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Introduction

We develop the basic theory of elliptic functions, starting in §30 with basic
constructions of doubly periodic meromorphic functions on C as lattice sums. One
basic case is the Weierstrass ℘-function. Its centrality in the subject is established in
§31. Section 32 is devoted to a representation of ℘ in terms of theta functions, which
among other properties have the advantage of being defined by rapidly convergent
series. Section 33 expresses certain classes of integrals, known as elliptic integrals, as
inverses of elliptic functions. To treat arbitrary elliptic integrals this way, one needs
a result known as the solution to the Abel inversion problem. One convenient route
to the solution to this problem involves the construction of the Riemann surface
of

√
q(ζ), when q(ζ) is a cubic (or quartic) polynomial, with no repeated roots.

This is taken up in §34. Results here are precursors of a general theory of Riemann
surfaces (treated in another set of notes of the author).

These notes are excerpted from §§30–34 of our monograph “Introduction to
Complex Analysis.” They have an appendix, covering some elementary notions of
a Riemann surface, taken from §26 of that monograph, and an appendix on the
rapid evaluation of the Weierstrass ℘-function, taken from §K.



3

30. Periodic and doubly periodic functions - infinite series representations

We can obtain periodic meromorphic functions by summing translates of z−k.
For example,

(30.1) f1(z) =
∞∑

n=−∞

1
(z − n)2

is meromorphic on C, with poles in Z, and satisfies f1(z + 1) = f1(z). In fact, we
have

(30.2)
∞∑

n=−∞

1
(z − n)2

=
π2

sin2 πz
.

To see this, note that both sides have the same poles, and their difference g1(z) is
seen to be an entire function, satisfying g1(z + 1) = g1(z). Also it is seen that, for
z = x + iy, both sides of (30.2) tend to 0 as |y| → ∞. This forces g1 ≡ 0.

A second example is

(30.3)

f2(z) = lim
m→∞

m∑
n=−m

1
z − n

=
1
z

+
∑

n6=0

( 1
z − n

+
1
n

)

=
1
z

+
∞∑

n=1

2z

z2 − n2
.

This is also meromorphic on C, with poles in Z, and it is seen to satisfy f2(z +1) =
f2(z). We claim that

(30.4)
1
z

+
∑

n 6=0

( 1
z − n

+
1
n

)
= π cotπz.

In this case again we see that the difference g2(z) is entire. Furthermore, applying
−d/dz to both sides of (30.4), we get the two sides of (30.2), so g2 is constant.
Looking at the last term in (30.3), we see that the left side of (30.4) is odd in z; so
is the right side; hence g2 = 0.

As a third example, we consider

(30.5)

lim
m→∞

m∑
n=−m

(−1)n

z − n
=

1
z

+
∑

n6=0

(−1)n
( 1

z − n
+

1
n

)

=
1
z

+
∞∑

n=1

(−1)n 2z

z2 − n2

=
1
z
− 4

∞∑

k=1

z(1− 2k)
[z2 − (2k − 1)2][z2 − (2k)2]

.
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We claim that

(30.6)
1
z

+
∑

n 6=0

(−1)n
( 1

z − n
+

1
n

)
=

π

sin πz
.

In this case we see that their difference g3(z) is entire and satisfies g3(z+2) = g3(z).
Also, for z = x + iy, both sides of (30.6) tend to 0 as |y| → ∞, so g3 ≡ 0.

We now use a similar device to construct doubly periodic meromorphic functions,
following K. Weierstrass. These functions are also called elliptic functions. Further
introductory material on this topic can be found in [Ahl] and [Hil]. Pick ω1, ω2 ∈ C,
linearly independent over R, and form the lattice

(30.7) Λ = {jω1 + kω2 : j, k ∈ Z}.

In partial analogy with (30.4), we form the “Weierstrass ℘-function,”

(30.8) ℘(z; Λ) =
1
z2

+
∑

0 6=ω∈Λ

( 1
(z − ω)2

− 1
ω2

)
.

Convergence on C \ Λ is a consequence of the estimate

(30.9)
∣∣∣ 1
(z − ω)2

− 1
ω2

∣∣∣ ≤ C
|z|
|ω|3 , for |ω| ≥ 2|z|.

To verify that

(30.10) ℘(z + ω; Λ) = ℘(z; Λ), ∀ ω ∈ Λ,

it is convenient to differentiate both sides of (30.8), obtaining

(30.11) ℘′(z; Λ) = −2
∑

ω∈Λ

1
(z − ω)3

,

which clearly satisfies

(30.12) ℘′(z + ω; Λ) = ℘′(z; Λ), ∀ ω ∈ Λ.

Hence

(30.13) ℘(z + ω; Λ)− ℘(z; Λ) = c(ω), ω ∈ Λ.

Now (30.8) implies ℘(z; Λ) = ℘(−z; Λ). Hence, taking z = −ω/2 in (30.13) gives
c(ω) = 0 for all ω ∈ Λ, and we have (30.10).

Another analogy with (30.4) leads us to look at the function (not to be confused
with the Riemann zeta function)

(30.14) ζ(z; Λ) =
1
z

+
∑

0 6=ω∈Λ

( 1
z − ω

+
1
ω

+
z

ω2

)
.
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We note that the sum here is obtained from the sum in (30.8) (up to sign) by
integrating from 0 to z along any path that avoids the poles. This is enough to
establish convergence of (30.14) in C \ Λ, and we have

(30.15) ζ ′(z; Λ) = −℘(z; Λ).

In view of (30.10), we hence have

(30.16) ζ(z + ω; Λ)− ζ(z; Λ) = αΛ(ω), ∀ω ∈ Λ.

In this case αΛ(ω) 6= 0, but we can take a, b ∈ C and form

(30.17) ζa,b(z; Λ) = ζ(z − a; Λ)− ζ(z − b; Λ),

obtaining a meromorphic function with poles at (a + Λ) ∪ (b + Λ), all simple (if
a− b /∈ Λ).

Let us compare the doubly periodic function Φ constructed in (24.8)–(24.11),
which maps the rectangle with vertices at −1, 1, 1 + ip,−1 + ip conformally onto
the upper half plane U , with Φ(−1) = −1, Φ(0) = 0,Φ(1) = 1. (Here p is a given
positive number.) As seen there,

(30.18) Φ(z + ω) = Φ(z), ω ∈ Λ = {4k + 2i`p : k, ` ∈ Z}.
Furthermore, this function has simple poles at (ip + Λ) ∪ (ip + 2 + Λ), and the
residues at ip and at ip + 2 cancel. Thus there exist constants A and B such that

(30.19) Φ(z) = Aζip,ip+2(z; Λ) + B.

The constants A and B can be evaluated by taking z = 0, 1, though the resulting
formulas give A and B in terms of special values of ζ(z; Λ) rather than in elementary
terms.

Exercises

1. Setting z = 1/2 in (30.2), show that

∞∑
n=1

1
n2

=
π2

6
.

Compare (13.79). Differentiate (30.2) repeatedly and obtain formulas for
∑

n≥1 n−k

for even integers k.
Hint. Denoting the right side of (30.2) by f(z), show that

f (`)(z) = (−1)`(` + 1)!
∞∑

n=−∞
(z − n)−(`+2).

Deduce that, for k ≥ 1,

f (2k−2)
(1

2

)
= (2k − 1)!22k+1

∑

n≥1,odd

n−2k.



6

Meanwhile, use
∞∑

n=1

n−2k =
∑

n≥1,odd

n−2k + 2−2k
∞∑

n=1

n−2k

to get a formula for
∑∞

n=1 n−2k, in terms of f (2k−2)(1/2).

1A. Set F (z) = (π cot πz)− 1/z, and use (30.4) to compute F (`)(0). Show that, for
|z| < 1,

π cot πz =
1
z
− 2

∞∑

k=1

ζ(2k)z2k−1, ζ(2k) =
∞∑

n=1

n−2k.

1B. Recall from Exercise 6 in §12 that, for |z| sufficiently small,

1
2

ez + 1
ez − 1

=
1
z

+
∞∑

k=1

(−1)k−1 Bk

(2k)!
z2k−1,

with Bk (called the Bernoulli numbers) rational numbers for each k. Note that

e2πiz + 1
e2πiz − 1

=
1
i

cot πz.

Deduce from this and Exercise 1A that, for k ≥ 1,

2ζ(2k) = (2π)2k Bk

(2k)!
.

Relate this to results of Exercise 1.

1C. For an alternative aproach to the results of Exercise 1B, show that

G(z) = π cot πz =⇒ G′(z) = −π2 −G(z)2.

Using

G(z) =
1
z

+
∞∑

n=1

anz2n−1,

compute the Laurent series expansions of G′(z) and G(z)2 and deduce that a1 =
−π2/3, while, for n ≥ 2,

an = − 1
2n + 1

n−1∑

`=1

an−`a`.

In concert with Exercise 1A, show that ζ(2) = π2/6, ζ(4) = π4/90, and also
compute ζ(6) and ζ(8).

2. Set

F (z) = πz

∞∏
n=1

(
1− z2

n2

)
.
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Show that
F ′(z)
F (z)

=
1
z

+
∞∑

n=1

2z

z2 − n2
.

Using this and (30.3)–(30.4), deduce that

F (z) = sin πz,

obtaining another proof of (18.21).
Hint. Show that if F and G are meromorphic and F ′/F ≡ G′/G, then F = cG for
some constant c. To find c in this case, note that F ′(0) = π.

3. Show that if Λ is a lattice of the form (30.7) then a meromorphic function
satisfying

(30.20) f(z + ω) = f(z), ∀ ω ∈ Λ

yields a meromorphic function on the torus TΛ, defined by (26.14). Show that if
such f has no poles then it must be constant.

We say a parallelogram P ⊂ C is a period parallelogram for a lattice Λ (of the form
(30.7)) provided it has vertices of the form p, p + ω1, p + ω2, p + ω1 + ω2. Given
a meromorphic function f satisfying (30.20), pick a period parallelogram P whose
boundary is disjoint from the set of poles of f .

4. Show that ∫

∂P

f(z) dz = 0.

Deduce that ∑

pj∈P
Respj (f) = 0.

Deduce that if f has just one pole in P then that pole cannot be simple.

5. For ζ defined by (30.14), show that, if Im(ω2/ω1) > 0,

(30.21)
∫

∂P

ζ(z; Λ) dz = αΛ(ω1)ω2 − αΛ(ω2)ω1 = 2πi.

