The Gamma function

Michael Taylor

Abstract. This material is excerpted from $\S 18$ and Appendix J of $[\mathrm{T}]$.

The Gamma function has been previewed in (15.17)-(15.18), arising in the computation of a natural Laplace transform:

$$
\begin{equation*}
f(t)=t^{z-1} \Longrightarrow \mathcal{L} f(s)=\Gamma(z) s^{-z} \tag{18.1}
\end{equation*}
$$

for $\operatorname{Re} z>0$, with

$$
\begin{equation*}
\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t, \quad \operatorname{Re} z>0 \tag{18.2}
\end{equation*}
$$

Here we develop further properties of this special function, beginning with the following crucial identity:

$$
\begin{align*}
\Gamma(z+1) & =\int_{0}^{\infty} e^{-t} t^{z} d t \\
& =-\int_{0}^{\infty} \frac{d}{d t}\left(e^{-t}\right) t^{z} d t \tag{18.3}\\
& =z \Gamma(z)
\end{align*}
$$

for Re $z>0$, where we use integration by parts. The definition (18.2) clearly gives

$$
\begin{equation*}
\Gamma(1)=1, \tag{18.4}
\end{equation*}
$$

so we deduce that for any integer $k \geq 1$,

$$
\begin{equation*}
\Gamma(k)=(k-1) \Gamma(k-1)=\cdots=(k-1)!. \tag{18.5}
\end{equation*}
$$

While $\Gamma(z)$ is defined in (18.2) for $\operatorname{Re} z>0$, note that the left side of (18.3) is well defined for $\operatorname{Re} z>-1$, so this identity extends $\Gamma(z)$ to be meromorphic on $\{z: \operatorname{Re} z>-1\}$, with a simple pole at $z=0$. Iterating this argument, we extend $\Gamma(z)$ to be meromorphic on \mathbb{C}, with simple poles at $z=0,-1,-2, \ldots$. Having such a meromorphic continuation of $\Gamma(z)$, we establish the following identity.

Proposition 18.1. For $z \in \mathbb{C} \backslash \mathbb{Z}$ we have

$$
\begin{equation*}
\Gamma(z) \Gamma(1-z)=\frac{\pi}{\sin \pi z} \tag{18.6}
\end{equation*}
$$

Proof. It suffices to establish this identity for $0<\operatorname{Re} z<1$. In that case we have

$$
\begin{align*}
\Gamma(z) \Gamma(1-z) & =\int_{0}^{\infty} \int_{0}^{\infty} e^{-(s+t)} s^{-z} t^{z-1} d s d t \\
& =\int_{0}^{\infty} \int_{0}^{\infty} e^{-u} v^{z-1}(1+v)^{-1} d u d v \tag{18.7}\\
& =\int_{0}^{\infty}(1+v)^{-1} v^{z-1} d v
\end{align*}
$$

where we have used the change of variables $u=s+t, v=t / s$. With $v=e^{x}$, the last integral is equal to

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left(1+e^{x}\right)^{-1} e^{x z} d x, \tag{18.8}
\end{equation*}
$$

which is holomorphic on $0<\operatorname{Re} z<1$. We want to show that this is equal to the right side of (18.6) on this strip. It suffices to prove identity on the line $z=1 / 2+i \xi, \xi \in \mathbb{R}$. Then (18.8) is equal to the Fourier integral

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left(2 \cosh \frac{x}{2}\right)^{-1} e^{i x \xi} d x . \tag{18.9}
\end{equation*}
$$

This was evaluated in $\S 16$; by (16.23) it is equal to

$$
\begin{equation*}
\frac{\pi}{\cosh \pi \xi}, \tag{18.10}
\end{equation*}
$$

and since

$$
\begin{equation*}
\frac{\pi}{\sin \pi\left(\frac{1}{2}+i \xi\right)}=\frac{\pi}{\cosh \pi \xi}, \tag{18.11}
\end{equation*}
$$

the demonstration of (18.6) is complete.
Corollary 18.2. The function $\Gamma(z)$ has no zeros, so $1 / \Gamma(z)$ is an entire function.
For our next result, we begin with the following estimate:

Lemma 18.3. We have

$$
\begin{equation*}
0 \leq e^{-t}-\left(1-\frac{t}{n}\right)^{n} \leq \frac{t^{2}}{n} e^{-t}, \quad 0 \leq t \leq n \tag{18.12}
\end{equation*}
$$

the latter inequality holding provided $n \geq 4$.
Proof. The first inequality in (18.12) is equivalent to the simple estimate $e^{-y}-$ $(1-y) \geq 0$ for $0 \leq y \leq 1$. To see this, denote the function by $f(y)$ and note that $f(0)=0$ while $f^{\prime}(y)=1-e^{-y} \geq 0$ for $y \geq 0$.

As for the second inequality in (18.12), write

$$
\begin{align*}
\log \left(1-\frac{t}{n}\right)^{n} & =n \log \left(1-\frac{t}{n}\right)=-t-X \\
X & =\frac{t^{2}}{n}\left(\frac{1}{2}+\frac{1}{3} \frac{t}{n}+\frac{1}{4}\left(\frac{t}{n}\right)^{2}+\cdots\right) \tag{18.13}
\end{align*}
$$

We have $(1-t / n)^{n}=e^{-t-X}$ and hence, for $0 \leq t \leq n$,

$$
e^{-t}-\left(1-\frac{t}{n}\right)^{n}=\left(1-e^{-X}\right) e^{-t} \leq X e^{-t}
$$

using the estimate $x-\left(1-e^{-x}\right) \geq 0$ for $x \geq 0$ (as above). It is clear from (18.13) that $X \leq t^{2} / n$ if $t \leq n / 2$. On the other hand, if $t \geq n / 2$ and $n \geq 4$ we have $t^{2} / n \geq 1$ and hence $e^{-t} \leq\left(t^{2} / n\right) e^{-t}$.

