
The Gamma function

Michael Taylor

Abstract. This material is excerpted from §18 and Appendix J of [T].

The Gamma function has been previewed in (15.17)–(15.18), arising in the com-
putation of a natural Laplace transform:

(18.1) f(t) = tz−1 =⇒ Lf(s) = Γ(z) s−z,

for Re z > 0, with

(18.2) Γ(z) =
∫ ∞

0

e−ttz−1 dt, Re z > 0.

Here we develop further properties of this special function, beginning with the
following crucial identity:

(18.3)

Γ(z + 1) =
∫ ∞

0

e−ttz dt

= −
∫ ∞

0

d

dt
(e−t) tz dt

= z Γ(z),

for Re z > 0, where we use integration by parts. The definition (18.2) clearly gives

(18.4) Γ(1) = 1,

so we deduce that for any integer k ≥ 1,

(18.5) Γ(k) = (k − 1)Γ(k − 1) = · · · = (k − 1)!.

While Γ(z) is defined in (18.2) for Re z > 0, note that the left side of (18.3) is
well defined for Re z > −1, so this identity extends Γ(z) to be meromorphic on
{z : Re z > −1}, with a simple pole at z = 0. Iterating this argument, we extend
Γ(z) to be meromorphic on C, with simple poles at z = 0,−1,−2, . . . . Having such
a meromorphic continuation of Γ(z), we establish the following identity.
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Proposition 18.1. For z ∈ C \ Z we have

(18.6) Γ(z)Γ(1− z) =
π

sinπz
.

Proof. It suffices to establish this identity for 0 < Re z < 1. In that case we have

(18.7)

Γ(z)Γ(1− z) =
∫ ∞

0

∫ ∞

0

e−(s+t)s−ztz−1 ds dt

=
∫ ∞

0

∫ ∞

0

e−uvz−1(1 + v)−1 du dv

=
∫ ∞

0

(1 + v)−1vz−1 dv,

where we have used the change of variables u = s + t, v = t/s. With v = ex, the
last integral is equal to

(18.8)
∫ ∞

−∞
(1 + ex)−1exz dx,

which is holomorphic on 0 < Re z < 1. We want to show that this is equal
to the right side of (18.6) on this strip. It suffices to prove identity on the line
z = 1/2 + iξ, ξ ∈ R. Then (18.8) is equal to the Fourier integral

(18.9)
∫ ∞

−∞

(
2 cosh

x

2

)−1

eixξ dx.

This was evaluated in §16; by (16.23) it is equal to

(18.10)
π

coshπξ
,

and since

(18.11)
π

sin π( 1
2 + iξ)

=
π

coshπξ
,

the demonstration of (18.6) is complete.

Corollary 18.2. The function Γ(z) has no zeros, so 1/Γ(z) is an entire function.

For our next result, we begin with the following estimate:
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Lemma 18.3. We have

(18.12) 0 ≤ e−t −
(
1− t

n

)n

≤ t2

n
e−t, 0 ≤ t ≤ n,

the latter inequality holding provided n ≥ 4.

Proof. The first inequality in (18.12) is equivalent to the simple estimate e−y −
(1 − y) ≥ 0 for 0 ≤ y ≤ 1. To see this, denote the function by f(y) and note that
f(0) = 0 while f ′(y) = 1− e−y ≥ 0 for y ≥ 0.

As for the second inequality in (18.12), write

(18.13)
log

(
1− t

n

)n

= n log
(
1− t

n

)
= −t−X,

X =
t2

n

(1
2

+
1
3

t

n
+

1
4

( t

n

)2

+ · · ·
)
.

We have (1− t/n)n = e−t−X and hence, for 0 ≤ t ≤ n,

e−t −
(
1− t

n

)n

= (1− e−X)e−t ≤ Xe−t,

using the estimate x− (1− e−x) ≥ 0 for x ≥ 0 (as above). It is clear from (18.13)
that X ≤ t2/n if t ≤ n/2. On the other hand, if t ≥ n/2 and n ≥ 4 we have
t2/n ≥ 1 and hence e−t ≤ (t2/n)e−t.

