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Abstract. These notes introduce three types of Fourier transforms, one for periodic
functions of one or more real variables (also called Fourier series), one for integrable
(or square-integrable) functions of one or more real variables, and one for functions
defined on a set of n points, identified with the integers mod n (also called the
discrete Fourier transform, or DFT). We discuss in each case the important Fourier
inversion formula. We also discuss relations of these various Fourier transforms
with each other. Finally, we discuss ‘fast’ algorithms for computing the DFT, when
n is a power of 2.
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1. Fourier series

Let f be an integrable function on the torus Tn, naturally isomorphic to Rn/Zn

and to the Cartesian product of n copies S1 × · · · × S1 of the circle. Its Fourier
series is by definition a function on Zn given by

(1.1) f̂(k) =
1

(2π)n

∫

Tn

f(θ)e−ik·θdθ

where k = (k1, . . . , kn), k · θ = k1θ1 + · · ·+ knθn. We use the notation

(1.2) Ff(k) = f̂(k).

Clearly we have a continuous linear map

(1.3) F : L1(T1) −→ `∞(Zn),

where `∞(Zn) denotes the space of bounded functions on Zn, with the sup norm.
If f ∈ C∞(Tn), then we can integrate by parts to get

(1.4) kαf̂(k) =
1

(2π)n

∫

Tn

(Dαf)(θ) e−ik·θ dθ

1
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where kα = kα1
1 · · · kαn

n , and

(1.5) Dα = Dα1
1 · · ·Dαn

n , Dj = i
∂

∂θj
.

It follows easily that

(1.6) F : C∞(Tn) −→ s(Zn),

where s(Zn) consists of functions u on Zn which are rapidly decreasing, in the sense
that, for each N,

(1.7) pN (u) = sup
k∈Zn

〈k〉N |u(k)| < ∞.

If we use the inner product

(1.8) (f, g) = (f, g)L2 =
1

(2π)n

∫

Tn

f(θ)g(θ)dθ,

for f, g ∈ C∞(Tn), or more generally for f, g ∈ L2(Tn), and if on s(Zn), or more
generally on `2(Zn), the space of square summable functions on Zn, we use the
inner product

(1.9) (u, v) = (u, v)`2 =
∑

k∈Zn

u(k)v(k),

we have the formula

(1.10) (Ff, u)`2 = (f,F∗u)L2 ,

valid for f ∈ C∞(Tn), u ∈ s(Zn), where

(1.11) F∗ : s(Zn) −→ C∞(Tn)

is given by

(1.12)
(F∗u)

(θ) =
∑

k∈Zn

u(k) eik·θ.

Indeed, taking (1.12) as a definition, the identity (1.10) follows easily from the
identity

(1.13)
1

(2π)n

∫

Tn

eik·θ e−i`·θ dθ = δk`,
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where δk` = 1 if k = `, δk` = 0 otherwise.
Our main goal here is to establish the Fourier inversion formula

(1.14) f(θ) =
∑

k∈Zn

f̂(k) eik·θ,

the sum on the right in (1.14) converging in the appropriate function space, de-
pending on the nature of f. Let us single out another space of functions on Tn, the
trigonometric polynomials:

(1.15) T P =
{ ∑

k∈Zn

a(k)eik·θ : a(k) = 0 except for finitely many k
}
.

Clearly

(1.16) F : T P −→ c00(Zn)

where c00(Zn) consists of functions on Zn which vanish except at a finite number
of points; this follows from (1.13). The formula (1.12) gives

(1.17) F∗ : c00(Zn) −→ T P,

and the formula (1.13) easily yields

(1.18) FF∗ = I on c00(Zn),

and even

(1.19) FF∗ = I on s(Zn).

By comparison, the inversion formula (1.14) states

(1.20) F∗F = I,

on C∞(Tn), or some other space of functions on Tn, as specified below. Before
getting to this, let us note one other implication of (1.13), namely, if

(1.21) fj(θ) =
∑

k

ϕj(k)eik·θ

are elements of T P, or more generally, if ϕj ∈ s(Zn), then we have the Parseval
identity

(1.22) (f1, f2)L2 =
∑

k∈Zn

ϕ1(k)ϕ2(k);
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in particular the Plancherel identity

(1.23) ‖fj‖2L2 =
∑

k∈Zn

|ϕj(k)|2,

for fj ∈ T P, or more generally for any fj of the form (1.21) with ϕj ∈ s(Zn).
In particular, the map F∗ given by (1.12), and satisfying (1.11) and (1.17), has a
unique continuous extension to `2(Zn), and

(1.24) F∗ : `2(Zn) −→ L2(Tn)

is an isometry of `2(Zn) onto its range. Part of the inversion formula will be that
the map (1.24) is also surjective.

Let us note that, if fj ∈ T P, satisfying (1.21), then (1.13) implies f̂j(k) = ϕj(k),
so we have directly in this case:

(1.25) F∗F = I on T P.

One approach to more general inversion formulas would be to establish that T P is
dense in various function spaces, on which F∗F can be shown to act continuously.
Here, we will take a superficially different approach. We will make use of such basic
results from real analysis as the denseness of C(Tn) in Lp(Tn), for 1 ≤ p < ∞.

Our approach to (1.14) will be to establish the following Abel summability result.
Consider

(1.26) Jrf(θ) =
∑

k∈Zn

f̂(k) r|k| eik·θ

where |k| = |k1|+ · · ·+ |kn|, r ∈ [0, 1). We will show that

(1.27) Jrf → f as r ↗ 1,

in the appropriate spaces. The operator Jr in (1.26) is defined for any f ∈ L1(Tn),
if r < 1, and we have the formula

(1.28) Jrf(θ) = (2π)−n

∫

Tn

f(θ′)
∑

k∈Zn

r|k| eik·(θ−θ′) dθ′.

The sum over Zn inside the integral can be written

(1.29)

∑

k∈Zn

r|k| eik·(θ−θ′) = Pn(r, θ − θ′)

= p(r, θ1 − θ′1) · · · p(r, θn − θ′n),
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where

(1.30)

p(r, θ) =
∞∑

k=−∞
r|k| eikθ

= 1 +
∞∑

k=1

(
rkeikθ + rke−ikθ

)

= (1− r2)/(1− 2r cos θ + r2).

Then we have the explicit integral formula

(1.31)

Jrf(θ) = (2π)−n

∫

Tn

f(θ′)Pn(r, θ − θ′)dθ′

= (2π)−n

∫

Tn

f(θ − θ′)Pn(r, θ′)dθ′.

Let us examine p(r, θ). It is clear that the numerator and denominator on the
right side of (1.30) are positive, so p(r, θ) > 0 for each r ∈ [0, 1), θ ∈ S1. Of course,
as r ↗ 1, the numerator tends to 0; as r ↗ 1, the denominator tends to a nonzero
limit, except at θ = 0. Since it is clear that

(1.32) (2π)−1

∫

S1

p(r, θ)dθ = (2π)−1

∫ π

−π

∑
r|k|eikθdθ = 1,

we see that, for r close to 1, p(r, θ) as a function of θ is highly peaked near θ = 0
and small elsewhere, as in figure 1.1.

We are now prepared to prove the following result giving Abel summability
(1.27).

Proposition 1.1. If f ∈ C(Tn), then

(1.33) Jrf → f uniformly on Tn as r ↗ 1.

Furthermore, for any p ∈ [1,∞), if f ∈ Lp(Tn), then

(1.34) Jrf → f in Lp(Tn) as r ↗ 1.