6. Show that αΛ in (30.16) satisfies

(30.22) αΛ(ω + ω′) = αΛ(ω) + αΛ(ω′), ω, ω′ ∈ Λ.

Show that if ω ∈ Λ, ω/2 /∈ Λ, then

αΛ(ω) = 2ζ(ω/2; Λ).

7. Apply Green’s theorem
∫∫

Ω

(∂g

∂x
− ∂f

∂y

)
dx dy =

∫

∂Ω

(f dx + g dy)
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in concert with ζ ′(z; Λ) = −℘(z; Λ), written as

1
2

( ∂

∂x
+

1
i

∂

∂y

)
ζ(z; Λ) = −℘(z; Λ),

and with Ω = P, as in Exercise 5, to establish that

(30.23) αΛ(ω1)ω2 − αΛ(ω2)ω1 = 2iI(Λ),

with

(30.24) I(Λ) = lim
ε→0

∫∫

P\Dε(0)

℘(z; Λ) dx dy,

assuming P is centered at 0.

8. Solve the pair of equations (30.21) and (30.23) for αΛ(ω1) and αΛ(ω2). Use this
in concert with (30.22) to show that

(30.25) αΛ(ω) =
1

A(P)

(
−I(Λ)ω + πω

)
, ω ∈ Λ,

where I(Λ) is as in (30.24) and A(P) is the area of P.

9. Show that the constant A in (30.19) satisfies

A = Resip(Φ).

10. Show that the constants A and B in (30.19) satisfy

[ζ(1− ip; Λ)− ζ(−1− ip; Λ)]A + B = 1,

and
αΛ(4)A + 2B = 0,

with Λ given by (30.18).
Hint. Both Φ(z) and ζ(z; Λ) are odd in z.

In Exercises 11–12, given pj ∈ TΛ, nj ∈ Z+, set ϑ =
∑

njpj and define
(30.26)
Mϑ(TΛ) = {f meromorphic on TΛ : poles of f are at pj and of order ≤ nj}.

Set |ϑ| = ∑
nj .

11. Show that |ϑ| = 2 ⇒ dimMϑ(TΛ) = 2, and that this space is spanned by 1
and ζp1,p2 if n1 = n2 = 1, and by 1 and ℘(z − p1) if n1 = 2.
Hint. Use Exercise 4.

12. Show that

(30.27) |ϑ| = k ≥ 2 =⇒ dimMϑ(TΛ) = k.

Hint. Argue by induction on k, noting that you can augment |ϑ| by 1 either by
adding another pj or by increasing some positive nj by 1.
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31. The Weierstrass ℘ in elliptic function theory

It turns out that a general elliptic function with period lattice Λ can be expressed
in terms of ℘(z; Λ) and its first derivative. Before discussing a general result, we
illustrate this in the case of the functions ζa,b(z; Λ), given by (30.17). Henceforth
we simply denote these functions by ℘(z) and ζa,b(z), respectively.

We claim that, if 2β /∈ Λ, then

(31.1)
℘′(β)

℘(z)− ℘(β)
= ζβ,−β(z) + 2ζ(β).

To see this, note that both sides have simple poles at z = ±β. (As will be shown
below, the zeros α of ℘′(z) satisfy 2α ∈ Λ.) The factor ℘′(β) makes the poles
cancel, so the difference is entire, hence constant. Both sides vanish at z = 0, so
this constant is zero. We also note that

(31.2) ζa,b(z) = ζβ,−β(z − α), α =
a + b

2
, β =

a− b

2
.

As long as a− b /∈ Λ, (31.1) applies, giving

(31.3) ζa,b(z) =
℘′(β)

℘(z − α)− ℘(β)
− 2ζ(β), α =

a + b

2
, β =

a− b

2
.

We now prove the result on the zeros of ℘′(z) stated above. Assume Λ has the
form (30.7).

Proposition 31.1. The three points ω1/2, ω2/2 and (ω1 + ω2)/2 are (mod Λ) all
the zeros of ℘′(z).

Proof. Symmetry considerations (oddness of ℘′(z)) imply ℘′(z) = 0 at each of these
three points. Since ℘′(z) has a single pole of order 3 in a period parallelogram, these
must be all the zeros. (Cf. Exercise 1 below to justify this last point.)

The general result hinted at above is the following.

Proposition 31.2. Let f be an elliptic function with period lattice Λ. There exist
rational functions Q and R such that

(31.4) f(z) = Q(℘(z)) + R(℘(z))℘′(z).

Proof. First assume f is even, i.e., f(z) = f(−z). The product of f(z) with factors
of the form ℘(z)−℘(a) lowers the degree of a pole of f at any point a /∈ Λ, so there
exists a polynomial P such that g(z) = P (℘(z))f(z) has poles only in Λ. Note
that g(z) is also even. Then there exists a polynomial P2 such that g(z)−P2(℘(z))
has its poles annihilated. This function must hence be constant. Hence any even
elliptic f must be a rational function of ℘(z).

On the other hand, if f(z) is odd, then f(z)/℘′(z) is even, and the previous
argument applies, so a general elliptic function must have the form (31.4).
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The right side of (31.3) does not have the form (31.4), but we can come closer
to this form via the identity

(31.5) ℘(z − α) = −℘(z)− ℘(α) +
1
4

(℘′(z) + ℘′(α)
℘(z)− ℘(α)

)2

.

This identity can be verified by showing that the difference of the two sides is pole
free and vanishes at z = 0. The right side of (31.5) has the form (31.4) except for
the occurrence of ℘′(z)2, which we will dispose of shortly.

Note that ℘′(z)2 is even, with poles (of order 6) on Λ. We can explicitly write
this as P (℘(z)), as follows. Set

(31.6) ej = ℘
(ωj

2

)
, j = 1, 2, 3,

where we set ω3 = ω1 + ω2. We claim that

(31.7) ℘′(z)2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3).

In fact, both sides of (31.7) have poles of order 6, precisely at points of Λ. Fur-
thermore, by Proposition 31.1, the zeros of ℘′(z)2 occur precisely at z = ωj (mod
Λ), each zero having multiplicity 2. We also see that the right side of (31.7) has a
double zero at z = ωj , j = 1, 2, 3. So the quotient is entire, hence constant. The
factor 4 arises by examining the behavior as z → 0.

The identity (31.7) is a differential equation for ℘(z). Separation of variables
yields

(31.8)
1
2

∫
d℘√

(℘− e1)(℘− e2)(℘− e3)
= z + c.

The left side of (31.8) is known as an elliptic integral.
Any cubic polynomial in u is a constant multiple of (u− e1)(u− e2)(u− e3) for

some ej ∈ C. However, it is not quite the case that every cubic polynomial fits
into the current setting. Here is one constraint; another will be produced in (31.15)
below.

Proposition 31.2. Given a lattice Λ ⊂ C, the quantities ej in (31.6) are all
distinct.

Proof. Note that ℘(z) − ej has a double pole at each z ∈ Λ, and a double zero
at z = ωj/2. Hence, in an appropriate period parallelogram, it has no other zeros
(again cf. Exercise 1 below). Hence ℘(ωk/2)− ej = ek − ej 6= 0 for j 6= k.

We can get more insight into the differential equation (31.7) by comparing Lau-
rent series expansions of the two sides about z = 0. First, we can deduce from
(30.8) that

(31.9) ℘(z) =
1
z2

+ az2 + bz4 + · · · .

Of course, only even powers of z arise. Regarding the absence of the constant term
and the values of a and b, see Exercise 3 below. We have

(31.10) a = 3
∑

0 6=ω∈Λ

1
ω4

, b = 5
∑

0 6=ω∈Λ

1
ω6

.
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Hence

(31.11) ℘′(z) = − 2
z3

+ 2az + 4bz3 + · · · .

It follows, after some computation, that

(31.12)
1
4
℘′(z)2 =

1
z6
− 2a

z2
− 4b + · · · ,

while

(31.13)

(℘(z)− e1)(℘(z)− e2)(℘(z)− e3)

= ℘(z)3 − τ1℘(z)2 + τ2℘(z)− τ3

=
1
z6
− τ1

z4
+

3a + τ2

z2
+ (3b− 2aτ1 − τ3) + · · · ,

where

(31.14)

τ1 = e1 + e2 + e3,

τ2 = e1e2 + e2e3 + e3e1,

τ3 = e1e2e3.

Comparing coefficients in (31.12)–(31.13) gives the following relation:

(31.15) e1 + e2 + e3 = 0.

It also gives

(31.16)
e1e2 + e2e3 + e1e3 = −5a,

e1e2e3 = 7b,

where a and b are given by (31.10). Hence we can rewrite the differential equation
(31.7) as

(31.17) ℘′(z)2 = 4℘(z)3 − g2℘(z)− g3,

where g2 and g3, known as the Weierstrass invariants of the lattice Λ, are given by

(31.18) g2 = 60
∑

0 6=ω∈Λ

1
ω4

, g3 = 140
∑

0 6=ω∈Λ

1
ω6

.

Exercises

1. Assume f is meromorphic (and not identically zero) on TΛ = C/Λ. Show that
the number of poles of f is equal to the number of zeros of f , counting multiplicity.
Hint. Let γ bound a period parallelogram, avoiding the zeros and poles of f , and
examine

1
2πi

∫

γ

f ′(z)
f(z)

dz.
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Recall the argument principle, discussed in §17.

2. Show that, given a lattice Λ ⊂ C, and given ω ∈ C,

(31.19) ω ∈ Λ ⇐⇒ ℘
(ω

2
+ z; Λ

)
= ℘

(ω

2
− z; Λ

)
, ∀ z.

Relate this to the proof of Proposition 31.1.

3. Consider

(31.20) Φ(z) = ℘(z)− 1
z2

=
∑

ω∈Λ\0

( 1
(z − ω)2

− 1
ω2

)
,

which is holomorphic near z = 0. Show that Φ(0) = 0 and that, for k ≥ 1,

(31.21)
1
k!

Φ(k)(0) = (k + 1)
∑

ω∈Λ\0
ω−(k+2).

(These quantities vanish for k odd.) Relate these results to (31.9)–(31.10).

4. Complete the sketch of the proof of (31.5).
Hint. Use the fact that ℘(z)−z−2 is holomorphic near z = 0 and vanishes at z = 0.

