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Consider the one-dimensional Schrödinger equation

(1) i
∂u

∂t
=

∂2u

∂x2
,

with solution operator e−it∆. If u(t, x) is defined on R× S1, where S1 = R/2πZ is
the unit circle, then e−it∆ has a very complicated behavior. It turns out that, if t
is a rational multiple of 2π, then

(2) S(t, x) = e−it∆δ(x)

can be written as a finite linear combination of delta functions (as Jeffrey Rauch
pointed out to me). The coefficients are Gauss sums. In this note we show how an
analysis of the Schrödinger equation yields classical identities for Gauss sums.

We begin with a derivation of a basic reciprocity formula. To get this, we use
the fact that e−it∆ has a simple formula when acting on a (generalized) function
f(x) defined on the line. If one uses f(x) =

∑
ν∈Z δ(x − 2πν) and compares the

two representations for S(t, x), at t = 2πm/n, one gets a neat derivation of the
reciprocity formula. We now show how that goes. Assume m and n are positive
integers.

Working with Fourier series in S1, we have

(3) S(2πm/n, x) =
1
2π

∞∑

k=−∞
e2πik2m/n eikx,

with convergence in D′(S1). Setting k = nj + `, we obtain a double sum,

(4) S(2πm/n, x) =
n−1∑

`=0

e2πi`2m/n ei`x
∞∑

j=−∞
einjx.

Now

(5)
∞∑

j=−∞
einjx =

2π

n

n−1∑

j=0

δ2πj/n,

so we have

(6) S(2πm/n, x) =
1
n

n−1∑

j=0

(n−1∑

`=0

e2πi`2m/n e2πi`j/n
)
δ2πj/n(x).
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Now let’s go to the line. There, analytic continuation of the well known funda-
mental solution to the heat equation gives, for t > 0,

(7) e−it∆δ(x) =
1 + i√

2
1√
4πt

e−ix2/4t.

Now, if S(t, x) is regarded as defined for x ∈ R, periodic of period 2π in x, we have
S(t, x) =

∑
ν∈Z e−it∆δ(x− 2πν), with convergence in S ′(R). Hence

(8)

S(2πm/n, x) =
1 + i

4π

( n

m

)1/2 ∞∑
ν=−∞

e−i(x−2πν)2n/8πm

=
1 + i

4π

( n

m

)1/2

e−ix2n/8πm
∞∑

ν=−∞
e−πiν2n/2m eiνnx/2m.

Setting ν = 2mj + `, we obtain a double sum

(9) S(2πm/n, x) =
1 + i

4π

( n

m

)1/2

e−ix2n/8πm
2m−1∑

`=0

e−πi`2n/2mei`nx/2m
∞∑

j=−∞
eijnx.

The sum over j is evaluated as in (5), and (descending to S1) we have
(10)

S(2πm/n, x) =
1 + i

2n

( n

m

)1/2 n−1∑

j=0

e−πij2/2mn
(2m−1∑

`=0

e−πi`2n/2m eπij`/m
)
δ2πj/n(x).

Comparing (6) and (10), we have the identity

(11)
n−1∑

`=0

e2πi`2m/n e2πi`j/n =
1 + i

2

( n

m

)1/2

e−πij2/2mn
2m−1∑

`=0

e−πi`2n/2m eπij`/m,

for each j ∈ {0, 1, . . . , n− 1}. In particular, for j = 0, we have

(12)
n−1∑

`=0

e2πi`2m/n =
1 + i

2

( n

m

)1/2 2m−1∑

`=0

e−πi`2n/2m.

The case m = 1 of (12) is the most classical Gauss sum:

(13)
n−1∑

`=0

e2πi`2/n =
1 + i

2
n1/2(1 + i−n).

Other analytical proofs of (11)–(13) can be found in a number of places; we mention
particularly [A] and [Ld].

Let us denote the left side of (11) by G(m,n, j), i.e.,

(14) G(m,n, j) =
n−1∑

`=0

e2πi(`2m+`j)/n.
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Then the formula (6) reads

(15) S(2πm/n, x) =
1
n

n−1∑

j=0

G(m,n, j) δ2πj/n(x).

Clearly the expression (11) is even in j. Hence, on the right side one can replace
eπij`/m by e−πij`/m.

One still has a somewhat different looking sum on the right side of (11), and we
are motivated to define

(16) Γ(m, k, j) =
1
2k

2k−1∑

`=0

eπi(`2m+`j)/k.

The relation between (15) and (16) is simple:

(17) Γ(m, k, j) =
1
2k

G(m, 2k, j).

Note also that, for nonzero a ∈ Z, Γ(am, ak, aj) = Γ(m, k, j). If we set n = 2k in
(15), we have G(m, 2k, j) = 2k Γ(m, k, j), and hence

(18) S(πm/k, x) =
2k−1∑

j=0

Γ(m, k, j) δπj/k(x).

Meanwhile, the reciprocity formula (11) takes the form

(19) Γ(m, k, j) =
(m

k

)1/2

eπi/4 e−πij2/4mk Γ(k, m, j).

when n = 2k.
Let us set m = 1. By definition,

(20) Γ(k, 1, j) =
1
2
[
1 + (−1)j+k

]
= ε(j + k),

where ε(j) is 1 for j even and 0 for j odd. Hence

(21) Γ(1, k, j) = k−1/2eπi/4 e−πij2/4k ε(j + k).

Therefore

(22) e−(πi/k)∆δ(x) = k−1/2eπi/4
2k−1∑

j=0

e−πij2/4k ε(j + k) δπj/k(x).

