
Singular Integrals and Elliptic Boundary Problems on Rough Domains

Michael Taylor

Notes for Lectures at the Fabes-Riviere Symposium
April, 2011

Abstract. These notes discuss results on layer potential methods for elliptic
boundary problems, with emphasis on the Dirichlet problem for the Laplace opera-
tor. They start by reviewing results for domains with moderately smooth boundary,
then for Lipschitz domains, and proceed to discuss results in [HMT], obtained with
S. Hofmann and M. Mitrea, for a class of domains we call regular Semmes-Kenig-
Toro (SKT) domains, often called chord-arc domains with vanishing constant, and
for ε-regular SKT domains, often called chord-arc domains with small constant.
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1. Introduction

We describe results on using layer potentials to solve elliptic boundary problems,
with emphasis on the Dirichlet problem

(1.1) Lu = 0 on Ω, u
∣∣
∂Ω

= f.

Here we take L = ∆−V . We assume Ω is an open subset of a compact, connected, n-
dimensional Riemannian manifold M , whose metric tensor has some moderate reg-
ularity. The Laplace-Beltrami operator on M is ∆. We assume V ∈ L∞(M), V ≥ 0
on M , and V > 0 on a set of positive measure on each connected component of
M \ Ω (which we assume to be nonempty).

The double layer potential attack on (1.1) starts as follows. Under the hypotheses
above, L : H1(M) → H−1(M) is an isomorphism, whose inverse has an integral
kernel:

(1.2) L−1w(x) =
∫

M

E(x, y)w(y) dV(y),

dV denoting the volume element of M . One seeks a function g on ∂Ω such that
(1.1) is solved by

(1.3) u = Dg
∣∣
Ω
,

where

(1.4)

Dg(x) =
∫

∂Ω

∂νyE(x, y)g(y) dσ(y)

=
∫

∂Ω

k(x, y)g(y) dσ(y),

dσ denoting the area element of ∂Ω, and ν the outward pointing unit normal to
∂Ω.

In order to survey the structure of the boundary layer approach to (1.1) fairly
quickly, we will start with a situation where an analysis ofDg|∂Ω is fairly elementary,
due to some modest regularity of ∂Ω. Our main goal will then be to discuss the
analysis on somewhat rougher domains.

So, for now, we assume ∂Ω is locally the graph of a C1 function whose gradient
has a modulus of continuity ω; we say ∂Ω is of class C1,ω. The leading part of the
integral kernel in (1.4) behaves like

(1.5) k(x, y) = 〈ν(y), x− y〉 |x− y|−n,
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in local coordinates, and under this C1,ω hypothesis, we have

(1.6) |〈ν(y), x− y〉| ≤ Cω(|x− y|)|x− y|, ∀x, y ∈ ∂Ω,

hence

(1.7) |k(x, y)| ≤ C
ω(d(x, y))
d(x, y)n−1

, ∀x, y ∈ ∂Ω.

Of course, such an estimate does not hold for general x ∈ Ω, y ∈ ∂Ω.

Proposition 1.1. If k(x, y) satisfies (1.7) on ∂Ω× ∂Ω, then

(1.8) Kg(x) =
∫

∂Ω

k(x, y)g(y) dσ(y)

has the property

(1.9) K : Lp(∂Ω) −→ Lp(∂Ω) is compact, for 1 < p < ∞,

provided ω satisfies the Dini condition

(1.10)
∫ 1

0

ω(t)
t

dt < ∞.

Proof. The Schur condition for continuity on Lp(∂Ω), for 1 ≤ p ≤ ∞, is

(1.11)
∫

∂Ω

|k(x, y)| dσ(y) ≤ A, ∀x,

with the same sort of estimate with the roles of x and y reversed. (Then the
operator norm is ≤ A.) Now, we dominate the left side of (1.11) by

(1.12)

C

∫

∂Ω

ω(d(x, y))
d(x, y)n−1

dσ(y) ≈
∑

k≥0

∫

{y:d(x,y)≈2−k}

ω(d(x, y))
d(x, y)n−1

dσ(y)

≈
∑

k≥0

ω(2−k)2k(n−1)σ({y : 2−k−1 ≤ d(x, y) ≤ 2−k})

≈
∑

k≥0

ω(2−k)2k(n−1)2−k(n−1)

=
∑

k≥0

ω(2−k),
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and the finiteness of the last sum is equivalent to (1.10). Note that we pass from
the second line of (1.12) to the third via

(1.13) σ({y ∈ ∂Ω : d(x, y) ≤ r}) ≤ Crn−1,

an estimate that will play an important role in rougher situations.
The argument above gives continuity on Lp(∂Ω). To get compactness, one uses

the following result.

(1.14) If |k(x, y)| ≤ M < ∞ on ∂Ω× ∂Ω, then (1.9) holds.

In fact, this hypothesis implies K is Hilbert-Schmidt, hence compact, on L2(∂Ω),
and compactness on Lp for 1 < p < ∞ follows by interpolation with boundedness
on L1 and L∞. To get compactness for K satisfying (1.7), one can write

(1.15) k(x, y) = k#(x, y) + kb(x, y),

with k# as in (1.14) and kb as in (1.11), with A small, and pass to the limit. This
concludes the proof of Proposition 1.1.

It is not hard to show that Dg|Ω extends continuously to Ω, if g is sufficiently
regular. For example,

(1.16) g ∈ Lip(∂Ω) =⇒ Dg
∣∣
Ω±

∈ C(Ω±).

Here and below,

(1.17) Ω+ = Ω, Ω− = M \ Ω.

Also, for sufficiently regular g,

(1.18) Dg
∣∣
∂Ω±

=
(
±1

2
I + K

)
g,

where K is as in Proposition 1.1, with k(x, y) = ∂νyE(x, y). See Proposition 3.4
for such a result in a rougher setting.

Now we want to use the boundary layer approach to solve (1.1), not for regular f
(which can be treated by variational methods, or by maximum principle and barrier
arguments), but for rough f , such as f ∈ Lp(∂Ω), a situation for which Proposition
1.1 is relevant. One desires to extend (1.18) to similarly rough g. What one gets is
nontangential convergence

(1.19) lim
y→x,y∈Γ±(x)

Dg(y) =
(
±1

2
I + K

)
g(x), for σ-a.e. x ∈ ∂Ω.
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Here, for x ∈ ∂Ω,

(1.20) Γ±(x) = {y ∈ Ω± : d(y, x) ≤ 2 dist(y, ∂Ω)}.

The result (1.19) follows from the validity of (1.18) for g ∈ Lip(∂Ω), which is dense
in Lp(∂Ω), together with an estimate on the nontangential maximal function

(1.21) NDg(x) = sup
y∈Γ±(x)

|Dg(x)|,

namely, for 1 < p < ∞,

(1.22) ‖NDg‖Lp(∂Ω) ≤ Cp‖g‖Lp(∂Ω).

Behind (1.22) are estimates of the following sort. Set

(1.23) Kεg(x) =
∫

{y∈∂Ω:d(x,y)>ε}

k(x, y)g(y) dσ(y),

for ε > 0, with k(x, y) as in (1.4), and

(1.24) K∗g(x) = sup
ε>0

|Kεg(x)|.

Then there exists C < ∞ such that

(1.25) NDg(x) ≤ K∗g(x) + CMg(x),

where Mg is the Hardy-Littlewood maximal function

(1.26) Mg(x) = sup
r>0

1
σ(Br(x))

∫

∂Ω

|g(y)| dσ(y), x ∈ ∂Ω.

It is classical that, for 1 < p < ∞,

(1.27) ‖Mg‖Lp(∂Ω) ≤ C‖g‖Lp(∂Ω),

and we also have

(1.28) ‖K∗g‖Lp ≤ C‖g‖Lp(∂Ω),

which, together with (1.27) and (1.25), gives (1.22). In the case of C1,ω boundary,
if (1.10) holds, Proposition 1.1 applies both to K and to

(1.29) K̃g(x) =
∫

∂Ω

|k(x, y)|g(y) dσ(y).
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Then, since

(1.30) K∗g(x) ≤ K̃|g|(x),

the result (1.28) readily follows. In more general situations, which we will discuss
below and in subsequent sections, this last part will not apply, but (1.25)–(1.28)
will hold, in substantial generality; cf. §3.

In addition to the double layer potential (1.4), the single layer potential, defined
by

(1.31) Sg(x) =
∫

∂Ω

E(x, y)g(y) dσ(y),

plays an important role in the study of (1.1). In such a case, one has, if ∂Ω is C1,ω,
and (1.10) holds,

(1.32) g ∈ Lip(∂Ω) =⇒ ∇Sg
∣∣
Ω±

∈ C(Ω±),

complementing (1.16). Furthermore, complementing (1.22), for 1 < p < ∞,

(1.33) ‖N (∇Sg)‖Lp(∂Ω) ≤ C‖g‖Lp(∂Ω),

and, complementing (1.19),

(1.34) lim
y→x,y∈Γ±(x)

∂ν±Sg(y) =
(
∓1

2
I + K∗

)
g(x), σ-a.e. x ∈ ∂Ω,

where K∗ is the adjoint of K in (1.19). Hence, for ∂Ω of class C1,ω, given (1.10),
K∗ : Lp(∂Ω) → Lp(∂Ω) is compact for 1 < p < ∞.

With this information in hand, we return to the issue of finding a solution to
(1.1) of the form (1.3). Clearly any such u = Dg satisfies Lu = 0 on M \ ∂Ω. By
(1.19),

(1.35) u
∣∣
∂Ω+

=
(1

2
I + K

)
g.

Thus (1.1) holds provided g solves the equation

(1.36)
(1

2
I + K

)
g = f.

Such solvability is guaranteed by the following.

Proposition 1.2. If ∂Ω is C1,ω and (1.10) holds, then, for all p ∈ (1,∞),

(1.37)
1
2
I + K : Lp(∂Ω) −→ Lp(∂Ω) is an isomorphism.

In our current situation, thanks to the compactness of K, we know that (1/2)I +
K is Fredholm on Lp(∂Ω), of index 0, for each such p. The following is key to
proving Proposition 1.2.
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Proposition 1.3. In the setting of Proposition 1.2,

(1.38)
1
2
I + K∗ : Lp(∂Ω) −→ Lp(∂Ω) is injective,

for p = 2.

Once this is proven, we also have injectivity in (1.38) for p ≥ 2. Hence Fredholm
theory implies we have an isomorphism in (1.38), for 2 ≤ p < ∞, so we have an
isomorphism in (1.37) for 1 < p ≤ 2. Hence the map (1.37) is injective for all
p ∈ (1,∞), and Fredholm theory implies isomorphism.

The proof of Proposition 1.3 goes as follows. Take g ∈ L2(∂Ω) and suppose

(1.39)
(1

2
I + K∗

)
g = 0.

Set

(1.40) u = Sg.