The proof of (1.33) is an immediate consequence of (1.31) and the peaked nature
of Pn(θ′) near θ′ = 0 discussed above, together with the observation that, if f is
continuous at θ, then it does not vary very much near θ. The convergence in (1.34)
is in the Lp-norm, defined by

(1.35) ‖g‖Lp =
[
(2π)−n

∫

Tn

|g(θ)|pdθ
]1/p

.
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We have the well known triangle inequality in such a norm:

(1.36) ‖g1 + g2‖Lp ≤ ‖g1‖Lp + ‖g2‖Lp ,

and this implies, via (1.31)-(1.32),

(1.37)

‖Jrf‖Lp = (2π)−n
∥∥∥
∫

Tn

Pn(θ′)τθ′f dθ′
∥∥∥

Lp

≤ (2π)−n

∫
Pn(θ′)‖τθ′f‖Lpdθ′

= ‖f‖Lp ,

where

(1.38) τθ′f(θ) = f(θ − θ′),

which implies ‖τθ′f‖Lp = ‖f‖Lp . In other words,

(1.39) ‖Jr‖L(Lp) ≤ 1, 1 ≤ p < ∞,

where we are using the operator norm on Lp :

(1.40) ‖T‖L(Lp) = sup{‖Tf‖Lp : ‖f‖Lp ≤ 1}.

Using this, we can deduce (1.34) from (1.33), and the denseness of C(Tn) in each
space Lp(Tn), for 1 ≤ p < ∞. Indeed, given f ∈ Lp(Tn), and given ε > 0, find
g ∈ C(Tn) such that ‖f − g‖Lp < ε. Note that, generally, ‖g‖Lp ≤ ‖g‖sup. Now we
have

(1.41)
‖Jrf − f‖Lp ≤ ‖Jr(f − g)‖Lp + ‖Jrg − g‖Lp + ‖g − f‖Lp

< ε + ‖Jrg − g‖L∞ + ε,

making use of (1.39). By (1.33), the middle term is < ε if r is close enough to 1, so
this proves (1.34).

Corollary 1.2. If f ∈ C∞(Tn), then the Fourier inversion formula (1.14) holds.

Proof. In such a case, as noted, we have f̂ ∈ s(Zn), so certainly the right side of
(1.14) is absolutely convergent to some f# ∈ C(Tn). In such a case, one a fortiori
has

(1.42) lim
r↗1

∑

k∈Zn

f̂(k)r|k|eik·θ = f#(θ).

But now Proposition 1.1 implies (1.42) is equal to f(θ), i.e., f# = f, so the inversion
formula is proved for f ∈ C∞(Tn).
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As a result, we see that

(1.43) F∗ : s(Zn) −→ C∞(Tn)

is surjective, as well as injective, with two sided inverse F : C∞(Tn) → s(Zn). This
of course implies that the map (1.24) has dense range in L2(Tn); hence

(1.44) F∗ : `2(Zn) −→ L2(Tn) is unitary.

Another way of stating this is

(1.45) {eik·θ : k ∈ Zn} is an orthonormal basis of L2(Tn),

with inner product given by (1.8). Also, the inversion formula

(1.46) F∗F = I on C∞(Tn)

implies

(1.47) ‖Ff‖`2 = ‖f‖L2 ,

so therefore F extends by continuity from C∞(Tn) to a map

(1.48) F : L2(Tn) −→ `2(Zn), unitary,

inverting (1.44). The denseness C∞(Tn) ⊂ L2(Tn) ⊂ L1(Tn) implies that this F
coincides with the restriction to L2(Tn) of the map (1.3). Note that the fact that
(1.44) and (1.48) are inverses of each other extends the inversion result of Corollary
1.2.

We devote a little space to conditions implying that the Fourier series (1.14) is
absolutely convergent, weaker than the hypothesis that f ∈ C∞(Tn). Note that
since |eik·θ| = 1, absolute convergence of (1.14) implies uniform convergence. By
(1.4), we see that

(1.49) f ∈ C`(Tn) =⇒ |f̂(k)| ≤ C〈k〉−`,

which in turn clearly gives absolute convergence provided

(1.50) ` ≥ n + 1.

Using Plancherel’s identity and Cauchy’s inequality, we can do somewhat better:
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Proposition 1.3. If f ∈ C`(Tn), then the Fourier series for f is absolutely con-
vergent provided

(1.51) ` > n/2.

Proof. We have

(1.52)

∑

k

|f̂(k)| =
∑

k

〈k〉−`〈k〉`|f̂(k)|

≤
[∑

k

〈k〉−2`
] 1

2 ·
[∑

k

〈k〉2`|f̂(k)|2
] 1

2

≤ C
[∑

k

〈k〉2`|f̂(k)|2
] 1

2
,

as long as (1.51) holds. The square of the right side is dominated by

(1.53)
C ′

∑

k

∑

|γ|≤`

∣∣kγ f̂(k)
∣∣2 = C ′

∑

|γ|≤`

‖Dγf‖2L2

≤ C ′′‖f‖2C` ,

so the proposition is proved.

See some of the exercises below for more on convergence in the case n = 1.
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Exercises.

1. Given f, g ∈ L1(Tn), show that

f̂(k)ĝ(k) = û(k)

with
u(θ) = (2π)−n

∫

Tn

f(ϕ)g(θ − ϕ)dϕ.

2. Given f, g ∈ C(Tn), show that

(̂fg)(k) =
∑
m

f̂(k −m)ĝ(m).

3. Using the proof of Proposition 1.3, show that every f ∈ Lip(S1) has an abso-
lutely convergent Fourier series.

4. Show that if f ∈ L∞(S1) has bounded variation, then |f̂(k)| ≤ C/〈k〉.

5. For f ∈ L1(S1), set

SNf(θ) =
N∑

k=−N

f̂(k)eikθ.

Show that SNf(θ) = (1/2π)
∫ π

−π
f(θ − ϕ)DN (ϕ)dϕ where

(1.55) DN (θ) =
N∑

k=−N

eikθ =
sin(N + 1

2 )θ
sin 1

2θ
.

Hint. To evaluate the sum, recall how to sum a finite geometrical series.
DN (θ) is called the Dirichlet kernel.

6. Let f ∈ L∞(S1) have bounded variation and also have the following property of
‘vanishing’ at θ = 0 :

f(θ)
/

sin
1
2
θ is of bounded variation on [−π, π].
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Show that
∣∣ ∫
S1

f(θ)DN (θ)dθ
∣∣ ≤ C/N, and hence SNf(0) → 0 as N →∞.

Hint. Use the formula (1.55) for DN (θ) and perform an integration by parts.

7. Deduce that if f ∈ L∞(S1) has bounded variation, and is Lipschitz continuous
at θ0, then SNf(θ0) → f(θ0) as N →∞. If furthermore f is Lipschitz on an open
interval J ⊂ S1, then SNf → f uniformly on compact subsets of J.

8. Let f ∈ L∞(S1) be piecewise C1, with a finite number of simple jumps. Show
that SNf(θ) → f(θ) at points of continuity. If f has a jump at θj , with limiting
values f±(θj), show that

(1.56) SNf(θj) → 1
2
[
f+(θj) + f−(θj)

]
,

as N →∞.
Hint. By Problem 7, it remains only to establish (1.56). Show that this can be
reduced to the case θj = π, f(θ) = θ, for −π ≤ θ < π. Verify that this function has
Fourier series

2
∞∑

k=1

(−1)k

k
sin kθ.