We use (18.12) to obtain, for Re z > 0,

Γ(z) = lim
n→∞

∫ n

0

(
1− t

n

)n

tz−1 dt

= lim
n→∞

nz

∫ 1

0

(1− s)nsz−1 ds.

Repeatedly integrating by parts gives

(18.14) Γ(z) = lim
n→∞

nz n(n− 1) · · · 1
z(z + 1) · · · (z + n− 1)

∫ 1

0

sz+n−1 ds,

which yields the following result of Euler:

Proposition 18.4. For Re z > 0, we have

(18.15) Γ(z) = lim
n→∞

nz 1 · 2 · · ·n
z(z + 1) · · · (z + n)

,

Using the identity (18.3), analytically continuing Γ(z), we have (18.15) for all
z ∈ C other than 0,−1,−2, . . . . In more detail, we have

Γ(z) =
Γ(z + 1)

z
= lim

n→∞
nz+1 1

z

1 · 2 · · ·n
(z + 1)(z + 2) · · · (z + 1 + n)

,
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for Re z > −1(z 6= 0). We can rewrite the right side as

nz 1 · 2 · · ·n · n
z(z + 1) · · · (z + n + 1)

= (n + 1)z 1 · 2 · · · (n + 1)
z(z + 1) · · · (z + n + 1)

·
( n

n + 1

)z+1

,

and (n/(n + 1))z+1 → 1 as n → ∞. This extends (18.15) to {z 6= 0 : Re z > −1},
and iteratively we get further extensions.

We can rewrite (18.15) as

(18.16) Γ(z) = lim
n→∞

nz z−1(1 + z)−1
(
1 +

z

2

)−1

· · ·
(
1 +

z

n

)−1

.

To work on this formula, we define Euler’s constant:

(18.17) γ = lim
n→∞

(
1 +

1
2

+ · · ·+ 1
n
− log n

)
.

Then (18.16) is equivalent to

(18.18) Γ(z) = lim
n→∞

e−γz ez(1+1/2+···+1/n) z−1(1 + z)−1
(
1 +

z

2

)−1

· · ·
(
1 +

z

n

)−1

,

which leads to the following Euler product expansion.

Proposition 18.5. For all z ∈ C, we have

(18.19)
1

Γ(z)
= z eγz

∞∏
n=1

(
1 +

z

n

)
e−z/n.

We can combine (18.6) and (18.19) to produce a product expansion for sinπz. In
fact, it follows from (18.19) that the entire function 1/Γ(z)Γ(−z) has the product
expansion

(18.20)
1

Γ(z)Γ(−z)
= −z2

∞∏
n=1

(
1− z2

n2

)
.

Since Γ(1− z) = −zΓ(−z), we have by (18.6) that

(18.21) sin πz = πz

∞∏
n=1

(
1− z2

n2

)
.

For another proof of this result, see §30, Exercise 2.
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Here is another application of (18.6). If we take z = 1/2, we get Γ(1/2)2 = π.
Since (18.2) implies Γ(1/2) > 0, we have

(18.22) Γ
(1

2

)
=
√

π.

Another way to obtain (18.22) is the following. A change of variable gives

(18.23)
∫ ∞

0

e−x2
dx =

1
2

∫ ∞

0

e−tt−1/2 dt =
1
2
Γ
(1

2

)
.

It follows from (10.6) that the left side of (18.23) is equal to
√

π/2, so we again
obtain (18.22). Note that application of (18.3) then gives, for each integer k ≥ 1,

(18.24) Γ
(
k +

1
2

)
= π1/2

(
k − 1

2

)(
k − 3

2

)
· · ·

(1
2

)
.

One can calculate the area An−1 of the unit sphere Sn−1 ⊂ Rn by relating
Gaussian integrals to the Gamma function. To see this, note that the argument
giving (10.6) yields

(18.25)
∫

Rn

e−|x|
2
dx =

(∫ ∞

−∞
e−x2

dx
)n

= πn/2.

