Multivariate Gauss sums

MICHAEL TAYLOR

Let $A \in Gl(N,\mathbb{Z})$ (so det $A = \pm 1$) and assume A is symmetric. Let $Q(\xi) = \xi \cdot A\xi$ and form the second-order differential operator L = Q(D). Consider the Schrödinger equation

(1)
$$\frac{\partial u}{\partial t} = iLu,$$

with solution operator e^{itL} . We define u(t, x) on $\mathbb{R} \times \mathbb{T}^N$, where $\mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$. We will be able to write out

(2)
$$S_A(t,x) = e^{itL}\delta(x)$$

as a finite linear combination of delta functions, when t is a rational multiple of 2π . There are two ways to make such a calculation, and comparing the results gives a reciprocity formula for multivariate Gauss sums, as we will see below. Assume m and n are positive integers.

Our first calculation uses Fourier series on \mathbb{T}^N . We have

(3)
$$S_A(2\pi m/n, x) = \left(\frac{1}{2\pi}\right)^N \sum_{k \in \mathbb{Z}^N} e^{2\pi i (m/n)k \cdot Ak} e^{ik \cdot x},$$

with convergence in $\mathcal{D}'(\mathbb{T}^N)$. Setting $k = nj + \ell$, $\ell \in [0, n-1]^N$, we obtain a double sum

(4)
$$S_A(2\pi m/n, x) = \left(\frac{1}{2\pi}\right)^N \sum_{\ell \in [0, n-1]^N} e^{2\pi i (m/n)\ell \cdot A\ell} e^{i\ell \cdot x} \sum_{j \in \mathbb{Z}^N} e^{inj \cdot x}.$$

Now

(5)
$$\sum_{j \in \mathbb{Z}^N} e^{inj \cdot x} = \left(\frac{2\pi}{n}\right)^N \sum_{j \in [0,n-1]^N} \delta_{2\pi j/n}(x),$$

so we have

(6)
$$S_A(2\pi m/n, x) = \left(\frac{1}{n}\right)^N \sum_{j \in [0, n-1]^N} \left(\sum_{\ell \in [0, n-1]^N} e^{2\pi i (m/n)\ell \cdot A\ell} e^{2\pi i \ell \cdot j/n}\right) \delta_{2\pi j/n}(x).$$

Our second calculation starts with the solution to (1) with initial data defined on Euclidean space \mathbb{R}^N . There we have the relatively simple formula

(7)
$$e^{itL}\delta(x) = \det(-iA)^{-1/2}(4\pi t)^{-N/2}e^{-ix\cdot B/4t}, \quad B = A^{-1}.$$

1

Note that $B \in Gl(N,\mathbb{Z})$. Now, if $S_A(t,x)$ is regarded as defined for $x \in \mathbb{R}^N$, invariant under the translation action of \mathbb{Z}^N , then we have

$$S_A(t,x) = \sum_{\nu \in \mathbb{Z}^N} e^{itL} \delta(x - 2\pi\nu),$$

with convergence in $\mathcal{S}'(\mathbb{R}^N)$. Hence, setting $d_A = \det(-iA)^{-1/2}$, we have

(8)
$$S_{A}(2\pi m/n, x) = d_{A}(4\pi)^{-N} \left(\frac{2n}{m}\right)^{N/2} \sum_{\nu \in \mathbb{Z}^{N}} e^{-i(x-2\pi\nu) \cdot B(x-2\pi\nu)(n/8\pi m)} = d_{A}(4\pi)^{-N} \left(\frac{2n}{m}\right)^{N/2} e^{-(x \cdot Bx)n/8\pi m} \sum_{\nu \in \mathbb{Z}^{N}} e^{-\pi i(\nu \cdot B\nu)n/2m} e^{in(\nu \cdot Bx)/2m}.$$

Setting $\nu = 2mj + \ell$, $\ell \in [0, 2m - 1]^N$, we obtain a double sum

(9)
$$S_{A}(2\pi m/n, x) = d_{A}(4\pi)^{-N} \left(\frac{2n}{m}\right)^{N/2} e^{-i(x \cdot Bx)n/8\pi m} \times \sum_{\ell \in [0, 2m-1]^{N}} e^{-\pi i n\ell \cdot B\ell/2m} e^{in\ell \cdot Bx/2m} \sum_{j \in \mathbb{Z}^{N}} e^{inj \cdot Bx}.$$

Now, since $B \in Gl(N, \mathbb{Z})$, we have

$$\sum_{j \in \mathbb{Z}^N} e^{inj \cdot Bx} = \left(\frac{2\pi}{n}\right)^N \sum_{j \in \mathbb{Z}^N} \delta_{2\pi j/n}(x),$$

as an identity on \mathbb{R}^N . Descending to \mathbb{T}^N , we have

(10)
$$S_{A}(2\pi m/n, x) = d_{A} \left(\frac{1}{2n}\right)^{N} \left(\frac{2n}{m}\right)^{N/2} \sum_{j \in [0, n-1]^{N}} e^{-\pi i (j \cdot Bj)/2mn} \\ \times \left(\sum_{\ell \in [0, 2m-1]^{N}} e^{-\pi i n\ell \cdot B\ell/2m} e^{\pi i \ell \cdot Bj/m}\right) \delta_{2\pi j/n}(x).$$

