gives (G.2).

Remark. In the Euclidean case, a dilation argument gives (G.8) directly, without need for (G.5)-(G.7). This allows one to get (G.2) when (G.3) is weakened to boundedness (with a natural modification when $p=1$), thus directly yielding the result we will establish in Proposition G.4. In the hyperbolic case (for $n \geq 3$) such a dilation argument is not available.

Lemma G. 1 yields the following extension.
Corollary G.2. Given $p \in(1, \infty), s \in \mathbb{R}, \Delta_{\mathcal{H}} u=0$ on B^{n}, and

$$
\begin{equation*}
\left\{u_{r}: 0 \leq r<1\right\} \quad \text { relatively compact in } H^{s, p}\left(S^{n-1}\right), \tag{G.12}
\end{equation*}
$$

there exists $f \in H^{s, p}\left(S^{n-1}\right)$ such that (G.2) holds.
Proof. With Λ as in (F.11), we have

$$
\begin{equation*}
\Lambda^{s} u_{r}=w_{r}, \quad \text { relatively compact in } L^{p}\left(S^{n-1}\right), \tag{G.13}
\end{equation*}
$$

with $\Delta_{\mathcal{H}} w=0$. Hence, by Lemmma G.1, $w=\mathrm{PI}_{\mathcal{H}} g, g \in L^{p}\left(S^{n-1}\right)$. Then

$$
\begin{equation*}
u=\mathrm{PI}_{\mathcal{H}} f, \quad f=\Lambda^{-s} g \in H^{s, p}\left(S^{n-1}\right) \tag{G.14}
\end{equation*}
$$

Here is a significant improvement of Corollary G.2.
Proposition G.3. Given $p \in(1, \infty), \sigma \in \mathbb{R}, \Delta_{\mathcal{H}} u=0$ on B^{n}, and

$$
\begin{equation*}
\left\{u_{r}: 0 \leq r<1\right\} \quad \text { bounded in } H^{\sigma, p}\left(S^{n-1}\right) \tag{G.15}
\end{equation*}
$$

there exists $f \in H^{\sigma, p}\left(S^{n-1}\right)$ such that (G.2) holds.
Proof. By Rellich's theorem, (G.15) implies (G.12) for $s<\sigma$, so there exists $f \in$ $H^{s, p}\left(S^{n-1}\right)$ such that (G.2) holds. Then, with $f_{r}=u_{r}$ as in (G.1), we have $f_{r} \rightarrow f$ in $H^{s, p}$-norm, as $r \nearrow 1$, by Proposition F.4. But (G.15) implies that, for some subsequence,

$$
\begin{equation*}
f_{r_{k}} \longrightarrow g, \text { weakly, in } H^{\sigma, p}\left(S^{n-1}\right) \tag{G.16}
\end{equation*}
$$

Hence $f=g \in H^{\sigma, p}\left(S^{n-1}\right)$.
Now we can record an improvement of Lemma G.1.

Proposition G.4. Assume $p \in[1, \infty], \Delta_{\mathcal{H}} u=0$ on B^{n}, and

$$
\begin{equation*}
\left\{u_{r}: 0 \leq r<1\right\} \text { is bounded in } L^{p}\left(S^{n-1}\right) . \tag{G.17}
\end{equation*}
$$

If $p \in(1, \infty]$, there exists $f \in L^{p}\left(S^{n-1}\right)$ such that (G. 2) holds. If $p=1$, there exists a finite measure μ on S^{n-1} such that

$$
\begin{equation*}
u=\mathrm{PI}_{\mathcal{H}} \mu \tag{G.18}
\end{equation*}
$$

Proof. If $1<p<\infty$, the conclusion is the $\sigma=0$ case of Proposition G.3. Hence, in case (G.17) holds with $p=\infty$, we have, for each $q<\infty, f \in L^{q}\left(S^{n-1}\right)$ such that $u=\mathrm{PI}_{\mathcal{H}} f$. Then $u_{r} \rightarrow f$ in L^{q}-norm. But the uniform boundedness of u_{r} then gives $f \in L^{\infty}\left(S^{n-1}\right)$.