On the other hand, using spherical polar coordinates to compute the left side of
(18.24) gives

(18.26)

∫

Rn

e−|x|
2
dx = An−1

∫ ∞

0

e−r2
rn−1 dr

=
1
2
An−1

∫ ∞

0

e−t tn/2−1 dt,

where we use t = r2. Recognizing the last integral as Γ(n/2), we have

(18.27) An−1 =
2πn/2

Γ(n/2)
.

More details on this argument are given at the end of Appendix C.

Exercises

1. Use the product expansion (18.19) to prove that

(18.28)
d

dz

Γ′(z)
Γ(z)

=
∞∑

n=0

1
(z + n)2

.
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Hint. Go from (18.19) to

log
1

Γ(z)
= log z + γz +

∞∑
n=1

[
log

(
1 +

z

n

)
− z

n

]
,

and note that
d

dz

Γ′(z)
Γ(z)

=
d2

dz2
log Γ(z).

2. Let
γn = 1 +

1
2

+ · · ·+ 1
n
− log(n + 1).

Show that γn ↗ and that 0 < γn < 1. Deduce that γ = limn→∞ γn exists, as
asserted in (18.17).

3. Using (∂/∂z)tz−1 = tz−1 log t, show that

fz(t) = tz−1 log t, (Re z > 0)

has Laplace transform

Lfz(s) =
Γ′(z)− Γ(z) log s

sz
, Re s > 0.

4. Show that (18.19) yields

(18.29) Γ(z + 1) = zΓ(z) = e−γz
∞∏

n=1

(
1 +

z

n

)−1

ez/n, |z| < 1.

Use this to show that

(18.30) Γ′(1) =
d

dz

(
zΓ(z)

)∣∣
z=0

= −γ.

5. Using Exercises 3–4, show that

f(t) = log t =⇒ Lf(s) = − log s + γ

s
,

and that
γ = −

∫ ∞

0

(log t)e−t dt.

6. Show that γ = γa − γb, with

γa =
∫ 1

0

1− e−t

t
dt, γb =

∫ ∞

1

e−t

t
dt.
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Consider how to obtain accurate numerical evaluations of these quantities.
Hint. Split the integral for γ in Exercise 5 into two pieces. Integrate each piece by
parts, using e−t = −(d/dt)(e−t − 1) for one and e−t = −(d/dt)e−t for the other.
See Appendix J for more on this.

7. Use the Laplace transform identity (18.1) for fz(t) = tz−1 (on t ≥ 0, given
Re z > 0) plus the results of Exercises 5–6 of §15 to show that

(18.31) B(z, ζ) =
Γ(z)Γ(ζ)
Γ(z + ζ)

, Re z, Re ζ > 0,

where the beta function B(z, ζ) is defined by

(18.32) B(z, ζ) =
∫ 1

0

sz−1(1− s)ζ−1 ds, Re z, Re ζ > 0.

The identity (18.31) is known as Euler’s formula for the beta function.

8. Show that, for any z ∈ C, when n ≥ 2|z|, we have

(
1 +

z

n

)
e−z/n = 1 + wn

with log(1 + wn) = log(1 + z/n)− z/n satisfying

∣∣log(1 + wn)
∣∣ ≤ |z|2

n2
.

Show that this estimate implies the convergence of the product on the right side of
(18.19), locally uniformly on C.

More infinite products

9. Show that

(18.33)
∞∏

n=1

(
1− 1

4n2

)
=

2
π

.

Hint. Take z = 1/2 in (18.21).

10. Show that, for all z ∈ C,

(18.34) cos
πz

2
=

∏

odd n≥1

(
1− z2

n2

)
.
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Hint. Use cos πz/2 = − sin
(
(π/2)(z − 1)

)
and (18.21) to obtain

(18.35) cos
πz

2
=

π

2
(1− z)

∞∏
n=1

(
1− (z − 1)2

4n2

)
.

Use (1− u2) = (1− u)(1 + u) to write the general factor in this infinite product as

(
1+

1
2n

− z

2n

)(
1− 1

2n
+

z

2n

)

=
(
1− 1

4n2

)(
1− z

2n + 1

)(
1 +

z

2n− 1

)
,

and obtain from (18.35) that

cos
πz

2
=

π

2

∞∏
n=1

(
1− 1

4n2

)
·

∏

odd n≥1

(
1− z

n

)(
1 +

z

n

)
.