9. Work out the Fourier series of the function f ∈ Lip(S1) given by

f(θ) = |θ|, −π ≤ θ ≤ π.

Examining this at θ = 0, establish that
∞∑

k=1

1
k2

=
π2

6
.

10. One can obtain Fourier coefficients of functions θk and |θ|k on [−π, π] in terms
of the Fourier coefficients of

qk(θ) = θk on [0, π], = 0 on [−π, 0].

Show that, for n 6= 0,

∞∑

k=0

1
k!

q̂k(n) (is)k = − 1
2πin

[
(−1)n · eπis − 1

](
1− s

n

)−1

,

and use this to work out the Fourier series for these functions. Apply this to
Problem 9, and to the calculation at the end of Problem 8.
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2. The Fourier transform

The Fourier transform is defined by

(2.1) Ff(ξ) = f̂(ξ) = (2π)−n/2

∫
f(x)e−ix·ξdx

when f ∈ L1(Rn). It is clear that

(2.2) F : L1(Rn) −→ L∞(Rn).

This is analogous to (1.3). The analogue for C∞(Tn), and simultaneously for s(Zn),
of section 1, in this case is the Schwartz space of rapidly decreasing functions:

(2.3) S(Rn) =
{
u ∈ C∞(Rn) : xβDαu ∈ L∞(Rn) for all α, β ≥ 0

}
,

where xβ = xβ1
1 · · ·xβn

n , Dα = Dα1
1 · · ·Dαn

n , with Dj = i∂/∂xj . It is easy to verify
that

(2.4) F : S(Rn) −→ S(Rn)

and

(2.5) ξαDβ
ξFf(ξ) = F(Dαxβf)(ξ).

We define F∗ by

(2.6) F∗f(ξ) = f̃(ξ) = (2π)−n/2

∫
f(x)eix·ξdx,

which differs from (2.1) only in the sign of the exponent. It is clear that F∗ satisfies
the mapping properties (2.2), (2.4), and

(2.7) (Fu, v) = (u,F∗v)

for u, v ∈ S(Rn), where (u, v) denotes the usual L2-inner product, (u, v) =
∫
Rn

u(x) v(x) dx.

As in the theory of Fourier series, the first major result is the Fourier inversion
formula. The following is our first version.
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Proposition 2.1. We have the inversion formula

(2.8) F∗F = FF∗ = I on S(Rn).

Our proof will have in common with the proof of the inversion formula for Fourier
series, via Proposition 1.1, that we will sneak up on the inversion formula by throw-
ing in a convergence factor which will allow interchange of orders of integration (in
the proof of Proposition 1.1, the orders of an integral and an infinite series were
interchanged). Thus, let us write, for f ∈ S(Rn),

(2.9)
F∗Ff(x) = (2π)−n

∫ [∫
f(y)e−iy·ξdy

]
eix·ξdξ

= (2π)−n lim
ε↘0

∫∫
f(y) e−ε|ξ|2 ei(x−y)·ξ dy dξ.

We can interchange the order of integration on the right for any ε > 0, to obtain

(2.10) F∗Ff(x) = lim
ε↘0

∫
f(y)p(ε, x− y)dy,

where

(2.11) p(ε, x) = (2π)−n

∫
e−ε|ξ|2+ix·ξdξ.

Note that

(2.12) p(ε, x) = ε−n/2 q(x/
√

ε)

where q(x) = p(1, x). In a moment we will show that

(2.13) p(ε, x) = (4πε)−n/2 e−|x|
2/4ε.

The derivation of this identity will also show that

(2.14)
∫

Rn

q(x) dx = 1.

From this, it follows as in the proof of Proposition 1.1 that

(2.15) lim
ε↘0

∫
f(y)p(ε, x− y)dy = f(x)

for any f ∈ S(Rn), even for f bounded and continuous, so we have proved F∗F = I
on S(Rn); the proof that FF∗ = I on S(Rn) is identical.
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It remains to verify (2.13). We observe that p(ε, x), defined by (2.11), is an entire
analytic function of x ∈ Cn, for any ε > 0. It is convenient to verify that

(2.16) p(ε, ix) = (4πε)−n/2 e|x|
2/4ε, x ∈ Rn,

from which (2.13) follows by analytic continuation. Now

(2.17)

p(ε, ix) = (2π)−n

∫
e−x·ξ−ε|ξ|2dξ

= (2π)−ne|x|
2/4ε

∫
e−|x/2

√
ε+
√

εξ|2dξ

= (2π)−nε−n/2e|x|
2/4ε

∫

Rn

e−|ξ|
2
dξ.

To prove (2.16), it remains to show that

(2.18)
∫

Rn

e−|ξ|
2
dξ = πn/2.

Indeed, if

(2.19) A =
∫ ∞

−∞
e−ξ2

dξ,

then the left side of (2.18) is equal to An. But for n = 2 we can use polar coordinates:

(2.20) A2 =
∫

R2

e−|ξ|
2
dξ =

∫ 2π

0

∫ ∞

0

e−r2
r dr dθ = π.

This completes the proof of the identity (2.16), and hence of (2.13).
In light of (2.7) and the Fourier inversion formula (2.8), we see that, for u, v ∈

S(Rn),

(2.21) (Fu,Fv) = (u, v) = (F∗u,F∗v).

Thus F and F∗ extend uniquely from S(Rn) to isometries on L2(Rn), and are
inverses to each other. Thus we have the Plancherel theorem:

Proposition 2.2. The Fourier transform

(2.22) F : L2(Rn) −→ L2(Rn)

is unitary, with inverse F∗.
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We make a remark about the computation of the Fourier integral (2.11), done
above via analytic continuation. The following derivation does not make any direct
use of complex analysis. It suffices to handle the case ε = 1

2 , i.e., to show

(2.23) Ĝ(ξ) = e−|ξ|
2/2 if G(x) = e−|x|

2/2, on Rn.

We have interchanged the roles of x and ξ compared to those in (2.11) and (2.13).
It suffices to get (2.23) in the case n = 1, by the obvious multiplicativity. Now
G(x) = e−x2/2 satisfies the differential equation

(2.24) (d/dx + x)G(x) = 0.

By the intertwining property (2.5), it follows that (d/dξ + ξ)Ĝ(ξ) = 0, and unique-
ness of solutions to this ODE yields Ĝ(ξ) = Ce−ξ2/2. The constant C is evaluated
via the identity (2.20); C = 1; and we are done.

As for the necessity of computing the Fourier integral (2.11) to prove the Fourier
inversion formula, let us note the following. For any g ∈ S(Rn) with g(0) = 1,

(g(ξ) = e−|ξ|
2

being an example), we have (replacing ε by δ2), just as in (2.9),

(2.25)
F∗Ff(x) = (2π)−n lim

δ↘0

∫
f(y)g(δξ)ei(x−y)·ξdξ

= lim
δ↘0

∫
f(y)hδ(x− y)dy

where

(2.26)
hδ(x) = (2π)−n

∫
g(δξ)eix·ξdξ

= (2π)−n/2δ−ng̃(x/δ).

By the peaked nature of hδ as δ → 0, we see that the limit in (2.25) is equal to

(2.27) C f(x)

where

(2.28) C =
∫

h1(x)dx = (2π)−n/2

∫
g̃(x)dx.