We use (18.12) to obtain, for $\operatorname{Re} z>0$,

$$
\begin{aligned}
\Gamma(z) & =\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1-\frac{t}{n}\right)^{n} t^{z-1} d t \\
& =\lim _{n \rightarrow \infty} n^{z} \int_{0}^{1}(1-s)^{n} s^{z-1} d s
\end{aligned}
$$

Repeatedly integrating by parts gives

$$
\begin{equation*}
\Gamma(z)=\lim _{n \rightarrow \infty} n^{z} \frac{n(n-1) \cdots 1}{z(z+1) \cdots(z+n-1)} \int_{0}^{1} s^{z+n-1} d s \tag{18.14}
\end{equation*}
$$

which yields the following result of Euler:
Proposition 18.4. For $\operatorname{Re} z>0$, we have

$$
\begin{equation*}
\Gamma(z)=\lim _{n \rightarrow \infty} n^{z} \frac{1 \cdot 2 \cdots n}{z(z+1) \cdots(z+n)}, \tag{18.15}
\end{equation*}
$$

Using the identity (18.3), analytically continuing $\Gamma(z)$, we have (18.15) for all $z \in \mathbb{C}$ other than $0,-1,-2, \ldots$. In more detail, we have

$$
\Gamma(z)=\frac{\Gamma(z+1)}{z}=\lim _{n \rightarrow \infty} n^{z+1} \frac{1}{z} \frac{1 \cdot 2 \cdots n}{(z+1)(z+2) \cdots(z+1+n)},
$$

for $\operatorname{Re} z>-1(z \neq 0)$. We can rewrite the right side as

$$
\begin{aligned}
& n^{z} \frac{1 \cdot 2 \cdots n \cdot n}{z(z+1) \cdots(z+n+1)} \\
& =(n+1)^{z} \frac{1 \cdot 2 \cdots(n+1)}{z(z+1) \cdots(z+n+1)} \cdot\left(\frac{n}{n+1}\right)^{z+1}
\end{aligned}
$$

and $(n /(n+1))^{z+1} \rightarrow 1$ as $n \rightarrow \infty$. This extends (18.15) to $\{z \neq 0: \operatorname{Re} z>-1\}$, and iteratively we get further extensions.

We can rewrite (18.15) as

$$
\begin{equation*}
\Gamma(z)=\lim _{n \rightarrow \infty} n^{z} z^{-1}(1+z)^{-1}\left(1+\frac{z}{2}\right)^{-1} \cdots\left(1+\frac{z}{n}\right)^{-1} \tag{18.16}
\end{equation*}
$$

To work on this formula, we define Euler's constant:

$$
\begin{equation*}
\gamma=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\log n\right) \tag{18.17}
\end{equation*}
$$

Then (18.16) is equivalent to

$$
\begin{equation*}
\Gamma(z)=\lim _{n \rightarrow \infty} e^{-\gamma z} e^{z(1+1 / 2+\cdots+1 / n)} z^{-1}(1+z)^{-1}\left(1+\frac{z}{2}\right)^{-1} \cdots\left(1+\frac{z}{n}\right)^{-1} \tag{18.18}
\end{equation*}
$$

which leads to the following Euler product expansion.
Proposition 18.5. For all $z \in \mathbb{C}$, we have

$$
\begin{equation*}
\frac{1}{\Gamma(z)}=z e^{\gamma z} \prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right) e^{-z / n} \tag{18.19}
\end{equation*}
$$

We can combine (18.6) and (18.19) to produce a product expansion for $\sin \pi z$. In fact, it follows from (18.19) that the entire function $1 / \Gamma(z) \Gamma(-z)$ has the product expansion

$$
\begin{equation*}
\frac{1}{\Gamma(z) \Gamma(-z)}=-z^{2} \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right) \tag{18.20}
\end{equation*}
$$

Since $\Gamma(1-z)=-z \Gamma(-z)$, we have by (18.6) that

$$
\begin{equation*}
\sin \pi z=\pi z \prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}}\right) \tag{18.21}
\end{equation*}
$$

For another proof of this result, see $\S 30$, Exercise 2.

Here is another application of (18.6). If we take $z=1 / 2$, we get $\Gamma(1 / 2)^{2}=\pi$. Since (18.2) implies $\Gamma(1 / 2)>0$, we have

$$
\begin{equation*}
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi} \tag{18.22}
\end{equation*}
$$

Another way to obtain (18.22) is the following. A change of variable gives

$$
\begin{equation*}
\int_{0}^{\infty} e^{-x^{2}} d x=\frac{1}{2} \int_{0}^{\infty} e^{-t} t^{-1 / 2} d t=\frac{1}{2} \Gamma\left(\frac{1}{2}\right) . \tag{18.23}
\end{equation*}
$$

It follows from (10.6) that the left side of (18.23) is equal to $\sqrt{\pi} / 2$, so we again obtain (18.22). Note that application of (18.3) then gives, for each integer $k \geq 1$,

$$
\begin{equation*}
\Gamma\left(k+\frac{1}{2}\right)=\pi^{1 / 2}\left(k-\frac{1}{2}\right)\left(k-\frac{3}{2}\right) \cdots\left(\frac{1}{2}\right) . \tag{18.24}
\end{equation*}
$$