By (1.34),

(1.41) ∂νSg
∣∣
∂Ω−

=
(1

2
I + K∗

)
g = 0.

Now we take v = u∇u, so

(1.42) div v = |∇u|2 + u∆u = |∇u|2 + V u2 on M \ ∂Ω.

We apply the Gauss-Green theorem

(1.43)
∫

Ω

div v dV =
∫

∂Ω

〈ν, v〉 dσ,

with Ω replaced by Ω−, to get

(1.44)
∫

Ω−

(|∇u|2 + V u2) dV =
∫

∂Ω−

u
(1

2
I + K∗

)
g dσ = 0,

hence ∇u ≡ 0 on Ω−, hence u ≡ 0 on Ω−. (The estimate (1.33) helps justify this
use of the Gauss-Green theorem.) A result somewhat easier than (1.19) and (1.34)
is

(1.45) Sg
∣∣
∂Ω±

(x) = Sg(x) =
∫

∂Ω

E(x, y)g(y) dσ(y), σ-a.e. x ∈ ∂Ω.
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Hence

(1.46) u
∣∣
∂Ω+

= 0.

A second application of the Gauss-Green theorem gives

(1.47)
∫

Ω+

(|∇u|2 + V u2) dV =
∫

∂Ω+

u(∂ν+u) dσ = 0,

so ∇u ≡ 0 in Ω, and then (1.46) gives

(1.48) u ≡ 0 on Ω,hence on M.

Now, by (1.34), if u is given by (1.40), g is equal to the jump of ∂νu across ∂Ω, so
we have that (1.39) implies g = 0, proving Proposition 1.3.

Therefore, we have Proposition 1.2, hence the following.

Proposition 1.4. In the setting of Proposition 1.2, given 1 < p < ∞ and f ∈
Lp(∂Ω), there exists a solution to (1.1), of the form (1.3), with g ∈ Lp(∂Ω), satis-
fying

(1.49) ‖Nu‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω),

and

(1.50) lim
y→x,y∈Γ+(x)

u(y) = f(x), for σ-a.e. x ∈ ∂Ω.

There is a corresponding uniqueness result, not quite an immediate consequence
of the uniqueness of g ∈ Lp(∂Ω) such that (1.36) holds. We omit details on this.
Such uniqueness, in a more general context, is established in various references,
including [HMT].

In outline, this is the story for the Dirichlet problem (1.1), on a C1,ω domain
satisfying (1.10), given boundary data f ∈ Lp(∂Ω). There are further results, for
boundary data in various Lp-Sobolev spaces and Besov spaces, and with Sobolev
space and Besov space estimates on the solution u, which we will not go into here.
The discussion above is a prelude to the treatment of domains Ω whose boundaries
have less regularity.

We turn now to results on (1.1), for f ∈ Lp(∂Ω), on rougher domains. B. Dahlberg
[Dah] demonstrated solvability for f ∈ L2(∂Ω) of solutions to (1.1), satisfying
(1.49)–(1.50), when Ω is a Lipschitz domain, i.e., ∂Ω is locally the graph of a Lip-
schitz function. The methods used in [Dah] did not involve layer potentials, but
rather maximum principle and Harnack inequality arguments.

A breakthrough by A.P. Calderon [Cal] made it feasible to apply the method
of layer potentials to cases rougher than in Proposition 1.1. He demonstrated Lp
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bounds on Cauchy integrals on Lipschitz curves in C, with small Lipschitz constant.
Via the method of rotations, E. Fabes, M. Jodeit, and N. Riviere [FJR] were able to
treat (1.1) on an arbitrary C1 domain via layer potentials. These authors establish
the compactness result on K in this more general setting. In such a case (as well
as cases to come), it is useful to write

(1.51)
Kg(x) = PV

∫

∂Ω

k(x, y)g(y) dσ(y)

= lim
ε↘0

Kεg(x),

with Kε given by (1.23). The authors establish (1.28) in this setting (this time via
Calderon’s work). Then (1.25) and (1.22) extend, and so does (1.19). Similarly the
results (1.33)–(1.34) on single layers extend, and so do Propositions 1.2–1.4.

The next advance came with the paper [CMM], establishing Calderon’s estimates
for the Cauchy integral on arbitrary Lipschitz curves, not just those with small
Lipschitz constant. Again, via the method of rotations, the results (1.19)–(1.28)
and (1.33)–(1.34) work for Lipschitz domains. However, compactness as in (1.9)
fails, so a different approach to Proposition 1.2 is required.

A successful attack on Proposition 1.2 appeared in [Ver]. The crucial new in-
gredient was a “Rellich identity,” which had been rediscovered and applied to (1.1)
(though not in a way that involved layer potentials) in [JK1]. Such an identity
applied to a Lipschitz domain implies that if u = Sf , then ‖∇T u‖L2(∂Ω) and
‖∂νu‖L2(∂Ω) are comparable, up to controllable terms. In concert with the jump
relations (1.34), this gives

(1.52) ‖f‖L2(∂Ω) ≤ C
∥∥∥
(
±1

2
I + K∗

)
f
∥∥∥

L2(∂Ω)
+ C‖Sf‖H1,2(M),

and using (1.33) one can show that

(1.53) S : L2(∂Ω) −→ H1,2(M) is compact.

This implies semi-Fredholmness of ±(1/2)I + K∗. This was complemented in [Ver]
by a construction yielding dense range. An alternative, used in several subsequent
works, extends the Rellich identities to a 1-parameter family of identities, leading
to

(1.54)
λ ∈ R, |λ| ≥ 1

2
⇒ λI + K∗ : L2(∂Ω) =⇒ L2(∂Ω)

has closed range and finite dimensional kernel.

Thus each such λI +K∗ is semi-Fredholm, with a well defined index. Such an index
is continuous in λ, hence constant on (−∞,−1/2] and on [1/2,∞). Invertibility is
clear for large |λ|, so the index must be zero. Having this Fredholm property, [Ver]
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extended Proposition 1.3 to Lipschitz domains, thus showing that (1.37) holds,
for p = 2. From this, a general result of [Sn] implies (1.37) holds for |p − 2| <
ε(Ω). Hence Proposition 1.4 is established for a Lipschitz domain Ω, for |p − 2| <
ε(Ω). One can interpolate with the endpoint L∞ result (obtained via the maximum
principle) to get Proposition 1.4 for

(1.55) 2− ε(Ω) < p ≤ ∞.

Actually, [FJR] and [Ver] worked on bounded domains Ω ⊂ Rn, with L = ∆,
the Euclidean Laplacian ∂2

1 + · · ·+ ∂2
n. In this setting, for Proposition 1.3 to work

one needs ∂Ω connected. (The reader is invited to check the proof, to see why.) To
avoid this limitation, one brings in V ≥ 0, positive on a set of positive measure, at
least on each bounded component of Rn \ Ω. Of course, once this move is made,
it is only natural to let all the coefficients be variable and move to the manifold
setting, as we have done here. This approach was taken up in [MT1], and pursued
in [MT2]–[MT5], and also in [MMT].

These papers and others have results also on the Neumann boundary problem

(1.56) Lu = 0 on Ω, ∂νu
∣∣
∂Ω

= f.

In such a case, one seeks g on ∂Ω such that (1.56) is solved by

(1.57) u = Sg.

This solves (1.56) provided

(1.58)
(
−1

2
I + K∗

)
g = f,

which can be solved for g, given f ∈ Lp(∂Ω), provided

(1.59) −1
2
I + K∗ : Lp(∂Ω) −→ Lp(∂Ω) is an isomorphism.

Such a result holds for 1 < p < 2 + ε(Ω), when Ω is a Lipschitz domain, if also
V > 0 on a set of positive measure in Ω. There is a standard modification of
(1.59) in the absence of this extra positivity. We will not dwell on this, or other
natural boundary problems, but merely point to the bibliography for such results,
and further references.

Our main goal in subsequent sections is to discuss material leading to layer
potential attacks on (1.1) on classes of domains that are not Lipschitz. In §§2–4,
we deal with successively smaller classes of domains with the following properties:

(1.60) The surface measure σ is finite and the Gauss-Green theorem holds,

(1.61) The double layer potential Dg satisfies (1.19)–(1.28).
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with similar results for ∇Sg, and

(1.62) The compactness result (1.9) holds,

or variants hold, of use in extensions of Proposition 1.2.
Section 2 deals with domains of finite perimeter, as initially developed by E. De-

Giorgi and H. Federer. This is essentially the maximal class of domains for which
surface integration over ∂Ω is meaningful. We mention several versions of the
Gauss-Green formula (1.45) valid for such domains. However, these general results
require more regularity on the integrand than one has when u = Sg with g merely
in L2(∂Ω). We discuss special results that do work in such a case, for those finite
perimeter domains that are “Ahlfors regular,” a property that incorporates the
estimate (1.13).

Section 3 discusses the class of “uniformly rectifiable” (UR) domains, introduced
by G. David and S. Semmes, essentially the maximal class of domains for which
estimates like (1.28) hold; cf. [D]. For such domains, one also has (1.25), (1.22), and
(1.19). (These latter results were demonstrated in [HMT].) In addition, the injec-
tivity result (1.38) holds for this class of domains. (This is also a result of [HMT].)
We also discuss some special classes of UR domains, namely Ahlfors regular NTA
domains and Ahlfors regular domains that satisfy a 2-sided local John condition.

In §4 we introduce the classes of regular Semmes-Kenig-Toro (SKT) domains and
ε-regular SKT domains. These classes arose in work of [Se2]–[Se4] and [KT1]–[KT4],
where they were called, respectively, chord-arc domains with vanishing constant,
and chord-arc domains with small constant. Classically, a chord-arc domain is a
domain Ω ⊂ C such that the arclength of ∂Ω from p ∈ ∂Ω to q ∈ ∂Ω is bounded
by a constant times |p − q| (the length of the chord). For the higher dimensional
variants, the phrase “chord-arc” seems not to capture well the essence of their
defining features, so we have proposed this alternative terminology.

In §5 we discuss results of [HMT] on the behavior of a class of operators of
the form K and K∗ that includes those arising in (1.18) and (1.34), with D as
in (1.4) and S as in (1.31), when Ω is a regular SKT domain, or more generally
an ε-regular SKT domain. These include compactness results when Ω is a regular
SKT domain, and operator norm estimates, modulo compacts, when Ω is an ε-
regular SKT domain. A key starting point is the proof of compactness in [H] when
Ω is a VMO1 domain with compact boundary. These compactness and almost
compactness results, for regular and ε-regular SKT domains, in turn imply that
the operators ±(1/2)I + K, and certain more general double layers, are Fredholm
of index zero.