The argument (2.25)-(2.27) shows C is independent of the choice of g ∈ S(Rn), and
we only have to find a single example g such that g̃(x) can be evaluated explicitly
and then the integral on the right in (2.28) can be evaluated explicitly. In most
natural examples one picks g to be even, so g̃ = ĝ.
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We remark that one does not need to have g ∈ S(Rn) in the argument above; it
suffices to have g ∈ L1(Rn), bounded and continuous, and such that ĝ ∈ L1(Rn).
An example, in the case n = 1, is

(2.29) g(ξ) = e−|ξ|.

In this case, elementary calculations give

(2.30) ĝ(x) =
( 2

π

) 1
2 1
x2 + 1

.

In this case, (2.28) can be evaluated in terms of the arc tangent. Another example,
in the case n = 1, is

(2.31)
g(ξ) = 1− |ξ| if |ξ| ≤ 1

0 if |ξ| ≥ 1.

In this case,

(2.32) ĝ(x) = (2π)−
1
2

( sin 1
2x

1
2x

)2

,

and (2.28) can be evaluated by the method of residues. The calculation of (2.32)
can be achieved by evaluating

∫ 1

0

(1− ξ) cos xξ dξ

via an integration by parts, though there is a more painless way, mentioned below.
We now make some comments on the relation between the Fourier transform

and convolutions. The convolution u ∗ v of two functions on Rn is defined by

(2.33)
u ∗ v(x) =

∫
u(y)v(x− y)dy

=
∫

u(x− y)v(y)dy.

Note that u ∗ v = v ∗ u. If u, v ∈ S(Rn), so is u ∗ v. Also

‖u ∗ v‖Lp(Rn) ≤ ‖u‖L1‖v‖Lp ,

so the convolution has a unique continuous extension to a bilinear map

(2.34) L1(Rn)× Lp(Rn) −→ Lp(Rn),



16

for 1 ≤ p < ∞; one can directly perceive this also works for p = ∞. Note that the
right side of (2.10), for any ε > 0, is an example of a convolution. Computing the
Fourier transform of (2.33) leads immediately to the formula

(2.35) F(u ∗ v)(ξ) = (2π)n/2û(ξ)v̂(ξ).

We also note that, if

(2.36) P =
∑

|α|≤k

aαDα

is a constant coefficient differential operator, we have

(2.37) P (u ∗ v) = (Pu) ∗ v = u ∗ (Pv)

if u, v ∈ S(Rn). This also generalizes; if u ∈ S(Rn), v ∈ Lp(Rn), the first identity
continues to hold.

We mention the following simple application of (2.35), to a short calculation of
(2.32). With g given by (2.31), we have g = g1 ∗ g1, where

(2.38) g1(ξ) = 1 for ξ ∈ [−1
2
,
1
2
], 0 otherwise.

Thus

(2.39)
ĝ1(x) = (2π)−1/2

∫ 1
2

− 1
2

e−ixξdξ

= (2π)−1/2
(
sin

1
2
x
)/(1

2
x
)
,

and then (2.32) follows immediately from (2.35).
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Exercises.

1. Show that F : L1(Rn) → C0(Rn), where C0(Rn) denotes the space of functions
v, continuous on Rn, such that v(ξ) → 0 as |ξ| → ∞.
Hint. Use the denseness of S(Rn) in L1(Rn).
This result is called the Riemann-Lebesgue Lemma.

2. Show that the Fourier transforms (2.1) and (2.22) coincide on L1(Rn)∩L2(Rn).

3. For f ∈ L1(Rn), set SRf(x) = (2π)−1/2
∫ R

−R
f̂(ξ)eixξdξ. Show that

SRf(x) = DR ∗ f(x) =
∫ ∞

−∞
DR(x− y)f(y)dy

where

DR(x) = (2π)−1

∫ R

−R

eixξdξ =
sin Rx

πx
.

Compare exercise 5 of §1.

4. Show that f ∈ L2(R) ⇒ SRf → f in L2-norm as R →∞.

5. Show that there exist f ∈ L1(R) such that SRf /∈ L1(R) for any R ∈ (0,∞).
Hint. Note that DR /∈ L1(R).

6. For f ∈ L1(R), set

CRf(x) = (2π)−1/2

∫ R

−R

(
1− |ξ|

R

)
f̂(ξ)eixξdξ.

Show that CRf(x) = ER ∗ f(x) where

ER(x) = (2π)−1

∫ R

−R

(
1− |ξ|

R

)
eixξdξ =

2
πR

[ sin 1
2Rx

x

]2

.

Note that ER ∈ L1(R). Show that, for 1 ≤ p < ∞,

f ∈ Lp(R) =⇒ CRf → f in Lp-norm, as R →∞.



18

We say the Fourier transform of f is Cesaro-summable if CRf → f as R →∞.

In exercises 7-13, suppose f ∈ S(R), f ≥ 0,
∫∞
−∞ f(x)dx = 1, and

∫∞
−∞ xf(x)dx =

0. Set F (ξ) = (2π)1/2f̂(ξ). The point of the exercises is to obtain a version of the
Central Limit Theorem.

7. Show that F (0) = 1, F ′(0) = 0, F ′′(0) = −2a < 0.

8. Set Fn(ξ) = F (ξ/
√

n)n. Relate (2π)−1/2F̃n(x) to the convolution of n copies of
f.

9. Show that there exist A > 0 and G ∈ C∞([−A,A]) such that f(ξ) = e−aξ2
G(ξ)

for |ξ| ≤ A, and G(0) = 1, G′(0) = G′′(0) = 0. Hence

Fn(ξ) = e−aξ2
G(ξ/

√
n)n for |ξ| ≤ A

√
n.

10. Show that
∣∣G(ξ/

√
n)n − 1

∣∣ ≤ Cn−α if |ξ| ≤ n( 1
2−α)/3, for n large.

Fix α ∈ (0, 1
2 ) and set γ = ( 1

2 − α)/3 ∈ (0, 1
6 ).

11. Show that, for |ξ| ≥ nγ ,
∣∣F (ξ/

√
n)

∣∣ ≤ 1− 1
2an−(1−2γ), for n large, so |Fn(ξ)| ≤

e−an2γ/4 = δn. Deduce that
∫

|ξ|≥nγ

|Fn(ξ)|dξ ≤ C δ(n−1)/n
n

√
n → 0 as n →∞.

12. From problems 9-11, deduce that Fn → e−aξ2
in L1(R) as n →∞.

13. Deduce now that (2π)−1/2F̃n → (4πa)−1/2e−x2/4a in both C0(R) and L1(R), as
n → ∞. Relate this to the Central Limit Theorem of probability theory. Weaken
the hypotheses on f as much as you can.
Hint. In passing from the C0 result to the L1 result, positivity of F̃n will be useful.
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14. With pε(x) = (4πε)−1/2e−x2/4ε, as in (3.13) for n = 1, show that, for any u(x),
continuous and compactly supported on R, pε ∗ u → u uniformly as ε → 0.
Show that for each ε > 0, pε ∗ u(x) is the restriction to R of an entire holomorphic
function of x ∈ C.

15. Using exercise 14, prove the Weierstrass approximation theorem:
Any f ∈ C([a, b]) is a uniform limit of polynomials.
Hint. Extend f to u as above, approximate u by pε ∗u, and expand this in a power
series.
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3. The discrete Fourier transform

When doing numerical work involving Fourier series, it is convenient to discretize,
and replace S1, pictured as the group of complex numbers of modulus 1, by the
group Γn generated by ω = e2πi/n. One can also approximate Td by (Γn)d, a
product of d copies of Γn. We will restrict attention to the case d = 1 here; results
for general d are obtained similarly.