One can calculate the area A_{n-1} of the unit sphere $S^{n-1} \subset \mathbb{R}^{n}$ by relating Gaussian integrals to the Gamma function. To see this, note that the argument giving (10.6) yields

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{-|x|^{2}} d x=\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)^{n}=\pi^{n / 2} \tag{18.25}
\end{equation*}
$$

On the other hand, using spherical polar coordinates to compute the left side of (18.24) gives

$$
\begin{align*}
\int_{\mathbb{R}^{n}} e^{-|x|^{2}} d x & =A_{n-1} \int_{0}^{\infty} e^{-r^{2}} r^{n-1} d r \tag{18.26}\\
& =\frac{1}{2} A_{n-1} \int_{0}^{\infty} e^{-t} t^{n / 2-1} d t
\end{align*}
$$

where we use $t=r^{2}$. Recognizing the last integral as $\Gamma(n / 2)$, we have

$$
\begin{equation*}
A_{n-1}=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)} \tag{18.27}
\end{equation*}
$$

More details on this argument are given at the end of Appendix C.

Exercises

1. Use the product expansion (18.19) to prove that

$$
\begin{equation*}
\frac{d}{d z} \frac{\Gamma^{\prime}(z)}{\Gamma(z)}=\sum_{n=0}^{\infty} \frac{1}{(z+n)^{2}} \tag{18.28}
\end{equation*}
$$

Hint. Go from (18.19) to

$$
\log \frac{1}{\Gamma(z)}=\log z+\gamma z+\sum_{n=1}^{\infty}\left[\log \left(1+\frac{z}{n}\right)-\frac{z}{n}\right]
$$

and note that

$$
\frac{d}{d z} \frac{\Gamma^{\prime}(z)}{\Gamma(z)}=\frac{d^{2}}{d z^{2}} \log \Gamma(z)
$$

2. Let

$$
\gamma_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}-\log (n+1)
$$

Show that $\gamma_{n} \nearrow$ and that $0<\gamma_{n}<1$. Deduce that $\gamma=\lim _{n \rightarrow \infty} \gamma_{n}$ exists, as asserted in (18.17).
3. Using $(\partial / \partial z) t^{z-1}=t^{z-1} \log t$, show that

$$
f_{z}(t)=t^{z-1} \log t, \quad(\operatorname{Re} z>0)
$$

has Laplace transform

$$
\mathcal{L} f_{z}(s)=\frac{\Gamma^{\prime}(z)-\Gamma(z) \log s}{s^{z}}, \quad \operatorname{Re} s>0
$$

4. Show that (18.19) yields

$$
\begin{equation*}
\Gamma(z+1)=z \Gamma(z)=e^{-\gamma z} \prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right)^{-1} e^{z / n}, \quad|z|<1 . \tag{18.29}
\end{equation*}
$$

Use this to show that

$$
\begin{equation*}
\Gamma^{\prime}(1)=\left.\frac{d}{d z}(z \Gamma(z))\right|_{z=0}=-\gamma . \tag{18.30}
\end{equation*}
$$

5. Using Exercises $3-4$, show that

$$
f(t)=\log t \Longrightarrow \mathcal{L} f(s)=-\frac{\log s+\gamma}{s}
$$

and that

$$
\gamma=-\int_{0}^{\infty}(\log t) e^{-t} d t
$$

6. Show that $\gamma=\gamma_{a}-\gamma_{b}$, with

$$
\gamma_{a}=\int_{0}^{1} \frac{1-e^{-t}}{t} d t, \quad \gamma_{b}=\int_{1}^{\infty} \frac{e^{-t}}{t} d t
$$

Consider how to obtain accurate numerical evaluations of these quantities.
Hint. Split the integral for γ in Exercise 5 into two pieces. Integrate each piece by parts, using $e^{-t}=-(d / d t)\left(e^{-t}-1\right)$ for one and $e^{-t}=-(d / d t) e^{-t}$ for the other. See Appendix J for more on this.
7. Use the Laplace transform identity (18.1) for $f_{z}(t)=t^{z-1}$ (on $t \geq 0$, given Re $z>0$) plus the results of Exercises 5-6 of $\S 15$ to show that

$$
\begin{equation*}
B(z, \zeta)=\frac{\Gamma(z) \Gamma(\zeta)}{\Gamma(z+\zeta)}, \quad \operatorname{Re} z, \operatorname{Re} \zeta>0 \tag{18.31}
\end{equation*}
$$

where the beta function $B(z, \zeta)$ is defined by

$$
\begin{equation*}
B(z, \zeta)=\int_{0}^{1} s^{z-1}(1-s)^{\zeta-1} d s, \quad \operatorname{Re} z, \operatorname{Re} \zeta>0 \tag{18.32}
\end{equation*}
$$

The identity (18.31) is known as Euler's formula for the beta function.
8. Show that, for any $z \in \mathbb{C}$, when $n \geq 2|z|$, we have

$$
\left(1+\frac{z}{n}\right) e^{-z / n}=1+w_{n}
$$

with $\log \left(1+w_{n}\right)=\log (1+z / n)-z / n$ satisfying

$$
\left|\log \left(1+w_{n}\right)\right| \leq \frac{|z|^{2}}{n^{2}}
$$

Show that this estimate implies the convergence of the product on the right side of (18.19), locally uniformly on \mathbb{C}.