5. Deduce from (31.17) that

(31.22) ℘′′(z) = 6℘(z)2 − 1
2
g2.

6. Say that, near z = 0,

(31.23) ℘(z) =
1
z2

+
∑

n≥1

bnz2n,

where bn are given by (31.21), with k = 2n. Deduce from Exercise 5 that for n ≥ 3,

(31.24) bn =
3

(2n + 3)(n− 2)

n−2∑

k=1

bkbn−k−1.

In particular, we have

b3 =
1
3
b2
1, b4 =

3
11

b1b2,

and
b5 =

1
13

(b2
2 + 2b1b3) =

1
13

(
b2
2 +

2
3
b3
1

)
.

7. Deduce from Exercise 6 that if

(31.25) σn =
∑

ω∈Λ\0

1
ω2n

,
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then for n ≥ 3,

(31.26) σn = Pn(σ2, σ3),

where Pn(σ2, σ3) is a polynomial in σ2 and σ3 with coefficients that are positive,
rational numbers. Use (31.16) to show that

(31.27) σ2 = − 1
15

(e1e2 + e2e3 + e1e3), σ3 =
1
35

e1e2e3.

Note that bn = (2n+1)σn+1. Note also that gk in (31.17)–(31.18) satisfy g2 = 60σ2

and g3 = 140σ3.

8. Given f as in Exercise 1, show that

(31.28)
1

2πi

∫

σ

f ′(z)
f(z)

dz ∈ Z,

whenever σ is a closed curve in TΛ that avoids the zeros and poles of f .

9. Again take f as in Exercise 1. Assume f has zeros at pj ∈ TΛ, of order mj , and
poles at qj ∈ TΛ, of order nj , and no other zeros or poles. Show that

(31.29)
∑

mjpj −
∑

njqj = 0 (mod Λ).

Hint. Take γ as in Exercise 1, and consider

(31.30)
1

2πi

∫

γ

f ′(z)
f(z)

z dz.

On the one hand, Cauchy’s integral theorem (compare (5.19)) implies (31.30) is
equal to the left side of (31.29), provided pj and qj are all in the period domain.
On the other hand, if γ consists of four consecutive line segments, σ1, σ2, σ3, σ4,
periodicity of f ′(z)/f(z) implies that (31.30) equals

(31.31) − ω2

2πi

∫

σ1

f ′(z)
f(z)

dz +
ω1

2πi

∫

σ4

f ′(z)
f(z)

dz.

Use Exercise 8 to deduce that the coefficients of ω1 and ω2 in (31.31) are integers.

10. Deduce from (31.5) that

(31.32) u + v + w = 0 ⇒ det




℘(u) ℘′(u) 1
℘(v) ℘′(v) 1
℘(w) ℘′(w) 1


 = 0.

11. Deduce from (31.5) that

(31.33) ℘(2z) =
1
4

(℘′′(z)
℘′(z)

)2

− 2℘(z).
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Hint. Set α = −z + h in (31.5) and let h → 0.

12. Deduce from (31.33), in concert with (31.17) and (31.22), that

℘(2z) = R(℘(z)),

with

R(ζ) =
ζ4 + (g2/2)ζ2 + 2g3ζ + (g2/4)2

4ζ3 − g2ζ − g3
.

13. Use (31.3) and (31.5), plus (31.7), to write ζa,b(z) (as in (31.3)) in the form
(31.4), i.e.,

ζa,b(z) = Q(℘(z)) + R(℘(z))℘′(z).
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32. Theta functions and ℘

We begin with the function

(32.1) θ(x, t) =
∑

n∈Z
e−πn2te2πinx,

defined for x ∈ R, t > 0, which solves the “heat equation”

(32.2)
∂θ

∂t
=

1
4π

∂2θ

∂x2
.

Note that θ is actually holomorphic on {(x, t) ∈ C×C : Re t > 0}. It is periodic of
period 1 in x; θ(x + 1, t) = θ(x, t). Also one has

(32.3) θ(x + it, t) = eπt−2πixθ(x, t).

This identity will ultimately lead us to a connection with ℘(z). In addition, we
have

(32.4) θ
(
x +

1
2
, t

)
=

∑

n∈Z
(−1)ne−πn2te2πinx,

and

(32.5) θ
(
x +

i

2
t, t

)
= eπt/4

∑

n∈Z
e−π(n+1/2)2te2πinx,

which introduces series related to but slightly different from that in (32.1).
Following standard terminology, we set −t = iτ , with Im τ > 0, and denote

θ(z,−iτ) by

(32.6) ϑ3(z, τ) =
∑

n∈Z
en2πiτe2nπiz =

∑

n∈Z
p2nqn2

,

where

(32.7) p = eπiz, q = eπiτ .

This theta function has three partners, namely

(32.8) ϑ4(z, τ) =
∑

n∈Z
(−1)nen2πiτe2πinz =

∑

n∈Z
(−1)np2nqn2

,

and

(32.9) ϑ1(z, τ) = i
∑

n∈Z
(−1)ne(n−1/2)2πiτe(2n−1)πiz = i

∑

n∈Z
(−1)np2n−1q(n−1/2)2 ,
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and finally

(32.10) ϑ2(z, τ) =
∑

n∈Z
e(n−1/2)2πiτe(2n−1)πiz =

∑

n∈Z
p2n−1q(n−1/2)2 .

We will explore these functions, with the goal of relating them to ℘(z). These
results are due to Jacobi; we follow the exposition of [MM].

To begin, we record how ϑj(z + α) is related to ϑk(z) for various values of α.
Here and (usually) below we will suppress the τ and denote ϑj(z, τ) by ϑj(z), for
short. In the table below we use

a = p−1q−1/4 = e−πiz−πiτ/4, b = p−2q−1 = e−2πiz−πiτ .

Proofs of the tabulated relations are straightforward analogues of (32.3)–(32.5).

Table of Relations among Various Translations of ϑj

z + 1/2 z + τ/2 z + 1/2 + τ/2 z + 1 z + τ z + 1 + τ

ϑ1 ϑ2 iaϑ4 aϑ3 −ϑ1 −bϑ1 bϑ1

ϑ2 −ϑ1 aϑ3 −iaϑ4 −ϑ2 bϑ2 −bϑ2

ϑ3 ϑ4 aϑ2 iaϑ1 ϑ3 bϑ3 bϑ3

ϑ4 ϑ3 iaϑ1 aϑ2 ϑ4 −bϑ4 −bϑ4

An inspection shows that the following functions

(32.11) Fjk(z) =
(ϑj(z)

ϑk(z)

)2

satisfy

(32.12) Fjk(z + ω) = Fjk(z), ∀ω ∈ Λ,

where

(32.13) Λ = {k + `τ : k, ` ∈ Z}.

Note also that

(32.14) Gj(z) =
ϑ′j(z)
ϑj(z)

satisfies

(32.15) Gj(z + 1) = Gj(z), Gj(z + τ) = Gj(z)− 2πi.

To relate the functions Fjk to previously studied elliptic functions, we need to know
the zeros of ϑk(z). Here is the statement:
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Proposition 32.1. We have

(32.16)
ϑ1(z) = 0 ⇔ z ∈ Λ, ϑ2(z) = 0 ⇔ z ∈ Λ +

1
2
,

ϑ3(z) = 0 ⇔ z ∈ Λ +
1
2

+
τ

2
, ϑ4(z) = 0 ⇔ z ∈ Λ +

τ

2
.

Proof. In view of the relations tabulated above, it suffices to treat ϑ1(z). We first
note that

(32.17) ϑ1(−z) = −ϑ1(z).

To see this, replace z by −z in (32.8) and simultaneously replace n by −m. Then
replace m by n−1 and observe that (32.17) pops out. Hence ϑ1 has a zero at z = 0.
We claim it is simple and that ϑ1 has no others, mod Λ. To see this, let γ be the
boundary of a period parallelogram containing 0 in its interior. Then use of (32.15)
with j = 1 easily gives

1
2πi

∫

γ

ϑ′1(z)
ϑ1(z)

dz = 1,

completing the proof.

Let us record the following complement to (32.17):

(32.18) 2 ≤ j ≤ 4 =⇒ ϑj(−z) = ϑj(z).

The proof is straightforward from the defining formulas (32.6)–(32.9).
We are now ready for the following important result. For consistency with [MM],

we slightly reorder the quantities e1, e2, e3. Instead of using (31.6), we set

(32.19) e1 = ℘
(ω1

2

)
, e2 = ℘

(ω1 + ω2

2

)
, e3 = ℘

(ω2

2

)
,

where, in the current setting, with Λ given by (32.13), we take ω1 = 1 and ω2 = τ .

Proposition 32.2. For ℘(z) = ℘(z; Λ), with Λ of the form (32.13) and ϑj(z) =
ϑj(z, τ),

(32.20)

℘(z) = e1 +
(ϑ′1(0)

ϑ1(z)
· ϑ2(z)
ϑ2(0)

)2

= e2 +
(ϑ′1(0)

ϑ1(z)
· ϑ3(z)
ϑ3(0)

)2

= e3 +
(ϑ′1(0)

ϑ1(z)
· ϑ4(z)
ϑ4(0)

)2

.

Proof. We have from (32.11)–(32.13) that each function Pj(z) on the right side of
(32.20) is Λ-periodic. Also Proposition 32.1 implies each Pj has poles of order 2,
precisely on Λ. Furthermore, we have arranged that each such function has leading
singularity z−2 as z → 0, and each Pj is even, by (32.17) and (32.18), so the
difference ℘(z)−Pj(z) is constant for each j. Evaluating at z = 1/2, (1+τ)/2, and
τ/2, respectively, shows that these constants are zero, and completes the proof.

Part of the interest in (32.20) is that the series (32.6)–(32.10) for the theta
functions are extremely rapidly convergent. To complete this result, we want to
express the quantities ej in terms of theta functions. The following is a key step.
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Proposition 32.3. In the setting of Proposition 32.2,

(32.21)

e1 − e2 =
(ϑ′1(0)ϑ4(0)

ϑ2(0)ϑ3(0)

)2

= π2ϑ4(0)4,

e1 − e3 =
(ϑ′1(0)ϑ3(0)

ϑ2(0)ϑ4(0)

)2

= π2ϑ3(0)4,

e2 − e3 =
(ϑ′1(0)ϑ2(0)

ϑ3(0)ϑ4(0)

)2

= π2ϑ2(0)4.

