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Our goal is to construct a “natural” meromorphic function Γ(z) satisfying

(1) Γ(z + 1) = zΓ(z), Γ(1) = 1.

A first attempt is
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However, this does not converge. To see what is going on, we examine
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Note that An(1) = 1 and
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This suggests trying
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Note that Γn(1) = 1 and
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Now write

(7) nz = ez log n = ez(1+1/2+···+1/(n−1))−γnz,

so
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or
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Simple estimates show that this converges as n → ∞, and we have Γn(z) → Γ(z),
with
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Here
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which is known as Euler’s constant. Now the result (1) follows from (6).
The Gamma function Γ(z) is related to the sine function, as follows.
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The second identity in (12) is Euler’s product formula for the sine. Using this one
can compute Γ(1/2) as follows. Taking z = 1/2 in (12) yields.
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Since Γ(1/2) = Γ(1−1/2) = −(1/2)Γ(−1/2), we have Γ(1/2)2 = π. Since Γ(x) > 0
for x > 0, we deduce that
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