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Abstract. These notes cover material related to the Gauss-Green theorem that
was developed for work with S. Hofmann and M. Mitrea, which appeared in [HMT].
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1. Versions of the Gauss-Green formula

Let Ω ⊂ Rm be open. We say Ω has locally finite perimeter provided

(1.1) ∇χΩ = µ

is a locally finite Rm-valued measure. It follows from the Radon-Nikodym theorem
that µ = −ν σ, where σ is a locally finite positive measure, supported on ∂Ω, and
ν ∈ L∞(∂Ω, σ) is an Rm-valued function, satisfying |ν(x)| = 1, σ-a.e. It then
follows from the Besicovitch differentiation theorem that

(1.2) lim
r→0

1

σ(Br(x))

∫
Br(x)

ν dσ = ν(x)

for σ-a.e. x.
Via distribution theory, we can restate (1.1) as follows. Take v ∈ C∞

0 (Rm,Rm)
(a vector field). Then

(1.3) ⟨div v, χΩ⟩ = −⟨v,∇χΩ⟩.

Hence (1.1) is equivalent to

(1.4)

∫
Ω

div v dx =

∫
∂Ω

ν · v dσ.
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Works of Federer and of De Giorgi produced the following results on the structure
of σ, when Ω has locally finite perimeter. First,

(1.5) σ = Hm−1⌊∂∗Ω,

whereHm−1 is (m−1)-dimensional Hausdorff measure and ∂∗Ω ⊂ ∂Ω is the reduced
boundary of Ω, defined as the set of points x such that the limit (1.2) holds, with
|ν(x)| = 1. (It follows from the remarks leading up to (1.2) that σ is supported on
∂∗Ω.) Second, ∂∗Ω is countably rectifiable; it is a countable disjoint union

(1.6) ∂∗Ω =
∪
k

Mk ∪N,

where each Mk is a compact subset of an (m−1)-dimensional C1 surface (to which
ν is normal in the usual sense), and Hm−1(N) = 0. Given (1.5), the identity (1.4)
yields the Gauss-Green formula

(1.7)

∫
Ω

div v dx =

∫
∂∗Ω

ν · v dHm−1,

for v ∈ C∞
0 (Rm,Rm).

It is also useful to record some results on sets ∂∗Ω ⊃ ∂0Ω ⊃ ∂∗Ω. Good references
for this material, as well as the results stated above, are [EG], [Fed3], and [Zie].
First, given a unit vector νE and x ∈ ∂Ω, set

(1.8) H±
νE

(x) = {y ∈ Rm : ±νE · (y − x) ≥ 0}.

Then (cf. [EG], p. 203), for x ∈ ∂∗Ω, Ω+ = Ω, Ω− = Rm \ Ω, one has

(1.9) lim
r→0

r−m Lm
(
Br(x) ∩ Ω± ∩H±

νE
(x)

)
= 0,

when νE = ν(x), as in (1.2). Here Lm denotes Lebesgue measure on Rm. More
generally, a unit vector νE for which (1.9) holds is called the measure-theoretic
outer normal to Ω at x. It is easy to show that if such νE exists it is unique. Thus
if we define ∂0Ω to consist of x ∈ ∂Ω for which (1.9) holds, with νE(x) denoting the
measure-theoretic outer normal, we have ∂0Ω ⊃ ∂∗Ω and νE(x) = ν(x) on ∂∗Ω.

Next, we define ∂∗Ω, the measure-theoretic boundary of Ω, to consist of x ∈ ∂Ω
such that

(1.10) lim sup
r→0

r−mLm
(
Br(x) ∩ Ω±) > 0.

It is clear that ∂∗Ω ⊃ ∂0Ω. Furthermore (cf. [EG], p. 208) one has

(1.11) Hm−1(∂∗Ω \ ∂∗Ω) = 0.
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Consequently the Green formula (1.7) can be rewritten

(1.12)

∫
Ω

div v dx =

∫
∂∗Ω

ν · v dHm−1,

for v ∈ C∞
0 (Rm,Rm). The advantage of (1.12) is that the definition of ∂∗Ω is more

straightforward and geometrical than is that of ∂∗Ω.

Remark. Note that ∂∗Ω is well defined whether or not Ω has locally finite perime-
ter. It is known that Ω has locally finite perimeter if and only if Hm−1(∂∗Ω∩K) <
∞ for each compact K ⊂ Rm. (Cf. [EG], p. 222.)

In general ∂Ω\∂∗Ω can be quite large. It is of interest to know conditions under
which Hm−1(∂Ω \ ∂∗Ω) = 0. One such result will be given in §2.

So far we have discussed the Green formula for v ∈ C∞
0 (Rm,Rm). A simple lim-

iting argument extends (1.4) and hence (1.7) to v ∈ C1
0 (Rm,Rm); [Fed] emphasizes

that (1.7) is true for compactly supported Lipschitz v. In fact, we can easily do
better. Here is one improvement.

Proposition 1.1. If Ω has locally finite perimeter, then (1.4) holds for v in

(1.13) D = {v ∈ C0
0 (Rm,Rm) : div v ∈ L1(Rm)}.

Proof. Given v ∈ D, take φ ∈ C∞
0 (Rm) such that

∫
φdx = 1, set φk(x) = kmφ(kx),

and take vk = φk ∗ v ∈ C∞
0 (Rm). Then (1.4) applies to vk, i.e.,

(1.14)

∫
Ω

div vk dx =

∫
∂Ω

ν · vk dσ.

Meanwhile, div vk = φk ∗ (div v) → div v in L1(Rm) and ν · vk → ν · v uniformly on
∂Ω, so as k → ∞, the left side of (1.14) converges to the left side of (1.4) while the
right side of (1.14) converges to the right side of (1.4).

In many cases one deals with functions defined only on Ω, and one would like
to avoid assuming they have extensions to Rm with nice properties. To obtain a
result for such functions, we will introduce the following concept. Let open sets Ωk

satisfy Ωk ⊂ Ω, Ωk ⊂ Ωk+1, and Ωk ↗ Ω. We say {Ωk : k ≥ 1} is a tame interior
approximation to Ω if in addition there exists C(R) <∞ such that, for R ∈ (0,∞),

(1.15) ∥∇χΩk
∥TV(BR) ≤ C(R), ∀ k ≥ 1.

To give an example, take A : Rm−1 → R, satisfying

(1.16) A ∈ C(Rm−1), ∇A ∈ L1
loc(Rm−1).
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As will be shown in §2,

(1.17) Ω = {(x′, xm) ∈ Rm : xm > A(x′)}

has locally finite perimeter. The estimates proven there then imply that

(1.18) Ωk = {(x′, xm) ∈ Rm : xm > A(x′) + k−1}

is a tame interior approximation to Ω. The following is a partial extension of
Proposition 1.1.

Proposition 1.2. Assume Ω has locally finite perimeter and a tame interior ap-
proximation. Then (1.4) holds for v in

(1.19) D̃ = {v ∈ C0
0 (Ω,Rm) : div v ∈ L1(Ω)}.

Proof. Let {Ωk} denote a tame interior approximation. Pick φk ∈ C∞
0 (Ω) to be

≡ 1 on a neighborhood of Ωk ∩ supp v, set vk = φkv, and apply Proposition 1.1
with Ω replaced by Ωk and v by vk, noting that div vk = φk div v + ∇φk · v. We
have

(1.20)

∫
Ωk

div v dx = −⟨v,∇χΩk
⟩.