Proof. To get the first part of the first line, evaluate the second identity in (32.20)
at z = 1/2, to obtain

e1 − e2 =
( ϑ′1(0)

ϑ1(1/2)
· ϑ3(1/2)

ϑ3(0)

)2

,

and then consult the table to rewrite ϑ3(1/2)/ϑ1(1/2). Similar arguments give the
first identity in the second and third lines of (32.21). The proof of the rest of the
identities then follows from the next result.

Proposition 32.4. We have

(32.22) ϑ′1(0) = πϑ2(0)ϑ3(0)ϑ4(0).

Proof. To begin, consider

ϕ(z) = ϑ1(2z)−1ϑ1(z)ϑ2(z)ϑ3(z)ϑ4(z).

Consultation of the table shows that ϕ(z +ω) = ϕ(z) for each ω ∈ Λ. Also ϕ is free
of poles, so it is constant. The behavior as z → 0 reveals the constant, and yields
the identity

(32.23) ϑ1(2z) = 2
ϑ1(z)ϑ2(z)ϑ3(z)ϑ4(z)

ϑ2(0)ϑ3(0)ϑ4(0)
.

Now applying log, taking (d/dz)2, evaluating at z = 0, and using

(32.24) ϑ′′1(0) = ϑ′2(0) = ϑ′3(0) = ϑ′4(0) = 0,

(a consequence of (32.17)–(32.18)), yields

(32.25)
ϑ′′′1 (0)
ϑ′1(0)

=
ϑ′′2(0)
ϑ2(0)

+
ϑ′′3(0)
ϑ3(0)

+
ϑ′′4(0)
ϑ4(0)

.

Now, from (32.2) we have

(32.26)
∂ϑj

∂τ
=

1
4πi

∂2ϑj

∂z2
,

and computing

(32.27)
∂

∂τ

[
log ϑ2(0, τ) + log ϑ3(0, τ) + log ϑ4(0, τ)− log ϑ′1(0, τ)

]
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and comparing with (32.25) shows that

(32.28) ϑ2(0, τ)ϑ3(0, τ)ϑ4(0, τ)/ϑ′1(0, τ) is independent of τ.

Thus

(32.29) ϑ′1(0) = Aϑ2(0)ϑ3(0)ϑ4(0),

with A independent of τ , hence independent of q = eπiτ . As q → 0, we have

(32.30) ϑ′1(0) ∼ 2πq1/4, ϑ2(0) ∼ 2q1/4, ϑ3(0) ∼ 1, ϑ4(0) ∼ 1,

which implies A = π, proving (32.22).

Now that we have Proposition 32.3, we can use (e1 − e3) − (e1 − e2) = e2 − e3

to deduce that

(32.31) ϑ3(0)4 = ϑ2(0)4 + ϑ4(0)4.

Next, we can combine (32.21) with

(32.32) e1 + e2 + e3 = 0

to deduce the following.

Proposition 32.5. In the setting of Proposition 32.2, we have

(32.33)

e1 =
π2

3
[
ϑ3(0)4 + ϑ4(0)4

]
,

e2 =
π2

3
[
ϑ2(0)4 − ϑ4(0)4

]
,

e3 = −π2

3
[
ϑ2(0)4 + ϑ3(0)4

]
.

Thus we have an efficient method to compute ℘(z; Λ) when Λ has the form
(32.13). To pass to the general case, we can use the identity

(32.34) ℘(z; aΛ) =
1
a2

℘
(z

a
; Λ

)
.

See Appendix K for more on the rapid evaluation of ℘(z; Λ).

Exercises

1. Show that

(32.35)
d

dz

ϑ′1(z)
ϑ1(z)

= a℘(z) + b,
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with ℘(z) = ℘(z; Λ), Λ as in (32.13). Show that

(32.36) a = −1, b = e1 +
ϑ′′1(ω1/2)ϑ1(ω1/2)− ϑ′1(ω1/2)2

ϑ1(ω1/2)2
,

where ω1 = 1, ω2 = τ .

2. In the setting of Exercise 1, deduce that ζa,b(z; Λ), given by (30.17), satisfies

(32.37)
ζa,b(z; Λ) =

ϑ′1(z − a)
ϑ1(z − a)

− ϑ′1(z − b)
ϑ1(z − b)

=
d

dz
log

ϑ1(z − a)
ϑ1(z − b)

.

3. Show that, if a 6= ej ,

(32.38)
1

℘(z)− a
= Aζα,−α(z) + B,

where ℘(±α) = a. Show that

(32.39) A =
1

℘′(α)
.

Identify B.

4. Give a similar treatment of 1/(℘(z) − a) for a = ej . Relate these functions to
℘(z − ω̃j), with ω̃j found from (32.19).

5. Express g2 and g3, given in (31.17)–(31.18), in terms of theta functions.
Hint. Use Exercise 7 of §31, plus Proposition 32.5
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33. Elliptic integrals

The integral (31.8) is a special case of a class of integrals known as elliptic
integrals, which we explore in this section. Let us set

(33.1) q(ζ) = (ζ − e1)(ζ − e2)(ζ − e3).

We assume ej ∈ C are distinct and that (as in (31.15))

(33.2) e1 + e2 + e3 = 0,

which could be arranged by a coordinate translation. Generally, an elliptic integral
is an integral of the form

(33.3)
∫ ζ1

ζ0

R(ζ,
√

q(ζ)) dζ,

where R(ζ, η) is a rational function of its arguments. The relevance of (31.8) is
reinforced by the following result.

Proposition 33.1. Given distinct ej satisfying (33.2), there exists a lattice Λ,
generated by ω1, ω2 ∈ C, linearly independent over R, such that if ℘(z) = ℘(z; Λ),
then

(33.4) ℘
(ωj

2

)
= ej , 1 ≤ j ≤ 3,

where ω3 = ω1 + ω2.

Given this result, we have from (31.7) that

(33.5) ℘′(z)2 = 4q(℘(z)),

and hence, as in (31.8),

(33.6)
1
2

∫ ℘(z)

℘(z0)

dζ√
q(ζ)

= z − z0, mod Λ.

The problem of proving Proposition 33.1 is known as the Abel inversion problem.
The proof requires new tools, which will be provided in §34. We point out here
that there is no difficulty in identifying what the lattice Λ must be. We have

(33.7)
1
2

∫ ej

∞

dζ√
q(ζ)

=
ωj

2
, mod Λ,

by (33.6). One can also verify directly from (33.7) that if the branches are chosen
appropriately then ω3 = ω1 + ω2. It is not so clear that if Λ is constructed directly
from (33.7) then the values of ℘(z; Λ) at z = ωj/2 are given by (33.4), unless one
already knows that Proposition 33.1 is true.
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Given Proposition 33.1, we can rewrite the elliptic integral (33.3) as follows. The
result depends on the particular path γ01 from ζ0 to ζ1 and on the particular choice
of path σ01 in C/Λ such that ℘ maps σ01 homeomorphically onto γ01. With these
choices, (33.3) becomes

(33.8)
∫

σ01

R
(
℘(z),

1
2
℘′(z)

)
℘′(z) dz,

or, as we write more loosely,

(33.9)
∫ z1

z0

R
(
℘(z),

1
2
℘′(z)

)
℘′(z) dz,

where z0 and z1 are the endpoints of σ01, satisfying ℘(zj) = ζj . It follows from
Proposition 31.2 that

(33.10) R
(
℘(z),

1
2
℘′(z)

)
℘′(z) = R1(℘(z)) + R2(℘(z))℘′(z),

for some rational functions Rj(ζ). In fact, one can describe computational rules for
producing such Rj , by using (33.5). Write R(ζ, η) as a quotient of polynomials in
(ζ, η) and use (33.5) to obtain that the left side of (33.10) is equal to

(33.11)
P1(℘(z)) + P2(℘(z))℘′(z)
Q1(℘(z)) + Q2(℘(z))℘′(z)

,

for some polynomials Pj(ζ), Qj(ζ). Then multiply the numerator and denominator
of (33.11) by Q1(℘(z))−Q2(℘(z))℘′(z) and use (33.5) again on the new denominator
to obtain the right side of (33.10).

The integral of (33.3) is now transformed to the integral of the right side of
(33.10). Note that

(33.12)
∫ z1

z0

R2(℘(z))℘′(z) dz =
∫ ζ1

ζ0

R2(ζ) dζ, ζj = ℘(zj).

This leaves us with the task of analyzing

(33.13)
∫ z1

z0

R1(℘(z)) dz,

when R1(ζ) is a rational function.
We first analyze (33.13) when R1(ζ) is a polynomial. To begin, we have

(33.14)
∫ z1

z0

℘(z) dz = ζ(z0)− ζ(z1),

by (30.15), where ζ(z) = ζ(z; Λ) is given by (30.14). See (32.35)–(32.36) for a
formula in terms of theta functions. Next, differentiating (33.5) gives (as mentioned
in Exercise 5 of §31)

(33.15) ℘′′(z) = 2q′(℘(z)) = 6℘(z)2 − 1
2
g2,
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so

(33.16) 6
∫ z1

z0

℘(z)2 dz = ℘′(z1)− ℘′(z0) +
g2

2
(z1 − z0).

We can integrate ℘(z)k+2 for k ∈ N via the following inductive procedure. We have

(33.17)
d

dz

(
℘′(z)℘(z)k

)
= ℘′′(z)℘(z)k + k℘′(z)2℘(z)k−1.

Apply (33.15) to ℘′′(z) and (33.5) (or equivalently (31.17)) to ℘′(z)2 to obtain

(33.18)
d

dz

(
℘′(z)℘(z)k) = (6 + 4k)℘(z)k+2 − (3 + k)g2℘(z)k − kg3℘(z)k−1.

From here the inductive evaluation of
∫ z1

z0
℘(z)k+2 dz, for k = 1, 2, 3, . . . , is straight-

forward.
To analyze (33.13) for a general rational function R1(ζ), we see upon making a

partial fraction decomposition that it remains to analyze

(33.19)
∫ z1

z0

(℘(z)− a)−` dz,

for ` = 1, 2, 3, . . . . One can also obtain inductive formulas here, by replacing ℘(z)k

by (℘(z)− a)k in (33.18) and realizing that k need not be positive. We get

(33.20)
d

dz

(
℘′(z)(℘(z)− a)k

)
= ℘′′(z)(℘(z)− a)k + k℘′(z)2(℘(z)− a)k−1.