The cyclic group Γn is isomorphic to the group Zn = Z/(n), but we will observe a
distinction between these two groups; an element of Γn is a certain complex number
of modulus 1 and an element of Zn is an equivalence class of integers. For n large,
we think of Γn as an approximation to S1 and Zn as an approximation to Z. We
note the natural dual pairing Γn × Zn → C given by (ωj , `) 7→ ωj`, which is well
defined since ωjn = 1.

Now, given a function f : Γn → C, its discrete Fourier transform f# = Φnf,
mapping Zn to C, is defined by

(3.1) f#(`) =
1
n

∑

ωj∈Γn

f(ωj)ω−j`.

Similarly, given a function g : Zn → C, its ‘inverse Fourier transform’ gb : Γn → C
is defined by

(3.2) gb(ωj) =
∑

`∈Zn

g(`)ωj`.

The following is the Fourier inversion formula in this context.

Proposition 3.1. The map

(3.3) Φn : L2(Γn) −→ L2(Zn)

is a unitary isomorphism, with inverse defined by (3.2), so

(3.4) f(ωj) =
∑

`∈Zn

f#(`)ωj`.

Here the space L2(Zn) is defined by counting measure and L2(Γn) by 1/n times
counting measure, i.e.,

(3.5) (u, v)L2(Γn) =
1
n

∑

ωj∈Γn

u(ωj)v(ωj).

Note that, if we define functions ej on Γn by

(3.6) ej(ωk) = ωjk,

then Proposition 3.1 is equivalent to:
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Proposition 3.2. The functions ej , 1 ≤ j ≤ n, form an orthonormal basis of
L2(Γn).

Proof. Since L2(Γn) has dimension n, we need only check that the ejs are mutually
orthogonal. Note that

(ek, e`) =
1
n

∑

ωj∈Γn

ωmj , m = k − `.

Denote the sum by Sm. If we multiply by ωm, we have a sum of the same set of
powers of ω, so Sm = ωmSm. Thus Sm = 0 whenever ωm 6= 1, which completes the
proof. Alternatively, the series is easily summed as a finite geometrical series.

Note that the functions ej in (3.6) are the restrictions to Γn of eijθ (i.e., values
at θ = 2πk/n). These restrictions depend only on the residue class of j mod n,
which leads to the following simple but fundamental connection between Fourier
series on S1 and on Γn.

Proposition 3.3. If f ∈ C(S1) has absolutely convergent Fourier series, then

(3.7) f#(`) =
∞∑

j=−∞
f̂(` + jn).

We will use (3.7) as a tool to see how well a function on S1 is approximated by
discretization, involving restriction to Γn. Precisely, we consider the operators

(3.8) Rn : C(S1) −→ L2(Γn), En : L2(Γn) −→ C∞(S1)

given by

(3.9) (Rnf)(ωj) = f(2πj/n)

for f = f(θ), 0 ≤ θ ≤ 2π, and

(3.10) En

( ∑

`∈Zn

g(`)ωj`
)

=
ν−1∑

`=−ν

g(`)ei`θ, n = 2ν.

We assume n = 2ν is even; one can also treat n = 2ν − 1, changing the upper limit
in the last sum from ν − 1 to ν. Clearly RnEn is the identity operator on L2(Γn).
The question of interest to us is: how close is EnRnf to f, a function on S1? The
answer depends on smoothness properties of f, and is expressed in terms involving
(typically) negative powers of n.

We compare EnRn and the partial summing operator

(3.11) Pnf =
ν−1∑

`=−ν

f̂(`)ei`θ
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for Fourier series. Note that

(3.12) EnRnf(θ) =
ν−1∑

`=−ν

f#(`)ei`θ.

Consequently,

(3.13) EnRnf = Pnf + Qnf

with

(3.14) Qnf(θ) =
ν−1∑

`=−ν

[
f#(`)− f̂(`)

]
ei`θ.

By (3.7), we have, for −ν ≤ ` ≤ ν − 1,

(3.15) f#(`)− f̂(`) =
∑

j∈Z\0
f̂(` + jn).

Consequently, the sup norm of Qnf is bounded by

(3.16)
ν−1∑

`=−ν

∣∣f#(`)− f̂(`)
∣∣ ≤

∑

|k|≥ν

|f̂(k)|.

The right side also dominates the sup norm of f − Pnf, proving:

Proposition 3.4. If f ∈ C(S1) has absolutely convergent Fourier series, then

(3.17) ‖f − EnRnf‖L∞ ≤ 2
∑

|k|≥ν

|f̂(k)|.

The estimates of various norms of f − Pnf is an exercise in Fourier analysis on
S1. Here we note one simple estimate, for m ≥ 1 :

(3.18)
‖f − Pnf‖C`(S1) ≤

∑

|k|≥ν

|k|`|f̂(k)|

≤ Cm`‖f‖C`+m+1(S1) · n−m,

the last inequality following from (1.49). As the reader can verify, use of the proof
of Proposition 1.3 can lead to a sharper estimate. As for an estimate of the contri-
bution of Qn to the discretization error, from (3.14)-(3.16) we easily obtain

(3.19)
‖Qnf‖C`(S1) ≤ (n/2)`

∑

|k|≥ν

|f̂(k)|

≤ C`m‖f‖C`+m+1(S1) · n−m.
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We reiterate that sharper estimates are possible.
We know that solutions to a number of partial differential equations are given

by Fourier multipliers on L2(S1), of the form

(3.20) F (D)u(θ) =
∞∑

`=−∞
F (`)û(`)ei`θ.

We want to compare such an operator with its discretized version on L2(Γn) :

(3.21) F (Dn)
[ ∑

`∈Zn

g(`)ωj`
]

=
ν−1∑

`=−ν

F (`)g(`)ωj`.

In fact, a simple calculation yields

(3.22) EnF (Dn)Rnu(θ) =
ν−1∑

`=−ν

F (`)u#(`)ei`θ

and hence

(3.23) EnF (Dn)Rnu = PnF (D)u + Ψnu

where

(3.24) Ψnu(θ) =
ν−1∑

`=−ν

F (`)
[ ∑

j∈Z\0
û(` + jn)

]
ei`θ.

This implies the estimate

(3.25) ‖Ψnu‖L∞ ≤
[
sup
|`|≤ν

|F (`)|
] ∑

|k|≥ν

|û(k)|.

Also, as in (3.18), we have, for m ≥ 1,

(3.26) ‖Ψnu‖C`(S1) ≤ C`m

[
sup
|`|≤ν

|F (`)|
]
‖u‖C`+m+1(S1) · n−m.

The significance of these statements is that, for u smooth, and n large, the dis-
cretized F (Dn) provides a very accurate approximation to F (D). This is of practical
importance for a number of numerical problems.

Note the distinction between Dn and the centered difference operator ∆n, defined
by

(∆nf)(ωj) =
n

4πi

[
f(ωj+1)− f(ωj−1)

]
.
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We have, in place of (3.21),

(3.27) F (∆n)
[ ∑

`∈Zn

g(`)ωj`
]

=
ν−1∑

`=−ν

F
( n

2π
sin

(2π`

n

))
g(`)ωj`,

so, for gb ∈ L2(Γn) given by (3.2),

(3.28) F (∆n)gb(ωj)− F (Dn)gb(ωj) =
ν−1∑

`=−ν

[
F

( n

2π
sin

(2π`

n

))− F (`)
]
g(`)ωj`.