Deduce (18.34) from this and (18.33).

11. Show that

(18.36)
sin πz

πz
= cos

πz

2
· cos

πz

4
· cos

πz

8
· · · .

Hint. Make use of (18.21) and (18.34).

18A. The Legendre duplication formula

The Legendre duplication formula relates Γ(2z) and Γ(z)Γ(z + 1/2). Note that
each of these functions is meromorphic, with poles precisely at {0,−1/2,−1,−3/2,−2, . . . },
all simple, and both functions are nowhere vanishing. Hence their quotient is an
entire holomorphic function, and it is nowhere vanishing, so

(18.37) Γ(2z) = eA(z)Γ(z)Γ
(
z +

1
2

)
,

with A(z) holomorphic on C. We seek a formula for A(z). We will be guided by
(18.19), which implies that

(18.38)
1

Γ(2z)
= 2ze2γz

∞∏
n=1

(
1 +

2z

n

)
e−2z/n,
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and (via results given in §18B)

(18.39)

1
Γ(z)Γ(z + 1/2)

= z
(
z +

1
2

)
eγzeγ(z+1/2)

{ ∞∏
n=1

(
1 +

z

n

)
e−z/n

(
1 +

z + 1/2
n

)
e−(z+1/2)/n

}
.

Setting

(18.40) 1 +
z + 1/2

n
=

2z + 2n + 1
2n

=
(
1 +

2z

2n + 1

)(
1 +

1
2n

)
,

and

(18.41) e−(z+1/2)/n = e−2z/(2n+1)e−2z[(1/2n)−1/(2n+1)]e−1/2n,

we can write the infinite product on the right side of (18.39) as

(18.42)

{ ∞∏
n=1

(
1 +

2z

2n

)
e−2z/2n

(
1 +

2z

2n + 1

)
e−2z/(2n+1)

}

×
{ ∞∏

n=1

(
1 +

1
2n

)
e−1/2n

}
×

∞∏
n=1

e−2z[(1/2n)−1/(2n+1)].

Hence

(18.43)

1
Γ(z)Γ(z + 1/2)

= ze2γzeγ/2 · e2z

2
(1 + 2z)e−2z × (18.42)

= 2ze2γzeγ/2 e2z

4

{ ∞∏

k=1

(
1 +

2z

k

)
e−2z/k

}

×
{ ∞∏

n=1

(
1 +

1
2n

)
e−1/2n

} ∞∏
n=1

e−2z[(1/2n)−1/(2n+1)].

Now, setting z = 1/2 in (18.19) gives

(18.44)
1

Γ(1/2)
=

1
2
eγ/2

∞∏
n=1

(
1 +

1
2n

)
e−1/2n,

so taking (18.38) into account yields

(18.45)

1
Γ(z)Γ(z + 1/2)

=
1

Γ(1/2)Γ(2z)
e2z

2

∞∏
n=1

e−2z[(1/2n)−1/(2n+1)]

=
1

Γ(1/2)Γ(2z)
e2αz

2
,
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where

(18.46)

α = 1−
∞∑

n=1

( 1
2n

− 1
2n + 1

)

= 1− 1
2

+
1
3
− 1

4
+

1
5
· · ·

= log 2.

Hence e2αz = 22z, and we get

(18.47) Γ
(1

2

)
Γ(2z) = 22z−1Γ(z)Γ

(
z +

1
2

)
.

This is the Legendre duplication formula. Recall that Γ(1/2) =
√

π.
An equivalent formulation of (18.47) is

(18.48) (2π)1/2Γ(z) = 2z−1/2Γ
(z

2

)
Γ
(z + 1

2

)
.

This generalizes to the following formula of Gauss,

(18.49) (2π)(n−1)/2Γ(z) = nz−1/2Γ
( z

n

)
Γ
(z + 1

n

)
· · ·Γ

(z + n− 1
n

)
,

valid for n = 3, 4, . . . .