Now write

(33.21)
℘′(z)2 = 4α3(℘(z)− a)3 + 4α2(℘(z)− a)2 + 4α1(℘(z)− a) + 4α0,

℘′′(z) = 2A2(℘(z)− a)2 + 2A1(℘(z)− a) + 2A0,

where

(33.22) αj =
q(j)(a)

j!
, Aj =

q(j+1)(a)
j!

,

to obtain

(33.23)

d

dz

(
℘′(z)(℘(z)− a)k

)

= (2A2 + 4kα3)(℘(z)− a)k+2 + (2A1 + 4kα2)(℘(z)− a)k+1

+ (2A0 + 4kα1)(℘(z)− a)k + 4kα0(℘(z)− a)k−1.

Note that

(33.24) α0 = q(a), 2A0 + 4kα1 = (2 + 4k)q′(a).
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Thus, if a is not equal to ej for any j and if we know the integral (33.19) for integral
` ≤ −k (for some negative integer k), we can compute the integral for ` = 1− k, as
long as k 6= 0. If a = ej for some j, and if we know (33.19) for integral ` ≤ −k− 1,
we can compute it for ` = −k, since then q′(a) 6= 0.

At this point, the remaining case of (33.19) to consider is the case ` = 1, i.e.,

(33.25)
∫ z1

z0

dz

℘(z)− a
.

See Exercises 2–4 of §32 for expressions of (℘(z) − a)−1 in terms of logarithmic
derivatives of quotients of theta functions.

Note that the cases ` = 0, −1, and 1 of (33.19) are, under the correspondence
of (33.3) with (33.8), respectively equal to

(33.26)
∫ ζ1

ζ0

dζ√
q(ζ)

,

∫ ζ1

ζ0

(ζ − a)
dζ√
q(ζ)

,

∫ ζ1

ζ0

1
ζ − a

dζ√
q(ζ)

.

These are called, respectively, elliptic integrals of the first, second, and third kind.
The material given above expresses the general elliptic integral (33.3) in terms of
these cases.

There is another family of elliptic integrals, namely those of the form

(33.27) I =
∫

R(ζ,
√

Q(ζ)) dζ,

where R(ζ, η) is a rational function of its arguments and Q(ζ) is a fourth degree
polynomial:

(33.28) Q(ζ) = (ζ − a0)(ζ − a1)(ζ − a2)(ζ − a3),

with aj ∈ C distinct. Such integrals can be transformed to integrals of the form
(33.3), via the change of variable

(33.29) τ =
1

ζ − a0
, dζ = − 1

τ2
dτ.

One has

(33.30)
Q

(1
τ

+ a0

)
=

1
τ

(1
τ

+ a0 − a1

)(1
τ

+ a0 − a2

)(1
τ

+ a0 − a3

)

= − A

τ4
(τ − e1)(τ − e2)(τ − e3),

where

(33.31) A = (a1 − a0)(a2 − a0)(a3 − a0), ej =
1

aj − a0
.

Then we have

(33.32) I = −
∫

R
(1

τ
+ a0,

√−A

τ2

√
q(τ)

) 1
τ2

dτ,
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with q(τ) as in (33.1). After a further coordinate translation, one can alter ej to
arrange (33.2).

Elliptic integrals are frequently encountered in many areas of mathematics. Here
we give two examples, one from differential equations and one from geometry.

Our first example involves the differential equation for the motion of a simple
pendulum, which takes the form

(33.33) `
d2θ

dt2
+ g sin θ = 0,

where ` is the length of the pendulum g the acceleration of gravity (32 ft./sec.2

on the surface of the earth), and θ is the angle the pendulum makes with the
downward-pointing vertical axis. The total energy of the pendulum is proportional
to

(33.34) E =
1
2

(dθ

dt

)2

− g

`
cos θ.

Applying d/dt to (33.34) and comparing with (33.33) shows that E is constant for
each solution to (33.33), so one has

(33.35)
1√
2

dθ

dt
= ±

√
E +

g

`
cos θ,

or

(33.36) ±
∫

dθ√
E + a cos θ

=
√

2t + c,

with a = g/`. With ϕ = θ/2, cos 2ϕ = 1− 2 sin2 ϕ, we have

(33.37) ±
∫

dϕ√
α− β sin2 ϕ

=
t√
2

+ c′,

with α = E + a, β = 2a. Then setting ζ = sin ϕ, dζ = cos ϕ dϕ, we have

(33.38) ±
∫

dζ√
(α− βζ2)(1− ζ2)

=
t√
2

+ c′,

which is an integral of the form (33.27). If instead in (33.36) we set ζ = cos θ, so
dζ = − sin θ dθ, we obtain

(33.39) ∓
∫

dζ√
(E + aζ)(1− ζ2)

=
√

2 t + c,

which is an integral of the form (33.3).
In our next example we produce a formula for the arc length L(θ) of the portion

of the ellipse

(33.40) z(t) = (a cos t, b sin t),
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from t = 0 to t = θ. We assume a > b > 0. Note that

(33.41)
|z′(t)|2 = a2 sin2 t + b2 cos2 t

= b2 + c2 sin2 t,

with c2 = a2 − b2, so

(33.42) L(θ) =
∫ θ

0

√
b2 + c2 sin2 t dt.

With ζ = sin t, u = sin θ, this becomes

(33.43)

∫ u

0

√
b2 + c2ζ2

dζ√
1− ζ2

=
∫ u

0

b2 + c2ζ2

√
(1− ζ2)(b2 + c2ζ2)

dζ,

which is an integral of the form (33.27).

Exercises

1. Using (33.7) and the comments that follow it, show that, for j = 1, 2,

(33.44)
1
2

∫ e3

ej

dζ√
q(ζ)

=
ωj′

2
, mod Λ,

where j′ = 2 if j = 1, j′ = 1 if j = 2.

2. Setting ekj = ek − ej , show that

(33.45)
1
2

∫ e1+η

e1

dζ√
q(ζ)

=
1

2
√

e12e13

∞∑

k,`=0

(−1/2
k

)(−1/2
`

)
1

ek
12e

`
13

ηk+`+1/2

k + ` + 1/2

is a convergent power series provided |η| < min(|e1 − e2|, |e1 − e3|). Using this and
variants to integrate from ej to ej + η for j = 2 and 3, find convergent power series
for ωj/2 (mod Λ).

3. Given k 6= ±1, show that

(33.46)
∫

dζ√
(1− ζ2)(k2 − ζ2)

= − 1√
2(1− k2)

∫
dτ√
q(τ)

,

with
τ =

1
ζ + 1

, q(τ) =
(
τ − 1

2

)(
τ − 1

1− k

)(
τ − 1

1 + k

)
.



27

In Exercises 4–9, we assume ej are real and e1 < e2 < e3. We consider

ω3 =
∫ e2

e1

dζ√
(ζ − e1)(ζ − e2)(ζ − e3)

.

4. Show that

(33.48)
ω3 = 2

∫ π/2

0

dθ√
(e3 − e2) sin2 θ + (e3 − e1) cos2 θ

= 2I
(√

e3 − e2,
√

e3 − e1

)
,

where

(33.49) I(r, s) =
∫ π/2

0

dθ√
r2 sin2 θ + s2 cos2 θ

.

Note that in (33.48), 0 < r < s.

Exercises 5–7 will be devoted to showing that

(33.50) I(r, s) =
π

2M(s, r)
,

if 0 < r ≤ s, where M(s, r) is the Gauss arithmetic-geometric mean, defined below.

5. Given 0 < b ≤ a, define inductively

(33.51) (a0, b0) = (a, b), (ak+1, bk+1) =
(ak + bk

2
,
√

akbk

)
.

Show that
a0 ≥ a1 ≥ a2 ≥ · · · ≥ b2 ≥ b1 ≥ b0.

Show that
a2

k+1 − b2
k+1 = (ak+1 − ak)2.

Monotonicity implies ak − ak+1 → 0. Deduce that ak+1 − bk+1 → 0, and hence

(33.52) lim
k→∞

ak = lim
k→∞

bk = M(a, b),

the latter identity being the definition of M(a, b). Show also that

a2
k+1 − b2

k+1 =
1
4
(ak − bk)2,

hence

(33.53) ak+1 − bk+1 =
(ak − bk)2

8ak+2
.
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Deduce from (33.53) that convergence in (33.52) is quite rapid.

6. Show that the asserted identity (33.50) holds if it can be demonstrated that, for
0 < r ≤ s,

(33.54) I(r, s) = I
(√

rs,
r + s

2

)
.

Hint. Show that (33.54) ⇒ I(r, s) = I(m,m), with m = M(s, r), and evaluate
I(m,m).

7. Take the following steps to prove (33.54). Show that you can make the change
of variable from θ to ϕ, with

(33.55) sin θ =
2s sin ϕ

(s + r) + (s− r) sin2 ϕ
, 0 ≤ ϕ ≤ π

2
,

and obtain

(33.56) I(r, s) =
∫ π/2

0

2 dϕ√
4rs sin2 ϕ + (s + r)2 cos2 ϕ

.

Show that this yields (33.54).

8. In the setting of Exercise 4, deduce that

(33.57) ω3 =
π

M(
√

e3 − e1,
√

e3 − e2)
.

9. Similarly, show that

(33.58)

ω1 =
∫ e3

e2

dζ√
(ζ − e1)(ζ − e2)(ζ − e3)

= 2i

∫ π/2

0

dθ√
(e2 − e1) sin2 θ + (e3 − e1) cos2 θ

=
πi

M(
√

e3 − e1,
√

e2 − e1)
.

10. Set x = sin θ to get

∫ π/2

0

dθ√
1− β2 sin2 θ

=
∫ 1

0

dx√
(1− x2)(1− β2x2)

.

Write 1− β2 sin2 θ = (1− β2) sin2 θ + cos2 θ to deduce that

(3.59)
∫ 1

0

dx√
(1− x2)(1− β2x2)

=
π

2M(1,
√

1− β2)
,
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if β ∈ (−1, 1).