In §6 we discuss how the Fredholmness results of §5, together with results dis-
cussed in §§2–4, lead to solvability results for (1.1) on these classes of domains. In
§6 we also discuss the Neumann boundary condition and briefly mention bound-
ary problems for several systems of equations, treated in [HMT] for regular and
ε-regular SKT domains.
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2. Finite perimeter domains, Ahlfors regular domains, and the Gauss-
Green formula

We will work in the Euclidean space setting here. Translation of this material
to the manifold setting is routine. An open set Ω ⊂ Rn is said to have locally finite
perimeter provided its characteristic function χΩ has the property that

(2.1) ∇χΩ = µ,

taken a priori as a distribution, is a locally finite Rn-valued measure. In such a
case, the Radon-Nikodym theorem implies

(2.2) µ = −νσ,

where σ is a locally finite, positive measure, supported on ∂Ω, and ν is a vector-
valued function, defined σ-a.e. on ∂Ω, satisfying |ν(x)| = 1, σ-a.e. The Besicovitch
differentiation theorem implies

(2.3) lim
r→0

1
σ(Br(x))

∫

Br(x)

ν dσ = ν(x),

for σ-a.e. x. Via distribution theory, for a vector field v ∈ C∞0 (Rn,Rn), 〈div v, χΩ〉 =
−〈v,∇χΩ〉, so (2.1)–(2.2) say

(2.4)
∫

Ω

div v dx =
∫

∂Ω

〈ν, v〉 dσ, ∀ v ∈ C∞0 (Rn,Rn).

We describe some results of Federer and De Giorgi on the structure of σ. Good
references for this material include [EG] and [Zie]. First,

(2.5) σ = Hn−1b∂∗Ω,

where Hn−1 is (n−1)-dimensional Hausdorff measure and ∂∗Ω ⊂ ∂Ω is the reduced
boundary of Ω, defined by

(2.6) ∂∗Ω = {x : (2.3) holds, with |ν(x)| = 1}.

(Remarks supporting (2.3) imply σ is supported on ∂∗Ω.) Second, ∂∗Ω is countably
rectifiable, i.e., it is a countable disjoint union

(2.7) ∂∗Ω =
⋃

k

Mk ∪N,
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where each Mk is a compact subset of an (n− 1)-dimensional C1 surface, to which
ν is normal in the usual sense, and Hn−1(N) = 0. Given (2.5), then (2.4) yields
the Gauss-Green formula

(2.8)
∫

Ω

div v dx =
∫

∂∗Ω

〈ν, v〉 dHn−1,

for v ∈ C∞0 (Rn,Rn). It is useful to know that ∂∗Ω ⊂ ∂∗Ω ⊂ ∂Ω, where ∂∗Ω is the
measure-theoretic boundary of Ω:

(2.9) ∂∗Ω = {x ∈ ∂Ω : lim sup
r→0

r−nVol(Br(x) ∩ Ω±) > 0},

where Ω+ = Ω, Ω− = Rn \ Ω. Furthermore, one has

(2.10) Hn−1(∂∗Ω \ ∂∗Ω) = 0.

It is the case that

(2.11) Ω has locally finite perimeter ⇔ Hn−1(∂∗Ω ∩ K) < ∞,

for all compact K.
Finite perimeter domains exist for which ∂Ω \ ∂∗Ω is quite large. For example,

let Ω ⊂ R2 be a slit disk. Then ∂∗Ω = ∂∗Ω is the boundary of the disk, and the
slit makes up ∂Ω \ ∂∗Ω. We will generally make the condition

(2.12) Hn−1(∂Ω \ ∂∗Ω) = 0

an hypothesis for our results. We mention some conditions guaranteeing this below.
Here is a significant class of locally finite perimeter domains. For A : Rn−1 → R,

let

(2.13) Ω = {x ∈ Rn : xn > A(x′)},

where x = (x′, xn). We have:

Proposition 2.1. Given

(2.14) A ∈ C(Rn−1), ∇A ∈ L1
loc(Rn−1),

then Ω, defined in (2.13), has locally finite perimeter.

For the proof, take a Friedrichs mollifier ψk ∈ C∞0 (Rn−1) and set Ak = ψk ∗ A.
Then

(2.15) Ak −→ A, locally uniformly,
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so

(2.16) χΩk
−→ χΩ in L1

loc(Rn).

Hence ∇χΩk
→ ∇χΩ in D′(Rn). Also, by the classical Gauss-Green formula for

smoothly bounded domains, ∇χΩk
= −νkσk, where σk is surface area on

(2.17) Σk = {x ∈ Rn : xn = Ak(x′)},

given in x′ coordinates by

(2.18) dσk(x′) =
√

1 + |∇Ak(x′)|2 dx′,

and νk is the downward pointing unit normal to Σk. The hypothesis (2.14) implies
that {νkσk : k ≥ 1} is a bounded set of Rn-valued measures on each set BR = {x ∈
Rn : |x| ≤ R}, so passing to the limit gives ∇χΩ = µ, a locally finite Rn-valued
measure, hence of the form µ = −νσ as in (2.2).

Note that passing to the limit k →∞ from

(2.19)
∫

Ωk

div v dx =
∫

Rn−1

〈
(∇Ak(x′),−1), v(x′, Ak(x′))

〉
dx′,

valid for v ∈ C∞0 (Rn,Rn), and invoking (2.4), gives

(2.20)
∫

∂Ω

〈ν, v〉 dσ =
∫

Rn−1

〈ν̃(x′), v(x′, A(x′))〉 dσ(x′),

where

(2.21) ν̃(x′) =
(∇A(x′),−1)√
1 + |∇A(x′)|2 , dσ(x′) =

√
1 + |∇A(x′)|2 dx′.

The formula (2.20) is valid for all v ∈ C∞0 (Rn,Rn), hence for all v ∈ C0
0 (Rn,Rn).

Regarding the relation between ∂Ω and ∂∗Ω, it is clear that ∂Ω = ∂∗Ω whenever
A is locally Lipschitz. We refer to §2.2 of [HMT] for a proof of the following.

Proposition 2.2. In the setting of Proposition 2.1, the condition (2.12) holds.

So far, we have discussed the Gauss-Green formula for v ∈ C∞0 (Rn,Rn). A simple
limiting argument extends (2.4), hence (2.8), to v ∈ C1

0 (Rn,Rn). As mentioned in
§1, for such purposes as extending Proposition 1.3 to rougher domains, we need
such an identity for much rougher vector fields v. Here is a preliminary extension.
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Proposition 2.3. If Ω ⊂ Rn has locally finite perimeter, then (2.4) holds for v in

(2.22) D = {v ∈ C0
0 (Rn,Rn) : div v ∈ L1(Rn)}.

Proof. Take a Friedrichs mollifier ϕk ∈ C∞0 (Rn) and set vk = ϕk ∗ v. Then (2.4)
gives

(2.23)
∫

Ω

div vk dx =
∫

∂Ω

〈ν, vk〉 dσ.

Since div vk = ϕk ∗ div v, the left side of (2.23) converges to
∫
Ω

div v dx (given
div v ∈ L1), and since vk → v uniformly (given v continuous), the right side of
(2.23) converges to

∫
∂Ω
〈ν, v〉 dσ, giving the desired result.

It is desirable to have (2.4) for functions defined only on Ω. Here is one such
result. Let open sets Ωk satisfy Ωk ⊂ Ω, Ωk ↗ Ω. We say {Ωk : k ≥ 1} is a tame
approximation to Ω if in addition there exists C(R) < ∞ such that, for R ∈ [1,∞),

(2.24) ‖∇χΩk
‖TV(BR) ≤ C(R), ∀ k ≥ 1,

where TV stands for the total variation of a vector measure. The domains treated
in Proposition 2.1 have this property. One can take

(2.25) Ωk = {(x′, xn) : xn > A(x′) + k−1}.

The following is a partial extension of Proposition 2.3.

Proposition 2.4. If Ω ⊂ Rn has locally finite perimeter and a tame interior ap-
proximation, then (2.4) holds for v in

(2.26) D̃ = {v ∈ C0
0 (Ω,Rn) : div v ∈ L1(Ω)}.

Proof. In this setting, one can use Proposition 2.3 to show that, for v ∈ D̃,

(2.27)
∫

Ωk

div v dx = −〈v, χΩk
〉.

As k → ∞, the left side of (2.27) converges to the left side of (2.4). Using (2.24),
one can deduce that the right side of (2.27) converges to −〈v,∇χΩ〉, from the fact
that distribution theory yields such convergence if v ∈ C∞0 (Rn,Rn).

Now vector fields v = u∇u, with u = Sg, g ∈ L2(∂Ω), arising in the proof of
Proposition 1.3, are much rougher than those treated in Proposition 2.4. We intro-
duce a class of domains for which a version of the Gauss-Green formula adequate
for an extension of Proposition 1.3 was established in [HMT].
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Let Ω ⊂ Rn be an open set, of locally finite perimeter. We say Ω is Ahlfors regular
if (2.12) holds and there exist C0, C1 ∈ (0,∞) such that, for each r > 0, x ∈ ∂Ω,

(2.28) C0r
n−1 ≤ σ(Br(x)) ≤ C1r

n−1.

If Ω is bounded, we require (2.28) only for 0 < r < diamΩ. To state the next
Gauss-Green formula, set

(2.29) Lp = {v ∈ C0(Ω) : N v ∈ Lp(∂Ω), and ∃ nontangential limit vb, σ-a.e.}.

Here, as in (1.21), N v is the nontangential maximal function

(2.30) N v(x) = sup
y∈Γ(x)

|v(y)|,

where, as in (1.20),

(2.31) Γ(x) = {y ∈ Ω : d(y, x) ≤ 2 dist(y, ∂Ω)}.

Nontangential convergence at x ∈ ∂Ω means

(2.32) lim
y∈Γ(x),y→x

v(y) = vb(x).

Here is the result.

Proposition 2.5. Let Ω ⊂ Rn be bounded and Ahlfors regular. Then

(2.33)
∫

Ω

div v dx =
∫

∂Ω

〈ν, vb〉 dσ

for each vector field v satisfying, for some p > 1,

(2.34) v ∈ Lp and div v ∈ L1(Ω).

For this to be meaningful, one needs to know that

(2.35) x ∈ Γ(x), for σ-a.e. x ∈ ∂Ω.

A domain Ω satisfying (2.35) is said to be weakly accessible. In the course of proving
Proposition 2.5 in [HMT], the following is established.

Proposition 2.6. If Ω ⊂ Rn is Ahlfors regular, then it is a weakly accessible
domain.

See §2.3 of [HMT] for a proof of Proposition 2.5. We mention one ingredient.
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Proposition 2.7. In the setting of Proposition 2.5, there exists C = C(Ω) such
that, for all measurable u : Ω → R,

(2.36)
1
δ

∫

Oδ

|u| dx ≤ C‖Nu‖L1(∂Ω), ∀ δ ∈ (0, diamΩ),

where

(2.37) Oδ = {x ∈ Ω : dist(x, ∂Ω) ≤ δ}.

Note that a special case of (2.36) is that

(2.38) Vol(Oδ) ≤ Cδ.

