How Euler Might Have Constructed $\Gamma(z)$

Michael Taylor

Our goal is to construct a "natural" meromorphic function $\Gamma(z)$ satisfying

$$
\begin{equation*}
\Gamma(z+1)=z \Gamma(z), \quad \Gamma(1)=1 . \tag{1}
\end{equation*}
$$

A first attempt is

$$
\begin{equation*}
\frac{1}{z} \frac{2}{z+1} \frac{3}{z+2} \cdots \tag{2}
\end{equation*}
$$

However, this does not converge. To see what is going on, we examine

$$
\begin{equation*}
A_{n}(z)=\frac{1}{z} \frac{2}{z+1} \cdots \frac{n}{z+n-1} . \tag{3}
\end{equation*}
$$

Note that $A_{n}(1)=1$ and

$$
\begin{align*}
A_{n}(z+1) & =\frac{2}{z+1} \frac{3}{z+2} \cdots \frac{n+1}{z+n} \frac{1}{n+1} \tag{4}\\
& =\frac{z}{n+1} A_{n+1}(z)
\end{align*}
$$

This suggests trying

$$
\begin{align*}
\Gamma_{n}(z) & =n^{z-1} \frac{1}{z} \frac{2}{z+1} \cdots \frac{n}{z+n-1} \\
& =n^{z} \frac{1}{z} \frac{1}{z+1} \cdots \frac{n-1}{z+n-1} \tag{5}\\
& =n^{z} \frac{1}{z} \frac{1}{1+z} \frac{1}{1+z / 2} \cdots \frac{1}{1+z /(n-1)} .
\end{align*}
$$

Note that $\Gamma_{n}(1)=1$ and

$$
\begin{align*}
\Gamma_{n}(z+1) & =n^{z} \frac{2}{z+1} \frac{3}{z+2} \cdots \frac{n+1}{z+n} \frac{1}{n+1} \tag{6}\\
& =\frac{n}{n+1} z \Gamma_{n+1}(z)
\end{align*}
$$

Now write

$$
\begin{equation*}
n^{z}=e^{z \log n}=e^{z(1+1 / 2+\cdots+1 /(n-1))-\gamma_{n} z}, \tag{7}
\end{equation*}
$$

$$
\begin{gather*}
\Gamma_{n}(z)=\frac{1}{z e^{\gamma_{n} z}} \prod_{k=1}^{n-1} \frac{e^{z / k}}{1+\frac{z}{k}}, \tag{8}\\
1
\end{gather*}
$$

or

$$
\begin{equation*}
\frac{1}{\Gamma_{n}(z)}=z e^{\gamma_{n} z} \prod_{k=1}^{n-1}\left(1+\frac{z}{k}\right) e^{-z / k} \tag{9}
\end{equation*}
$$

Simple estimates show that this converges as $n \rightarrow \infty$, and we have $\Gamma_{n}(z) \rightarrow \Gamma(z)$, with

$$
\begin{equation*}
\frac{1}{\Gamma(z)}=z e^{\gamma z} \prod_{k=1}^{\infty}\left(1+\frac{z}{k}\right) e^{-z / k} . \tag{10}
\end{equation*}
$$

Here

$$
\begin{equation*}
\gamma=\lim _{n \rightarrow \infty} \sum_{k=1}^{n-1} \frac{1}{k}-\log n \tag{11}
\end{equation*}
$$

which is known as Euler's constant. Now the result (1) follows from (6).
The Gamma function $\Gamma(z)$ is related to the sine function, as follows.

$$
\begin{align*}
\frac{1}{\Gamma(z) \Gamma(-z)} & =-z^{2} \prod_{k=1}^{\infty}\left(1-\frac{z^{2}}{k^{2}}\right) \tag{12}\\
& =-z \frac{\sin \pi z}{\pi}
\end{align*}
$$

The second identity in (12) is Euler's product formula for the sine. Using this one can compute $\Gamma(1 / 2)$ as follows. Taking $z=1 / 2$ in (12) yields.

$$
\begin{equation*}
\Gamma\left(\frac{1}{2}\right) \Gamma\left(-\frac{1}{2}\right)=-2 \pi \tag{13}
\end{equation*}
$$

Since $\Gamma(1 / 2)=\Gamma(1-1 / 2)=-(1 / 2) \Gamma(-1 / 2)$, we have $\Gamma(1 / 2)^{2}=\pi$. Since $\Gamma(x)>0$ for $x>0$, we deduce that

$$
\begin{equation*}
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} \tag{14}
\end{equation*}
$$