11. Parallel to Exercise 10, show that

∫ π/2

0

dθ√
1 + β2 sin2 θ

=
∫ 1

0

dx√
(1− x2)(1 + β2x2)

,

and deduce that

(3.60)
∫ 1

0

dx√
(1− x2)(1 + β2x2)

=
π

2M(
√

1 + β2, 1)
,

if β ∈ R. A special case is

(3.61)
∫ 1

0

dx√
1− x4

=
π

2M(
√

2, 1)
.

For more on the arithmetic-geometric mean (AGM), see [BB].
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34. The Riemann surface of
√

q(ζ)

Recall from §33 the cubic polynomial

(34.1) q(ζ) = (ζ − e1)(ζ − e2)(ζ − e3),

where e1, e2, e3 ∈ C are distinct. Here we will construct a compact Riemann surface
M associated with the “double valued” function

√
q(ζ), together with a holomor-

phic map

(34.2) ϕ : M −→ S2,

and discuss some important properties of M and ϕ. We will then use this con-
struction to prove Proposition 33.1. Material developed below will use some basic
results on manifolds, particularly on surfaces, which are generally covered in begin-
ning topology courses. Background may be found in [Mun] and [Sp], among other
places. See also Appendix C for some background.

To begin, we set e4 = ∞ in the Riemann sphere C ∪ {∞}, identified with S2

in §26. Reordering if necessary, we arrange that the geodesic γ12 from e1 to e2 is
disjoint from the geodesic γ34 from e3 to e4. We slit S2 along γ12 and along γ34,
obtaining X, a manifold with boundary, as illustrated in the top right portion of
Fig. 34.1. Now

(34.3) M = X1 ∪X2/ ∼,

where X1 and X2 are two copies of X, and the equivalence relation ∼ identifies
the upper boundary of X1 along the slit γ12 with the lower boundary of X2 along
this slit and vice-versa, and similarly for γ34. This is illustrated in the middle and
bottom parts of Fig. 34.1. The manifold M is seen to be topologically equivalent
to a torus.

The map ϕ : M → S2 in (34.2) is tautological. It is two-to-one except for the
four points pj = ϕ−1(ej). Recall the definition of a Riemann surface given in §26, in
terms of coordinate covers. The space M has a unique Riemann surface structure for
which ϕ is holomorphic. A coordinate taking a neighborhood of pj in M bijectively
onto a neighborhood of the origin in C is given by ϕj(x) = (ϕ(x) − ej)1/2, for
1 ≤ j ≤ 3, with ϕ(x) ∈ S2 ≈ C ∪ {∞}, and a coordinate mapping a neighborhood
of p4 in M bijectively onto a neighborhood of the origin in C is given by ϕ4(x) =
ϕ(x)−1/2.

Now consider the double-valued form dζ/
√

q(ζ) on S2, having singularities at
{ej}. This pulls back to a single-valued 1-form α on M . Noting that if w2 = ζ then

(34.4)
dζ√

ζ
= 2 dw,

and that if w2 = 1/ζ then

(34.5)
dζ√
ζ3

= −2 dw,

we see that α is a smooth, holomorphic 1-form on M , with no singularities, and
also that α has no zeros on M . Using this, we can prove the following.
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Proposition 34.1. There is a lattice Λ0 ⊂ C and a holomorphic diffeomorphism

(34.6) ψ : M −→ C/Λ0.

Proof. Given M homeomorphic to S1×S1, we have closed curves c1 and c2 through
p1 in M such that each closed curve γ in M is homotopic to a curve starting at p1,
winding n1 times along c1, then n2 times along c2, with nj ∈ Z. Say ωj =

∫
cj

α.
We claim ω1 and ω2 are linearly independent over R. First we show that they are
not both 0. Indeed, if ω1 = ω2 = 0, then

(34.7) Ψ(z) =
∫ z

p0

α

would define a non-constant holomorphic map Ψ : M → C, which would contradict
the maximum principle. Let us say ω2 6= 0, and set β = ω−1

2 α. Then Ψ1(z) =
∫ z

p0
β

is well defined modulo an additive term of the form j + k(ω1/ω2), with j, k ∈ Z. If
ω1/ω2 were real, then Im Ψ1 : M → R would be a well defined harmonic function,
hence (by the maximum principle) constant, forcing Ψ constant, and contradicting
the fact that α 6= 0.

Thus we have that Λ1 = {n1ω1 + n2ω2 : nj ∈ Z} is a lattice, and that (34.7)
yields a well defined holomorphic map

(34.8) Ψ : M −→ C/Λ1.

Since α is nowhere vanishing, Ψ is a local diffeomorphism. Hence it must be a
covering map. This gives (34.6), where Λ0 is perhaps a sublattice of Λ1.

We now prove Proposition 33.1, which we restate here.

Proposition 34.2. Let e1, e2, e3 be distinct points in C, satisfying

(34.9) e1 + e2 + e3 = 0.

There exists a lattice Λ ⊂ C, generated by ω1, ω2, linearly independent over R, such
that if ℘(z) = ℘(z; Λ), then

(34.10) ℘
(ωj

2

)
= ej , 1 ≤ j ≤ 3,

where ω3 = ω1 + ω2.

Proof. We have from (34.2) and (34.6) a holomorphic map

(34.11) Φ : C/Λ0 −→ S2,

which is a branched double cover, branching over e1, e2, e3, and ∞. We can regard
Φ as a meromorphic function on C, satisfying

(34.12) Φ(z + ω) = Φ(z), ∀ω ∈ Λ0.

Furthermore, translating coordinates, we can assume Φ has a double pole, precisely
at points in Λ0. It follows that there are constants a and b such that

(34.13) Φ(z) = a℘0(z) + b, a ∈ C∗, b ∈ C,
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where ℘0(z) = ℘(z; Λ0). Hence Φ′(z) = a℘′0(z), so by Proposition 31.1 we have

(34.14) Φ′(z) = 0 ⇐⇒ z =
ω0j

2
, mod Λ0,

where ω01, ω02 generate Λ0 and ω03 = ω01 + ω02. Hence (perhaps after some
reordering)

(34.15) ej = a℘0

(ω0j

2

)
+ b.

Now if e′j = ℘0(ω0j/2), we have by (31.15) that e′1 + e′2 + e′3 = 0, so (34.9) yields

(34.16) b = 0.

Finally, we set Λ = a−1/2Λ0 and use (32.34) to get

(34.17) ℘(z; Λ) = a℘(a1/2z; Λ0).

Then (34.10) is achieved.

We mention that a similar construction works to yield a compact Riemann sur-
face M → S2 on which there is a single valued version of

√
q(ζ) when

(34.18) q(ζ) = (ζ − e1) · · · (ζ − em),

where ej ∈ C are distinct, and m ≥ 2. If m = 2g+1, one has slits from e2j−1 to e2j ,
for j = 1, . . . , g, and a slit from e2g+1 to ∞, which we denote e2g+2. If m = 2g + 2,
one has slits from e2j−1 to e2j , for j = 1, . . . , g + 1. Then X is constructed by
opening the slits, and M is constructed as in (34.3). The picture looks like that
in Fig. 34.1, but instead of two sets of pipes getting attached, one has g + 1 sets.
One gets a Riemann surface M with g holes, called a surface of genus g. Again the
double-valued form dζ/

√
q(ζ) on S2 pulls back to a single-valued 1-form α on M ,

with no singularities, except when m = 2 (see the exercises). If m = 4 (so again
g = 1), α has no zeros. If m ≥ 5 (so g ≥ 2), α has a zero at ϕ−1(∞). Proposition
34.1 extends to the case m = 4. If m ≥ 5 the situation changes. It is a classical
result that M is covered by the disk D rather than by C. The pull-back of α to
D is called an automorphic form. For much more on such matters, and on more
general constructions of Riemann surfaces, we recommend [FK] and [MM].

We end this section with a brief description of a Riemann surface, conformally
equivalent to M in (34.3), appearing as a submanifold of complex projective space
CP2. More details on such a construction can be found in [Cl] and [MM].

To begin, we define complex projective space CPn as (Cn+1 \ 0)/ ∼, where we
say z and z′ ∈ Cn+1 \ 0 satisfy z ∼ z′ provided z′ = az for some a ∈ C∗. Then
CPn has the structure of a complex manifold. Denote by [z] the equivalence class
in CPn of z ∈ Cn+1 \ 0. We note that the map

(34.19) κ : CP1 −→ C ∪ {∞}

given by

(34.20)
κ([(z1, z2)]) = z1/z2, z2 6= 0,

κ([(1, 0)]) = ∞,
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is a holomorphic diffeomorphism, so CP1 ≈ S2.
Now given distinct e1, e2, e3 ∈ C, we can define Me ⊂ CP2 to consist of elements

[(w, ζ, t)] such that (w, ζ, t) ∈ C3 \ 0 satisfies

(34.21) w2t = (ζ − e1t)(ζ − e2t)(ζ − e3t).

One can show that Me is a smooth complex submanifold of CP2, possessing then
the structure of a compact Riemann surface. An analogue of the map (34.2) is
given as follows.

Set p = [(1, 0, 0)] ∈ CP2. Then there is a holomorphic map

(34.22) ψ : CP2 \ p −→ CP1,

given by

(34.23) ψ([(w, ζ, t)]) = [(ζ, t)].

This restricts to Me \ p → CP1. Note that p ∈ Me. While ψ in (34.22) is actually
singular at p, for the restriction to Me \ p this is a removable singularity, and one
has a holomorphic map

(34.24) ϕe : Me −→ CP1 ≈ C ∪ {∞} ≈ S2,

given by (34.22) on Me \ p and taking p to [(1, 0)] ∈ CP1, hence to ∞ ∈ C ∪
{∞}. This map can be seen to be a 2-to-1 branched covering, branching over
B = {e1, e2, e3,∞}. Given q ∈ C, q /∈ B, and a choice r ∈ ϕ−1(q) ⊂ M and
re ∈ ϕ−1

e (q) ⊂ Me, there is a unique holomorphic diffeomorphism

(34.25) Γ : M −→ Me,

such that Γ(r) = re and ϕ = ϕe ◦ Γ.

Exercises

1. Show that the covering map Ψ in (34.8) is actually a diffeomorphism, and hence
Λ0 = Λ1.

2. Suppose Λ0 and Λ1 are two lattices in C such that TΛ0 and TΛ1 are conformally
equivalent, via a holomorphic diffeomorphism

(34.26) f : C/Λ0 −→ C/Λ1.