As k → ∞, the left side of (1.20) converges to the left side of (1.4). Meanwhile, we
can take w ∈ C0

0 (Rm,Rm), equal to v on Ω, and the right side of (1.15) is equal to
−⟨w,∇χΩk

⟩. Now χΩk
→ χΩ in L1

loc(Rm), so ∇χΩk
→ ∇χΩ in D′(Rm), and hence

(1.21) ⟨w,∇χΩk
⟩ −→ ⟨w,∇χΩ⟩

for each w ∈ C∞
0 (Rm,Rm). The bounds (1.15) then imply that (1.21) holds for

each w ∈ C0
0 (Rm,Rm). Hence the right side of (1.20) converges to

(1.22) −⟨w,∇χΩ⟩ =
∫
∂Ω

ν · v dσ,

which is the right side of (1.4).

As we will discuss in §3, Proposition 1.2 is not adequate for the Green formulas
we need for layer potentials. Such a Green formula will be demonstrated in §5.

Remark. Proposition 1.2 can be compared with the following result, given in
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[Fed1], p. 314. Let Ω ⊂ Rm be a bounded open set such that Hm−1(∂Ω) <∞. Fix
j ∈ {1, . . . ,m} and take f such that

(1.23) f ∈ C(Ω), ∂jf ∈ L1(Ω).

Then

(1.24)

∫
Ω

∂jf dx =

∫
∂0Ω

ej · ν f dHm−1,

where ej is the jth standard basis vector of Rm. In light of (1.11) one could replace
∂0Ω by ∂∗Ω or by ∂∗Ω in (1.24). This leads to the identity (1.7) for a vector field
v ∈ C(Ω) provided each term ∂jvj in div v belongs to L1(Ω). However, the vector
fields arising in the applications of Green’s formula needed in §§3 and 5 need not
have this additional structure, so (1.24) is not applicable.

There is also recent work of [CT] and [CTZ], which we will briefly discuss in
Appendix B. We present a result where div v can be a measure in Appendix C.

We turn our attention to a Green formula for

(1.25)

∫
Ω∩Br

div v dx,

where Ω has locally finite perimeter and Br = {x ∈ Rm : |x| < r}. Assume

v ∈ C0,1
0 (Rm,Rm). Given ε ∈ (0, r), set

(1.26)

ψε(x) = 1 for |x| ≤ r − ε,

1− 1

ε
(|x| − r + ε) for r − ε ≤ |x| ≤ r,

0 for |x| ≥ r.

Then, with ∇χΩ = −ν σ, we have

(1.27)

∫
Ω∩Br

div v dx = lim
ε↘0

∫
Ω

ψε div v dx

= lim
ε↘0

∫
Ω

[divψεv − v · ∇ψε] dx

= lim
ε↘0

(∫
ν · ψεv dσ −

∫
Ω

v · ∇ψε dx
)

=

∫
Br

ν · v dσ + lim
ε↘0

1

ε

∫
Ω∩Sε

n · v dx,
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where n is the outward unit normal to Br and

(1.28) Sε = Br \Br−ε.

Consequently,

(1.29)

∫
Ω∩Br

div v dx =

∫
Br

ν · v dσ +D−
r Φ(r),

where

(1.30) Φ(r) =

∫
Ω∩Br

n · v dx.

Note that

(1.31) Φ(r) =

∫ r

0

∫
Ω∩∂Bs

n · v dHm−1 ds,

so

(1.32) D−
r Φ(r) =

∫
Ω∩∂Br

n · v dHm−1, for L1-a.e. r.

It is of interest to note that D−
r Φ(r) exists for all r ∈ (0,∞) (under our standing

hypothesis on Ω), though the identity (1.32) is valid perhaps not for each r, but
just for a.e. r.

Remark. Having (1.29), one can bring in (1.5) and write

(1.33)

∫
Ω∩Br

div v dx =

∫
Br∩∂∗Ω

ν · v dHm−1 +D−
r Φ(r).

It is important to note that (1.5) is not needed to prove (1.29), since (1.29) plays
a role in proofs of (1.5).
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2. Examples of domains with locally finite perimeter

Let Ω be the region over the graph of a function A : Rm−1 → R:

(2.1) Ω = {x ∈ Rm : xm > A(x′)},

where x = (x′, xm). We have:

Proposition 2.1. If

(2.2) A ∈ C(Rm−1), ∇A ∈ L1
loc(Rm−1),

then Ω has locally finite perimeter.

Proof. Pick ψ ∈ C∞
0 (Rm−1) such that

∫
ψ(x′) dx′ = 1, set ψk(x

′) = km−1ψ(kx′),
and set Ak = ψk ∗A and

(2.3) Ωk = {x ∈ Rm : xm > Ak(x
′)}.

Clearly

(2.4) Ak −→ A, locally uniformly,

so

(2.5) χΩk
−→ χΩ in L1

loc(Rm).

Hence ∇χΩk
→ ∇χΩ in D′(Rm). Also

(2.6) ∇χΩk
= −νk σk,

where σk is surface area on

(2.7) Σk = {x ∈ Rm : xm = Ak(x
′)},

given in x′-coordinates by

(2.8) dσk(x
′) =

√
1 + |∇Ak(x′)|2 dx′,

and νk is the downward-pointing unit normal to Σk. The hypothesis (2.2) implies
that {νkσk : k ≥ 1} is a bounded set of Rm-valued measures on each set BR = {x ∈
Rm : |x| ≤ R}, so passing to the limit gives

(2.9) ∇χΩ = µ
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where µ is a locally finite Rm-valued measure. This proves Proposition 2.1.

Remark. The proof above is an easy extension of the argument in [Zie] that the
domain over a Lipschitz graph has locally finite perimeter.

The measure µ in (2.9) has the form µ = −ν σ, as described after (1.1). To
obtain a more explicit formula, we invoke (1.4),

(2.10)

∫
Ω

div v dx =

∫
ν · v dσ,

together with the elementary identities

(2.11)

∫
Ωk

div v dx =

∫
Rm−1

(∇Ak(x
′),−1) · v(x′, Ak(x

′)) dx′,

valid for each v ∈ C∞
0 (Rm,Rm). (See Appendix A for an elementary proof.) As

k → ∞, the left side of (2.11) converges to the left side of (2.10), while the right
side of (2.11) converges to

(2.12)

∫
Rm−1

(∇A(x′),−1) · v(x′, A(x′)) dx′.

Hence

(2.13)

∫
ν · v dσ =

∫
Rm−1

ν̃(x′) · v(x′, A(x′)) dσ(x′),

where

(2.14) ν̃(x′) =
(∇A(x′),−1)√
1 + |∇A(x′)|2

, dσ(x′) =
√

1 + |∇A(x′)|2 dx′.

The formula (2.13) is valid for all v ∈ C∞
0 (Rm,Rm), hence for all v ∈ C0

0 (Rm,Rm).

Remark. So far in this section we have not used (1.5). At this point we can invoke
(1.5), to get

(2.15)

∫
∂∗Ω

ν · v dHm−1 =

∫
Rm−1

ν̃(x′) · v(x′, A(x′)) dσ(x′),

for each v ∈ C0
0 (Rm,Rm).
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It is also of interest to see how the decomposition (1.6), asserting countable
rectifiability, arises in the context of (2.1)–(2.1). For simplicity, assume A has
compact support. Then set

(2.16) f = |A|+ |∇A|, g = Mf,

the latter being the Hardy-Littlewood maximal function, and take

(2.17) Rλ = {x ∈ Rm−1 : Mf(x) ≤ λ}.

