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Let A ∈ Gl(N,Z) (so det A = ±1) and assume A is symmetric. Let Q(ξ) =
ξ · Aξ and form the second-order differential operator L = Q(D). Consider the
Schrödinger equation

(1)
∂u

∂t
= iLu,

with solution operator eitL. We define u(t, x) on R × TN , where T = R/2πZ. We
will be able to write out

(2) SA(t, x) = eitLδ(x)

as a finite linear combination of delta functions, when t is a rational multiple of 2π.
There are two ways to make such a calculation, and comparing the results gives a
reciprocity formula for multivariate Gauss sums, as we will see below. Assume m
and n are positive integers.

Our first calculation uses Fourier series on TN . We have

(3) SA(2πm/n, x) =
( 1

2π

)N ∑

k∈ZN

e2πi(m/n)k·Ak eik·x,

with convergence in D′(TN ). Setting k = nj +`, ` ∈ [0, n−1]N , we obtain a double
sum

(4) SA(2πm/n, x) =
( 1

2π

)N ∑

`∈[0,n−1]N

e2πi(m/n)`·A` ei`·x ∑

j∈ZN

einj·x.

Now

(5)
∑

j∈ZN

einj·x =
(2π

n

)N ∑

j∈[0,n−1]N

δ2πj/n(x),

so we have

(6) SA(2πm/n, x) =
( 1

n

)N ∑

j∈[0,n−1]N

( ∑

`∈[0,n−1]N

e2πi(m/n)`·A` e2πi`·j/n
)
δ2πj/n(x).

Our second calculation starts with the solution to (1) with initial data defined
on Euclidean space RN . There we have the relatively simple formula

(7) eitLδ(x) = det(−iA)−1/2(4πt)−N/2 e−ix·B/4t, B = A−1.
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Note that B ∈ Gl(N,Z). Now, if SA(t, x) is regarded as defined for x ∈ RN ,
invariant under the translation action of ZN , then we have

SA(t, x) =
∑

ν∈ZN

eitLδ(x− 2πν),

with convergence in S ′(RN ). Hence, setting dA = det(−iA)−1/2, we have

(8)

SA(2πm/n, x)

= dA(4π)−N
(2n

m

)N/2 ∑

ν∈ZN

e−i(x−2πν)·B(x−2πν)(n/8πm)

= dA(4π)−N
(2n

m

)N/2

e−(x·Bx)n/8πm
∑

ν∈ZN

e−πi(ν·Bν)n/2m ein(ν·Bx)/2m.

Setting ν = 2mj + `, ` ∈ [0, 2m− 1]N , we obtain a double sum

(9)
SA(2πm/n, x) = dA(4π)−N

(2n

m

)N/2

e−i(x·Bx)n/8πm

×
∑

`∈[0,2m−1]N

e−πin`·B`/2m ein`·Bx/2m
∑

j∈ZN

einj·Bx.

Now, since B ∈ Gl(N,Z), we have

∑

j∈ZN

einj·Bx =
(2π

n

)N ∑

j∈ZN

δ2πj/n(x),

as an identity on RN . Descending to TN , we have

(10)

SA(2πm/n, x) = dA

( 1
2n

)N(2n

m

)N/2 ∑

j∈[0,n−1]N

e−πi(j·Bj)/2mn

×
( ∑

`∈[0,2m−1]N

e−πin`·B`/2m eπi`·Bj/m
)
δ2πj/n(x).

Now, comparing (6) and (10), we have the identity

(11)

∑

`∈[0,n−1]N

e2πi(m/n)`·A` e2π`·j/n

= dA

( n

2m

)N/2

e−πi(j·Bj)/2mn
∑

`∈[0,2m−1]N

e−πi(n/2m)`·B` eπi`·Bj/m,

for each j ∈ ZN . In particular, taking j = 0, we have

(12)
∑

`∈[0,n−1]N

e2πi(m/n)`·A` = dA

( n

2m

)N/2 ∑

`∈[0,2m−1]N

e−πi(n/2m)`·B`.
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The case m = 1 of (12) gives

(13)
∑

`∈[0,n−1]N

e2πi(A`·`)/n = dA

(n

2

)N/2 ∑

`∈[0,1]N

i−(`·B`)n.

Specializing in (13) to N = 1 and A = B = 1 gives the classical formula of Gauss:

(14)
n−1∑

`=0

e2πi`2/n =
1 + i

2
n1/2 (1 + i−n).

Implicit in (14) is a computation of dA, which we now discuss. We have

eitL = lim
ε↘0

eit(L−iε∆), for t > 0,

where L− iε∆ = Qε(D) with Qε(ξ) = ξ ·Aξ + iε|ξ|2 = ξ · (A + iεI)ξ. Hence

dA = lim
ε↘0

det(εI − iA)−1/2,

the right side determined by analytic continuation in A from det(εI)1/2 = εN/2 > 0,
for ε > 0. Suppose A ∼ diag(a1, . . . , aL,−b1, . . . ,−bM ), with aµ, bν > 0, L + M =
N . Hence a1 · · · aLb1 · · · bM = 1, det A = (−1)M , and

det(εI − iA)−1/2 = (ε− ia1)−1/2 · · · (ε− iaL)−1/2(ε + ib1)−1/2 · · · (ε + ibM )−1/2,

so

(15) dA = e(L−M)πi/4.

For example, when N = 1 and A = I, we have dA = eπi/4 = (1 + i)/
√

2.
Let us denote the left side of (11) by GA(m, n, j), i.e.,

(16) GA(m,n, j) =
∑

`∈[0,n−1]N

e2πi(m`·A`+`·j)/n,

where m,n ∈ Z+, j ∈ ZN . Note that the right side of (16) depends only on the
class of j in (Z/(n))N . The formula (6) takes the form

(17) S(2πim/n, x) =
( 1

n

)N ∑

j∈[0,n−1]N

GA(m,n, j) δ2πj/n(x).

Clearly the expression (11) is even in j. Hence, on the right side one can replace
eπi`·Bj/m by e−πi`·Bj/m.

One still has a somewhat different looking sum on the right side of (11), and we
are motivated to define

(18) ΓA(m, k, j) =
( 1

2k

)N ∑

`∈[0,2m−1]N

eπi(m`·A`+`·j)/k.



4

Comparing this with (16), we have

(19) ΓA(m, k, j) =
( 1

2k

)N

GA(m, 2k, j).

Note that for nonzero a ∈ Z, ΓA(am, ak, aj) = ΓA(m, k, j). If we set n = 2k in
(17), we have GA(m, 2k, j) = (2k)NΓA(m, k, j), and hence

(20) SA(πm/k, x) =
∑

j∈[0,2k−1]N

ΓA(m, k, j) δπj/k(x).

Meanwhile, the reciprocity formula (11) takes the form

(21) ΓA(m, k, j) = dA

(m

k

)N/2

e−πi(j·Bj)/2mk ΓB(k, m, j),

when n = 2k. As before, B = A−1 here.
The reciprocity formula (11) was first established by A. Krazer [K]. More general

reciprocity results have been given by several people; see [T].
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