Show that f lifts to a holomorphic diffeomorphism F of C onto itself, such that
F (0) = 0, and hence that F (z) = az for some a ∈ C∗. Deduce that Λ1 = aΛ0.

3. Consider the upper half-plane U = {τ ∈ C : Im τ > 0}. Given τ ∈ U , define

(34.27) Λ(τ) = {m + nτ : m, n ∈ Z}.
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Show that each lattice Λ ⊂ C has the form Λ = aΛ(τ) for some a ∈ C∗, τ ∈ U .

4. Define the maps α, β : U → U by

(34.28) α(τ) = −1
τ

, β(τ) = τ + 1.

Show that, for each τ ∈ U ,

(34.29) Λ(α(τ)) = τ−1 Λ(τ), Λ(β(τ)) = Λ(τ).

5. Let G be the group of automorphisms of U generated by α and β, given in
(34.28). Show that if τ, τ ′ ∈ U ,

(34.30) C/Λ(τ) ≈ C/Λ(τ ′),

in the sense of being holomorphically diffeomorphic, if and only if

(34.31) τ ′ = γ(τ), for some γ ∈ G.

6. Show that the group G consists of linear fractional transformations of the form

(34.32) LA(τ) =
aτ + b

cτ + d
, A =

(
a b
c d

)
,

where a, b, c, d ∈ Z and det A = 1, i.e., A ∈ Sl(2,Z). Show that

G ≈ Sl(2,Z)/{±I}.

In Exercises 7–8, we make use of the covering map Ψ : U → C \ {0, 1}, given by
(25.5), and results of Exercises 1–8 of §25, including (25.10)–(25.11), i.e.,

(34.33) Ψ(α(τ)) =
1

Ψ(τ)
, Ψ(β(τ)) = 1−Ψ(τ).

7. Given τ, τ ′ ∈ U , we say τ ∼ τ ′ if and only if (34.30) holds. Show that, given

(34.34) τ, τ ′ ∈ U , w = Ψ(τ), w′ = Ψ(τ ′) ∈ C \ {0, 1},

we have

(34.35) τ ∼ τ ′ ⇐⇒ w′ = F (w) for some F ∈ G,

where G is the group (of order 6) of automorphisms of C \ {0, 1} arising in Exercise
6 of §25.
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8. Bringing in the map H : S2 → S2 arising in Exercise 8 of §25, i.e.,

(34.36) H(w) =
4
27

(w2 − w + 1)3

w2(w − 1)2
,

satisfying (25.23), i.e.,

(34.37) H
( 1

w

)
= H(w), H(1− w) = H(w),

show that

(34.38) w′ = F (w) for some F ∈ G ⇐⇒ H(w′) = H(w).

Deduce that, for τ, τ ′ ∈ U ,

(34.39) τ ∼ τ ′ ⇐⇒ H ◦Ψ(τ ′) = H ◦Ψ(τ).

Exercises 9–14 deal with the Riemann surface M of
√

q(ζ) when

(34.40) q(ζ) = (ζ − e1)(ζ − e2),

and e1, e2 ∈ C are distinct.

9. Show that the process analogous to that pictured in Fig. 34.1 involves the
attachment of one pair of pipes, and M is topologically equivalent to a sphere. One
gets a branched covering ϕ : M → S2, as in (34.2).

10. Show that the double-valued form dζ/
√

q(ζ) on S2 pulls back to a single-
valued form α on M . Using (34.4), show that α is a smooth nonvanishing form
except at {p1, p2} = ϕ−1(∞). In a local coordinate system about pj of the form
ϕj(x) = ϕ(x)−1, use a variant of (34.4)–(34.5) to show that α has the form

(34.41) α = (−1)j g(z)
z

dz,

where g(z) is holomorphic and g(0) 6= 0.

11. Let c be a curve in M \ {p1, p2} with winding number 1 about p1. Set

(34.42) ω =
∫

c

α, L = {kω : k ∈ Z} ⊂ C.

Note that Exercise 10 implies ω 6= 0. Pick q ∈ M \ {p1, p2}. Show that

(34.43) Ψ(z) =
∫ z

q

α
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yields a well defined holomorphic map

(34.44) Ψ : M \ {p1, p2} −→ C/L.

12. Show that Ψ in (34.44) is a holomorphic diffeomorphism of M \ {p1, p2} onto
C/L.
Hint. To show Ψ is onto, use (34.41) to examine the behavior of Ψ near p1 and p2.

13. Produce a holomorphic diffeomorphism C/L ≈ C \ {0}, and then use (34.44)
to obtain a holomorphic diffeomorphism

(34.45) Ψ1 : M \ {p1, p2} −→ S2 \ {0,∞}.

Show that this extends uniquely to a holomorphic diffeomorphism

(34.46) Ψ1 : M −→ S2.

14. Note that with a linear change of variable we can arrange ej = (−1)j in (34.40).
Relate the results of Exercises 9–13 to the identity

(34.47)
∫ z

0

(1− ζ2)−1/2 dζ = sin−1 z (mod 2πZ).
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Appendices

26. The Riemann sphere and other Riemann surfaces

Our main goal here is to describe how the unit sphere S2 ⊂ R3 has a role as a
“conformal compactification” of the complex plane C. To begin, we consider a map

(26.1) S : S2 \ {e3} −→ R2,

known as stereographic projection; here e3 = (0, 0, 1). We define S as follows:

(26.2) S(x1, x2, x3) = (1− x3)−1(x1, x2).

See Fig. 26.1. A computation shows that S−1 : R2 → S2 \ {e3} is given by

(26.3) S−1(x, y) =
1

1 + r2
(2x, 2y, r2 − 1), r2 = x2 + y2.

The following is a key geometrical property.

Proposition 26.1. The map S is a conformal diffeomorphism of S2 \ {e3} onto
R2.

In other words, we claim that if two curves γ1 and γ2 in S2 meet at an angle
α at p 6= e3, then their images under S meet at the same angle at q = S(p). It is
equivalent, and slightly more convenient, to show that F = S−1 is conformal. We
have

(26.4) DF (q) : R2 −→ TpS
2 ⊂ R3.

See Appendix C for more on this. Conformality is equivalent to the statement that
there is a positive function λ(p) such that, for all v, w ∈ R2,

(26.5) DF (q)v ·DF (q)w = λ(q) v · w,

or in other words,

(26.6) DF (q)t DF (q) = λ(q)
(

1 0
0 1

)
.

To check (26.6), we compute DF via (26.3). A calculation gives

(26.7) DF (x, y) =
2

(1 + r2)2




1− x2 + y2 −2xy
−2xy 1 + x2 − y2

−2x −2y


 ,

and hence

(26.8) DF (x, y)t DF (x, y) =
4

(1 + r2)2

(
1 0
0 1

)
.
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This gives Proposition 26.1.
Similarly we can define a conformal diffeomorphism

(26.9) S− : S2 \ {−e3} −→ R2.

To do this we take x3 7→ −x3. This reverses orientation, so we also take x2 7→ −x2.
Thus we set

(26.10) S−(x1, x2, x3) = (1 + x3)−1(x1,−x2).

Comparing this with (26.3), we see that S− ◦ S−1 : R2 \ {0} → R2 \ {0} is given by

(26.11) S− ◦ S−1(x, y) =
1
r2

(x,−y).

Identifying R2 with C via z = x + iy, we have

(26.12) S− ◦ S−1(z) =
z

|z|2 =
1
z
.

Clearly the composition of conformal transformations is conformal, so we could
predict in advance that S1 ◦ S−1 would be conformal and orientation-preserving,
hence holomorphic, and (26.12) bears this out.

If we use (26.1) to identify C with S2 \{e3}, then the one-point compactification
C∪{∞} is naturally identified with S2, with ∞ corresponding to the “north pole”
e3. The map (26.12) can be extended from C \ {0} to C ∪ {∞}, and it switches 0
and ∞.

The concept of a normal family of maps Ω → S, introduced in §21, is of great
interest when S = S2 = C ∪ {∞}. The following result produces a key link with
results established in §21.

Proposition 26.2. Assume Ω ⊂ C is a connected open set. A family F of holo-
morphic functions Ω → C is normal with respect to (Ω,C ∪ {∞}) if and only if for
each sequence fν from F one of the following happens:
(a) A subsequence fνk

converges uniformly on each compact K ⊂ Ω, as a sequence
fνk

: K → C, or
(b) A subsequence fνk

tends to ∞ uniformly on each compact K ⊂ Ω.

Proof. Assume F is a normal family with respect to (Ω,C ∪ {∞}), and fν is a
sequence of elements of F . Take a subsequence fνk

, uniformly convegent on each
compact K, as a sequence of maps fνk

: K → S2. Say fνk
→ f : Ω → S2. Pick

p ∈ Ω. We consider two cases.

Case I. First suppose f(p) = ∞. Then there exists N ∈ Z+ and a neighborhood
U of p in Ω such that |fνk

(z)| ≥ 1 for z ∈ U, k ≥ N . Set gνk
(z) = 1/fνk

(z),
for z ∈ U, k ≥ N . We have |gνk

| ≤ 1 on U , gνk
(z) 6= 0, and gνk

(z) → 1/f(z),
locally uniformly on U (with 1/∞ = 0), and in particular gνk

(p) → 0. By Hurwitz’
theorem (Proposition 17.8), this implies 1/f(z) = 0 on all of U , i.e., f = ∞ on U ,
hence f = ∞ on Ω. Hence Case I ⇒ Case (b).

Case II. Suppose f(p) ∈ C, i.e., f(p) ∈ S2 \ {∞}. By the analysis in Case I it
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follows that f(z) ∈ C for all z ∈ Ω. It is now straightforward to verify Case (a)
here.

This gives one implication in Proposition 26.2. The reverse implication is easily
established.

The surface S2 is an example of a Riemann surface, which we define as follows.
A Riemann surface is a two-dimensional manifold M covered by open sets Oj with
coordinate charts ϕj : Ωj → Oj having the property that, if Oj ∩ Ok 6= ∅, and if
Ωjk = ϕ−1

j (Oj ∩ Ok), then the diffeomorphism

(26.13) ϕ−1
k ◦ ϕj : Ωjk −→ Ωkj

is holomorphic.
Another important class of Riemann surfaces is given as follows. Let Λ ⊂ R2 ≈ C

be the image of Z2 under any matrix in Gl(2,R). Then the torus

(26.14) TΛ = C/Λ

is a Riemann surface in a natural fashion.
There are many other Riemann surfaces. For example, any oriented two-dimensional

Riemannian manifold has a natural structure of a Riemann surface. A proof of this
can be found in Chapter 5 of [T2]. An important family of Riemann surfaces holo-
morphically diffeomorphic to surfaces of the form (26.14) will arise in §34, with
implications for the theory of elliptic functions.