Then Lm−1(Rm−1 \ Rλ) ≤ Cλ−1∥f∥L1 , and an argument involving the Poincaré
inequality yields

(2.18) x, y ∈ Rλ =⇒ |A(x)|, |A(x)−A(y)| ≤ Cλ|x− y|.

Using this one writes ∂Ω = ∪kKk ∪ Ñ , where each Lk is a Lipschitz graph and

σ(Ñ) = 0. Passing to (1.6) is then done by decomposing each Lipschitz graph
into a countable union of C1 graphs plus a negligible remainder, via Rademacher’s
theorem and Whitney’s extension theorem. See §6.6 of [EG], or Theorem 11.9 and
Proposition 12.9 of [T], for details.

Regarding the issue of ∂Ω versus ∂∗Ω, it is clear that ∂Ω = ∂∗Ω whenever A is
locally Lipschitz. For more general A satisfying (2.2), we have the following, which
is a consequence of the main results of [Tom] and [Fed2].

Proposition 2.2. If Ω is the region in Rm over the graph of a function A satisfying
(2.2), then

(2.19) Hm−1(∂Ω \ ∂∗Ω) = 0.

Proof. Given a “rectangle” Q = I1 × · · · × Im−1 ⊂ Rm−1, a product of compact
intervals, set KQ = Q×R. Given the formula (2.14) for σ, it follows from Theorem
3.17 of [Tom] that

(2.20) σ(∂Ω ∩KQ) = Im−1(∂Ω ∩KQ),

where Im−1 denotes (m−1)-dimensional integral-geometric measure. Furthermore,
it is shown in [Fed2] that

(2.21) Hm−1(∂Ω ∩KQ) = Im−1(∂Ω ∩KQ).

On the other hand, we have from (1.5) that σ(∂Ω ∩KQ) = Hm−1(∂∗Ω ∩KQ), so
(2.19) follows.

Remark. The main argument in [Fed2] showed that there exists Cm < ∞ such
that

(2.22) Hm−1(S) ≤ CmIm−1(S),
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for all Borel sets S ⊂ ∂Ω ∩ KQ. Federer then invoked his structure theorem to
deduce that ∂Ω ∩ KQ is countably rectifiable and (2.21) holds. We can avoid
depending on the structure theorem as follows. Theorem 3.17 of [Tom] also says
that if we have a Borel set S ⊂ ∂Ω ∩ KQ and set Sb = {x ∈ Q : (x,A(x)) ∈ S},
then, under the hypothesis (2.2),

(2.23) Lm−1(Sb) = 0 =⇒ Im−1(S) = 0.

Now as discussed above, (∂Ω \ ∂∗Ω) ∩Q ⊂ A(V ) = {(x,A(x)) : x ∈ V } with V of
Lebesgue measure 0, so (2.22)–(2.23) give (2.19).
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3. Green formulas for layer potentials

Assume Ω ⊂ Rm is a bounded NTA domain, and ∂Ω satisfies the Ahlfors regu-
larity condition: there exist Cj ∈ (0,∞) such that

(3.1) C1r
m−1 ≤ Hm−1(∂Ω ∩Br(p)) ≤ C2r

m−1,

for each p ∈ ∂Ω, r ∈ (0,diamΩ]. More generally, Ω can be a UR domain, as defined
in §3 of [HMT]. Take f ∈ L2(∂Ω, σ), with σ = Hm−1⌊∂∗Ω, and form

(3.2) u(x) = Sf(x),

where S is the single layer potential. Then, for a.e. x ∈ ∂Ω, Sf(x) = Sf(x) and

(3.3) lim
y→x

ν(x) · ∇u(y) = T ∗f(x) =
(
−1

2
+K∗

)
f(x),

the limit being from within Ω via a nontangential approach. We would like to be
able to establish that

(3.4)

∫
Ω

|∇u|2 dx =

∫
∂Ω

uT ∗f dσ.

Under these hypotheses, ∂Ω = ∂∗Ω (modulo a null set), and if we set

(3.5) v(x) = u(x)∇u(x), x ∈ Ω,

we have

(3.6) div v = |∇u|2 + u∆u = |∇u|2 on Ω,

and, for x ∈ ∂Ω,

(3.7) ν(x) · lim
y→x in Γ(x)

v(y) = u(x)T ∗f(x).

Hence (3.4) would follow from (1.4), if (1.4) were established in this context.
For such Ω, it is a fundamental fact, proven in [HMT], that

(3.8) ∥N (∇Sf)∥Lp(∂Ω) ≤ Cp∥f∥Lp(∂Ω), 1 < p <∞.

A more elementary estimate is

(3.9) NSf(x) ≤ C

∫
∂Ω

|x− y|−(m−2)|f(y)| dσ(y),
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if m ≥ 3 (with a simple modification for n = 2), which in turn yields, for all δ > 0,

(3.10)
∥NSf∥L(m−1)/(m−2)(∂Ω) ≤ Cδ∥f∥L1+δ(∂Ω),

∥NSf∥L∞(∂Ω) ≤ Cδ∥f∥Lm−1+δ(∂Ω),

when (3.1) holds. Interpolation gives

(3.11) ∥NSf∥L2+α(m)(∂Ω) ≤ C∥f∥L2(∂Ω),

with α(m) > 0.
In §4 we will establish a result that implies

(3.12) ∥∇Sf∥Lp(Ω) ≤ C∥f∥L2(∂Ω), ∀ p < 2m

m− 1
.

A similar analysis yields an estimate

(3.13) ∥Sf∥Lq(Ω) ≤ C∥f∥L2(∂Ω),

for somewhat larger q.
Thus, if v is given by (3.5), with u = Sf , we have

(3.14) ∥N v∥Lp(∂Ω) ≤ C∥f∥2L2(∂Ω), p = pm > 1,

and

(3.15) ∥div v∥Lq(Ω) ≤ C∥f∥2L2(∂Ω), q = qm > 1.

Thus to establish (3.4) it will suffice to prove that

(3.16)

∫
Ω

div v dx =

∫
∂Ω

ν · v dσ,

provided that, for some p > 1,

(3.17) v ∈ Lp, and div v ∈ L1(Ω),

where

(3.18) Lp = {v ∈ C(Ω) : N v ∈ Lp(∂Ω), and ∃ nontangential limit vb, σ-a.e.}.

This will be proven for Ω satisfying (3.1) in §5.
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4. Layer potentials on Ahlfors regular sets: elementary estimates

Let Ω be a bounded open set. Assume ∂Ω satisfies the Ahlfors regularity condi-
tion

(4.1) C1r
m−1 ≤ Hm−1(∂Ω ∩Br(p)) ≤ C2r

m−1, ∀ p ∈ ∂Ω.

We estimate some integral operators mapping functions on ∂Ω to functions on Ω.
Let

(4.2) K : Ω× ∂Ω −→ R
be continuous on

(4.3) Ω× ∂Ω \ {(x, x) : x ∈ ∂Ω}
and satisfy

(4.4) |K(x, y)| ≤ C|x− y|−(m−1).