Let us denote by G` the multiplicative subgroup of S1 generated by e2πi/`, a
cyclic group of order `. Clearly (6) implies that S(π/k, x) is supported on G2k, but
in fact (22) implies the more precise containment:

(23)
k even =⇒ S(π/k, x) supported on Gk

k odd =⇒ S(π/k, x) supported on G2k \Gk = eπi/k ·Gk.
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Using the group property of e−it∆, we see that

(24) k even =⇒ S(mπ/k, x) supported on Gk,

and

(25)
k odd =⇒ S(2µπ/k, x) supported on Gk,

S((2µ + 1)π/k, x) supported on eπi/k ·Gk.

In view of the formula (18), we deduce that

(26) mk + j odd =⇒ Γ(m, k, j) = 0.

Let us set Γ(m, k) = Γ(m, k, 0). The following was established in [HB]:

Lemma 1. Assume that m and k are relatively prime. Let µ solve µm = 1 mod k.
(i) If mk and j are even, then

(27) Γ(m, k, j) = e−πi(m/k)(j/2)2µ2
Γ(m, k).

(ii) If mk and j are odd, then, with ν solving 4νm = 1 mod k,

(28) Γ(m, k, j) = e−4πi(m/k)ν2j2
Γ(4m, k).

Proof. We follow [HB]. To establish (27), expand the left side of

2k−1∑

`=0

eπim(`+jµ/2)2/k =
2k−1∑

`=0

eπim`2/k,

valid whenever j is even. To establish (28), one can use the following observation.
Suppose ϕ : Z → C is periodic of period k, which is odd, and set ϕ2(`) = ϕ(2`).
Then ϕ and ϕ2 have the same mean. Hence it follows that, if mk and j are odd,
then

Γ(m, k, j) =
1
2k

2k−1∑

`=0

eπi(4`2m+2`j)/k,

and then an argument similar to the previous one yields (28).

We hence have the following:

Theorem 2. Assume m and k are relatively prime. Let µ solve µm = 1 mod k.
(i) If mk is even, then

(29) e−(m/k)πi∆ δ(x) = Γ(m, k)
k−1∑

`=0

e−πi(m/k)`2µ2
δ2π`/k(x).

(ii) If mk is odd, then, with ν solving 4νm = 1 mod k,

(30) e−(m/k)πi∆ δ(x) = Γ(4m, k)
k−1∑

`=0

e−4πi(m/k)ν2(2`+1)2 δ(2`+1)π/k(x).

Using unitarity of e−it∆ we have:
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Corollary 3. Assume m and n are relatively prime. then

(31)
mk odd =⇒ Γ(m, k) = 0,

mk even =⇒ |Γ(m, k)| = k−1/2.

These identities specify Γ(m, k) up to phase. Note that (13) with n = 2k gives

(32) Γ(1, k) = ε(k) eπi/4 k−1/2.

Results on Γ(m, k) are special cases of results on G(m,n) = G(m,n, 0), defined
by the left side of (12), i.e.,

(33) G(m, n) =
n−1∑

`=0

e2πi`2m/n.

Note that

(34) G(m, 2k) = 2k Γ(m, k).

The identity (13) is a formula for G(1, n). In addition, the following results hold;
proofs can be found on pp. 85–88 of [Lg].
(i) If p is an odd prime and j ≥ 2, then

(35) G(m, pj) = pG(m, pj−2).

(ii) If (n, k) = 1 and (m,nk) = 1, then

(36) G(m,nk) = G(mn, k)G(mk, n).

(iii) If n ≥ 1 is odd and (m,n) = 1, then

(37) G(m,n) = (m|n) G(1, n),

where (m|n) is the Jacobi symbol, taking values ±1.
(iv) If m is odd,

(38) G(m, 2j) = (−2j |m) σ(m) G(1, 2j),

where σ(m) = 1 if m = 1 mod 4, σ(m) = i if m = 3 mod 4.
Of these four results, (i) and (ii) are straightforward. One first proves (iii) for

n = p, prime, and then deduces it in general, using (i)–(ii). The proof of (iv)
makes use of the computation of G(1, n), for n = 2j . It also uses the fact that, if
ζ = e2πi/2j

, then ζ 7→ ζm yields an automorphism of the field Q(ζ), which hence
sends G(1, 2j) to G(m, 2j). See [Lg] for details. Evidently G(m,n) can be evaluated
in general via (ii)–(iv), and the formula (13). We mention that the proof of (13)
given in [Lg] is the same as that in [Ld], and is due to Dirichlet.

We make a few more comments on the reciprocity formula (12). When n = 2k
is even, it takes the form

(39) Γ(m, k) =
(m

k

)1/2

eπi/4 Γ(k, m),



6

specializing (19). When m is odd, the right side of (12) involves yet a different sort
of Gauss sum. Let us set

(40) γ(m, k) =
1
k

k−1∑

`=0

eπi(m/k)`2 .

Then (12) can be written

(41) G(m,n) = (1 + i) (mn)1/2 γ(n, 2m).

Note that

(42) G(m,n) = nγ(2m,n).

Also, if we decompose the sum for Γ(m, k) into 0 ≤ ` < k and k ≤ ` < 2k, we
obtain the identity

(43) Γ(m, k) =
1 + eπimk

2
γ(m, k).

From this we see that

(44) mk odd =⇒ Γ(m, k) = 0,

which is a special case of (26), and that

(45) mk even =⇒ Γ(m, k) = γ(m, k).

Hence we deduce from (42) that

(46) G(m,n) = n Γ(2m, n).

Note also that substitution of the identities (45) and (46) into (41) yields

Γ(2m,n) = (1 + i)
(m

n

)1/2

Γ(n, 2m),

which is merely a special case of (39).
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