Exercises

1. Give an example of a family F of holomorphic functions Ω → C with the
following two properties:

(a) F is normal with respect to (Ω, S2).
(b) {f ′ : f ∈ F} is not normal.

Compare Exercise 2 of §21.

2. Given Ω ⊂ C open, let

F = {f : Ω → C : Re f > 0 on Ω, f holomorphic}.

Show that F is normal with respect to (Ω, S2). Is F normal with respect to (Ω,C)?

3. Let F = {zn : n ∈ Z+}. For which regions Ω is F normal with respect to
(Ω, S2)? Compare Exercise 4 in §21.

4. Show that the set of orientation-preserving conformal diffeomorphisms ϕ : S2 →
S2 is precisely the set of linear fractional transformations of the form (22.5), with
A ∈ Gl(2,C).
Hint. Given such ϕ : S2 → S2, take LA such that LA ◦ ϕ takes ∞ to ∞, so
ψ = LA ◦ ϕ|S2\{∞} is a holomorphic diffeomorphism of C onto itself. What form
must ψ have? (Cf. Proposition 11.4.)
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5. There is a natural notion of when a map ϕ : M1 → M2 between two Riemann
surfaces is holomorphic. Write it down. Show that if ϕ and also ψ : M2 → M3 are
holomorphic, then so is ψ ◦ ϕ : M1 → M3.

6. Let p(z) and q(z) be polynomials on C. Assume the roots of p(z) are disjoint
from the roots of q(z). Form the meromorphic function

R(z) =
p(z)
q(z)

.

Show that R(z) has a unique continuous extension R : S2 → S2, and this is
holomorphic.

Exercises 7–9 deal with holomorphic maps F : S2 → S2. Assume F is not constant.

7. Show that there are only finitely many pj ∈ S2 such that DF (pj) : Tpj
S2 →

Tqj S
2 is singular (hence zero), where qj = F (pj). The points qj are called critical

values of F .

8. Suppose ∞ is not a critical value of F and that F−1(∞) = {∞, p1, . . . , pk}.
Show that

f(z) = F (z)(z − p1) · · · (z − pk) : C −→ C,

and |f(z)| → ∞ as |z| → ∞. Deduce that f(z) is a polynomial in z. (Cf. Proposition
11.4.)

9. Show that every holomorphic map F : S2 → S2 is of the form treated in Exercise
6 (except for the constant map F ≡ ∞).
Hint. Compose with linear fractional transformations and transform F to a map
satisfying the conditions of Exercise 8.

10. Given a holomorphic map f : Ω → C, set

(26.13) g = S−1 ◦ f : Ω −→ S2.

For z ∈ Ω, set q = f(z), p = g(z), and consider

(26.14) Dg(z) : R2 −→ TpS
2.

Using (26.8) (where F = S−1), show that

(26.15) Dg(z)t Dg(z) = 4
( |f ′(z)|

1 + |f(z)|2
)2

I,

where I is the identity matrix. The quantity

(26.16) f#(z) =
|f ′(z)|

1 + |f(z)|2
is sometimes called the “spherical derivative” of f .

11. Show that the meromorphic function constructed in Exercises 4–6 of §24 yields
a holomorphic map

(26.17) Φ : TΛ −→ S2,

where Λ = {4k + 2i`p : k, ` ∈ Z}.
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K. Rapid evaluation of the Weierstrass ℘-function

Given a lattice Λ ⊂ C, the associated Weierstrass ℘-function is defined by

(K.1) ℘(z; Λ) =
1
z2

+
∑

0 6=β∈Λ

( 1
(z − β)2

− 1
β2

)
.

This converges rather slowly, so another method must be used to evaluate ℘(z; Λ)
rapidly. The classical method, which we describe below, involves a representation
of ℘ in terms of theta functions. It is most conveniently described in case

(K.2) Λ generated by 1 and τ, Im τ > 0.

To pass from this to the general case, we can use the identity

(K.3) ℘(z; aΛ) =
1
a2

℘
(z

a
; Λ

)
.

The material below is basically a summary of material from §32, assembled here to
clarify the important application to the task of the rapid evaluation of (K.1).

To evaluate ℘(z; Λ), which we henceforth denote ℘(z), we use the following
identity:

(K.4) ℘(z) = e1 +
(ϑ′1(0)

ϑ2(0)
ϑ2(z)
ϑ1(z)

)2

.

See (32.20). Here e1 = ℘(ω1/2) = ℘(1/2), and the theta functions ϑj(z) (which
also depend on ω) are defined as follows (cf. (32.6)–(32.10)):

(K.5)

ϑ1(z) = i

∞∑
n=−∞

(−1)np2n−1q(n−1/2)2 ,

ϑ2(z) =
∞∑

n=−∞
p2n−1q(n−1/2)2 ,

ϑ3(z) =
∞∑

n=−∞
p2nqn2

,

ϑ4(z) =
∞∑

n=−∞
(−1)np2nqn2

.

Here

(K.6) p = eπiz, q = eπiτ ,

with τ as in (K.2).
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The functions ϑ1 and ϑ2 appear in (K.4). Also ϑ3 and ϑ4 arise to yield a rapid
evaluation of e1 (cf. (32.33)):

(K.7) e1 =
π2

3
[
ϑ3(0)4 + ϑ4(0)4

]
.

Note that (d/dz)p2n−1 = πi(2n− 1)p2n−1 and hence

(K.8) ϑ′1(0) = −π

∞∑
n=−∞

(−1)n(2n− 1)q(n−1/2)2 .

It is convenient to rewrite the formulas for ϑ1(z) and ϑ2(z) as

(K.9)

ϑ1(z) = i

∞∑
n=1

(−1)nq(n−1/2)2(p2n−1 − p1−2n),

ϑ2(z) =
∞∑

n=1

q(n−1/2)2(p2n−1 + p1−2n).

also formulas for ϑ′1(0) and ϑj(0), which appear in (K.4) and (K.7), can be rewritten:

(K.10)

ϑ′1(0) = −2π

∞∑
n=1

(−1)n(2n− 1)q(n−1/2)2 ,

ϑ2(0) = 2
∞∑

n=1

q(n−1/2)2 ,

ϑ3(0) = 1 + 2
∞∑

n=1

qn2
,

ϑ4(0) = 1 + 2
∞∑

n=1

(−1)nqn2
.

Rectangular lattices

We specialize to the case where Λ is a rectangular lattice, of sides 1 and L, more
precisely:

(K.11) Λ generated by 1 and iL, L > 0.

Now the formulas established above hold, with τ = iL, hence

(K.12) q = e−πL.

Since q is real, we see that the quantities ϑ′1(0) and ϑj(0) in (K.10) are real. It is
also convenient to calculate the real and imaginary parts of ϑj(z) in this case. Say

(K.13) z = u + iv,
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with u and v real. Then

(K.14) p2n−1 = e−(2n−1)πv
[
cos(2n− 1)πu + i sin(2n− 1)πu

]
.

We then have
(K.15)

Re(−iϑ1(z)) = −
∞∑

n=1

(−1)nq(n−1/2)2
[
e(2n−1)πv − e−(2n−1)πv

]
cos(2n− 1)πu,

Im(−iϑ1(z)) =
∞∑

n=1

(−1)nq(n−1/2)2
[
e(2n−1)πv + e−(2n−1)πv

]
sin(2n− 1)πu,

and

(K.16)

Reϑ2(z) =
∞∑

n=1

q(n−1/2)2
[
e(2n−1)πv + e−(2n−1)πv

]
cos(2n− 1)πu,

Imϑ2(z) = −
∞∑

n=1

q(n−1/2)2
[
e(2n−1)πv − e−(2n−1)πv

]
sin(2n− 1)πu.

We can calculate these quantities accurately by summing over a small range. Let
us insist that

(K.17) −1
2
≤ u <

1
2
, −L

2
≤ v <

L

2
,

and assume

(K.18) L ≥ 1.

Then

(K.19)
∣∣q(n−1/2)2e(2n−1)πv

∣∣ ≤ e−(n2−3n+5/4)πL,

and since

(K.20) e−π <
1
20

,

we see that the quantity in (K.19) is

(K.21)
< 0.5× 10−14 for n = 5,

< 2× 10−25 for n = 6,

with rapid decrease for n > 6. Thus, summing over 1 ≤ n ≤ 5 will give adequate
approximations.

For z = u + iv very near 0, where ϑ1 vanishes and ℘ has a pole, the identity

(K.22)
1

℘(z)− e1
=

(ϑ2(0)
ϑ′1(0)

ϑ1(z)
ϑ2(z)

)2

,
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in concert with (K.10) and (K.15)–(K.16), gives an accurate approximation to
(℘(z) − e1)−1, which in this case is also very small. Note, however, that some
care should be taken in evaluating Re(−iϑ1(z)), via the first part of (K.15), when
|z| is very small. More precisely, care is needed in evaluating

(K.23) ekπv − e−kπv, k = 2n− 1 ∈ {1, 3, 5, 7, 9},

when v is very small, since then (K.23) is the difference between two quantities
close to 1, so evaluating ekπv and e−kπv separately and subtracting can lead to an
undesirable loss of accuracy. In case k = 1, one can effect this cancellation at the
power series level and write

(K.24) eπv − e−πv = 2
∑

j≥1,odd

(πv)j

j!
.

If |πv| ≤ 10−2, summing over j ≤ 7 yields substantial accuracy. (If |πv| > 10−2,
separate evaluation of ekπv and e−kπv should not be a problem.) For other values
of k in (K.23), one can derive from

(K.25) (xk − 1) = (x− 1)(xk−1 + · · ·+ 1)

the identity

(K.26) ekπv − e−kπv = (eπv − e−πv)
k−1∑

`=0

e(2`−(k−1))πv,

which in concert with (K.24) yields an accurate evaluation of each term in (K.23).

Remark. If (K.11) holds with 0 < L < 1, one can use (K.3), with a = iL, to
transfer to the case of a lattice generated by 1 and i/L.
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