Define

(4.5) T f(x) =
∫
∂Ω

K(x, y)f(y) dσ(y),

where dσ = dHm−1. We aim to prove:

Proposition 4.1. Under the hypotheses on Ω and K given above, we have for
p ∈ [1,∞),

(4.6) T : Lp(∂Ω) −→ Lr(Ω), ∀ r < pm

m− 1
.

Proof. It is elementary that

(4.7) T : L1(∂Ω) −→ Lq(Ω), ∀ q < m

m− 1
.

For this one needs only Ω bounded and Hm−1(∂Ω) <∞. We will show that

(4.8) T : L∞(∂Ω) −→ Ls(Ω), ∀ s <∞.

Then (4.6) follows by interpolation from (4.7)–(4.8).

To prove (4.8), we will establish an estimate of the form

(4.9)

∫
∂Ω

|K(x, y)| dσ(y) ≤ γ(x), γ ∈ Ls(Ω), ∀ s <∞.

Then

(4.10)
∣∣∣∫
∂Ω

K(x, y)f(y) dσ(y)
∣∣∣ ≤ ∥f∥L∞γ(x),

and (4.8) follows. Here is part of (4.9).
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Proposition 4.2. In the setting of Proposition 4.1,

(4.11)

∫
∂Ω

|K(x, y)| dσ(y) ≤ C log
2M

φ(x)
, φ(x) = dist(x, ∂Ω),

with M = diamΩ.

Proof. Given x ∈ Ω, δ = dist (x, ∂Ω), take p ∈ ∂Ω, |x− p| = δ, and set

(4.12)
A0 = {x′ ∈ ∂Ω : |x′ − p| ≤ 2δ},
Ak = {x′ ∈ ∂Ω : |x′ − p| ∈ (2kδ, 2k+1δ]}, k ≥ 1.

By (4.1),

(4.13) Hm−1(Ak) ≤ C(2kδ)m−1,

so

(4.14)

∫
Ak

|K(x, y)| dσ(y) ≤ C
(2kδ)m−1

(2kδ)m−1
= C.

Summing (4.14) over k ≥ 0 such that 2kδ ≤M gives (4.11).

The other half of (4.9), i.e., the fact that γ ∈ Ls(Ω) for all s <∞, follows from:

Lemma 4.3. Let Ω ⊂ Rm be a bounded open set whose boundary is Ahlfors regular.
Set

(4.15) Oδ = {x ∈ Ω : dist(x, ∂Ω) ≤ δ}.

Then

(4.16) vol(Oδ) ≤ Cδ.

Proof. Let B1 be the unit ball in Rm, with volume Cm, and set

(4.17) χδ(x) =
1

Cmδm
χB1

(x
δ

)
,

so
∫
χδ dx = 1. Set µ = Hm−1⌊∂Ω and

(4.18) Gδ = µ ∗ χδ.

Then

(4.19)

∫
Gδ(x) dx = Hm−1(∂Ω), ∀ δ > 0.
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We also have the following. If p ∈ ∂Ω, |x− p| = dist(x, ∂Ω),

(4.20) dist (x, ∂Ω) ≤ δ

2
⇒ Gδ(x) ≥ Cδ−mHm−1(∂Ω ∩Bδ/2(p)) ≥ Cδ−1,

the last inequality by (4.1). Hence

(4.21) vol(Oδ/2) ≤ Cδ

∫
Oδ/2

Gδ(x) dx ≤ CδHm−1(∂Ω).

This proves (4.16). Thus (4.9) is proven, and hence so is Proposition 4.1.

It is of incidental interest that Lemma 4.3 has the following corollary, related to
the setting of Proposition 1.2.

Corollary 4.4. If Ω ⊂ Rm is a bounded open set and ∂Ω satisfies (4.1), then Ω
has a tame interior approximation.

Proof. Consider φ ∈ Lip(Ω) given by φ(x) = dist(x, ∂Ω), and set Ωs = {x ∈ Ω :
φ(x) ≥ s}. For δ > 0, set

(4.22)
ψδ(x) = δ on Ωδ

φ(x) on Ω \ Ωδ.

Thus ∇ψδ is supported on Oδ and |∇ψδ| = 1 on Oδ. A version of the co-area
formula (Theorem 5.4.4 of [Zie]) gives

(4.23)

∫
Oδ

|∇ψδ| dx =

∫ δ

0

∥∇χΩs
∥TV ds.

Thus, by (4.16), since the left side of (4.23) equals vol (Oδ),

(4.24)

∫ δ

0

∥∇χΩs
∥TV ds ≤ Cδ.

Thus, for each k ≥ 1, there exists s ∈ (0, 1/k) such that ∥∇χΩs
∥TV ≤ C. This

proves the corollary.
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5. Green’s formula on Ahlfors regular domains

Let Ω ⊂ Rm be a bounded open set with finite perimeter. Assume

(5.1) Hm−1(∂Ω \ ∂∗Ω) = 0,

and denote Hm−1⌊∂Ω by σ. For p ∈ [1,∞), set

(5.2) Lp = {v ∈ C(Ω) : N v ∈ Lp(∂Ω), and ∃ nontangential limit vb, σ-a.e.}.

Here Lp(∂Ω) = Lp(∂Ω, dσ). We will establish a Green formula for vector fields
v ∈ Lp with divergence in L1(Ω), when Ω satisfies the following two conditions.
First,

(5.3)
1

δ

∫
Oδ

|v| dx ≤ C∥N v∥L1(∂Ω), ∀ v ∈ L1, 0 < δ ≤ diamΩ,

where Oδ = {x ∈ Ω : dist(x, ∂Ω) ≤ δ}. Second,

(5.4)
If v ∈ Lp, ∃w ∈ L1 such that wb = vb and ∃wk ∈ Lip(Ω)

such that ∥N (w − wk)∥L1(∂Ω) −→ 0.

Then we will show that (5.3) and (5.4) hold whenever ∂Ω is Ahlfors regular.

Before we state our first result, a few comments are useful. First, the condition
(5.3) is equivalent to the apparently stronger condition

(5.5)
1

δ

∫
Oδ

|v| dx ≤ C∥Nδv∥L1(∂Ω), ∀ v ∈ L1, 0 < δ ≤ diamΩ,

where

(5.6) Nδv(x) = sup {|v(y)| : y ∈ Γx, |x− y| ≤ 2δ},

as a simple cutoff argument shows. Second, in condition (5.4) it would be equivalent
to demand merely that wk ∈ C(Ω), since elements of C(Ω) are easily uniformly
approximated by Lipschitz functions.

Here is our first result.
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Proposition 5.1. Pick p ∈ [1,∞). Assume Ω is a bounded open set with finite
perimeter, satisfying (5.1) and (5.3)–(5.4). Then

(5.7)

∫
Ω

div v dx =

∫
∂Ω

ν · vb dσ,

whenever

(5.8) v ∈ Lp and div v ∈ L1(Ω).

Proof. Let Ωs = {x ∈ Ω : dist(x, ∂Ω) ≥ s}. Let φδ(x) = dist(x, ∂Ωδ/2), and set

(5.9)

χδ(x) = 1 on Ωδ,

2δ−1 φδ(x) on Ω \ (Ωδ ∪ Oδ/2),

0 on Oδ/2.

If v satisfies (5.8), then χδv ∈ C0
0 (Ω) and divχδv ∈ L1(Ω), so it is elementary that

(5.10)

∫
Ω

div(χδv) dx = 0.