Actually, a shorter direct proof of this is available, involving convolving σ with
χBδ(0). We omit details. Using (2.38), we can establish the following.

Proposition 2.8. If Ω ⊂ Rn is bounded and Ahlfors regular, then Ω has a tame
interior approximation.

Proof. With Ωs = {x ∈ Ω : dist(x, ∂Ω) ≥ s}, set

(2.39)
ψδ(x) = δ, x ∈ Ωδ,

dist(x, ∂Ω), x ∈ Ω \ Ωδ.

Then ψδ is Lipschitz, ∇ψδ is supported on Oδ, and |∇ψδ| = 1 on Oδ. A version of
the co-area formula (Theorem 5.4.4 of [Zie]) gives

(2.40)
∫

Oδ

|∇ψδ| dx =
∫ δ

0

‖∇χΩs‖TV ds.

Then, by (2.38), since the left side of (2.40) equals Vol(Oδ), we have

(2.41)
∫ δ

0

‖∇χΩs‖TV ds ≤ Cδ,

for all small δ. Thus, for each k ≥ 1, there exists s ∈ (0, 1/k) such that ‖∇χΩs‖TV ≤
C, and Proposition 2.8 follows.

As a consequence, Proposition 2.4 applies to bounded Ahlfors regular domains,
but of course Proposition 2.5 is much stronger.

The boundary of an Ahlfors regular domain is a measured metric space of ho-
mogeneous type, as studied in [CW]. A lot of tools for harmonic analysis, such as
Hardy-Littlewood maximal function estimates, aspects of Calderon-Zygmund the-
ory, atomic Hardy spaces, and theories of BMO(∂Ω) and VMO(∂Ω), are available
for such spaces. See §§2.1 and 2.4 of [HMT] for a collection of such results.

In the compact case, the boundary of an Ahlfors regular domain is a natural
setting for the result that weakly singular integral operators are compact. We have
the following.
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Proposition 2.9. Let Ω ⊂ Rn be Ahlfors regular, and assume ∂Ω is compact. Let
k : ∂Ω× ∂Ω → C be measurable and satisfy

(2.42) |k(x, y)| ≤ C
ω(|x− y|)
|x− y|n−1

, x, y ∈ ∂Ω.

Then

(2.43) Kg(x) =
∫

∂Ω

k(x, y)g(y) dσ(y)

has the property

(2.44) K : Lp(∂Ω) −→ Lp(∂Ω) is compact, for 1 < p < ∞,

provided ω is a modulus of continuity that satisfies the Dini condition

(2.45)
∫ 1

0

ω(t)
t

dt < ∞.

Proof. Same as that of Proposition 1.1.

An important class of Ahlfors regular domains is the class of BMO1 domains.
The boundary of such a domain is locally the graph of a function A ∈ BMO1, that
is,

(2.46) A ∈ C(Rn−1), ∇A ∈ BMO(Rn−1).

We state the result.

Proposition 2.10. If Ω ⊂ Rn is a BMO1 domain, it is Ahlfors regular.

Since BMO(Rn−1) ⊂ Lp
loc(Rn−1) for all p < ∞, Propositions 2.1–2.2 apply, as

do (2.20)–(2.21). Thus, what is to be proved is that, if A satisfies (2.46), then there
exist C0, C1 ∈ (0,∞) such that, for all x′ ∈ Rn−1, r > 0,

(2.47) C0r
n−1 ≤

∫

{y′:|x′−y′|2+|A(x′)−A(y′)|2<r2}

√
1 + |∇A(y′)|2 dy′ ≤ C1r

n−1.

For details, see §2.5 of [HMT].

Remark. For simplicity, we have defined N by (2.30). More generally, one can
take α ∈ (0,∞), set

(2.48) Γα(x) = {y ∈ Ω : d(y, x) ≤ (1 + α) dist(y, ∂Ω)},
and define

(2.49) Nαu(x) = sup
y∈Γα(x)

|u(y)|.

As shown in §2.1 of [HMT], if Ω is Ahlfors regular, α, β ∈ (0,∞), and 1 < p < ∞,

(2.50) ‖Nαu‖Lp(∂Ω) ≈ ‖Nβu‖Lp(∂Ω).
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3. Uniformly rectifiable domains and layer potentials

We continue to take Ω ⊂ Rn, as the generalization to the manifold setting is
routine. We say an open set Ω ⊂ Rn is uniformly rectifiable provided it is Ahlfors
regular and the following property holds. There exist κ,M ∈ (0,∞), called the UR
constants of Ω, such that for each x ∈ ∂Ω, R > 0, there is a Lipschtz map

(3.1) ϕ : Bn−1
R −→ Rn, Bn−1

R = {y′ ∈ Rn−1 : |y′| < R},

such that

(3.2) ‖∇ϕ‖L∞ ≤ M, Hn−1
(
∂Ω ∩BR(x) ∩ ϕ(Bn−1

R )
)
≥ κRn−1.

If ∂Ω is compact, we require this only for R ∈ (0, 1]. For short, we call such Ω a
UR domain.

The following result is established in [Dav], Proposition 4 bis.

Proposition 3.1. Let Ω ⊂ Rn be a bounded UR domain, and take p ∈ (1,∞).
Then there exists N ∈ Z+ and C ∈ (0,∞), each depending only on p and the
Ahlfors regularity and UR constants of Ω, with the following property. Assume
k ∈ CN (Rn \ 0) is odd and homogeneous of degree −(n− 1). Then, with

(3.3)

Kεf(x) =
∫

∂Ω\Bε(x)

k(x− y)f(y) dσ(y), x ∈ ∂Ω,

K∗f(x) = sup
0<ε≤1

|Kεf(x)|,

we have

(3.4) ‖K∗f‖Lp(∂Ω) ≤ Cp

∥∥k
∣∣
Sn−1

∥∥
CN ‖f‖Lp(∂Ω).

In the setting of Proposition 3.1, consider the layer potential

(3.5) T f(x) =
∫

∂Ω

k(x− y)f(y) dσ(y), x ∈ Ω.

In §3.2 of [HMT], the estimate (3.4) is supplemented by the nontangential maximal
function estimate

(3.6) ‖NT f‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω), 1 < p < ∞,
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where N is defined as in (2.30). Indeed, as shown there, one has

(3.7) NT f(x) ≤ K∗f(x) + CMf(x), x ∈ ∂Ω,

whereMf is the Hardy-Littlewood maximal function. Then (3.6) follows from (3.4)
and the standard Hardy-Littlewood maximal function estimate. In more detail, it
is shown that

(3.8)

x ∈ ∂Ω, y ∈ Γ(x), |x− y| = ε

=⇒ |T f(y)−K2εf(x)| ≤ CMf(x)

=⇒ |T f(y)| ≤ K∗f(x) + CMf(x),

which leads to (3.7).
If Ω is a bounded UR domain, then

(3.9) T : Lp(∂Ω) −→ Lpn/(n−1)(Ω), 1 < p < ∞.

This is a consequence of (3.6) together with the following, proven in §3.2 of [HMT].

Proposition 3.2. If Ω ⊂ Rn is a bounded Ahlfors regular domain, then, for 1 <
p < ∞, u ∈ C(Ω),

(3.10) ‖u‖Lpn/(n−1)(Ω) ≤ C‖Nu‖Lp(∂Ω).

As for operator convergence and pointwise convergence, we have the following.

Proposition 3.3. In the setting of Proposition 3.1, we have, for each f ∈ Lp(∂Ω), p ∈
(1,∞),

(3.11)
lim
ε↘0

Kεf(x) = PV
∫

∂Ω

k(x− y)f(y) dσ(y)

= Kf(x),

for σ-a.e. x ∈ ∂Ω, and

(3.12) K : Lp(∂Ω) −→ Lp(∂Ω)

satisfies the bound (3.4). Furthermore,

(3.13) lim
y→x,y∈Γ(x)

T f(y) =
1
2i

k̂(ν(x))f(x) + Kf(x),

for σ-a.e. x ∈ ∂Ω.
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The proof, given in §§3.3–3.5 of [HMT], proceeds in stages, starting with such a
result for the double layer potential (previewed in §1)

(3.14) Df(x) =
∫

∂Ω

∂νyE(x− y)f(y) dσ(y),

where E(x − y) is the fundamental solution of the Laplace operator ∆. In the
Euclidean context, we have

(3.15) ∂νy
E(x− y) =

1
ωn

〈ν(y), y − x〉
|x− y|n ,

where ωn is the area of the unit sphere Sn−1 ⊂ Rn. The integral kernel ∂νyE(x−y)
is a sum

∑
kj(x−y)νj(y), where each kj satisfies the conditions of Proposition 3.1.

With a slight abuse of notation, we set

(3.16) Kεf(x) =
∫

∂Ω\Bε(x)

∂νyE(x− y)f(y) dσ(y), K∗f(x) = sup
ε>0

|Kεf(x)|.

As in (3.4) and (3.6), we have, for 1 < p < ∞,

(3.17) ‖K∗f‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω), ‖NDf‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω).

We claim that, for each f ∈ Lp(∂Ω),

(3.18) lim
ε↘0

Kεf(x) = PV
∫

∂Ω

∂νyE(x− y)f(y) dσ(y) = Kf(x),

and

(3.19) lim
y→x,y∈Γ(x)

Df(y) =
(1

2
I + K

)
f(x),

for σ-a.e. x ∈ ∂Ω. In view of (3.17), it suffices to prove (3.18)–(3.19) for f in a
dense subspace of Lp(∂Ω), for example, the space Lip(∂Ω) of Lipschitz continuous
functions on the compact set ∂Ω. In fact, we have the following.

Proposition 3.4. If Ω is a bounded, Ahlfors regular domain, and f ∈ Lip(∂Ω),
then (3.18) holds for each x ∈ ∂∗Ω, and (3.19) holds for each x ∈ ∂∗Ω such that
x ∈ Γ(x).

Proof. To establish that

(3.20)
∫

∂Ω\Bε(x)

∂νyE(x− y)f(y) dσ(y)
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converges as ε ↘ 0, add −f(x) + f(x) to f(y). We have

(3.21)

lim
ε↘

1
ωn

∫

∂Ω\Bε(x)

〈ν(y), y − x〉
|x− y|n

[
f(y)− f(x)

]
dσ(y)

=
1

ωn

∫

∂Ω

〈ν(y), y − x〉
|x− y|n

[
f(y)− f(x)

]
dσ(y),

by the Lebesgue dominated convergence theorem, given the upper bound in (2.28).
To prove (3.18), it remains to establish convergence of (3.20) with f(y) replaced by
1. To get this, pick R such that Ω ⊂ BR(x) and set

(3.22) Oε,R = BR(x) \ (
Ω ∪Bε(x)

)
.