More infinite products

9. Show that

$$
\begin{equation*}
\prod_{n=1}^{\infty}\left(1-\frac{1}{4 n^{2}}\right)=\frac{2}{\pi} \tag{18.33}
\end{equation*}
$$

Hint. Take $z=1 / 2$ in (18.21).
10. Show that, for all $z \in \mathbb{C}$,

$$
\begin{equation*}
\cos \frac{\pi z}{2}=\prod_{\text {odd } n \geq 1}\left(1-\frac{z^{2}}{n^{2}}\right) \tag{18.34}
\end{equation*}
$$

Hint. Use $\cos \pi z / 2=-\sin ((\pi / 2)(z-1))$ and (18.21) to obtain

$$
\begin{equation*}
\cos \frac{\pi z}{2}=\frac{\pi}{2}(1-z) \prod_{n=1}^{\infty}\left(1-\frac{(z-1)^{2}}{4 n^{2}}\right) \tag{18.35}
\end{equation*}
$$

Use $\left(1-u^{2}\right)=(1-u)(1+u)$ to write the general factor in this infinite product as

$$
\begin{aligned}
& \left(1+\frac{1}{2 n}-\frac{z}{2 n}\right)\left(1-\frac{1}{2 n}+\frac{z}{2 n}\right) \\
& \quad=\left(1-\frac{1}{4 n^{2}}\right)\left(1-\frac{z}{2 n+1}\right)\left(1+\frac{z}{2 n-1}\right)
\end{aligned}
$$

and obtain from (18.35) that

$$
\cos \frac{\pi z}{2}=\frac{\pi}{2} \prod_{n=1}^{\infty}\left(1-\frac{1}{4 n^{2}}\right) \cdot \prod_{\text {odd } n \geq 1}\left(1-\frac{z}{n}\right)\left(1+\frac{z}{n}\right)
$$

Deduce (18.34) from this and (18.33).
11. Show that

$$
\begin{equation*}
\frac{\sin \pi z}{\pi z}=\cos \frac{\pi z}{2} \cdot \cos \frac{\pi z}{4} \cdot \cos \frac{\pi z}{8} \cdots \tag{18.36}
\end{equation*}
$$

Hint. Make use of (18.21) and (18.34).

18A. The Legendre duplication formula

The Legendre duplication formula relates $\Gamma(2 z)$ and $\Gamma(z) \Gamma(z+1 / 2)$. Note that each of these functions is meromorphic, with poles precisely at $\{0,-1 / 2,-1,-3 / 2,-2, \ldots\}$, all simple, and both functions are nowhere vanishing. Hence their quotient is an entire holomorphic function, and it is nowhere vanishing, so

$$
\begin{equation*}
\Gamma(2 z)=e^{A(z)} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right) \tag{18.37}
\end{equation*}
$$

with $A(z)$ holomorphic on \mathbb{C}. We seek a formula for $A(z)$. We will be guided by (18.19), which implies that

$$
\begin{equation*}
\frac{1}{\Gamma(2 z)}=2 z e^{2 \gamma z} \prod_{n=1}^{\infty}\left(1+\frac{2 z}{n}\right) e^{-2 z / n} \tag{18.38}
\end{equation*}
$$

and (via results given in §18B)

$$
\begin{align*}
& \frac{1}{\Gamma(z) \Gamma(z+1 / 2)} \\
& =z\left(z+\frac{1}{2}\right) e^{\gamma z} e^{\gamma(z+1 / 2)}\left\{\prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right) e^{-z / n}\left(1+\frac{z+1 / 2}{n}\right) e^{-(z+1 / 2) / n}\right\} \tag{18.39}
\end{align*}
$$

Setting

$$
\begin{equation*}
1+\frac{z+1 / 2}{n}=\frac{2 z+2 n+1}{2 n}=\left(1+\frac{2 z}{2 n+1}\right)\left(1+\frac{1}{2 n}\right) \tag{18.40}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{-(z+1 / 2) / n}=e^{-2 z /(2 n+1)} e^{-2 z[(1 / 2 n)-1 /(2 n+1)]} e^{-1 / 2 n} \tag{18.41}
\end{equation*}
$$

we can write the infinite product on the right side of (18.39) as

$$
\begin{align*}
& \left\{\prod_{n=1}^{\infty}\left(1+\frac{2 z}{2 n}\right) e^{-2 z / 2 n}\left(1+\frac{2 z}{2 n+1}\right) e^{-2 z /(2 n+1)}\right\} \\
& \quad \times\left\{\prod_{n=1}^{\infty}\left(1+\frac{1}{2 n}\right) e^{-1 / 2 n}\right\} \times \prod_{n=1}^{\infty} e^{-2 z[(1 / 2 n)-1 /(2 n+1)]} \tag{18.42}
\end{align*}
$$

Hence

$$
\begin{align*}
\frac{1}{\Gamma(z) \Gamma(z+1 / 2)}= & z e^{2 \gamma z} e^{\gamma / 2} \cdot \frac{e^{2 z}}{2}(1+2 z) e^{-2 z} \times(18.42) \\
= & 2 z e^{2 \gamma z} e^{\gamma / 2} \frac{e^{2 z}}{4}\left\{\prod_{k=1}^{\infty}\left(1+\frac{2 z}{k}\right) e^{-2 z / k}\right\} \tag{18.43}\\
& \times\left\{\prod_{n=1}^{\infty}\left(1+\frac{1}{2 n}\right) e^{-1 / 2 n}\right\} \prod_{n=1}^{\infty} e^{-2 z[(1 / 2 n)-1 /(2 n+1)]}
\end{align*}
$$