Hence

(5.11)

∫
Ω

χδ div v dx = −
∫
Ω

∇χδ · v dx

=
2

δ

∫
Õδ

ν · v dx,

where ν = −∇φ0 and Õδ = Oδ \ Oδ/2. The left side of (5.11) converges to the left

side of (5.7) as δ → 0, whenever div v ∈ L1(Ω). Hence (5.7) is true provided

(5.12)
2

δ

∫
Õδ

ν · v dx −→
∫
∂Ω

ν · vb dσ,

as δ → 0. Of course, by (5.11), the left side of (5.12) does converge as δ → 0,
namely to the left side of (5.7). Hence (5.12) is true whenever (5.7) is true. In
particular, (5.12) is true whenever v ∈ Lip(Ω).

More generally, if v satisfies (5.8), take w,wk as in (5.4). Given (5.3), we have

(5.13)
∣∣∣2
δ

∫
Õδ

(ν · wk − ν · w) dx
∣∣∣ ≤ C∥N (w − wk)∥L1(∂Ω),
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and we also have

(5.14)
∣∣∣∫
∂Ω

(ν · wk − ν · wb) dσ
∣∣∣ ≤ ∥N (wk − w)∥L1(∂Ω).

Thus, since (5.12) holds for wk, we have

(5.15)

2

δ

∫
Õδ

ν · w dx −→
∫
∂Ω

ν · wb dσ

=

∫
∂Ω

ν · vb dσ,

as δ → 0. Thus to obtain (5.12) for each v ∈ Lp, it suffices to show that

(5.16)
2

δ

∫
Õδ

(ν · v − ν · w) dx −→ 0.

Thus it suffices to show that

(5.17) u ∈ L1, ub = 0 =⇒ 2

δ

∫
Õδ

|u| dx→ 0,

as δ → 0. Recalling that (5.3) implies (5.5), we see that it suffices to show that

(5.18) u ∈ L1, ub = 0 =⇒ ∥Nδu∥L1(∂Ω) → 0,

as δ → 0. Indeed, the hypotheses of (5.18) yield Nδu(x) → 0, σ-a.e., and fur-
thermore Nδu ≤ Nu for each δ, so (5.18) follows from the dominated convergence
theorem. Proposition 5.1 is proven.

We next show that Ahlfors regularity implies (5.4).

Proposition 5.2. If Ω ⊂ Rm is a bounded open set whose boundary is Ahlfors
regular, then (5.4) holds for each p ∈ (1,∞).

Proof. Fix p ∈ (1,∞). For f ∈ Lp(∂Ω), x ∈ Ω, set

(5.19) Ψf(x) =
1

V (x)

∫
∂Ω

ψ(x, y)f(y) dσ(y),

where

(5.20) ψ(x, y) =
(
1− |x− y|

2φ(x)

)
+
, φ(x) = dist(x, ∂Ω),
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and

(5.21) V (x) =

∫
∂Ω

ψ(x, y) dσ(y).

It is readily checked that

(5.22) Ψ : C(∂Ω) −→ C(Ω), Ψf
∣∣
∂Ω

= f,

and that

(5.23) NΨf ≤ CMf, ∀ f ∈ L1(∂Ω),

where Mf is the Hardy-Littlewood maximal function of f ∈ L1(∂Ω), given that
∂Ω is Ahlfors regular. Hence

(5.24) ∥NΨf∥Lp(∂Ω) ≤ Cp∥f∥Lp(∂Ω), 1 < p <∞.

We claim that for each p ∈ (1,∞),

(5.25) Ψ : Lp(∂Ω) −→ Lp, (Ψf)b = f σ-a.e.

In light of (5.24), only the nontangential convergence of Ψf to f remains to be
justified. This follows by taking fk ∈ C(∂Ω), fk → f in Lp-norm, using (5.22) on
fk and (5.24) on f − fk.

Now, to establish (5.4), we argue as follows. Take v ∈ Lp, and set w = Ψvb.
By (5.25), w ∈ Lp and wb = vb. Then take fk ∈ C(∂Ω) such that fk → vb in
Lp(∂Ω)-norm, and set w̃k = Ψfk. By (5.22), each w̃k ∈ C(Ω). By (5.24),

(5.26) ∥N (w̃k − w)∥Lp(∂Ω) ≤ Cp∥fk − vb∥Lp(∂Ω) → 0,

which is stronger than the L1 estimate demanded in (5.4). As mentioned in the
paragraph after (5.4), having such continuous functions suffices, since they are easily
approximated by Lipschitz functions. Proposition 5.2 is proven.

We now show that Ahlfors regularity implies (5.3). To be definite, for each
x ∈ ∂Ω set

(5.27) Γx = {y ∈ Ω : |x− y| ≤ 10 dist(y, ∂Ω)}.

Proposition 5.3. Let Ω ⊂ Rm be a bounded open set with Ahlfors regular bound-
ary. Then (5.3) holds.

Proof. We first note that it suffices to prove that

(5.28)
1

δ

∫
Õδ

|v| dx ≤ C∥N v∥L1(∂Ω), ∀ v ∈ L1,

where Õδ = Oδ \ Oδ/2, since (5.3) then follows by applying (5.28) with δ replaced

by 2−jδ and summing over j ∈ Z+. We now bring in the following lemma.
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Lemma 5.4. There exists K = Km with the following property. For each δ ∈
(0, (diamΩ)/10], there exists a covering of ∂Ω by a collection

(5.29) C = C1 ∪ · · · ∪ CK

of balls of radius δ, centered in ∂Ω, such that for each k ∈ {1, . . . ,K}, if B and B′

are distinct balls in Ck, their centers are separated by a distance ≥ 10δ.

We postpone the proof of Lemma 5.4, and show how it is used to prove Propo-
sition 5.3.

To begin, take a collection C = C1 ∪ · · · ∪ CK of balls of radius δ covering ∂Ω,

with the properties stated above. Then C# = C#
1 ∪ · · · ∪ C#

K , consisting of balls
concentric with those of C with radius 2δ, covers Oδ. Furthermore, there exists

A = Am ∈ (0,∞) such that one can cover each ball B ∈ C#
k by balls B1, . . . , BA

of radius δ/8, centered at points in B. Now form collections of balls C#
kℓ, 1 ≤ k ≤

K, 1 ≤ ℓ ≤ A, with each of the balls B1, . . . , BA covering B ∈ C#
k , described above,

put into a different one of the collections C#
kℓ. Throw away some balls from C#

kℓ,
thinning them out to a minimal collection

(5.30) C̃ =
∪

k≤K,ℓ≤A

C̃kℓ

covering Õδ. For each (k, ℓ), any two distinct balls in C̃kℓ have centers separated

by a distance ≥ 7δ. Each ball B ∈ C̃kℓ has radius δ/8 and each point p ∈ B has
distance from ∂Ω lying between δ/4 and 5δ/4. For each such B, we will compare∫
B
|v| dx with the integral of N v over a certain set Ã(B) ⊂ ∂Ω, which we proceed

to define.
Given y ∈ Ω, d(y) = dist(y, ∂Ω), consider

(5.31) A(y) = {x ∈ ∂Ω : y ∈ Γx}.

There exists p ∈ ∂Ω such that |y−p| = d(y), and certainly p ∈ A(y). Also, if (5.27)
holds, then

(5.32) A(y) ⊃ B9d(y)(p) ∩ ∂Ω.