Using the Gauss-Green formula (2.4), one can show that, for a.e. ε > 0,Oε,R has
finite perimeter and

(3.23)

∫

Oε,R

div v(y) dy =
∫

∂Ω\Bε(x)

〈ν(y), v(y)〉 dσ(y) +
∫

∂Bε(x)∩Ωc

〈ν(y), v(y)〉 dσ(y)

+
∫

∂BR(x)

〈ν(y), v(y)〉 dσ(y),

whenever v ∈ C∞(Oε,R,Rn). (Cf. [HMT], §2.2.) This applies to v(y) = ∇yE(x−y).
Now ∆yE(x− y) = 0 on Rn \ {x}, hence on Oε,R, so (3.23) gives

(3.24)

∫

∂Ω\Bε(x)

∂νyE(x− y) dσ(y)

=
1

ωn

∫

∂BR(x)

〈ν(y), y − x〉
|x− y|n dσ(y)− 1

ωn

∫

∂Bε(x)∩Ωc

〈ν(y), y − x〉
|x− y|n dσ(y).

The first term on the right equals 1. The second term equals

(3.25) − 1
ωn

ε−(n−1) σ(∂Bε(x) ∩ Ωc).

Now if x ∈ ∂∗Ω, then the orthogonal complement to ν(x), translated to pass through
x, is an approximate tangent plane, and the limit of (3.25) as ε ↘ 0 (at least on
a set of density 1 at 0) equals 1/2. Finally, elementary arguments eliminate the
restriction on ε, and we get

(3.26) lim
ε↘0

∫

∂Ω\Bε(x)

∂νyE(x− y) dσ(y) =
1
2
, ∀x ∈ ∂∗Ω.
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This gives (3.18).
We turn to (3.19). Given x ∈ ∂∗Ω ∩ Γ(x), we write

(3.27) lim
z→x,z∈Γ(x)

Df(z) = I1 + I2 + I3,

with

(3.28)

I1 = lim
ε↘0

lim
z→x,z∈Γ(x)

1
ωn

∫

∂Ω\Bε(x)

〈ν(y), y − z〉
|y − z|n f(y) dσ(y),

I2 = lim
ε↘0

lim
z→x,z∈Γ(x)

1
ωn

∫

∂Ω∩Bε(x)

〈ν(y), y − z〉
|y − z|n [f(y)− f(x)] dσ(y),

I3 = f(x) · lim
ε↘0

lim
z→x,z∈Γ(x)

1
ωn

∫

∂Ω∩Bε(x)

〈ν(y), y − z〉
|y − z|n dσ(y).

For each ε > 0, the Lebesgue dominated convergence theorem applies to the limit
as Γ(x) 3 z → x in I1. We get

(3.29)
I1 = lim

ε↘0

1
ωn

∫

∂Ω\Bε(x)

〈ν(y), y − x〉
|x− y|n f(y) dσ(y)

= Kf(y),

by (3.18). To handle I2, note that

(3.30)

x, y ∈ ∂Ω, z ∈ Γ(x) ⇒ |x− y| ≤ |z − y|+ |z − x|
≤ |z − y|+ 2dist(z, ∂Ω)

≤ 3|z − y|,
so, for Lipschitz continuous f , the absolute value of the integrand in I2 is

(3.31) ≤ C

|x− y|n−2
,

and the Lebesgue dominated convergence theorem applies, to give

(3.31) I2 = 0.

Finally, for I3, use of harmonicity and the Gauss-Green formula, similar to (3.24),
gives, for z ∈ Γ(x) ⊂ Ω,

(3.33)

∫

∂Ω∩Bε(x)

∂νyE(z − y) dσ(y)

= − 1
ωn

∫

Bε(x)∩Ωc

〈ν(y), y − z〉
|y − z|n dσ(y),
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which tends to

(3.34) − 1
ωn

∫

Bε(x)∩Ωc

〈ν(y), y − x〉
|y − x|n dσ(y),

as z → x, and parallel to (3.24)–(3.26), this tends to 1/2 as ε ↘ 0, if x ∈ ∂∗Ω. This
gives (3.19).

The next step in §3.3 of [HMT] is to apply a similar argument to

(3.35) Rjkf(x) =
∫

∂Ω

[
νj(y)∂kE(x− y)− νk(y)∂jE(x− y)

]
f(y) dσ(y), x ∈ Ω,

and
(3.36)

Rjkf(x) = lim
ε↘0

∫

∂Ω\Bε(x)

[
νj(y)∂kE(x− y)− νk(y)∂jE(x− y)

]
f(y) dσ(y), x ∈ ∂Ω.

We get
Rjkf

∣∣
∂Ω

= Rjkf, σ-a.e. on ∂Ω,

if Ω is a UR domain. Then results are obtained on ∇Sf , where S is the single layer
potential

(3.37) Sf(x) =
∫

∂Ω

E(x− y)f(y) dσ(y),

using the identities

(3.38) ∂jSf = −D(νjf) +Rjk(νkf).

In particular, generalizing (1.34), we have

(3.38A) lim
y→x,y∈Γ(x)

∂νSf(y) =
(
−1

2
I + K∗

)
f(x), σ-a.e. x ∈ ∂Ω.

Section 3.4 of [HMT] establishes Proposition 3.3 in case

(3.39) k(x) =
P`(x)
|x|n+`−1

,

whenever P` is an odd harmonic polynomial on Rn, homogeneous of (odd) degree
` ≥ 3 (the case ` = 1 being covered by the treatment of ∇Sf). We refer the reader
to that subsection for details, which involve Clifford analysis, and induction on `.
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The proof of Proposition 3.3 is finished in §3.5 of [HMT], using the classical
device of expanding (the odd function) k|Sn−1 in (odd) spherical harmonics. This
yields

(3.40) k(x) =
∑

`≥1

a`
P`(x)
|x|n+`−1

,

with P` as above. If k|Sn−1 is smooth enough, appropriate norms of a`P`|Sn−1 decay
rather rapidly, giving a convergent operator expansion and finishing the proof of
Proposition 3.3.

In fact, §3.5 of [HMT] goes one step further, using such an expansion to treat
“variable coefficient” versions of (3.3), (3.5), and (3.11), with k(x− y) replaced by

(3.41) k(x, x− y).

Here, k(x, z) is continuous on Rn× (Rn \ 0), along with z-derivatives of order ≤ N ,
and homogeneous of degree −(n − 1) in z, and satisfies k(x,−z) = −k(x, z). In
place of (3.40), we have

(3.42) k(x, x− y) =
∑

`≥1

a`(x)
P`(x− y)
|x− y|n+`−1

.

As a consequence, one has

(3.43) Kf(x) = PV
∫

∂Ω

k(x, x− y)f(y) dσ(y)

defining a bounded operator on Lp(∂Ω) for 1 < p < ∞, as in (3.12), obtained in
(3.11), with

(3.44) Kεf(x) =
∫

∂Ω\Bε(x)

k(x, x− y)f(y) dσ(y),

and K∗f(x) = sup
ε>0

|Kεf(x)| satisfies, for 1 < p < ∞,

(3.45) ‖K∗f‖Lp(∂Ω) ≤ Cp sup
x

∥∥k(x, ·)∣∣
Sn−1

∥∥
CN ‖f‖Lp(∂Ω).

Also the double layer potential

(3.46) T f(x) =
∫

∂Ω

k(x, x− y)f(y) dσ(y), y ∈ Ω,
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satisfies (3.6), and

(3.47) lim
y→x,y∈Γ(x)

T f(y) =
1
2i

k̂(x, ν(x))f(x) + Kf(x),

for σ-a.e. x ∈ ∂Ω, where k̂(x, ξ) is the partial Fourier transform of k(x, z) with
respect to z. In addition, variants of (3.43)–(3.47) hold with

(3.47A) k(y, x− y)

in place of k(x, x− y).

Remark. In the setting of Lipschitz domains, passing to such results via the expan-
sion (3.42) formed the starting point for the work of [MT1], on variable coefficient
Laplacians on Lipschitz domains, which led to [MT2]–[MT5], [MMT], and other
works. As in these papers, it is such a device that allows for a treatment of elliptic
boundary problems in the Riemannian manifold setting. See §6 for more on this.

We next record some geometrical conditions on an Ahlfors regular domain Ω
that are known to imply that Ω is a UR domain. The following is a result of [DJ].

Proposition 3.5. Let Ω ⊂ Rn be Ahlfors regular. Assume ∂Ω satisfies the follow-
ing “two disks” condition. There exists C0 ∈ (0,∞) such that for each x ∈ ∂Ω and
r > 0, there are two (n− 1)-dimensional disks, with centers at a distance ≤ r from
x, radius r/C0, one contained in Ω and the other in Rn \ Ω. (If ∂Ω is compact,
one can pick R0 ∈ (0,∞) and restrict attention to r ∈ (0, R0].) Then Ω is a UR
domain.

A similar result, but with balls in place of disks, had been established in [Se5].
One important class of UR domains is the class of Ahlfors regular domains that

are nontangentially accessible (NTA), a class introduced in [JK2]. An open set
Ω ⊂ Rn is an NTA domain provided

(3.48) Ω satisfies a 2-sided corkscrew condition,

and

(3.49) Ω satisfies a Harnack chain condition.

The 1-sided corkscrew condition is that there exist M > 1 and R > 0 such that,
if x ∈ ∂Ω and r ∈ (0, R), then there exists y = y(x, r) ∈ Ω such that

(3.50) |x− y| < r and dist(y, ∂Ω) >
r

M
.

The 2-sided corkscrew condition is that both Ω and Rn \Ω have this property. Note
that

(3.51) 2-sided corkscrew condition =⇒ ∂Ω = ∂∗Ω.
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A Harnack chain (of type (K, M)) from x1 ∈ Ω to x2 ∈ Ω consists of balls
B1, . . . , BK such that

(3.52)

x1 ∈ B1, x2 ∈ BK ,

Bj ∩Bj+1 6= ∅, Bj ⊂ Ω,

Bj has radius rj and
rj

M
< dist(Bj , ∂Ω) < Mrj .

The Harnack chain condition on Ω is that there exist M > 1, R > 0 such that
whenever r ∈ (0, R), if

(3.53)
q ∈ ∂Ω, x1, x2 ∈ Br/4(q) ∩ Ω,

and |x1 − x2| < 2k ·min
j

dist(xj , ∂Ω)

(with k ≥ 1) then there is a Harnack chain of type (K, M) from x1 to x2, with

(3.54) K ≤ Mk, and diam B` ≥ M−1 min
j

dist(xj , ∂Ω).

It follows from Proposition 3.5 that if Ω ⊂ Rn is Ahlfors regular and satisfies the
2-sided corkscrew condition, then it is a UR domain.

A more general class of domains than NTA is the class satisfying a local John
condition. For an open set Ω ⊂ Rn, this condition is that there exist θ ∈ (0, 1), R >
0 (R = ∞ if ∂Ω is not compact) with the following properties. For each p ∈ ∂Ω,
r ∈ (0, R), there is a point pr ∈ Br(p) ∩ Ω such that

(3.55) Bθr(pr) ⊂ Ω,

and, for each x ∈ ∂Ω∩Br(p), there is a path γx from x to pr, of length ≤ r/θ, such
that

(3.56) dist(γx(t), ∂Ω) ≥ θ|γx(t)− x|, ∀ t.