Now, setting $z=1 / 2$ in (18.19) gives

$$
\begin{equation*}
\frac{1}{\Gamma(1 / 2)}=\frac{1}{2} e^{\gamma / 2} \prod_{n=1}^{\infty}\left(1+\frac{1}{2 n}\right) e^{-1 / 2 n} \tag{18.44}
\end{equation*}
$$

so taking (18.38) into account yields

$$
\begin{align*}
\frac{1}{\Gamma(z) \Gamma(z+1 / 2)} & =\frac{1}{\Gamma(1 / 2) \Gamma(2 z)} \frac{e^{2 z}}{2} \prod_{n=1}^{\infty} e^{-2 z[(1 / 2 n)-1 /(2 n+1)]} \tag{18.45}\\
& =\frac{1}{\Gamma(1 / 2) \Gamma(2 z)} \frac{e^{2 \alpha z}}{2}
\end{align*}
$$

where

$$
\begin{align*}
\alpha & =1-\sum_{n=1}^{\infty}\left(\frac{1}{2 n}-\frac{1}{2 n+1}\right) \\
& =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5} \cdots \tag{18.46}\\
& =\log 2 .
\end{align*}
$$

Hence $e^{2 \alpha z}=2^{2 z}$, and we get

$$
\begin{equation*}
\Gamma\left(\frac{1}{2}\right) \Gamma(2 z)=2^{2 z-1} \Gamma(z) \Gamma\left(z+\frac{1}{2}\right) \tag{18.47}
\end{equation*}
$$

This is the Legendre duplication formula. Recall that $\Gamma(1 / 2)=\sqrt{\pi}$.
An equivalent formulation of (18.47) is

$$
\begin{equation*}
(2 \pi)^{1 / 2} \Gamma(z)=2^{z-1 / 2} \Gamma\left(\frac{z}{2}\right) \Gamma\left(\frac{z+1}{2}\right) \tag{18.48}
\end{equation*}
$$

This generalizes to the following formula of Gauss,

$$
\begin{equation*}
(2 \pi)^{(n-1) / 2} \Gamma(z)=n^{z-1 / 2} \Gamma\left(\frac{z}{n}\right) \Gamma\left(\frac{z+1}{n}\right) \cdots \Gamma\left(\frac{z+n-1}{n}\right) \tag{18.49}
\end{equation*}
$$

valid for $n=3,4, \ldots$.

18B. Convergence of infinite products

Here we record some results regarding the convergence of infinite products, which have arisen in this section. We look at infinite products of the form

$$
\begin{equation*}
\prod_{k=1}^{\infty}\left(1+a_{k}\right) \tag{18.50}
\end{equation*}
$$

Disregarding cases where one or more factors $1+a_{k}$ vanish, the convergence of $\prod_{k=1}^{M}\left(1+a_{k}\right)$ as $M \rightarrow \infty$ amounts to the convergence

$$
\begin{equation*}
\lim _{M \rightarrow \infty} \prod_{k=M}^{N}\left(1+a_{k}\right)=1, \quad \text { uniformly in } \quad N>M \tag{18.51}
\end{equation*}
$$

In particular, we require $a_{k} \rightarrow 0$ as $k \rightarrow \infty$. To investigate when (18.51) happens, write

$$
\begin{align*}
\prod_{k=M}^{N}\left(1+a_{k}\right) & =\left(1+a_{M}\right)\left(1+a_{M+1}\right) \cdots\left(1+a_{N}\right) \tag{18.52}\\
& =1+\sum_{j} a_{j}+\sum_{j_{1}<j_{2}} a_{j_{1}} a_{j_{2}}+\cdots+a_{M} \cdots a_{N}
\end{align*}
$$

where, e.g., $M \leq j_{1}<j_{2} \leq N$. Hence

$$
\begin{align*}
\left|\prod_{k=M}^{N}\left(1+a_{k}\right)-1\right| & \leq \sum_{j}\left|a_{j}\right|+\sum_{j_{1}<j_{2}}\left|a_{j_{1}} a_{j_{2}}\right|+\cdots+\left|a_{M} \cdots a_{N}\right| \\
& =\prod_{k=M}^{N}\left(1+\left|a_{k}\right|\right)-1 \tag{18.53}\\
& =b_{M N},
\end{align*}
$$

the last identity defining $b_{M N}$. Our task is to investigate when $b_{M N} \rightarrow 0$ as $M \rightarrow \infty$, uniformly in $N>M$. To do this, we note that

$$
\begin{align*}
\log \left(1+b_{M N}\right) & =\log \prod_{k=M}^{N}\left(1+\left|a_{k}\right|\right) \\
& =\sum_{k=M}^{N} \log \left(1+\left|a_{k}\right|\right) \tag{18.54}
\end{align*}
$$

and use the facts

$$
\begin{align*}
x & \geq 0 \\
0 \leq x & \Longrightarrow \log (1+x) \leq x \tag{18.55}\\
& \Longrightarrow \log (1+x) \geq \frac{x}{2}
\end{align*}
$$

Assuming $a_{k} \rightarrow 0$ and taking M so large that $k \geq M \Rightarrow\left|a_{k}\right| \leq 1 / 2$, we have

$$
\begin{equation*}
\frac{1}{2} \sum_{k=M}^{N}\left|a_{k}\right| \leq \log \left(1+b_{M N}\right) \leq \sum_{k=M}^{N}\left|a_{k}\right|, \tag{18.56}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\lim _{M \rightarrow \infty} b_{M N}=0, \quad \text { uniformly in } N>M \Longleftrightarrow \sum_{k}\left|a_{k}\right|<\infty . \tag{18.57}
\end{equation*}
$$

Consequently,

$$
\begin{align*}
\sum_{k}\left|a_{k}\right|<\infty & \Longrightarrow \prod_{k=1}^{\infty}\left(1+\left|a_{k}\right|\right) \text { converges } \tag{18.58}\\
& \Longrightarrow \prod_{k=1}^{\infty}\left(1+a_{k}\right) \text { converges. }
\end{align*}
$$

Another consequence of (18.57) is the following:

$$
\begin{equation*}
\text { If } 1+a_{k} \neq 0 \text { for all } k \text {, then } \sum\left|a_{k}\right|<\infty \Rightarrow \prod_{k=1}^{\infty}\left(1+a_{k}\right) \neq 0 \tag{18.59}
\end{equation*}
$$

We can replace the sequence $\left(a_{k}\right)$ of complex numbers by a sequence $\left(f_{k}\right)$ of holomorphic functions, and deduce from the estimates above the following.