18B. Convergence of infinite products

Here we record some results regarding the convergence of infinite products, which
have arisen in this section. We look at infinite products of the form

(18.50)
∞∏

k=1

(1 + ak).

Disregarding cases where one or more factors 1 + ak vanish, the convergence of∏M
k=1(1 + ak) as M →∞ amounts to the convergence

(18.51) lim
M→∞

N∏

k=M

(1 + ak) = 1, uniformly in N > M.

In particular, we require ak → 0 as k →∞. To investigate when (18.51) happens,
write

(18.52)

N∏

k=M

(1 + ak) = (1 + aM )(1 + aM+1) · · · (1 + aN )

= 1 +
∑

j

aj +
∑

j1<j2

aj1aj2 + · · ·+ aM · · · aN ,
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where, e.g., M ≤ j1 < j2 ≤ N . Hence

(18.53)

∣∣∣
N∏

k=M

(1 + ak)− 1
∣∣∣ ≤

∑

j

|aj |+
∑

j1<j2

|aj1aj2 |+ · · ·+ |aM · · · aN |

=
N∏

k=M

(1 + |ak|)− 1

= bMN ,

the last identity defining bMN . Our task is to investigate when bMN → 0 as
M →∞, uniformly in N > M . To do this, we note that

(18.54)

log(1 + bMN ) = log
N∏

k=M

(1 + |ak|)

=
N∑

k=M

log(1 + |ak|),

and use the facts

(18.55)
x ≥ 0 =⇒ log(1 + x) ≤ x,

0 ≤ x ≤ 1 =⇒ log(1 + x) ≥ x

2
.

Assuming ak → 0 and taking M so large that k ≥ M ⇒ |ak| ≤ 1/2, we have

(18.56)
1
2

N∑

k=M

|ak| ≤ log(1 + bMN ) ≤
N∑

k=M

|ak|,

and hence

(18.57) lim
M→∞

bMN = 0, uniformly in N > M ⇐⇒
∑

k

|ak| < ∞.

Consequently,

(18.58)

∑

k

|ak| < ∞ =⇒
∞∏

k=1

(1 + |ak|) converges

=⇒
∞∏

k=1

(1 + ak) converges.

Another consequence of (18.57) is the following:

(18.59) If 1 + ak 6= 0 for all k, then
∑

|ak| < ∞⇒
∞∏

k=1

(1 + ak) 6= 0.

We can replace the sequence (ak) of complex numbers by a sequence (fk) of
holomorphic functions, and deduce from the estimates above the following.
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Proposition 18.6. Let fk : Ω → C be holomorphic. If

(18.60)
∑

k

|fk(z)| < ∞ on Ω,

then we have a convergent infinite product

(18.61)
∞∏

k=1

(1 + fk(z)) = g(z),

and g is holomorphic on Ω. If z0 ∈ Ω and 1 + fk(z0) 6= 0 for all k, then g(z0) 6= 0.

Another consequence of estimates leading to (18.57) is that if also gk : Ω → C
and

∑ |gk(z)| < ∞ on Ω, then

(18.62)
{ ∞∏

k=1

(1 + fk(z))
} ∞∏

k=1

(1 + gk(z)) =
∞∏

k=1

(1 + fk(z))(1 + gk(z)).

To make contact with the Gamma function, note that the infinite product in
(18.19) has the form (18.61) with

(18.63) 1 + fk(z) =
(
1 +

z

k

)
e−z/k.

To see that (18.60) applies, note that

(18.64) e−w = 1− w + R(w), |w| ≤ 1 ⇒ |R(w)| ≤ C|w|2.

Hence

(18.65)

(
1 +

z

k

)
e−z/k =

(
1 +

z

k

)(
1− z

k
+ R

( z

k

))

= 1− z2

k2
+

(
1− z

k

)
R

( z

k

)
.