If Ω and Rn \ Ω both satisfy a local John condition, we say Ω satisfies a 2-sided
local John condition.

The condition on γx above is stronger than the corkscrew condition, so if Ω is
Ahlfors regular and satisfies a 2-sided John condition, then Ω is a UR domain.

Despite what is stated in the last paragraph, it is shown in §3.1 of [HMT] that

(3.57) Every NTA domain satisfies a local John condition.

We have the following result on BMO1 domains.
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Proposition 3.6. If Ω ⊂ Rn is a BMO1 domain, then it is an NTA domain, hence
(since, by Proposition 2.10, BMO1 domains are Ahlfors regular) it is a UR domain.

Proof. It is shown in [JK2] that if A ∈ Λ∗(Rn−1), the Zygmund space, then Ω =
{(x′, xn) : xn > A(x′)} is an NTA domain. Proposition 3.6 then follows from the
fact that BMO1(Rn−1) ⊂ Λ∗(Rn−1).

Remark. By Proposition 3.6 and (3.51) we see that if Ω is a BMO1 domain, then

(3.58) ∂∗Ω = ∂Ω,

which is stronger than (2.10).
Another important result of [DJ] is that if a bounded domain Ω is Ahlfors regular

and NTA, then harmonic measure on ∂Ω satisfies the A∞ weight condition. Hence
the Poisson integral

(3.59) PI : C(∂Ω) −→ C(Ω),

for which u = PI f solves ∆u = 0, u|∂Ω = f (in this case, every boundary point is
regular) extends continuously to

(3.60) PI : Lq(∂Ω) −→ {u ∈ C∞(Ω) : ∆u = 0},

for some q < ∞. Recent papers, including [KT4] and [MPT], have dubbed such
domains “chord-arc domains.”

Classically, a chord-arc domain is a planar domain Ω ⊂ R2, for which ∂Ω is
a simple closed curve, which is rectifiable and has the property that there exists
β < ∞ such that, if p, q ∈ ∂Ω and γpq ⊂ ∂Ω is the shorter of the two arcs joining p
to q, then its length `(γpq) satisfies

(3.61) |p− q| ≤ `(γpq) ≤ (1 + β)|p− q|.

Clearly (3.61) implies Ahlfors regularity. It is classical that such a planar domain
is a quasidisk. It was proven in [Jo] that such Ω is NTA. Lavrientiev proved (3.60)
in this setting, in 1936.

Works of [Se2]–[Se4] and [KT1]–[KT4] have dealt with higher dimensional gen-
eralizations of “chord-arc domains with small constant,” and “chord-arc domains
with vanishing constant.” We turn to this topic in the next section.
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4. Regular SKT domains and variants

At the end of §3, we defined the notion of chord-arc domains Ω ⊂ R2, by (3.61),
and noted that domains Ω ⊂ Rn for n > 2 are called chord-arc domains in some
papers if they are Ahlfors regular and NTA. To proceed further, we recall that a
planar domain Ω ⊂ R2 is said to be chord-arc with constant δ > 0 provided there
exists A > 0 such that, for p, q ∈ ∂Ω,

(4.1) |p− q| ≤ A =⇒ `(γpq) ≤ (1 + δ)|p− q|.
The domain Ω is said to be vanishing chord-arc if it is chord-arc with constant δ
for all δ > 0, so

(4.2) lim
p→q

`(γpq)
|p− q| = 1, ∀ q ∈ ∂Ω.

It was shown in [Se2]–[Se3] that if Ω ⊂ R2 is chord-arc with sufficiently small
constant δ > 0, then the outward unit normal ν has the property

(4.3) ‖ν‖BMO(γpq) ≤ Cδ1/2,

whenever p, q ∈ ∂Ω, |p− q| ≤ A, with A as in (4.1). Conversely, as shown in these
papers, if Ω is bounded by a simple, closed, rectifiable curve and ν ∈ BMO(∂Ω),
with ‖ν‖BMO(γpq) ≤ η sufficiently small, whenever |p− q| ≤ A, then Ω is chord-arc,
with constant δ ≤ Cη2. This work also showed that, for Ω ⊂ R2,

(4.4) Ω vanishing chord-arc =⇒ ν ∈ VMO(∂Ω).

Higher dimensional analogues of these classes of domains were introduced and
studied in [Se4]–[Se5] and [KT1]–[KT4]. The definitions of these classes (which we
discuss below) involved both the notions of ν ∈ BMO, or VMO, and the notion of
Reifenberg flatness. However, they did not involve the notion of “chord” or “arc,”
and there is motivation to give these classes more fitting names than chord-arc
domains with small constant (resp., with vanishing constant). On the other hand, a
label like “Ahlfors regular NTA domains with BMO bounds (resp., VMO condition)
on ν and Reifenberg-flatness condition” won’t do. In [HMT] it was proposed to call
them ε-regular (resp., regular) Semmes-Kenig-Toro (SKT) domains. We proceed
to define these classes of domains.

We start with the notion of Reifenberg flatness. If Ω ⊂ Rn is open, one says ∂Ω
is Reifenberg flat if on all scales, given q ∈ ∂Ω, Br(q)∩ ∂Ω is well approximated, in
a Hausdorff distance sense, by an (n−1)-plane through q (∩Br(q)). More precisely,
given q ∈ ∂Ω, set

(4.5) θ(q, r) = inf
L

1
r
D[∂Ω ∩Br(q), L ∩Br(q)],
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where the inf is over all (n− 1)-planes through q, and D[ , ] is Hausdorff distance.
Then ∂Ω is δ-Reifenberg flat if and only if, for each compact K ⊂ ∂Ω, there exists
R > 0 such that

(4.6) sup
0<r≤R

sup
q∈K

θ(q, r) ≤ δ.

One requires δ < 1/4
√

2. One says ∂Ω is Reifenberg flat with vanishing constant
provided it is δ-Reifenberg flat for some δ ∈ (0, 1/4

√
2), and

(4.7) lim
r↘0

sup
q∈K

θ(q, r) = 0,

for each compact K ⊂ ∂Ω.
These labels are assigned to the domain Ω if, in addition, there is the following

separation property: given K ⊂ ∂Ω compact, there exists R > 0 such that, for each
q ∈ K, r ∈ (0, R], there is an (n − 1)-plane L(q, r) through q, with normal nq,r,
such that

(4.8) A =
{

x + tnq,r ∈ Br(q) : x ∈ L(q, r), t >
r

4

}
⊂ Ω,

and

(4.9) B =
{

x− tnq,r ∈ Br(q) : x ∈ L(q, r), t >
r

4

}
⊂ Rn \ Ω.

Note. The separation property implies ∂Ω = ∂∗Ω.

The following was established in [KT1].

Proposition 4.1. There exists δn ∈ (0, 1/4
√

2) such that, if δ ∈ (0, δn), Ω ⊂ Rn

has the separation property, and ∂Ω is δ-Reifenberg flat, then Ω is an NTA domain.

In light of this, given δ < δn, one says Ω is a δ-Reifenberg flat domain provided
it has the separation property and ∂Ω is δ-Reifenberg flat. If, in addition, (4.7)
holds, one says Ω is a Reifenberg flat domain with vanishing constant.

We now define three classes of SKT domains.

Definition 4.1. Given δ ∈ (0, δn), a domain Ω ⊂ Rn is a δ-SKT domain provided

(4.10) Ω is Ahlfors regular,

(4.11) Ω is a δ-Reifenberg flat domain,

and, given K ⊂ ∂Ω compact, there exists R > 0 such that

(4.12) sup
q∈K

‖ν‖BMO(BR(q)∩∂Ω) < δ.
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Definition 4.2. In the setting of Definition 4.1, if, in addition,

(4.13) ν ∈ VMO(∂Ω),

we say Ω is a regular SKT domain, while if

(4.14) dist(ν, VMO(∂Ω)) < ε,

the distance taken in BMO-norm, we say Ω is an ε-regular SKT domain.

Note. If δ < δn and Ω is a δ-SKT domain, then Ω is Ahlfors regular and NTA;
hence it is a UR domain.

Definition 4.1 and the first part of Definition 4.2 are from [KT2], where the
domains were called, respectively, δ-chord-arc domains and chord-arc domains with
vanishing constant. The following was proved in [KT2].

Proposition 4.2. Assume Ω ⊂ Rn is Ahlfors regular and δ-Reifenberg flat (with
δ < δn). Then the following are equivalent.

(4.15) Ω is a regular SKT domain.

(4.16)
Ω is Reifenberg flat with vanishing constant, and for each compact K ⊂ ∂Ω,

lim
r↘0

sup
q∈K

1
An−1rn−1

σ(Br(q) ∩ ∂Ω) = 1,

where An−1 = area of Sn−1.

(4.17)

For each compact K ⊂ ∂Ω,

lim
r↘0

inf
q∈K

1
An−1rn−1

σ(Br(q) ∩ ∂Ω)

= lim
r↘0

sup
q∈K

1
An−1rn−1

σ(Br(q) ∩ ∂Ω) = 1.

In counterpoint to these results, we have the following two results, established
in §4.2 of [HMT].

Proposition 4.3. Let Ω ⊂ Rn be Ahlfors regular and satisfy a two-sided local John
condition. There exist ε0 and C0, depending only on n and the John and Ahlfors
regularity constants, with the following significance. If ε ∈ (0, ε0) and (4.14) holds,
then Ω is a δ-SKT domain, with δ = C0ε. In particular, Ω is a δ-Reifenberg flat
domain and hence a two-sided NTA domain.
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Proposition 4.4. If Ω ⊂ Rn is Ahlfors regular, the following are equivalent.

(4.18) Ω satisfies a 2-sided local John condition and ν ∈ VMO(∂Ω),

(4.19) Ω is 2-sided NTA and ν ∈ VMO(∂Ω),

(4.20) Ω is a regular SKT domain.

In Propositions 4.3–4.4, δ-Reifenberg flatness is part of the conclusion, rather
than part of the hypothesis. A key tool in the work of §4.2 of [HMT] is a variant of
the Semmes decomposition theorem. Such a decomposition was introduced in [Se3],
where it was stated for C2 surfaces, with estimates independent of this degree of
smoothness. A more general result, with hypotheses involving Reifenberg flatness,
was given in [KT2]. The decomposition theorem in [HMT] was done in the setting
of an Ahlfors regular domain Ω ⊂ Rn, satisfying a 2-sided local John condition.
Roughly, if the unit normal has small local mean oscillation, then, at an appropriate
scale, ∂Ω agrees with the graph of a function with small Lipschitz constant, except
for a small bad set, while staying close to this graph even on the bad set. See
[HMT] for further details.

The following identifies a significant class of regular SKT domains.