Proposition 18.6. Let $f_{k}: \Omega \rightarrow \mathbb{C}$ be holomorphic. If

$$
\begin{equation*}
\sum_{k}\left|f_{k}(z)\right|<\infty \quad \text { on } \Omega \tag{18.60}
\end{equation*}
$$

then we have a convergent infinite product

$$
\begin{equation*}
\prod_{k=1}^{\infty}\left(1+f_{k}(z)\right)=g(z) \tag{18.61}
\end{equation*}
$$

and g is holomorphic on Ω. If $z_{0} \in \Omega$ and $1+f_{k}\left(z_{0}\right) \neq 0$ for all k, then $g\left(z_{0}\right) \neq 0$.
Another consequence of estimates leading to (18.57) is that if also $g_{k}: \Omega \rightarrow \mathbb{C}$ and $\sum\left|g_{k}(z)\right|<\infty$ on Ω, then

$$
\begin{equation*}
\left\{\prod_{k=1}^{\infty}\left(1+f_{k}(z)\right)\right\} \prod_{k=1}^{\infty}\left(1+g_{k}(z)\right)=\prod_{k=1}^{\infty}\left(1+f_{k}(z)\right)\left(1+g_{k}(z)\right) \tag{18.62}
\end{equation*}
$$

To make contact with the Gamma function, note that the infinite product in (18.19) has the form (18.61) with

$$
\begin{equation*}
1+f_{k}(z)=\left(1+\frac{z}{k}\right) e^{-z / k} \tag{18.63}
\end{equation*}
$$

To see that (18.60) applies, note that

$$
\begin{equation*}
e^{-w}=1-w+R(w), \quad|w| \leq 1 \Rightarrow|R(w)| \leq C|w|^{2} . \tag{18.64}
\end{equation*}
$$

Hence

$$
\begin{align*}
\left(1+\frac{z}{k}\right) e^{-z / k} & =\left(1+\frac{z}{k}\right)\left(1-\frac{z}{k}+R\left(\frac{z}{k}\right)\right) \\
& =1-\frac{z^{2}}{k^{2}}+\left(1-\frac{z}{k}\right) R\left(\frac{z}{k}\right) . \tag{18.65}
\end{align*}
$$

Hence (18.63) holds with

$$
\begin{equation*}
f_{k}(z)=-\frac{z^{2}}{k^{2}}+\left(1-\frac{z}{k}\right) R\left(\frac{z}{k}\right), \tag{18.66}
\end{equation*}
$$

so

$$
\begin{equation*}
\left|f_{k}(z)\right| \leq C\left|\frac{z}{k}\right|^{2} \quad \text { for } \quad k \geq|z| \tag{18.67}
\end{equation*}
$$

which yields (18.60).

J. Euler's constant

Here we say more about Euler's constant, introduced in (18.17), in the course of producing the Euler product expansion for $1 / \Gamma(z)$. The definition

$$
\begin{equation*}
\gamma=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{1}{k}-\log (n+1)\right) \tag{J.1}
\end{equation*}
$$

of Euler's constant involves a very slowly convergent sequence. In order to produce a numerical approximation of γ, it is convenient to use other formulas, involving the Gamma function $\Gamma(z)=\int_{0}^{\infty} e^{-t} t^{z-1} d t$. Note that

$$
\begin{equation*}
\Gamma^{\prime}(z)=\int_{0}^{\infty}(\log t) e^{-t} t^{z-1} d t \tag{J.2}
\end{equation*}
$$

Meanwhile the Euler product formula $1 / \Gamma(z)=z e^{\gamma z} \prod_{n=1}^{\infty}(1+z / n) e^{-z / n}$ implies

$$
\begin{equation*}
\Gamma^{\prime}(1)=-\gamma \tag{J.3}
\end{equation*}
$$

Thus we have the integral formula

$$
\begin{equation*}
\gamma=-\int_{0}^{\infty}(\log t) e^{-t} d t \tag{J.4}
\end{equation*}
$$

To evaluate this integral numerically it is convenient to split it into two pieces:

$$
\begin{align*}
\gamma & =-\int_{0}^{1}(\log t) e^{-t} d t-\int_{1}^{\infty}(\log t) e^{-t} d t \tag{J.5}\\
& =\gamma_{a}-\gamma_{b}
\end{align*}
$$

We can apply integration by parts to both the integrals in (5), using $e^{-t}=-(d / d t)\left(e^{-t}-\right.$ 1) on the first and $e^{-t}=-(d / d t) e^{-t}$ on the second, to obtain

$$
\begin{equation*}
\gamma_{a}=\int_{0}^{1} \frac{1-e^{-t}}{t} d t, \quad \gamma_{b}=\int_{1}^{\infty} \frac{e^{-t}}{t} d t \tag{J.6}
\end{equation*}
$$

Using the power series for e^{-t} and integrating term by term produces a rapidly convergent series for γ_{a} :

$$
\begin{equation*}
\gamma_{a}=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k \cdot k!} . \tag{J.7}
\end{equation*}
$$

Before producing infinite series representations for γ_{b}, we note that the change of variable $t=s^{m}$ gives

$$
\begin{equation*}
\gamma_{b}=m \int_{1}^{\infty} \frac{e^{-s^{m}}}{s} d s \tag{J.8}
\end{equation*}
$$

which is very well approximated by the integral over $s \in[1,10)$ if $m=2$, for example.