Now, for a ball B ∈ C̃kℓ, set

(5.33) A(B) = {x ∈ ∂Ω : B ⊂ Γx}.

If B is centered at y and p ∈ ∂Ω is closest to y, then (5.32) holds with d(y) ≥ 3δ/8.
For each y′ ∈ B, d(y′) ≥ δ/4 and |y′ − p| ≤ d(y) + δ/8. Now d(y) ≤ (9/8)δ, so
|y′ − p| ≤ (5/4)δ ≤ 5d(y′), and hence

(5.34) A(B) ⊃ Bd(y)(p) ∩ ∂Ω.
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We denote the right side of (5.34) by Ã(B).

The use of Ã(B) in establishing (5.28) arises from the estimates

(5.35) sup
B

|v| ≤ inf
Ã(B)

N v, and Hm−1(Ã(B)) ≥ C1δ
m−1,

the latter estimate due to the hypothesis that ∂Ω is Ahlfors regular. Hence

(5.36)

1

δ

∫
B

|v| dx ≤ Cmδ
m−1 inf

Ã(B)

N v

≤ C

∫
Ã(B)

N v dσ.

Furthermore, the separation properties established for balls in each collection C̃kℓ
yield

(5.37) B ̸= B′ ∈ C̃kℓ =⇒ Ã(B) ∩ Ã(B′) = ∅,

so for each k ≤ K, ℓ ≤ A,

(5.38)

1

δ

∑
B∈C̃kℓ

∫
B

|v| dx ≤ C

∫
∪Ã(B),B∈C̃kℓ

N v dσ

≤ C∥N v∥L1(∂Ω).

Consequently,

(5.39)

1

δ

∫
Õδ

|v| dx ≤ 1

δ

A∑
ℓ=1

K∑
k=1

∑
B∈C̃kℓ

∫
B

|v| dx

≤ CAK ∥N v∥L1(∂Ω),

and Proposition 5.3 is established, modulo the proof of Lemma 5.4, to which we
now turn.

Proof of Lemma 5.4. Pick a maximal set {pk} ⊂ ∂Ω of points that are separated by
a distance ≥ δ. (Such clearly exists.) Set C = {Bδ(pk)}. This collection covers ∂Ω,
since if q ∈ ∂Ω were not covered one could add it to {pk}. On the other hand, the
balls in B = {Bδ/2(pk)} are mutually disjoint balls in Rm. Our task is to partition
C as indicated in (5.29).

Tile Rm with cubes Q of edge 20 δ, edges parallel to the coordinate axes. Each
such cube has a natural partition into 20m little cubes (call them cells), of edge δ.
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Label the cells in each Q from 1 to 20m, in a fashion so that translating one such
Q to the position of another preserves the labels of the cells. Note that for each
cell C all the balls in B intersecting C lie in a cube of edge 2δ, so since they are
mutually disjoint there can be at most [4m/Vm] of them, where Vm is the volume
of the unit ball in Rm.

Now for each ℓ ∈ {1, . . . , 20m}, look at each cube Q and pick one ball from B
(say Bδ/2(pk)) that intersects the cell labeled ℓ in Q. (If no ball in B intersects the
cell, pass it by.) Collect all these balls, as Q varies. Then take the corresponding
balls Bδ(pk) in C. This forms a collection, which we will denote Cℓ1, of balls from
C, whose centers are separated by a distance ≥ 10δ. If C is not exhausted, do this
again, to form Cℓ2, for ℓ ∈ {1, . . . , 20m}, and repeat, forming Cℓk, k ≥ 3. All the
balls in C will be exhausted by the time k = [4m/Vm], so the lemma is established,
with Km = 20m · [4m/Vm].

Putting together Propositions 5.1–5.3, we have:

Theorem 5.5. Assume ∂Ω is Ahlfors regular and satisfies (5.1). If, for some
p > 1,

(5.40) v ∈ Lp, and div v ∈ L1(Ω),

then

(5.41)

∫
Ω

div v dx =

∫
∂Ω

ν · vb dσ.
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6. Gauss-Green formulas on Riemannian manifolds

Let Rm carry a continuous metric tensor (gjk), in addition to the Euclidean
metric tensor (δjk). A vector field v = vj∂j has divergence div v ∈ D′(Rm) given
by

(6.1) ⟨φ,div v⟩ = −⟨∂jφ, g1/2vj⟩,

where g = det(gjk), and we use the summation convention. If div v is a locally in-

tegrable multiple of Lebesgue measure, or equivalently of dV = g1/2 dx, we identify
div v with div v dV . We denote by div0 v this quantity associated to (δjk) rather

than (gjk), so div v = g−1/2 div0(g
1/2v), in the locally integrable case.

Let Ω ⊂ Rm be an open set with locally finite perimeter. Assume v belongs to

(6.2)
D = {v ∈ C0

0 (Rm,Rm) : div v ∈ L1(Rm)}

= {v ∈ C0
0 (Rm,Rm) : div0(g

1/2v) ∈ L1(Rm)}.

Then

(6.3)

∫
Ω

div v dV =

∫
Ω

div0(g
1/2v) dx.

Hence Proposition 1.1 gives

(6.4)

∫
Ω

div v dV =

∫
∂∗Ω

n · v g1/2 dσ,

where n is the outward-pointing unit normal with respect to the metric (δjk) and
σ is (m− 1)-dimensional Hausdorff measure defined by (δjk). We claim that

(6.5)

∫
∂∗Ω

n · v g1/2 dσ =

∫
∂∗Ω

⟨ν, v⟩g dσg,

where ν is the unit outward-pointing normal determined by (gjk), ⟨ , ⟩g is the inner
product determined by (gjk), and σg is (m − 1)-dimensional Hausdorff measure
determined by (gjk). The vectors ν = νj∂j and n = nj∂j have asociated covectors

(6.6) νb =
∑

νj dxj , nb =
∑

nj dxj ,

where

(6.7) νj = gjkν
k, nj = δjkn

k.
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The covectors νb and nb are parallel and both have unit length, with respect to
their associated metric tensors, so

(6.8) nj = aνj , a2 = ⟨nb, nb⟩g = gjknjnk.

Hence

(6.9)

n · v g1/2 = njv
jg1/2

= g1/2⟨nb, nb⟩1/2g νjv
j

= g1/2⟨nb, nb⟩1/2g ⟨ν, v⟩g.

Thus (6.5) is equivalent to the assertion that

(6.10) σg = g1/2⟨nb, nb⟩1/2g σ

on measurable subsets of ∂∗Ω. The following result establishes (6.10).

Proposition 6.1. Let S ⊂ Rm be a countably rectifiable (m−1)-dimensional set in
Rm, with measure-theoretic unit normal n determined by the Euclidean structure. If
σ is (m−1)-dimensional Hausdorff measure determined by (δjk) and σg is (m−1)-
dimensional Hausdorff measure determined by (gjk), then (6.10) holds on S.

Proof. It is clear from the definitions that for each compact K ⊂ Rm there exists
CK ∈ (1,∞) such that

(6.11) C−1
K σ(A) ≤ σg(A) ≤ CKσ(A), A ⊂ K.

The hypothesis of countable rectifiability implies there is a disjoint union

(6.12) S =
∪
k≥1

Mk ∪N,

where each Mk is a Borel subset of some (m − 1)-dimensional C1 submanifold of
Rm, while σ(N) = 0, hence σg(N) = 0. It is elementary that (6.10) holds on each
C1 submanifold of Rm, of dimension m− 1, so by (6.12) it holds on S.