Proposition 4.5. If Ω ⊂ Rn is a VMO1 domain, then it is a regular SKT domain.

Recall from Propositions 2.10 and 3.6 that if Ω is a BMO1 domain, then it is
Ahlfors regular and NTA. The final ingredient for Proposition 4.5 is that if Ω is
VMO1, then (4.13) holds. More generally, as shown in §2.5 of [HMT], if Ω has the
form (2.13), with A ∈ BMO1, then

(4.21) dist(ν, VMO(∂Ω)) ≤ C(1 + ‖∇A‖BMO) dist(∇A, VMO(Rn)).

The proof uses the John-Nirenberg inequality.
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5. Fredholm properties of layer potentials on regular SKT domains

The following is the major result in §4.5 of [HMT].

Proposition 5.1. Let Ω ⊂ Rn be a UR domain, and assume ∂Ω is compact. Let
k : Rn \ 0 → R be smooth, even, and homogeneous of degree −n. Consider the
operator T , defined by

(5.1) Tf(x) = PV
∫

∂Ω

〈x− y, ν(y)〉 k(x− y)f(y) dσ(y), x ∈ ∂Ω

(which, by results of §3, is bounded on Lp(∂Ω) for all p ∈ (1,∞)). Then

(5.2) Ω regular SKT domain ⇒ T : Lp(∂Ω) → Lp(∂Ω) compact, ∀ p ∈ (1,∞).

More generally, if Ω is Ahlfors regular and satisfies a 2-sided local John condition,
and ∂Ω is compact, then, given p ∈ (1,∞), for each ε > 0, there exists δ > 0,
depending only on ε, the Ahlfors and John constants of Ω, n, p, and the norm of
k in (3.45), such that

(5.3) dist(ν, VMO(∂Ω)) < δ =⇒ dist(T,K(Lp(∂Ω)) < ε.

Here, K(Lp(Ω)) denotes the set of compact operators on Lp(∂Ω), and the dist
on the right side of (5.3) is the distance in L(Lp(∂Ω)).

Remark. With µ as in (2.1)–(2.2), we can write (5.1) as

Tf(x) = −PV
∫

∂Ω

k(x− y)(x− y)f(y) dµ(y).

An expansion of the form (3.42) allows us to replace k(x− y) in (5.1) by

(5.4) k(x, x− y),

with k(x, z) continuous on Rn × (Rn \ 0), along with z-dervatives of order ≤ N ,
homogeneous of degree −n in z, and even in z.

In [H], this result was established in the case that Ω is a VMO1 domain, with
compact boundary. We recall some ingredients of the proof of this, since they
also figure in the proof of Proposition 5.1. Suppose Ω has the form (2.13), with
∇A ∈ VMO1(Rn−1). Let f ∈ Lp(∂Ω) have compact support, and consider

(5.5) Tεf(x) =
∫

|x−y|>ε

〈x− y, ν(y)〉k(x− y)f(y) dσ(y).
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Then, in Rn−1-coordinates, via (2.21), this operator takes the form
(5.6)

T̃εf(x′) =
∫

ϑ(x′,y′)>ε

[A(x′)−A(y′)−〈∇A(y′), x′−y′〉]k(x′−y′, A(x′)−A(y′))f(y′) dy′,

where ϑ(x′, y′)2 = |x′ − y′|2 + (A(x′) − A(y′))2. Now the area element on ∂Ω in
these coordinates is

√
1 + |∇A(y′)|2 dy′. As shown in [H],

(5.7) A ∈ BMO1(Rn−1) ⇒ w =
√

1 + |∇A|2 is an Ap-weight, ∀ p ∈ (1,∞).

Thus the task is to show that, with

(5.8) T∗f(x′) = sup
ε>0

|Tεf(x′)|,

we have

(5.9) ‖T∗f‖Lp(w) ≤ Cp(w, A, k)‖f‖Lp(w), 1 < p < ∞,

given that w is an Ap-weight. Using the homogeneity of k, let us write
(5.10)

T̃εf(x′) =
∫

|x−y|>ε

A(x′)−A(y′)− 〈∇A(y′), x′ − y′〉
|x′ − y′|n k

(B(x′)−B(y′)
|x′ − y′|

)
f(y′) dy′,

where

(5.11) B(x′) = (x′, A(x′)),

so

(5.12) k
(B(x′)−B(y′)

|x′ − y′|
)

= k
( x′ − y′

|x′ − y′| ,
A(x′)−A(y′)
|x′ − y′|

)
.

Here we changed the region of integration to |x − y| > ε. See p. 502 of [H] for an
estimate of the difference. If we set

(5.13) F (x) = ϕ(x)ψ(x′)k(x),

with smooth, radial multipliers satisfying ϕ(x) = 0 for |x| < 1/4, 1 for |x| > 1/2,
and ψ(x′) = 1 for |x′| ≤ 2, 0 for |x′| ≥ 3, then F is even, F and all its derivatives
of order ≤ N belong to L1(Rn), and

(5.14) k
(B(x′)−B(y′)

|x′ − y′|
)

= F
(B(x′)−B(y′)

|x′ − y′|
)
.
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With the substitution of (5.14) into (5.10), we are in the setting of Theorem 1.10
of [H], which yields

(5.15) ‖T∗f‖Lp(w) ≤ C(n, p, ‖w‖Ap , F )‖∇A‖BMO(1 + ‖∇B‖BMO)ν‖f‖Lp(w).

We mention that one ingredient in the proof of (5.15) in [H] is a T1 theorem for
rough singular integral operators.

The proof of compactness when Ω is a VMO1 domain with compact boundary
given in [H] is then modeled after the compactness proof for C1 domains given in
[FJR], with (5.15) replacing the Calderon estimate.

We say a little about the proof of Proposition 5.1. The first step is to cover ∂Ω
by open sets ∂Ω ∩BRδ

(xj), on each of which ν has small oscillation, and pass to a
subcovering so as to have bounded overlap. Then pick a smooth partition of unity
{ϕ2

j} subordinate to this cover, pick ψj ∈ C∞0 (BRδ
(xj)), equal to 1 on supp ϕj ,

and write

(5.16) T =
N∑

j=1

M1−ψj TMϕ2
j
+

N∑

j=1

Mψj TMϕ2
j
.

The first sum in (5.16) is compact on Lp(∂Ω), by Proposition 2.9. The bounded
overlap property allows one to show that the Lp-operator norm of the second sum
is

(5.17) ≤ C max
1≤j≤N

‖Mψj TMϕj‖L(Lp(∂Ω)).

To estimate each of these operators, we use a Semmes decomposition (as described
after Proposition 4.4). The estimate (5.15) is applied to the “good” piece, and
the “bad” piece is estimated separately, using the fact that this piece has small
measure. See §4.5 of [HMT] for details.

In §4.6 of [HMT], the following converse of Proposition 5.1 is established. Let
K be the operator that arises in (5.1) when k(x − y) is (a constant multiple of)
|x− y|−n, so one has the classical double layer, as in (3.15). Also, define Rk by

(5.18) Rkf(x) = PV
∫

∂Ω

xk − yk

|x− y|n f(y) dσ(y),

operators bounded on Lp(∂Ω) for 1 < p < ∞, whenever Ω is a UR domain, by
results of §3. Here is the result.

Proposition 5.2. Let Ω ⊂ Rn be Ahlfors regular and satisfy a local two-sided John
condition. Assume ∂Ω is compact. Then Ω is a regular SKT domain if and only if

(5.19) K and each [Mνj , Rk] are compact on L2(∂Ω).
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We move to the associated layer potential

(5.20)

T f(x) =
∫

∂Ω

〈x− y, ν(y)〉k(x− y)f(y) dσ(y), x ∈ Rn \ ∂Ω

=
∫

∂Ω

〈ν(y), κ(x− y)〉f(y) dσ(y).

It follows from Proposition 3.3 (in the setting of bounded UR domains) that, given
f ∈ Lp(∂Ω),

(5.21) lim
y→x,y∈Γ(x)

T f(y) =
(1

2
a(ν(x))I + T

)
f(x),

for σ-a.e. x ∈ ∂Ω, where

(5.22) a(ξ) =
1
i
〈ξ, κ̂(ξ)〉, κ(z) = zk(z).

The special class of kernels k(z) of the form

(5.23) zk(z) = ∇zE(z)

arises in the classical double layer, when E is radial, and hence, up to a constant
factor, the fundamental solution of the Laplace equation. In such a case, κ̂(ξ) =
iξÊ(ξ), so 〈ν(x), κ̂(ν(x))〉 = iÊ(ν(x)), and (5.21) boils down to (3.19),

(5.24) lim
y→x,y∈Γ(x)

Df(y) =
(1

2
I + K

)
f(x).

In the more general case, note that a(ξ) is homogeneous of degree 0 in ξ and
continuous on Rn \ 0. The following is a natural ellipticity condition on (5.21):

(5.25) a(ξ)−1 ∈ C(Rn \ 0).

If (5.25) holds and T is compact, or if its norm modulo compacts (on Lp(∂Ω))
is sufficiently small, then the operator (1/2)a(ν(x))I + T is Fredholm of index
0. With this knowledge in hand, we move on to the next section, to discuss the
Dirichlet problem and other elliptic boundary problems on regular (and ε-regular)
SKT domains.
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6. Elliptic boundary problems on regular SKT domains

We started in §1 working on a compact n-dimensional manifold M , equipped with
a metric tensor, which in local coordinates takes the form of a positive definite n×n
matrix (gjk(x)). In §§2–5 we switched to the setting of n-dimensional Euclidean
space Rn. Here, we return to the compact Riemannian manifold setting. We assume
M is connected and let Ω ⊂ M be a connected open set. We assume M \ Ω is not
empty; it may have several connected components. We say Ω is finite perimeter,
Ahlfors regular, UR, NTA, local John, regular SKT, etc., provided it has such
properties in local coordinate systems. Results of §§2–5 extend to this manifold
setting in a fairly straightforward way. Local formulas for volumes and surface area
change; we have, in local coordinates,

(6.1) dV(x) =
√

g(x) dx, g(x) = det(gjk(x)),

and

(6.2) dσ(x) = ρ(x) dσe(x), ρ(x) =
√

g(x)G(x, n(x))1/2,

where dσe is Euclidean surface area, G(x, ξ) =
∑

gjkξjξk, and n is the unit normal
to ∂Ω relative to the Euclidean metric. Also,

(6.3) div v =
∑

g−1/2∂j(g1/2vj), ∆u =
∑

g−1/2∂j(g1/2gjk∂ku).

These changes are all coherent, and the Gauss-Green theorem retains the form
(1.43), i.e.,

(6.4)
∫

Ω

div v dV =
∫

∂Ω

〈ν, v〉 dσ,

where ν is the outward unit normal and 〈 , 〉 the inner product, with respect to the
metric tensor (gjk). This identity holds for vector fields of the form (2.22) when
Ω has finite perimeter, and it holds for vector fields of the form (2.34) when Ω is
Ahlfors regular. In smoother settings, this is classical and well known, and was
implicit in the discussion in §1. In these rougher settings, details can be found in
§5.3 of [HMT]. Further results in the manifold setting are given in [HMT2].