Hence (18.63) holds with

(18.66) fk(z) = − z2

k2
+

(
1− z

k

)
R

( z

k

)
,

so

(18.67) |fk(z)| ≤ C
∣∣∣ z
k

∣∣∣
2

for k ≥ |z|,

which yields (18.60).
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J. Euler’s constant

Here we say more about Euler’s constant, introduced in (18.17), in the course of
producing the Euler product expansion for 1/Γ(z). The definition

(J.1) γ = lim
n→∞

( n∑

k=1

1
k
− log(n + 1)

)

of Euler’s constant involves a very slowly convergent sequence. In order to produce
a numerical approximation of γ, it is convenient to use other formulas, involving
the Gamma function Γ(z) =

∫∞
0

e−ttz−1 dt. Note that

(J.2) Γ′(z) =
∫ ∞

0

(log t)e−ttz−1 dt.

Meanwhile the Euler product formula 1/Γ(z) = zeγz
∏∞

n=1(1 + z/n)e−z/n implies

(J.3) Γ′(1) = −γ.

Thus we have the integral formula

(J.4) γ = −
∫ ∞

0

(log t)e−t dt.

To evaluate this integral numerically it is convenient to split it into two pieces:

(J.5)
γ = −

∫ 1

0

(log t)e−t dt−
∫ ∞

1

(log t)e−t dt

= γa − γb.

We can apply integration by parts to both the integrals in (5), using e−t = −(d/dt)(e−t−
1) on the first and e−t = −(d/dt)e−t on the second, to obtain

(J.6) γa =
∫ 1

0

1− e−t

t
dt, γb =

∫ ∞

1

e−t

t
dt.

Using the power series for e−t and integrating term by term produces a rapidly
convergent series for γa:

(J.7) γa =
∞∑

k=1

(−1)k−1

k · k!
.
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Before producing infinite series representations for γb, we note that the change of
variable t = sm gives

(J.8) γb = m

∫ ∞

1

e−sm

s
ds,

which is very well approximated by the integral over s ∈ [1, 10) if m = 2, for
example.

To produce infinite series for γb, we can break up [1,∞) into intervals [k, k + 1)
and take t = s + k, to write

(J.9) γb =
∞∑

k=1

e−k

k
βk, βk =

∫ 1

0

e−t

1 + t/k
dt.

Note that 0 < βk < 1− 1/e for all k. For k ≥ 2 we can write

(J.10) βk =
∞∑

j=0

(
−1

k

)j

αj , αj =
∫ 1

0

tje−t dt.

One convenient way to integrate tje−t is the following. Write

(J.11) Ej(t) =
j∑

`=0

t`

`!
.

Then

(J.12) Ej(t) = Ej−1(t),

hence

(J.13)
d

dt

(
Ej(t)e−t

)
=

(
Ej−1(t)− Ej(t)

)
e−t = − tj

j!
e−t,

so

(J.14)
∫

tje−t dt = −j!Ej(t)e−t + C.

In particular,

(J.15)

αj =
∫ 1

0

tje−t dt = j!
(
1− 1

e

j∑

`=0

1
`!

)

=
j!
e

∞∑

`=j+1

1
`!

=
1
e

( 1
j + 1

+
1

(j + 1)(j + 2)
+ · · ·

)
.
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To evaluate β1 as an infinite series, it is convenient to write

(J.16)

e−1β1 =
∫ 2

1

e−t

t
dt

=
∞∑

j=0

(−1)j

j!

∫ 2

1

tj−1 dt

= log 2 +
∞∑

j=1

(−1)j

j · j! (2j − 1).

To summarize, we have γ = γa− γb, with γa given by the convenient series (J.7)
and

(J.17) γb =
∞∑

k=2

∞∑

j=0

e−k

k

(
−1

k

)j

αj + log 2 +
∞∑

j=1

(−1)j

j · j! (2j − 1),

with αj given by (J.15). We can reverse the order of summation of the double series
and write

(J.18) γb =
∞∑

j=0

(−1)jζjαj + log 2 +
∞∑

j=1

(−1)j

j · j! (2j − 1).

with

(J.19) ζj =
∞∑

k=2

e−k

kj+1
.