Since ∂∗Ω is countably rectifiable, we have the following variant of Proposition
1.1.

Proposition 6.2. Let Rm have a continuous metric tensor (gjk). Let Ω ⊂ Rm be
an open set with locally finite perimeter. Then

(6.13)

∫
Ω

div v dV =

∫
∂∗Ω

⟨ν, v⟩g dσg,

for all v ∈ D, defined by (6.2).
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Similarly we can apply Proposition 1.2 to deduce that

(6.14)

∫
Ω

div0(g
1/2v) dx =

∫
∂∗Ω

n · v g1/2 dσ,

whenever Ω has a tame interior approximation and v belongs to

(6.15)
D̃ = {v ∈ C0

0 (Ω,Rm) : div0(g
1/2v) ∈ L1(Ω)}

= {v ∈ C0
0 (Ω,Rm) : div v ∈ L1(Ω)}.

We obtain

Proposition 6.3. If Rm has a continuous metric tensor (gjk) and Ω ⊂ Rm has a

tame interior approximation, then (6.13) holds for all v ∈ D̃.

Also the results of §5 together with Proposition 6.1 yield the following.

Proposition 6.4. If Rm has a continuous metric tensor (gjk) and Ω ⊂ Rm is a
bounded domain with Ahlfors regular boundary, then (6.13) holds whenever

(6.16) div v ∈ L1(Ω) and v ∈ Lp,

for some p > 1, where

(6.17) Lp = {v ∈ C(Ω) : N v ∈ Lp(∂Ω) and ∃ nontangential limit vb, σ-a.e.}.

Remark. Using partitions of unity, we can extend the scope of these results to
Ω ⊂M , where M is a smooth manifold with a continuous metric tensor.

We can apply Proposition 6.4 in the following setting. LetM be a compact man-
ifold with a Riemannian metric whose components are continuous with a modulus
of continuity ω satisfying

(6.18)

∫ 1

0

√
ω(t)

t
dt <∞.

Let V ∈ L∞(M) satisfy V ≥ 0 on M and V > 0 on a set of positive measure.
Then let E(x, y) be the integral kernel of (∆ − V )−1 on L2(M). Let Ω ⊂ M
be a connected NTA domain with Ahlfors regular boundary, or more generally a
connected UR domain, as defined in [HMT]. For f ∈ Lp(∂Ω), set

(6.19) Sf(x) =
∫
∂Ω

E(x, y)f(y) dσg(y), x ∈ Ω.
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A fundamental result (established in [HMT]) is

(6.20) ∥N (∇Sf)∥Lp(∂Ω) ≤ Cp∥f∥Lp(∂Ω), 1 < p <∞,

and that nontangential limits of ∇Sf exist σg-a.e. on ∂Ω. In particular,

(6.21) lim
y→x in Γx

ν(x) · ∇Sf(y) =
(
−1

2
+K∗

)
f(x), σg-a.e.,

where K∗ : Lp(∂Ω) → Lp(∂Ω), for 1 < p <∞. Also, by Proposition 4.1,

(6.22) ∥∇Sf∥Lp(Ω) + ∥Sf∥Lq(Ω) ≤ C∥f∥L2(∂Ω)

for some p, q > 2, and ∥NSf∥Lr(∂Ω) ≤ C∥f∥L2(∂Ω) for some r > 2. Now if we take

f ∈ L2(∂Ω) and set

(6.23) u = Sf, v = u∇u,

we have

(6.24) div v = |∇u|2 + u∆u = |∇u|2 + V u2, on Ω.

Thus Proposition 6.4 applies to give

(6.25)

∫
Ω

(|∇u|2 + V u2) dV =

∫
∂Ω

u
(
−1

2
+K∗

)
f dσg.
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A. The Gauss-Green formula on smoothly bounded domains

Our goal here is to give a simple, direct proof of the identity

(A.1)

∫
Ω

div v dx =

∫
∂Ω

ν · v dσ,

for v ∈ C∞
0 (Rm,Rm), when Ω ⊂ Rm has the form

(A.2) Ω = {(x′, xm) ∈ Rm : xm > A(x′)},

with

(A.3) A ∈ C1(Rm).

In §2 it was shown how such an identity (actually for A ∈ C∞(Rm)) plus an
approximation argument yields such a result for domains of the form (A.2) with
much rougher A, satisfying merely (2.2). We can deduce (A.1) from the following
result.

Proposition A.1. If Ω ⊂ Rm satisfies (A.2)–(A.3) and f ∈ C∞
0 (Rm), and if e is

an element of Rm, then

(A.4)

∫
Ω

e · ∇f(x) dx =

∫
∂Ω

(e · ν)f dσ.

In fact, taking {ej} to be the standard orthonormal basis of Rm, replacing e by
ej and f by vj (the jth component of v) in (A.4) and summing, we obtain (A.1).

To begin the proof of (A.4), write

(A.5)

∫
Ω

∂f

∂xm
dx =

∫
Rm−1

( ∫
xm>A(x′)

∂mf(x
′, xm) dxm

)
dx′

= −
∫

Rm−1

f(x′, A(x′)) dx′

=

∫
∂Ω

(em · ν)f dσ.

The first identity in (A.5) follows from Fubini’s theorem, the second identity from
the fundamental theorem of calculus, and the third identity from the formula

(A.6) ν(x) =
(
1 + |∇A(x′)|2

)−1/2
(∇A(x′),−1),
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where x = (x′, A(x′)), which is the standard formula for the downward pointing
normal to the C1 surface xm = A(x′), and from the formula

(A.7) dσ(x) =
√

1 + |∇A(x′)|2 dx′,

for the surface area of the graph of a C1 function. This establishes (A.4) for e = em.
Here are some useful comments regarding the surface area formula (A.7). The

(m − 1)-dimensional surface ∂Ω ⊂ Rm inherits a Riemannian metric tensor. A
coordinate system on a Riemannian manifold M such as ∂Ω produces components
(gjk) for the metric tensor, and the area element is given by

(A.8) dσ(y) =
√
g(y) dy,

in a coordinate system y = (y1, . . . , ym−1), where g(y) = det(gjk(y)). In case the
coordinate system on ∂Ω = {xm = A(x′)} is x′ 7→ (x′, A(x′)), the formula (A.8)
specializes to (A.7). It is also useful to note that the transformation properties for
metric tensors and for integrals under C1 diffeomorphisms imply that (A.8) defines
area on a Riemannian manifold in a coordinate invariant fashion.

To continue the proof of (A.4), since v has compact support, we can assume
|∇A(x′)| ≤ L for all x′, for some L <∞. Then Ω has a representation of the form
(A.2)–(A.3) in new coordinates obtained by any rotation sufficiently close to the
identity. Hence the identity (A.4) holds when e = em is replaced by any sufficiently
close element of Rm. In particular, it works for e = em + aej , for 1 ≤ j ≤ m − 1
and for |a| sufficiently small. Thus we have

(A.9)

∫
Ω

(em + aej) · ∇f(x) dx =

∫
∂Ω

(em + aej) · ν f dσ.

If we subtract (A.5) from this and divide the result by a, we obtain (A.4) for e = ej ,
for all j, and hence (A.4) holds in general. This completes the proof.

Remark 1. Using again (A.6)–(A.7), we can rewrite (A.1) as

(A.10)

∫
Ω

div v dx =

∫
Rm−1

(∇A(x′),−1) · v(x′, A(x′)) dx′,

which is the form used in (2.11).