As in §1, we take V ∈ L∞(M), such that V ≥ 0 on M and V > 0 on a set
of positive measure on each connected component of M \ Ω, and set L = ∆ − V .
In this setting, L : H1(M) → H−1(M) is an isomorphism, whose inverse has an
integral kernel

(6.5) L−1w(x) =
∫

M

E(x, y)w(y) dV(y),
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We desire to solve

(6.6) Lu = 0 on Ω, u
∣∣
∂Ω

= f.

The layer potential attack seeks a function g on ∂Ω such that (6.6) is solved by

(6.7) u = Dg
∣∣
Ω
,

where

(6.8) Dg(x) =
∫

∂Ω

∂νy
E(x, y)g(y) dσ(y).

To begin, we assume Ω is a UR domain.
To make use of results of §3, we need information on E(x, y). A parametrix

construction, detailed for progressively rougher metric tensors in [MT1]–[MT5],
gives

(6.9)
√

g(x)E(x, y) = e0(x− y, x) + e1(y, x),

where the leading term has the form (for n ≥ 3)

(6.10) e0(z, x) = Cn

(∑
gjk(x)zjzk

)−(n−2)/2

,

and the remainder e1(y, x) satisfies the following estimates if the metric tensor is
Hölder continuous, say gjk ∈ Cα for some α ∈ (0, 1):

(6.11) |e1(y, x)| ≤ C|x− y|−(n−2−α), |∇ye1(y, x)| ≤ C|x− y|−(n−1−α).

Cf. Proposition 2.4 of [MT5], which improves (2.70)–(2.71) of [MT2]. Going further,
[MT5] and [HMT] treat Dini-type conditions, such as

(6.12) gjk ∈ C0,ω, ω(h) =
(
log

1
h

)−2−b

,

for 0 < h < 1/2, where we take b > 0. In such a case, one has

(6.13) |e1(y, x)| ≤ C
σ(|x− y|)
|x− y|n−2

, |∇ye1(y, x)| ≤ C
β(|x− y|)
|x− y|n−1

,

where, for 0 < h < 1/2, and with a ∈ (0, b),

(6.14) σ(h) =
(
log

1
h

)−1−b

, β(h) =
(
log

1
h

)−1−a

.
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Under these conditions, the contribution of e1(y, x) to Dg in (6.8) can be handled
by elementary means, and the results of §3 apply to the contribution of e0(x−y, x)
to (6.8). We obtain the following results:

(6.15) ‖NDg‖Lp(∂Ω) ≤ Cp‖g‖Lp(∂Ω), 1 < p < ∞,

(6.16) Dg
∣∣
∂Ω±

(x) =
(
±1

2
I + K

)
g(x), σ-a.e. x ∈ ∂Ω,

where

(6.17) Kg(x) = PV
∫

∂Ω

∂νy
E(x, y)g(y) dσ(y),

and

(6.18) K : Lp(∂Ω) −→ Lp(∂Ω), 1 < p < ∞,

whenever Ω is a UR domain. Furthermore, as shown in §5.2 of [HMT], we have

(6.19) K = K# + K0,

where K0 has weakly singular integral kenel and (by Proposition 2.9) is compact
on Lp(∂Ω) for p ∈ (1,∞), and

(6.20) K#g(x) = Cn PV
∫

∂Ω

〈x− y, n(y)〉
Γ(x, x− y)n/2

G(y, n(y))−1/2g(y) dσ(y),

where Γ(x, x− y) =
∑

gjk(x)(xj − yj)(xk − yk), 〈 , 〉 denotes the Euclidean inner
product, and n(y) is the Euclidean unit normal. It follows from Proposition 5.1 (or
rather its variable coefficient extension, as in (5.4)) that K# is compact on Lp(∂Ω),
and hence so is K, when Ω is a regular SKT domain.

As in §1, in addition to the double layer potential D, the single layer potential

(6.21) Sf(x) =
∫

∂Ω

E(x, y)f(y) dσ(y), x ∈ M \ ∂Ω,

plays an important role. One wants to estimate ∇Sf and establish the limiting
behavior of ∂νSf . To make this analysis for rough metric tensors, it is convenient
to replace (6.9) by

(6.22)
√

g(y)E(x, y) = e0(x− y, y) + e1(x, y),
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using the symmetry E(x, y) = E(y, x), and apply results of §3 (dealing with
(3.47A)) to e0(x − y, y), and elementary consequences of (6.11) or (6.13) to the
remainder. The result is that, when Ω is a UR domain,

(6.23) ‖N (∇Sf)‖Lp(∂Ω) ≤ Cp‖f‖Lp(∂Ω), 1 < p < ∞,

and, for f ∈ Lp(∂Ω), p ∈ (1,∞),

(6.24) (∂νSf)±(x) =
(
∓1

2
I + K∗

)
f(x), σ-a.e. x ∈ ∂Ω.

In addition, for f ∈ Lp(∂Ω),

(6.25) (Sf)+(x) = (Sf)−(x) = Sf(x), σ-a.e. x ∈ ∂Ω,

where Sf(x) is defined as in (6.21), for x ∈ ∂Ω.
We have now assembled all the tools needed to prove the following.

Proposition 6.1. Assume the metric tensor on M satisfies (6.12), with b > 0. If
Ω is a UR domain, then

(6.26)
1
2
I + K∗ : Lp(∂Ω) −→ Lp(∂Ω) is injective,

for p = 2.

Proof. With the tools we have, the proof is formally identical to that of Propo-
sition 1.3. The Gauss-Green theorem of Proposition 2.5 (or rather its variant in
the Riemannian manifold setting) replaces the Gauss-Green theorem used in §1.
Regarding the applicability of such a result here, we have, for u = Sg,

(6.27)
g ∈ L2(∂Ω) =⇒ N∇u ∈ L2(∂Ω)

=⇒ N v ∈ Lp(∂Ω), for some p > 1,

with v = u∇u, whenever Ω is a UR domain (the first implication via (6.23)). Also

(6.28)
N∇u ∈ L2(∂Ω) =⇒ |∇u|2 ∈ Lq(Ω)

=⇒ div v ∈ Lq(Ω),

with q = n/(n − 1), whenever Ω is Ahlfors regular, by Proposition 3.2 and (1.42).
Furthermore, local elliptic regularity results imply u is C1 on the interior regions
Ω and Ω−, so v is continuous there.

From here, we have the following extension of Proposition 1.2.
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Proposition 6.2. In the setting of Proposition 6.1, if in addition Ω is a regular
SKT domain, then, for all p ∈ (1,∞),

(6.29)
1
2
I + K : Lp(∂Ω) −→ Lp(∂Ω) is an isomorphism.

Proof. The hypotheses imply K and K∗ are compact on each Lp(∂Ω), hence (1/2)I+
K and (1/2)I + K∗ are Fredholm, of index 0, on each Lp(∂Ω). The rest of the
proof goes just like the proof of Proposition 1.2. Namely, Proposition 6.1 implies
(1/2)I + K∗ is injective on Lp(∂Ω) for p ≥ 2, hence we have an isomorphism in
(6.26) for 2 ≤ p < ∞, so we have an isomorphism in (6.29) for 1 < p ≤ 2. Hence
the map (6.29) is injective for all p ∈ (1,∞), and Fredholmness of index 0 implies
isomorphism.

From here, to solve (6.6), given f ∈ Lp(∂Ω), we set g = ((1/2)I + K)−1f and
then, by (6.16), u = Dg|∂Ω is the desired solution. This gives the following extension
of Proposition 1.4.

Proposition 6.3. In the setting of Proposition 6.2, given 1 < p < ∞ and f ∈
Lp(∂Ω), there exists a solution to (6.6), of the form (6.7) (with g ∈ Lp(∂Ω)),
satisfying

(6.30) ‖Nu‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω),

and

(6.31) lim
y→x,y∈Γ(x)

u(y) = f(x), for σ-a.e. x ∈ ∂Ω.

Uniqueness also holds. This takes an additional argument, given in §7.1 of
[HMT]. It is also shown there that, for p ∈ (1,∞),

(6.32) f ∈ H1,p(∂Ω) =⇒ N (∇u) ∈ Lp(∂Ω).

In such a case, u is constructed in the form

(6.33) u = S(S−1f).

The theory of Lp-Sobolev spaces H1,p(∂Ω) is less straightforward in this general
context than it is for Lipschitz domains. It is developed in the context of Ahlfors
regular domains in §3.6 of [HMT], and then further in §4.3, where comparison is
made with other works on Lp-Sobolev spaces on metric measure spaces.

We turn to the Neumann problem

(6.34) Lu = 0 on Ω, ∂νu
∣∣
∂Ω

= f.
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We look for a solution of the form

(6.35) u = Sg,

which, by (6.24), leads to seeking a solution to

(6.36)
(
−1

2
I + K∗

)
g = f.

For simplicity, we add to our hypotheses on V the assumption that V > 0 on a set
of positive measure on Ω. (The well known modification for the case V ≡ 0 on Ω
works.) In this case, we can interchange the roles of Ω and Ω−, and the proof of
Proposition 6.1 gives

Proposition 6.4. In the setting of Proposition 6.1, if also V > 0 on a set of
positive measure on Ω, then

(6.37) −1
2
I + K∗ : Lp(∂Ω) −→ Lp(∂Ω) is injective,

for p = 2.

This leads to

Proposition 6.5. In the setting of Proposition 6.4, if in addition Ω is a regular
SKT domain, then, for all p ∈ (1,∞),

(6.38) −1
2
I + K∗ : Lp(∂Ω) −→ Lp(∂Ω) is an isomorphism.

Proof. An argument parallel to that in Proposition 6.2 works, to give that−(1/2)I+
K is an isomorphism on Lp(∂Ω) for each p ∈ (1,∞), which then gives (6.38).

Hence we can solve (6.34) via (6.35)–(6.36), and we have the following.

Proposition 6.6. In the setting of Proposition 6.5, given 1 < p < ∞, f ∈ Lp(∂Ω),
there exists a solution to (6.34), of the form (6.35), satisfying

(6.39) ‖N∇u‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω),

and

(6.40) lim
y→x,y∈Γ(x)

u(y) = f(x), σ-a.e. x ∈ ∂Ω.

To close, we mention that [HMT] has extensions of Propositions 6.3 and 6.6 to the
setting of ε-regular SKT domains, for small ε, and for p running over an ε-dependent
compact subset of (1,∞). Also, Sections 6–7 of [HMT] treat boundary problems
for the following systems of equations on regular and ε-regular SKT domains:

Stokes system for fluids,
Lamé system for linear elasticity,

Maxwell system for electromagnetic fields.
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