To produce infinite series for γ_{b}, we can break up $[1, \infty)$ into intervals $[k, k+1)$ and take $t=s+k$, to write

$$
\begin{equation*}
\gamma_{b}=\sum_{k=1}^{\infty} \frac{e^{-k}}{k} \beta_{k}, \quad \beta_{k}=\int_{0}^{1} \frac{e^{-t}}{1+t / k} d t . \tag{J.9}
\end{equation*}
$$

Note that $0<\beta_{k}<1-1 / e$ for all k. For $k \geq 2$ we can write

$$
\begin{equation*}
\beta_{k}=\sum_{j=0}^{\infty}\left(-\frac{1}{k}\right)^{j} \alpha_{j}, \quad \alpha_{j}=\int_{0}^{1} t^{j} e^{-t} d t . \tag{J.10}
\end{equation*}
$$

One convenient way to integrate $t^{j} e^{-t}$ is the following. Write

$$
\begin{equation*}
E_{j}(t)=\sum_{\ell=0}^{j} \frac{t^{\ell}}{\ell!} . \tag{J.11}
\end{equation*}
$$

Then

$$
\begin{equation*}
E_{j}(t)=E_{j-1}(t), \tag{J.12}
\end{equation*}
$$

hence

$$
\begin{equation*}
\frac{d}{d t}\left(E_{j}(t) e^{-t}\right)=\left(E_{j-1}(t)-E_{j}(t)\right) e^{-t}=-\frac{t^{j}}{j!} e^{-t} \tag{J.13}
\end{equation*}
$$

so

$$
\begin{equation*}
\int t^{j} e^{-t} d t=-j!E_{j}(t) e^{-t}+C \tag{J.14}
\end{equation*}
$$

In particular,

$$
\begin{align*}
\alpha_{j}=\int_{0}^{1} t^{j} e^{-t} d t & =j!\left(1-\frac{1}{e} \sum_{\ell=0}^{j} \frac{1}{\ell!}\right) \\
& =\frac{j!}{e} \sum_{\ell=j+1}^{\infty} \frac{1}{\ell!} \tag{J.15}\\
& =\frac{1}{e}\left(\frac{1}{j+1}+\frac{1}{(j+1)(j+2)}+\cdots\right) .
\end{align*}
$$

To evaluate β_{1} as an infinite series, it is convenient to write

$$
\begin{align*}
e^{-1} \beta_{1} & =\int_{1}^{2} \frac{e^{-t}}{t} d t \\
& =\sum_{j=0}^{\infty} \frac{(-1)^{j}}{j!} \int_{1}^{2} t^{j-1} d t \tag{J.16}\\
& =\log 2+\sum_{j=1}^{\infty} \frac{(-1)^{j}}{j \cdot j!}\left(2^{j}-1\right) .
\end{align*}
$$

To summarize, we have $\gamma=\gamma_{a}-\gamma_{b}$, with γ_{a} given by the convenient series (J.7) and

$$
\begin{equation*}
\gamma_{b}=\sum_{k=2}^{\infty} \sum_{j=0}^{\infty} \frac{e^{-k}}{k}\left(-\frac{1}{k}\right)^{j} \alpha_{j}+\log 2+\sum_{j=1}^{\infty} \frac{(-1)^{j}}{j \cdot j!}\left(2^{j}-1\right), \tag{J.17}
\end{equation*}
$$

with α_{j} given by (J.15). We can reverse the order of summation of the double series and write

$$
\begin{equation*}
\gamma_{b}=\sum_{j=0}^{\infty}(-1)^{j} \zeta_{j} \alpha_{j}+\log 2+\sum_{j=1}^{\infty} \frac{(-1)^{j}}{j \cdot j!}\left(2^{j}-1\right) . \tag{J.18}
\end{equation*}
$$

with

$$
\begin{equation*}
\zeta_{j}=\sum_{k=2}^{\infty} \frac{e^{-k}}{k^{j+1}} . \tag{J.19}
\end{equation*}
$$

Note that

$$
\begin{equation*}
0<\zeta_{j}<2^{-(j+1)} \sum_{k=2}^{\infty} e^{-k}<2^{-(j+3)} \tag{J.20}
\end{equation*}
$$

while (J.15) readily yields $0<\alpha_{j}<1 / e j$. So one can expect 15 digits of accuracy by summing the first series in (J.18) over $0 \leq j \leq 50$ and the second series over $0 \leq j \leq 32$, assuming the ingredients α_{j} and ζ_{j} are evaluated sufficiently accurately. It suffices to sum (J.19) over $2 \leq k \leq 40-2 j / 3$ to evaluate ζ_{j} to sufficient accuracy.