This identity leads to a variety of estimates, of which the following is a simple
example. If |F ′(λ)| ≤ K for −ν ≤ λ ≤ ν, then

(3.29) ‖F (∆n)u− F (Dn)u‖L∞ ≤ (2/3)π2K
[ ν−1∑

`=−ν

|`|3 |u#(`)|
]
· n−2,

since, for −π ≤ x ≤ π, | sin x − x| ≤ (1/6)|x|3. The basic content of this is that
F (∆n) furnishes a second order accurate approximation to F (D) (as n →∞). This
is an improvement over the first order accuracy one would get by using a one sided
difference operator, e.g.,

(∆+
n f)(ωj) =

n

2πi

[
f(ωj+1)− f(ωj)

]
,

but not as good as the ‘infinite order accuracy’ one gets for F (Dn), as a consequence
of (3.23)-(3.26).

Similarly to the case of functions on S1, we have, for u ∈ L2(Γn),

(3.30)

F (Dn)u(ωj) = (kF ∗ u)(ωj)

=
1
n

∑

`∈Zn

kF (ωj−`)u(ω`)

where

(3.31) kF (ωj) =
ν−1∑

`=−ν

F (`)ωj`.

For example, with F (λ) = e−y|λ|, we get the discrete version of the Poisson kernel:

(3.32) kF (ωj) = py(ωj) =
ν−1∑

`=−ν

e−y|`|ωj`
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which we can write as a sum of two finite geometrical series to get

(3.33) py(ωj) =
1− r2 − 2rν+1(−1)j cos(2πj/n)

1 + r2 − 2r cos(2πj/n)
+ rνω−jν

with r = e−y, and, as usual, ω = e2πi/n, n = 2ν. Compare (1.30). The reader can
produce a similar formula for n odd.

As in the case of S1, the sum (3.31) for the (discretized) heat kernel, with F (`) =
e−t`2 , cannot generally be simplified to an expression whose size is independent of
n. However, when t is an imaginary integer, such an evaluation can be performed.
Such expressions are called Gauss sums, and their evaluation is regarded as one of
the pearls of early nineteenth century mathematics. We present one such result
here.

Proposition 3.5. For any n ≥ 1, even or odd,

(3.34)
n−1∑

k=0

e2πik2/ne2πi`k/n =
1
2
(1 + i)e−πi`2/2n

[
1 + (−1)`i−n

]
n

1
2 .

Proof. The sum on the left is n · f#(−`), where f ∈ C(S1) is given by

f(θ) = einθ2/2π, 0 ≤ θ ≤ 2π.

Note that f is Lipschitz on S1, with a simple jump in its derivative, so f̂(k) =
O(|k|−2). Hence Proposition 3.3 applies, and (3.7) yields

(3.35) f#(−`) =
∞∑

j=−∞

∫ 1

0

e2πin[y2+(j+`/n)y] dy.

To evaluate his, we use the ‘Gaussian integral,’ (convergent though not absolutely
convergent):

(3.36)
∫ ∞

−∞
e2πiny2

dy = n−
1
2 γ, γ =

1
2
(1 + i),

obtained from (2.20) by a change of variable and analytic continuation. We will
break up the real line as a union of intervals

⋃
k

[k + a, k + a + 1], in two different

ways, and then evaluate (3.35). Note that

(3.37)
∫ k+a+1

k+a

e2πiny2
dy =

∫ 1

0

e2πin[y2+2(k+a)y]dy · e2πin(k+a)2 .
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If we pick a = `/2n, then 2(k + a) = 2k + `/n, and as k runs over Z, we get
those integrands in (3.35) for which j is even. If we pick a = − 1

2 + `/2n, then
2(k + a) = 2k − 1 + `/n. Furthermore, we have

(3.38) e2πin(k+a)2 = eπi`2/2n and eπi(`−n)2/2n,

respectively, for these two choices of a. Thus the sum in (3.35) is equal to n−
1
2 γ

times e−πi`2/2n + e−πi(`−n)2/2n, which gives the desired formula (3.34).
The basic case of this sum is the ` = 0 case:

(3.39)
n−1∑

k=0

e2πik2/n =
1
2
(1 + i)(1 + i−n)n

1
2 = σn · n 1

2 ,

where σn is periodic of period 4 in n, with

(3.40) σ0 = 1 + i, σ1 = 1, σ2 = 0, σ3 = i.

This result, particularly when n = p is a prime, is used as a tool to obtain fascinating
number theoretical results. For more on this, see the exercises and references given
there.
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Exercises.

1. Generalize the Gauss sum identity (3.34) to

(3.41)
n−1∑

k=0

e2πik2m/ne2πi`k/n =
1 + i

2

( n

m

) 1
2
e−πi`2/2mn

2m−1∑
ν=0

e−πinν2/2me−πiν`/m.

Hint. The left side is n · f#(−`) with

f(θ) = einmθ2/2π, 0 ≤ θ ≤ 2π.

For this, one has a formula like (3.35):

f#(−`) =
∞∑

j=−∞

∫ 1

0

e2πinm[y2+(1/m)(j+`/n)y] dy.

Write j = 2mµ + ν, so
∞∑

j=−∞
=

2m−1∑
ν=0

∑
j=ν mod 2m

. For fixed ν, the sum becomes a

multiple of the Gaussian integral (3.36), with n replaced by nm, and the formula
(3.41) arises. Note the ` = 0 case of this:

n−1∑

k=0

e2πik2m/n =
1 + i

2

( n

m

) 1
2

2m−1∑
ν=0

e−πinν2/2m.

2. Let #(`, n) denote the number of solutions k ∈ Zn to

` = k2 (mod n).

Show that, with ω = e2πi/n,

n−1∑

k=0

ωjk2
=

n−1∑

`=0

#(`, n)ωj`.

3. Show that, more generally,

(n−1∑

k=0

ωjk2
)ν

=
n−1∑

`=0

#(`, n; ν) ωj`
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where #(`, n; ν) denotes the number of solutions (k1, . . . , kν) ∈ (Zn)ν to

` = k2
1 + · · ·+ k2

ν (mod n).

4. Let p be a prime. The Legendre symbol (`|p) is defined to be +1 if ` = k2

mod p for some k, and ` 6= 0, 0 if ` = 0, and −1 otherwise. If p is an odd prime,
#(`, p) = (`|p) + 1. The Legendre symbol has the useful multiplicative property:
(`1`2|p) = (`1|p)(`2|p). Check this. Show that, with ω = e2πi/p, if p is an odd prime,

p−1∑

k=0

ωk2
=

p−1∑

`=0

(`|p)ω`

and, more generally,
p−1∑

k=0

ωjk2
=

p−1∑

`=0

(`|p)ωj` + pδj0

where δj0 = 1 if j = 0 (mod p), 0 otherwise.
Hint. Use exercise 2.

5. Denoting
p−1∑
k=0

ωk2
by Gp, p an odd prime, show that

p−1∑

k=0

ωjk2
= (j|p) ·Gp + p · δj0.

Hint. If 1 ≤ j ≤ p− 1, use
p−1∑
`=0

(`|p)ω` =
p−1∑
`=0

(j`|p)ωj` and (j`|p) = (j|p)(`|p).

Denote by S(m,n) the Gauss sum

S(m, n) =
n−1∑

k=0

e2πik2m/n.

Then the content of problem 5 is that S(j, p) = (j|p)S(1, p) for 1 ≤ j ≤ p−1, when
p is an odd prime.