Note that

(J.20) 0 < ζj < 2−(j+1)
∞∑

k=2

e−k < 2−(j+3),

while (J.15) readily yields 0 < αj < 1/ej. So one can expect 15 digits of accuracy
by summing the first series in (J.18) over 0 ≤ j ≤ 50 and the second series over
0 ≤ j ≤ 32, assuming the ingredients αj and ζj are evaluated sufficiently accurately.
It suffices to sum (J.19) over 2 ≤ k ≤ 40−2j/3 to evaluate ζj to sufficient accuracy.

Note that the quantities αj do not have to be evaluated independently. Say you
are summing the first series in (J.18) over 0 ≤ j ≤ 50. First evaluate α50 using 20
terms in (J.15), and then evaluate inductively α49, . . . , α0 using the identity

(J.21) αj−1 =
1
je

+
αj

j
,
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equivalent to αj = jαj−1−1/e, which follows by integration by parts of
∫ 1

0
tje−t dt.

If we sum the series (J.7) for γa over 1 ≤ k ≤ 20 and either sum the series (J.18)
as described above or have Mathematica numerically integrate (J.8), with m = 2,
to high precision, we obtain

(J.22) γ ≈ 0.577215664901533,

which is accurate to 15 digits.
We give another series for γ. This one is more slowly convergent than the series

in (J.7) and (J.18), but it makes clear why γ exceeds 1/2 by a small amount, and
it has other interesting aspects. We start with

(J.23) γ =
∞∑

n=1

γn, γn =
1
n
−

∫ n+1

n

dx

x
=

1
n
− log

(
1 +

1
n

)
.

Thus γn is the area of the region

(J.24) Ωn =
{

(x, y) : n ≤ x ≤ n + 1,
1
x
≤ y ≤ 1

n

}
.

This region contains the triangle Tn with vertices (n, 1/n), (n + 1, 1/n), and (n +
1, 1/(n + 1)). The region Ωn \ Tn is a little sliver. Note that

(J.25) Area Tn = δn =
1
2

( 1
n
− 1

n + 1

)
,

and hence

(J.26)
∞∑

n=1

δn =
1
2
.

Thus

(J.27) γ − 1
2

= (γ1 − δ1) + (γ2 − δ2) + (γ3 − δ3) + · · · .

Now

(J.28) γ1 − δ1 =
3
4
− log 2,

while, for n ≥ 2, we have power series expansions

(J.29)
γn =

1
2n2

− 1
3n3

+
1

4n4
− · · ·

δn =
1

2n2
− 1

2n3
+

1
2n4

− · · · ,
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the first expansion by log(1 + z) = z − z2/2 + z3/3− · · · , and the second by

(J.30) δn =
1

2n(n + 1)
=

1
2n2

1
1 + 1

n

,

and the expansion (1 + z)−1 = 1− z + z2 − · · · . Hence we have

(J.31) γ − 1
2

= (γ1 − δ1) +
(1

2
− 1

3

) ∑

n≥2

1
n3
−

(1
2
− 1

4

) ∑

n≥2

1
n4

+ · · · ,

or, with

(J.32) ζ(k) =
∑

n≥1

1
nk

,

we have

(J.33) γ − 1
2

=
(3

4
− log 2

)
+

(1
2
− 1

3

)
[ζ(3)− 1]−

(1
2
− 1

4

)
[ζ(4)− 1] + · · · ,

an alternating series from the third term on. We note that

(J.34)

3
4
− log 2 ≈ 0.0568528,

1
6
[ζ(3)− 1] ≈ 0.0336762,

1
4
[ζ(4)− 1] ≈ 0.0205808,

3
10

[ζ(5)− 1] ≈ 0.0110783.

The estimate

(J.35)
∑

n≥2

1
nk

< 2−k +
∫ ∞

2

x−k dx

implies

(J.36) 0 <
(1

2
− 1

k

)
[ζ(k)− 1] < 2−k,

so the series (J.33) is geometrically convergent. If k is even, ζ(k) is a known rational
multiple of πk. However, for odd k, the values of ζ(k) are more mysterious. Note
that to get ζ(3) to 16 digits by summing (J.32) one needs to sum over 1 ≤ n ≤ 108.
On a 1.3 GHz personal computer, a C program does this in 4 seconds. Of course,
this is vastly slower than summing (J.7) and (J.18) over the ranges discussed above.
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