Remark 2. For a C1 graph, or more generally for a C1 manifold with a continuous
metric tensor, one can show that (A.7) and (A.8) coincide with Hausdorff measure,
directly from the definitions and the fact that Hm−1 coincides with Lebesgue mea-
sure on Rm−1. Details are given in [T], Propositions 12.6 and 12.7.
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B. Variant of a result of Chen and Torres

Let O ⊂ Rm be open, and set

(B.1) D∞ = {v ∈ L∞(O,Rm) : div v ∈ L1(O)}.

This is a Banach space with norm

(B.2) ∥v∥D∞ = ∥v∥L∞(O) + ∥div v∥L1(O).

Let Ω ⊂⊂ O be an open set with finite perimeter, and take σ and ν as in (1.4)–(1.5).
The following result was established in [CT].

Proposition B.1. There is a continuous linear map (called the normal trace)

(B.3) τν : D∞ −→ L∞(∂Ω, σ)

such that, for each φ ∈ Lip(O),

(B.4)

∫
Ω

φ div v dx+

∫
Ω

∇φ · v dx =

∫
∂Ω

τν(v)φdσ.

Furthermore, one has

(B.5) ∥τνv∥L∞(∂Ω,σ) ≤ lim
δ→0

∥v∥L∞(Uδ),

where Uδ = {x ∈ Ω : dist(x, ∂Ω) ≤ δ}, and

(B.6) v ∈ D∞ ∩ C(O) =⇒ τνv = ν · v
∣∣
∂Ω
.

In fact, [CT] has a stronger result, allowing div v to be a finite measure on O.
Note that Proposition B.1 extends Proposition 1.1, but it does not imply Proposi-
tion 1.2 or the results of §5.

Proof of Proposition B.1: Pick ψ ∈ C∞
0 (Rm) such that

∫
ψ dx = 1, ψ ≥ 0,

and ψ(x) = 0 for |x| ≥ 1, and set ψk(x) = kmψ(kx). Given v ∈ D∞, set vk = ψk ∗v,
which is well defined and smooth on a neighborhood of Ω for large k. For each φ ∈
Lip(O), φvk is Lipschitz on a neighborhood of Ω and div(φvk) = φ div vk+∇φ ·vk,
so (1.4) gives

(B.7)

∫
Ω

φ div vk dx+

∫
Ω

∇φ · vk dx =

∫
∂Ω

(ν · vk)φdσ.
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Now the left side of (B.7) converges to

(B.8)

∫
Ω

φ div v dx+

∫
Ω

∇φ · v dx = Lvφ,

as k → ∞, so the right side also converges:

(B.9)

∫
∂Ω

(ν · vk)φdσ −→ Lvφ.

We have Lv : Lip(O) → C for each v ∈ D∞, and (B.9) gives the estimate

(B.10)

|Lvφ| ≤ lim sup
k→∞

sup
∂Ω

|vk(x)| · ∥φ∥L1(∂Ω,σ)

≤ lim
δ→0

∥v∥L∞(Uδ) · ∥φ∥L1(∂Ω,σ).

Since φ 7→ φ|∂Ω maps Lip(O) onto a dense linear subspace of L1(∂Ω, σ), we see that
Lv has a unique extension to a continuous linear functional on L1(∂Ω, σ), with norm
≤ limδ→0 ∥v∥L∞(Uδ). Since L1(∂Ω, σ)′ = L∞(∂Ω, σ), we have τν(v) ∈ L∞(∂Ω, σ)
such that (B.5) holds and

(B.11) Lvφ =

∫
∂Ω

τν(v)φdσ.

Comparison with (B.8) gives (B.4). Finally, under the hypothesis in (B.6) we clearly
have vk → v uniformly on ∂Ω, so (B.6) follows from (B.9).

Remark. Note that D∞ in (B.1) is a module over C∞
0 (O). Hence there is no loss

of generality in replacing O by Rm in (B.1).
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C. Extension of Proposition 1.1 to div v a measure

Here we establish the following extension of Proposition 1.1.

Proposition C.1. Assume Ω ⊂ Rm is an open set with locally finite perimeter.
Take

(C.1) v ∈ C0
0 (Rm,Rm),

and assume

(C.2) div v = γ is a finite (signed) measure on Rm.

Then

(C.3)

∫
Ω

dγ +

∫
∂Ω

ω dγ =

∫
∂Ω

ν · v dσ,

with ω given by (C.10).

Proof. Take φ ∈ C∞
0 (Rm) as in the proof of Proposition 1.1, satisfying φ ≥ 0,∫

φdx = 1. Assume for good measure that φ is radial. Set φk(x) = kmφ(kx), and
take

(C.3A) vk = φk ∗ v ∈ C∞
0 (Rm).

Then

(C.4)

∫
Ω

div vk dx =

∫
∂Ω

ν · vk dσ,

and the right side of (C.4) tends to the right side of (C.3), as k → ∞, since vk → v
uniformly on Ω.

We also have

(C.5) div vk = φk ∗ γ,

hence

(C.6)

∫
Ω

div vk dx = ⟨χΩ, φk ∗ γ⟩

= ⟨φk ∗ χΩ, γ⟩.
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By hypothesis, γ is a finite (signed) measure. We have

(C.7) 0 ≤ φk ∗ χΩ ≤ 1, ∀x ∈ Rm.

We also have, as k → ∞,

(C.8)
φk ∗ χΩ(x) → 1, ∀x ∈ Ω,

0, ∀x ∈ Rm \ Ω.

There remains the examination of the behavior as k → ∞ of

(C.9) ωk(x) = φk ∗ χΩ(x), for x ∈ ∂Ω.

Let Γ ⊂ ∂Ω denote the set of points in ∂Ω at which ωk converges, and define

(C.10) ω(x) = lim
k→∞

ωk(x), x ∈ Γ.

Then Γ is a Borel set and ω is a Borel function. Clearly 0 ≤ ω(x) ≤ 1 for each
x ∈ Γ. Shortly we will show that

(C.11) |γ|(∂Ω \ Γ) = 0,

where |γ| is the total variation measure associated to γ, then the dominated con-
vergence theorem gives that the left side of (C.5) converges to the left side of (C.3)
as k → ∞, so we have the identity (C.3).

It remains to prove (C.11). A key ingrediant is the following, proved in [CF].

Lemma C.2. Assume v satisfies (C.1)–(C.2), or more generally that

(C.12) v ∈ L∞(Rm,Rm), with compact support,

and (C.2) holds. Then, for Borel sets S ⊂ Rm,

(C.13) Hm−1(S) = 0 =⇒ |γ|(S) = 0.

To proceed, it follows from (1.9) that

(C.14) ∂0Ω ⊂ Γ, and ω =
1

2
on ∂0Ω.

Going further, we see that

(C.15) x ∈ ∂Ω \ ∂∗Ω =⇒ x ∈ Γ and ω(x) = 0 or 1.

We can set

(C.16) Γj = {x ∈ ∂Ω \ ∂∗Ω : ω(x) = j}, j ∈ {0, 1},

and obtain the following.

Proposition C.3. In the setting of Proposition C.1,

(C.17)

∫
Ω

dγ +

∫
Γ1

dγ +
1

2

∫
∂0Ω

dγ =

∫
∂Ω

ν · v dσ.
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