6. Assume p and q are distinct odd primes. Show that

S(1, pq) = S(q, p)S(p, q).
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Hint. To re-sum
pq−1∑
k=0

e2πik2/pq, use the fact that, as µ runs over {0, 1, . . . , p − 1}
and ν runs over {0, 1, . . . , q − 1}, then k = µq + νp runs once over Z mod pq.

7. From problems 5-6, it follows that, when p and q are distinct odd primes,

(p|q)(q|p) =
S(1, pq)

S(1, p)S(1, q)
.

Use the evaluation (3.39) of S(1, n) to deduce the quadratic reciprocity law:

(p|q)(q|p) = (−1)(p−1)(q−1)/4.

This law, together with the complementary results

(−1|p) = (−1)(p−1)/2, (2|p) = (−1)(p
2−1)/8,

allow for an effective computation of (`|p), as one application, but the significance of
quadratic reciprocity goes beyond this. It and other implications of Gauss sums are
absolutely fundamental in number theory. For material on this, see [Hua], [Land],
[Rad].
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4. The fast Fourier transform

In the last section we discussed some properties of the discrete Fourier transform

(4.1) f#(`) =
1
n

∑

ωj∈Γn

f(ωj)ω−j`,

where ` ∈ Zn = Z/(n) and Γn is the multiplicative group of unit complex numbers
generated by ω = e2πi/n. We now turn to a discussion of efficient numerical com-
putation of the discrete Fourier transform. Note that, for any fixed `, computing
the right side of (4.1) involves n − 1 additions and n multiplications of complex
numbers, plus n integer products j` = m and looking up ωm and f(ωj). If the
computations for varying ` are done independently, the total effort to compute
f# involves n2 multiplications and n(n − 1) additions of complex numbers, plus
some further chores. The Fast Fourier Transform (denoted FFT) is a method for
computing f# in Cn(log n) steps, in case n is a power of 2.

The possibility of doing this arises from observing redundancies in the calculation
of the Fourier coefficients f#(`). Let us illustrate this in the case of Γ4. We can
write

(4.2)
4f#(0) =

[
f(1) + f(i2)

]
+

[
f(i) + f(i3)

]

4f#(2) =
[
f(1) + f(i2)

]− [
f(i) + f(i3)

]

and

(4.3)
4f#(1) =

[
f(1)− f(i2)

]− i
[
f(i)− f(i3)

]

4f#(3) =
[
f(1)− f(i2)

]
+ i

[
f(i)− f(i3)

]

Note that each term in square brackets appears twice. Note also that (4.2) gives
the Fourier coefficients of a function on Γ2; namely, if

(4.4) 0f(1) = f(1) + f(−1), 0f(−1) = f(i) + f(i3),

then

(4.5) 2f#(2`) = 0f#(`) for ` = 0 or 1.

Similarly, if we set

(4.6) 1f(1) = f(1)− f(−1), 1f(−1) = −i
[
f(i)− f(i3)

]
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then

(4.7) 2f#(2` + 1) = 1f#(`) for ` = 0 or 1.

This phenomenon is a special case of a more general result which leads to a fast
inductive procedure for evaluating the Fourier transform f#.

Suppose n = 2k; let us use the notation Gk = Γn. Note that Gk−1 is a subgroup
of Gk. Furthermore, there is a homomorphism of Gk onto Gk−1, given by ωj 7→ ω2j .
Given f : Gk → C, define the following functions 0f and 1f on Gk−1, with ω1 = ω2,
generating Gk−1 :

(4.8) 0f(ωj
1) = f(ωj) + f(ωj+ 1

2 n),

(4.9) 1f(ωj
1) = ωj

[
f(ωj)− f(ωj+ 1

2 n)
]
.

Note that the factor ωj in (12.9) makes 1f(ωj
1) well defined for j ∈ Zn/2, i.e.,

the right side of (12.9) is unchanged if j is replaced by j + 1
2n. Then 0f# and

1f#, the discrete Fourier transforms of the functions 0f and 1f, are functions on
Zn/2 = Z/(2k−1).

Proposition 4.1. We have the following identities relating the Fourier transforms
of 0f, 1f, and f :

(4.10) 2f#(2`) = 0f#(`),

and

(4.11) 2f#(2` + 1) = 1f#(`),

for ` ∈ {0, 1, . . . , 1
2n− 1}.

Proof. Recall that we set ω1 = ω2. Since ωn = 1 and ω
n/2
1 = 1, we have

(4.12)

nf#(2`) =
∑

ωj∈Gk

f(ωj)ω2j`

=
∑

ωj
1=ω2j∈Gk−1

[
f(ωj) + f(ωj+ 1

2 n)
]
ωj`

1 ,

proving (4.10), and, since ωn/2 = −1,

(4.13)

nf#(2` + 1) =
∑

ωj∈Gk

f(ωj)ωj ω2j`

=
∑

ωj
1=ω2j∈Gk−1

ωj
[
f(ωj)− f(ωj+ 1

2 n)
]
ωj`

1 ,
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proving (4.11).

Thus the problem of computing f#, given f ∈ L2(Gk), is transformed, after 1
2n

multiplications and n additions of complex numbers in (4.8)-(4.9), to the problem
of computing the Fourier transforms of two functions on Gk−1. After 1

4n new mul-
tiplications and 1

2n new additions for each of these functions 0f and 1f, i.e., after
an additional total of 1

2n new multiplications and n additions, this is reduced to
the problem of computing four Fourier transforms of functions on Gk−2. After k
iterations, we obtain 2k functions on G0 = {1}, which precisely give the Fourier coef-
ficients of f. Doing this hence takes kn = (log2 n)n additions and 1

2kn = 1
2 (log2 n)n

multplications of complex numbers, plus a comparable number of integer operations
and fetching from memory values of given or previously computed functions.

To describe an explicit implementation of Proposition 4.1 for a computation of
f#, let us identify an element ` ∈ Zn (n = 2k) with a k-tuple L = (Lk−1, . . . , L1, L0)
of elements of {0, 1} giving the binary expansion of the integer in {0, . . . , n − 1}
representing `, i.e., L0 + L1 · 2 + · · ·+ Lk−1 · 2k−1 = ` mod n. To be a little fussy,
we use the notation

(4.14) f#(`) = f##(L).

Then the formulas (4.10)-(4.11) state that

(4.15) 2f##(Lk−1, . . . , L1, 0) = 0f##(Lk−1, . . . , L1)

and

(4.16) 2f##(Lk−1, . . . , L1, 1) = 1f##(Lk−1, . . . , L1).

The inductive procedure described above gives, from 0f and 1f defined on Gk−1,
the functions

(4.17) 00f = 0(0f), 10f = 1(0f), 01f = 0(1f), 11f = 1(1f)

defined on Gk−2, and so forth, and we see from (4.15)-(4.16) that

(4.18) f#(`) = (1/n) Lf,

where Lf = Lf(1) is defined on G0 = {1}. From (4.8)-(4.9) we have the following
inductive formula for Lm+1Lm···L1f on Gk−m−1 :

(4.19)
0Lm···L1f(ωj

m+1) = Lm···L1f(ωj
m) + Lm···L1f(ωj+2k−m−1

m ),
1Lm···L1f(ωj

m+1) = ωj
m

[
Lm···L1f(ωj

m)− Lm···L1f(ωj+2k−m−1

m )
]
,

where ωm is the generator of Gk−m, defined by ω0 = ω = e2πi/n (n = 2k), ωm+1 =
ω2

m, i.e., ωm = ω2m

.
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When doing computations, particularly in a higher level language, it may be
easier to work with integers ` than with m-tuples (L1, . . . , L1). Therefore, let us set

(4.20) Lm···L1f(ωj
m) = Fm(2m · j + `),

where
` = L1 + L2 · 2 + · · ·+ Lm · 2m−1 ∈ {0, 1, . . . , 2m − 1}

and
j ∈ {0, 1, . . . , 2k−m − 1}.

