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If ϕ ∈ S(R) is even, the Fourier inversion formula on the operator level gives

(1) ϕ(
√
−∆) =

1√
2π

∫ ∞

−∞
ϕ̂(t) cos t

√
−∆ dt.

In fact, we can lower the requirement that ϕ be smooth and rapidly decreasing
quite a bit; having ϕ and ϕ̂ in L1(R) is sufficient, and sometimes we can go even
beyond that.

We combine (1) with the formula

(2) cos t
√
−∆f(x) = Cnt

( 1
2t

d

dt

)k[
t2k−1fx(t)

]
,

for a function f on Rn = R2k+1, where

(3) Cn =
1
2
π−(n−1)/2An−1.

We get

(4)
ϕ(
√
−∆)f(x) =

Cn√
2π

∫ ∞

−∞
ϕ̂(t)

( d

dt

1
2t

)k[
tn−1fx(t)

]
dt

=
Cn√
2π

∫ ∞

−∞

(
− 1

2t

d

dt

)k

ϕ̂(t) · tn−1fx(t) dt.

Now

(5)

∫ ∞

0

Φ(r)rn−1fx(r) dr

=
1

An−1

∫ ∞

0

∫

Sn−1

f(x− rω)Φ(r)rn−1 dS(ω) dr

=
1

An−1

∫

Rn

f(x− y)Φ(|y|) dy.

Hence, using (3), we obtain from (4) that

(6) ϕ(
√
−∆)f(x) =

1√
2π

∫

Rn

Φn(|y|)f(x− y) dy,

1
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for n = 2k + 1, where

(7) Φ2k+1(r) =
(
− 1

2πr

d

dr

)k

ϕ̂(r).

Another way to write (6) is

(8) ϕ(
√
−∆)δ(x) =

1√
2π

Φn(|x|), x ∈ Rn.

Remark. The case k = 0 of (7) can be seen directly by the Fourier inversion
theorem, without use of the calculations (1)–(5).

We seek an analogous formula for ϕ(
√−∆)f(x) when f is a function on Rn with

n = 2k. We get this by the following extension of the method of descent, which
gives

(9) cos t
√
−∆f(x) = cos t

√
−∆n+1F (x, 0),

with

(10) F (x, xn+1) = f(x).

From this and (1), we get

(11)

ϕ(
√
−∆)f(x) = ϕ(

√
−∆n+1)F (x, 0)

=
1√
2π

∫

R2k+1

Φ2k+1

(|(y, yn+1)|
)
F (x− y, yn+1) dy dyn+1

=
1√
2π

∫

R2k+1

Φ2k+1

(
(|y|2 + s2)1/2

)
f(x− y) dy ds,

or

(12) ϕ(
√
−∆)f(x) =

1√
2π

∫

Rn

Φ2k(|y|)f(x− y) dy,

where

(13) Φ2k(r) =
∫ ∞

−∞
Φ2k+1(

√
r2 + s2) ds,

and Φ2k+1 is given by (7). The change of variable t =
√

r2 + s2 gives

(14) Φ2k(r) = 2
∫ ∞

r

Φ2k+1(t)
t√

t2 − r2
dt.



3

We now apply the formula (6) to obtain the Poisson kernel, for e−y
√−∆. We

take

(15) ϕ(λ) = e−y|λ|,

so

(16)

ϕ̂(t) =
1√
2π

∫ ∞

−∞
e−y|λ|−iλt dλ

=
1√
2π

∫ ∞

0

[
e−λ(y+it) + e−λ(y−it)

]
dλ

=
1√
2π

[ 1
y + it

+
1

y − it

]

=

√
2
π

y

y2 + t2
.

We get

(17) e−y
√−∆δ(x) = Pn(y, x) = Pn(y, |x|), x ∈ Rn,

where, by (6)–(7),

(18)
P2k+1(y, r) =

y

πk+1

(
− 1

2r

d

dr

)k

(y2 + r2)−1

=
k!

πk+1

y

(y2 + r2)k+1
.

Another way to write this is

(19) Pn(y, x) = C̃n
y

(|x|2 + y2)(n+1)/2
, C̃n = π−(n+1)/2Γ

(n + 1
2

)
,

when n = 2k + 1. To treat n = 2k, we can use (13) to write

(20) P2k(y, r) =
k!

πk+1
y

∫ ∞

−∞

ds

(y2 + r2 + s2)k+1
.

Setting A =
√

y2 + r2, we have

(21)
∫ ∞

−∞

ds

(A2 + s2)k+1
= A−(2k+1)

∫ ∞

−∞

dt

(1 + t2)k+1
,

and after a slightly tedious residue calculation of the last integral, it develops that
(19) also holds for n = 2k.
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We next consider the resolvent, (µ2I −∆)−1, with µ > 0. We have

(22) ϕ(λ) = (µ2 + λ2)−1,

so

(23)
ϕ̂(t) =

1√
2π

∫ ∞

−∞

e−iλt

µ2 + λ2
dλ

=
√

π

2
1
µ

e−µ|t|,

the latter computation either by residue calculus or from (16) and the Fourier
inversion formula. We get

(24) (µ2I −∆)−1δ(x) = Rn(µ, x) = Rn(µ, |x|), x ∈ Rn,

where, by (6)–(7),

(25) R2k+1(µ, r) =
1

2πk

1
µ

(
− 1

2r

d

dr

)k

e−µr.

In particular,

(26)
R1(µ, x) =

1
2µ

e−µ|x|,

R3(µ, x) =
1
4π

e−µ|x|

|x| .

We take up another approach to formulas for Rn(µ, x), based on the identity

(27) (µ2I −∆)−1 =
∫ ∞

0

e−(µ2−∆)t dt,

which gives

(28)
Rn(µ, x) =

∫ ∞

0

e−µ2t et∆δ(x) dt

= (4π)−n/2

∫ ∞

0

e−|x|
2/4te−µ2tt−n/2 dt.