Note that the quantities α_{j} do not have to be evaluated independently. Say you are summing the first series in (J.18) over $0 \leq j \leq 50$. First evaluate α_{50} using 20 terms in (J.15), and then evaluate inductively $\alpha_{49}, \ldots, \alpha_{0}$ using the identity

$$
\begin{equation*}
\alpha_{j-1}=\frac{1}{j e}+\frac{\alpha_{j}}{j}, \tag{J.21}
\end{equation*}
$$

equivalent to $\alpha_{j}=j \alpha_{j-1}-1 / e$, which follows by integration by parts of $\int_{0}^{1} t^{j} e^{-t} d t$.
If we sum the series (J.7) for γ_{a} over $1 \leq k \leq 20$ and either sum the series (J.18) as described above or have Mathematica numerically integrate (J.8), with $m=2$, to high precision, we obtain

$$
\begin{equation*}
\gamma \approx 0.577215664901533 \tag{J.22}
\end{equation*}
$$

which is accurate to 15 digits.
We give another series for γ. This one is more slowly convergent than the series in (J.7) and (J.18), but it makes clear why γ exceeds $1 / 2$ by a small amount, and it has other interesting aspects. We start with

$$
\begin{equation*}
\gamma=\sum_{n=1}^{\infty} \gamma_{n}, \quad \gamma_{n}=\frac{1}{n}-\int_{n}^{n+1} \frac{d x}{x}=\frac{1}{n}-\log \left(1+\frac{1}{n}\right) . \tag{J.23}
\end{equation*}
$$

Thus γ_{n} is the area of the region

$$
\begin{equation*}
\Omega_{n}=\left\{(x, y): n \leq x \leq n+1, \frac{1}{x} \leq y \leq \frac{1}{n}\right\} . \tag{J.24}
\end{equation*}
$$

This region contains the triangle T_{n} with vertices $(n, 1 / n),(n+1,1 / n)$, and ($n+$ $1,1 /(n+1))$. The region $\Omega_{n} \backslash T_{n}$ is a little sliver. Note that

$$
\begin{equation*}
\text { Area } T_{n}=\delta_{n}=\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+1}\right) \tag{J.25}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\sum_{n=1}^{\infty} \delta_{n}=\frac{1}{2} \tag{J.26}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\gamma-\frac{1}{2}=\left(\gamma_{1}-\delta_{1}\right)+\left(\gamma_{2}-\delta_{2}\right)+\left(\gamma_{3}-\delta_{3}\right)+\cdots \tag{J.27}
\end{equation*}
$$

Now

$$
\begin{equation*}
\gamma_{1}-\delta_{1}=\frac{3}{4}-\log 2 \tag{J.28}
\end{equation*}
$$

while, for $n \geq 2$, we have power series expansions

$$
\begin{align*}
& \gamma_{n}=\frac{1}{2 n^{2}}-\frac{1}{3 n^{3}}+\frac{1}{4 n^{4}}-\cdots \tag{J.2}\\
& \delta_{n}=\frac{1}{2 n^{2}}-\frac{1}{2 n^{3}}+\frac{1}{2 n^{4}}-\cdots,
\end{align*}
$$

the first expansion by $\log (1+z)=z-z^{2} / 2+z^{3} / 3-\cdots$, and the second by

$$
\begin{equation*}
\delta_{n}=\frac{1}{2 n(n+1)}=\frac{1}{2 n^{2}} \frac{1}{1+\frac{1}{n}}, \tag{J.30}
\end{equation*}
$$

and the expansion $(1+z)^{-1}=1-z+z^{2}-\cdots$. Hence we have

$$
\begin{equation*}
\gamma-\frac{1}{2}=\left(\gamma_{1}-\delta_{1}\right)+\left(\frac{1}{2}-\frac{1}{3}\right) \sum_{n \geq 2} \frac{1}{n^{3}}-\left(\frac{1}{2}-\frac{1}{4}\right) \sum_{n \geq 2} \frac{1}{n^{4}}+\cdots, \tag{J.31}
\end{equation*}
$$

or, with

$$
\begin{equation*}
\zeta(k)=\sum_{n \geq 1} \frac{1}{n^{k}}, \tag{J.32}
\end{equation*}
$$

we have

$$
\begin{equation*}
\gamma-\frac{1}{2}=\left(\frac{3}{4}-\log 2\right)+\left(\frac{1}{2}-\frac{1}{3}\right)[\zeta(3)-1]-\left(\frac{1}{2}-\frac{1}{4}\right)[\zeta(4)-1]+\cdots, \tag{J.33}
\end{equation*}
$$

an alternating series from the third term on. We note that

$$
\begin{align*}
\frac{3}{4}-\log 2 & \approx 0.0568528 \\
\frac{1}{6}[\zeta(3)-1] & \approx 0.0336762 \\
\frac{1}{4}[\zeta(4)-1] & \approx 0.0205808 \tag{J.34}\\
\frac{3}{10}[\zeta(5)-1] & \approx 0.0110783
\end{align*}
$$

The estimate

$$
\begin{equation*}
\sum_{n \geq 2} \frac{1}{n^{k}}<2^{-k}+\int_{2}^{\infty} x^{-k} d x \tag{J.35}
\end{equation*}
$$

implies

$$
\begin{equation*}
0<\left(\frac{1}{2}-\frac{1}{k}\right)[\zeta(k)-1]<2^{-k} \tag{J.36}
\end{equation*}
$$

so the series (J.33) is geometrically convergent. If k is even, $\zeta(k)$ is a known rational multiple of π^{k}. However, for odd k, the values of $\zeta(k)$ are more mysterious. Note that to get $\zeta(3)$ to 16 digits by summing (J.32) one needs to sum over $1 \leq n \leq 10^{8}$. On a 1.3 GHz personal computer, a C program does this in 4 seconds. Of course, this is vastly slower than summing (J.7) and (J.18) over the ranges discussed above.

Reference

[T] M. Taylor, Introduction to Complex Analysis. Notes, available on this website.