Note that this precisely defines Fm on {0, 1, . . . , 2k − 1}. For m = 0 we have

(4.21) F0(j) = f(ωj), 0 ≤ j ≤ 2k − 1.

The iterative formulas (4.19) give

(4.22)
Fm+1(2m+1j + `) = Fm(2mj + `) + Fm(2mj + 2k−1 + `),

Fm+1(2m + 2m+1j + `) = ωj
m

[
Fm(2mj + `)− Fm(2mj + 2k−1 + `)

]
,

for 0 ≤ j ≤ 2k−m−1 − 1, 0 ≤ ` ≤ 2m − 1. It is easy to write a computer program
to implement such an iteration. The formula (4.18) for the Fourier transform of f
becomes

(4.23) f#(`) = (1/n)Fk(`), 0 ≤ ` ≤ 2k − 1.

While (4.21)-(4.23) provides an easily implementable FFT algorithm, it is not
necessarily the best. One drawback is the following. In passing from Fm to Fm+1 via
(4.22), you need two different arrays of n complex numbers. A variant of (12.19),
where Lm+1Lm···L1f is replaced by fL1···LmLm+1 , leads to an iterative procedure
where a transformation of the type (4.19) is performed ‘in place,’ and only one
such array needs to be used. If memory is expensive and one needs to make best
use of it, this savings can be important. At the end of such an iteration, one needs
to perform a ‘bit reversal’ to produce f#. Details, including sample programs, can
be found in [Pnr].

On any given computer, a number of factors would influence the choice of the
best FFT algorithm. These include such things as relative speed of memory access
and floating point performance, efficiency of computing trigonometric functions
(e.g., whether this is implemented in hardware), degree of accuracy required, and
other factors. Also special features, such as computing the Fourier transform of a
real valued function, or of a function whose Fourier transform is known to be real
valued, would affect specific computer programs designed for maximum efficiency.
Working out how best to implement FFTs on various computers presents many
interesting problems.
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Exercises.

1. Using the FFT, write a computer program to solve numerically the initial value
problem for the heat equation ∂u/∂t− uxx = 0 on R+ × S1.

2. Consider multidimensional generalizations of the discrete Fourier transform,
and in particular the FFT. What size 3-dimensional FFT could be handled by a
computer with 4 megabytes of RAM? With 256 megs?

3. Generalize the FFT algorithm to a cyclic group Γn with n = 3k. To n = p1 · · · pk

where pj are ‘small’ primes.
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5. An FFT procedure in Pascal

The procedure fft below implements the FFT algorithm described in §4, via the
recursive formula (4.22). A related procedure invfft calculates the inverse DFT,
defined by (3.2). A programmer using these procedures needs to declare a type,

fctn=array[0..255] of double;

A pair of elements of type ‘fctn’ represent the real and imaginary parts of a complex-
valued function on Γn.

(* fft.pas *)

var
romega,iomega:array[0..255] of double;
twopow:array[0..8] of integer;
rfx,ifx:array[0..1,0..255] of double;

procedure initfft;
var

jj:integer;
pp:double;

begin
pp:=pi/128;
for jj:=0 to 255 do romega[jj]:=cos(jj*pp);
for jj:=0 to 255 do iomega[jj]:=-sin(jj*pp);
twopow[0]:=1;
for jj:=1 to 8 do twopow[jj]:=2*twopow[jj-1];

end;

procedure fft(rff:fctn;iff:fctn;var rgg:fctn; var igg:fctn);
var

mm,ma,mb,jj,el,tm,tmj,tmm:integer;
tmjl,ttmjl,tmjl8,ttmjlt:integer;
rxx,ixx,rom,iom:double;

begin
for jj:=0 to 255 do rfx[0,jj]:=rff[jj];
for jj:=0 to 255 do ifx[0,jj]:=iff[jj];
for mm:=0 to 7 do
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begin
ma:=mm mod 2;
mb:=(ma+1) mod 2;
tm:=twopow[mm];
for jj:=0 to twopow[7-mm]-1 do
begin

tmj:=tm*jj;
tmm:=tmj mod 256;
rom:=romega[tmm];
iom:=iomega[tmm];
for el:=0 to tm-1 do
begin

tmjl:=tmj+el; (* (2 ̂ m)j+l *)
ttmjl:=tmj+tmjl; (* (2 ̂ (m+1)j+l *)
tmjl8:=tmjl+128; (* (2 ̂ m)j+l+128 *)
ttmjlt:=ttmjl+tm; (* (2 ̂ m)+(2 ̂ (m+1))j+l *)
rfx[mb,ttmjl]:=rfx[ma,tmjl]+rfx[ma,tmjl8];
ifx[mb,ttmjl]:=ifx[ma,tmjl]+ifx[ma,tmjl8];
rxx:=rfx[ma,tmjl]-rfx[ma,tmjl8];
ixx:=ifx[ma,tmjl]-ifx[ma,tmjl8];
rfx[mb,ttmjlt]:=rom*rxx-iom*ixx;
ifx[mb,ttmjlt]:=rom*ixx+iom*rxx;

end;
end;

end;
for jj:=0 to 255 do rgg[jj]:=rfx[0,jj]/256;
for jj:=0 to 255 do igg[jj]:=ifx[0,jj]/256;

end;

procedure invfft(rff:fctn;iff:fctn;var rgg:fctn; var igg:fctn);
var

mm,ma,mb,jj,el,tm,tmj,tmm:integer;
tmjl,ttmjl,tmjl8,ttmjlt:integer;
rxx,ixx,rom,iom:double;

begin
for jj:=0 to 255 do rfx[0,jj]:=rff[jj];
for jj:=0 to 255 do ifx[0,jj]:=iff[jj];
for mm:=0 to 7 do
begin

ma:=mm mod 2;
mb:=(ma+1) mod 2;
tm:=twopow[mm];
for jj:=0 to twopow[7-mm]-1 do
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begin
tmj:=tm*jj;
tmm:=tmj mod 256;
rom:=romega[tmm];
iom:=iomega[tmm];
for el:=0 to tm-1 do
begin

tmjl:=tmj+el; (* (2 ̂ m)j+l *)
ttmjl:=tmj+tmjl; (* (2 ̂ (m+1)j+l *)
tmjl8:=tmjl+128; (* (2 ̂ m)j+l+128 *)
ttmjlt:=ttmjl+tm; (* (2 ̂ m)+(2 ̂ (m+1))j+l *)
rfx[mb,ttmjl]:=rfx[ma,tmjl]+rfx[ma,tmjl8];
ifx[mb,ttmjl]:=ifx[ma,tmjl]+ifx[ma,tmjl8];
rxx:=rfx[ma,tmjl]-rfx[ma,tmjl8];
ixx:=ifx[ma,tmjl]-ifx[ma,tmjl8];
rfx[mb,ttmjlt]:=rom*rxx+iom*ixx;
ifx[mb,ttmjlt]:=rom*ixx-iom*rxx;
(* sign change on iom *)

end;
end;

end;
for jj:=0 to 255 do rgg[jj]:=rfx[0,jj];
for jj:=0 to 255 do igg[jj]:=ifx[0,jj];
(* no division by 256, unlike direct fft *)

end;
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