Let us compare the cases n = 1 and 3 of (28) with (26). Making the change of
variables y = |x| and |ξ| = µ, we have

(29)
1
|ξ|e

−y|ξ| =
1√
π

∫ ∞

0

e−y2/4te−t|ξ|2t−1/2 dt,
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and

(29)
1
y
e−y|ξ| =

1√
4π

∫ ∞

0

e−y2/4te−t|ξ|2t−3/2 dt.

Note that applying ∂/∂y to (29) gives (30). (Also recall the remark below (8),
implying the relatively elementary nature of the first formula in (28), which leads
to (29).) Regarding (30) as an identity between Fourier multipliers, we have the
operator identity

(31) e−y
√−∆ =

y

2
√

π

∫ ∞

0

e−y2/4tet∆ t−3/2 dt.

This identity, synthesizing the Poisson semigroup e−y
√−∆ from the heat semigroup

et∆, is called the subordination identity.
If we apply both sides of (31) to δ ∈ E ′(Rn), we get

(32)

Pn(y, x) =
y

2
√

π

∫ ∞

0

e−y2/4te−|x|
2/4t(4πt)−n/2t−3/2 dt

=
y

(4π)(n+1)/2

∫ ∞

0

e−(|x|2+y2)/4tt−(n+3)/2 dt

=
y

(4π)(n+1)/2

∫ ∞

0

e−s(|x|2+y2)/4s(n−1)/2 ds,

the last identity via the change of variable s = 1/t. Noting that

(33)

∫ ∞

0

e−ass(n−1)/2 ds = a−(n+1)/2

∫ ∞

0

e−uu(n−1)/2 du

= a−(n+1)/2Γ
(n + 1

2

)
,

we have a second demonstration of (19).
We next analyze the operation of partial Fourier inversion of a function on Rn,

(34)
SRf(x) = (2π)−n/2

∫

|ξ|≤R

f̂(ξ)eix·ξ dξ

= χR(
√
−∆)f(x),

where

(35)
χR(λ) = 1, |λ| ≤ R,

0, otherwise.
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Note that

(36) χ̂R(t) =
1√
2π

∫ R

−R

e−itλ dλ =

√
2
π

sin Rt

t
,

so (1) gives

(37) SRf(x) =
1
π

∫ ∞

−∞

sin Rt

t
u(t, x) dt,

with

(38) u(t, x) = cos t
√
−∆f(x).

Note that if n = 1 and g(t) is even,

(39) SRg(0) =
1
π

∫ ∞

−∞

sin Rt

t
g(t) dt,

so one presentation of (37) is that, for each x ∈ Rn,

(40) SRf(x) = SRu(·, x)
∣∣
t=0

.

Since χ̂R is not in L1(R), some care needs to be taken with these formulas, but they
are valid for f ∈ L2(Rn) with compact support, and more generally for f ∈ E ′(Rn).
As in (6)–(7), we have

(41) SRf(x) = DR
n ∗ f(x),

where

(42) D2k+1
R (x) = D2k+1

R (|x|),
with

(43) D2k+1
R (r) =

1
π

(
− 1

2πr

d

dr

)k sinRr

r
.

Alternatively, directly from (4),

(44) SRf(x) =
Cn

π

∫ ∞

−∞

sin Rt

t

( d

dt

1
2t

)k[
tn−1fx(t)

]
dt,

in case n = 2k + 1.
Specializing to n = 3, we have C3 = 2, and

(45) SRf(x) =
1
π

∫ ∞

−∞

sin Rt

t

d

dt

[
tfx(t)

]
dt, x ∈ R3.

Hence, as in (39),

(46) SRf(x) = SRgx(0), gx(t) =
d

dt

[
tfx(t)

]
.

Known results for pointwise Fourier inversion of functions on R give the following.
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Proposition 1. Let f ∈ L2(R3) have compact support. Fix x ∈ R3. Assume tfx(t)
is an absolutely continuous function of t, so gx, defined in (46), belongs to L1(R).
If also gx is Hölder continuous with positive exponent at t = 0, then

(47) lim
R→0

SRf(x) = gx(0).

Let’s take a close look at the following function, defined for x ∈ R3 by

(48)
f(x) = χB(x) = 1, |x| < 1,

0, |x| > 1.

It is readily verified that

(49) x 6= 0 =⇒ tfx(t) is Lipschitz continuous (and smooth at t = 0),

and, with gx(t) given by (46),

(50)

gx(0) = 1, |x| < 1,

1
2
, |x| = 1,

0, |x| > 1.

We hence have

(51)

lim
R→∞

SRχB(x) = 1, 0 < |x| < 1,

1
2
, |x| = 1,

0, |x| > 1.

It remains to investigate SRχB(0). As we will see, convergence fails here. In fact,
for f given by (48), we have

(52)
f0(|t|) = 1, |t| < 1,

0, |t| > 1,

and hence

(53) g0(t) = χ[−1,1](t) + δ(t + 1)− δ(t− 1).

Hence

(54)
SRχB(0) =

1
π

∫ 1

−1

sinRt

t
dt− 2

π
sin R

= SRχ[−1,1](0)− 2
π

sin R.
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The first term on the last line converges to 1 as R →∞, but obviously the last term
has an oscillatory divergence as R → ∞. This is an illustration of a phenomenon
called the Pinsky phenomenon. See [PT] for more details, and references to the
literature.

Reference

[PT] M. Pinsky and M. Taylor, Pointwise Fourier inversion: a wave equation ap-
proach, J. Fourier Anal. and Appl. 3 (1997), 647–703.