If (G.17) holds with $p=1$, Corollary G. 2 gives $u=\operatorname{PI}_{\mathcal{H}} f$ for some $f \in$ $H^{-\delta, q}\left(S^{n-1}\right), \delta>0, q>1$, and we have

$$
\begin{equation*}
u_{r} \longrightarrow f \text { in } H^{-\delta, q} \text {-norm. } \tag{G.19}
\end{equation*}
$$

But the L^{1} bound implies for a subsequence

$$
\begin{equation*}
u_{r_{k}} \longrightarrow \mu, \tag{G.20}
\end{equation*}
$$

a finite measure on S^{n-1}, in the weak* topology. We have convergence in $\mathcal{D}^{\prime}\left(S^{n-1}\right)$ in both (G.19) and (G.20), so $f=\mu$, and (G.18) holds.

Question. Assume $\Delta_{\mathcal{H}} u=0$ on B^{n} and

$$
\begin{equation*}
|u(x)| \leq C(1-|x|)^{-N}, \tag{G.21}
\end{equation*}
$$

for some $C, N \in(0, \infty)$. Can one show that (G.15) holds for some $\sigma \in \mathbb{R}$?

References

[A] M. Anderson, The Dirichlet problem at infinity for manifolds of negative curvature, J. Diff. Geom. 18 (1983), 701-721.
[AS] M. Anderson and R. Schoen, Positive harmonic functions on complete manifolds of negative curvature, Ann. of Math. 121 (1985), 429-461.
[CC] C.-H. Chan and M. Czubak, Non-uniqueness of the Leray-Hopf solutions in the hyperbolic setting, Preprint, 2010.
[Fol] G. Folland, The spherical harmonic expansion of the Poisson-Szegö kernel for the ball, Proc. AMS 47 (1975), 401-408.
[FS] G. Folland and E. Stein, Estimates for the $\bar{\partial}_{b}$ complex and analysis on the Heisenberg group, Comm. PDE 27 (1974), 429-522.
[Fur] H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. 77 (1963), 335-386.
[Gr1] C.R. Graham, The Dirichlet problem for the Bergman Laplacian I, Comm. PDE 8 (1983), 433-476.
[Gr2] C.R. Graham, The Dirichlet problem for the Bergman Laplacian II, Comm. PDE 8 (1983), 563-641.
[GJ] S. Grellier and P. Jaming, Harmonic functions on the hyperbolic ball II: Hardy-Sobolev and Lipschitz spaces, Math. Nachr. 268 (2004), 50-77.
[Hel] S. Helgason, A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1-154.
[HK] S. Helgason and A. Koranyi, A Fatou-type theorem for harmonic functions on symmetric spaces, Bull. AMS 74 (1968), 258-263.
[J] P. Jaming, Harmonic functions on the real hyperbolic ball I: boundary values and atomic decomposition of Hardy spaces, Colloq. Math. 80 (1999), 63-82.
[Kn] A. Knapp, Fatou's theorem on symmetric spaces I, Ann. of Math. 88 (1968), 106-127.
[K1] A. Koranyi, Harmonic functions on Hermitian hyperbolic space, Trans. AMS 135 (1969), 507-516.
[K2] A. Koranyi, Boundary behavior of Poisson integrals on symmetric spaces, Trans. AMS 140 (1969), 393-409.
[K3] A. Koranyi, A survey of harmonic functions on symmetric spaces, Proc. Symp. Pure Math. (AMS) 35 (1979), 323-344.
[Leb] N. Lebedev, Special Functions and Their Applications, Dover, New York, 1972.
[LM] J. Lee and R. Melrose, Boundary behavior of the complex Monge-Ampere equation, Acta Math. 148 (1982), 159-192.
[RS] L. Rothschild and E. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247-320.
[St] E. Stein, Singular Integrals and Smoothness Properties of Functions, Prince-
ton Univ. Press, Princeton NJ, 1970.
[Sul] D. Sullivan, The Dirichlet problem at infinity for a negatively curved manifold, J. Diff. Geom. 18 (1983), 723-732.
[T1] M. Taylor, Noncommutative Microlocal Analysis I, Memoir AMS \#313, 1984.
[T2] M. Taylor, Noncommutative Harmonic Analysis, Math. Surv. and Monogr. \#22, American Math. Soc., Providence RI, 1986.
[T3] M. Taylor, Partial Differential Equations, Vol. 1, Springer-Verlag, New York, 1996 (2nd Ed., 2011).
[Ter] A. Terras, Harmonic Analysis on Symmetric Spaces and Applications II, Springer-Verlag, New York, 1988.