Now, comparing (6) and (10), we have the identity

(11)
$$\sum_{\ell \in [0,n-1]^N} e^{2\pi i (m/n)\ell \cdot A\ell} e^{2\pi \ell \cdot j/n} \\ = d_A \Big(\frac{n}{2m}\Big)^{N/2} e^{-\pi i (j \cdot Bj)/2mn} \sum_{\ell \in [0,2m-1]^N} e^{-\pi i (n/2m)\ell \cdot B\ell} e^{\pi i \ell \cdot Bj/m},$$

for each $j \in \mathbb{Z}^N$. In particular, taking j = 0, we have

(12)
$$\sum_{\ell \in [0,n-1]^N} e^{2\pi i (m/n)\ell \cdot A\ell} = d_A \left(\frac{n}{2m}\right)^{N/2} \sum_{\ell \in [0,2m-1]^N} e^{-\pi i (n/2m)\ell \cdot B\ell}.$$

The case m = 1 of (12) gives

(13)
$$\sum_{\ell \in [0,n-1]^N} e^{2\pi i (A\ell \cdot \ell)/n} = d_A \left(\frac{n}{2}\right)^{N/2} \sum_{\ell \in [0,1]^N} i^{-(\ell \cdot B\ell)n}$$

Specializing in (13) to N = 1 and A = B = 1 gives the classical formula of Gauss:

(14)
$$\sum_{\ell=0}^{n-1} e^{2\pi i \ell^2 / n} = \frac{1+i}{2} n^{1/2} (1+i^{-n}).$$

Implicit in (14) is a computation of d_A , which we now discuss. We have

$$e^{itL} = \lim_{\varepsilon \searrow 0} e^{it(L-i\varepsilon\Delta)}, \quad \text{for } t > 0,$$

where $L - i\varepsilon \Delta = Q_{\varepsilon}(D)$ with $Q_{\varepsilon}(\xi) = \xi \cdot A\xi + i\varepsilon |\xi|^2 = \xi \cdot (A + i\varepsilon I)\xi$. Hence

$$d_A = \lim_{\varepsilon \searrow 0} \det(\varepsilon I - iA)^{-1/2},$$

the right side determined by analytic continuation in A from $\det(\varepsilon I)^{1/2} = \varepsilon^{N/2} > 0$, for $\varepsilon > 0$. Suppose $A \sim \operatorname{diag}(a_1, \ldots, a_L, -b_1, \ldots, -b_M)$, with $a_\mu, b_\nu > 0$, L + M = N. Hence $a_1 \cdots a_L b_1 \cdots b_M = 1$, det $A = (-1)^M$, and

$$\det(\varepsilon I - iA)^{-1/2} = (\varepsilon - ia_1)^{-1/2} \cdots (\varepsilon - ia_L)^{-1/2} (\varepsilon + ib_1)^{-1/2} \cdots (\varepsilon + ib_M)^{-1/2},$$

 \mathbf{SO}

(15)
$$d_A = e^{(L-M)\pi i/4}.$$

For example, when N = 1 and A = I, we have $d_A = e^{\pi i/4} = (1+i)/\sqrt{2}$.

Let us denote the left side of (11) by $G_A(m, n, j)$, i.e.,

(16)
$$G_A(m,n,j) = \sum_{\ell \in [0,n-1]^N} e^{2\pi i (m\ell \cdot A\ell + \ell \cdot j)/n},$$

where $m, n \in \mathbb{Z}^+$, $j \in \mathbb{Z}^N$. Note that the right side of (16) depends only on the class of j in $(\mathbb{Z}/(n))^N$. The formula (6) takes the form

(17)
$$S(2\pi i m/n, x) = \left(\frac{1}{n}\right)^N \sum_{j \in [0, n-1]^N} G_A(m, n, j) \,\delta_{2\pi j/n}(x).$$

Clearly the expression (11) is even in j. Hence, on the right side one can replace $e^{\pi i \ell \cdot B j/m}$ by $e^{-\pi i \ell \cdot B j/m}$.

One still has a somewhat different looking sum on the right side of (11), and we are motivated to define

(18)
$$\Gamma_A(m,k,j) = \left(\frac{1}{2k}\right)^N \sum_{\ell \in [0,2m-1]^N} e^{\pi i (m\ell \cdot A\ell + \ell \cdot j)/k}.$$

Comparing this with (16), we have

(19)
$$\Gamma_A(m,k,j) = \left(\frac{1}{2k}\right)^N G_A(m,2k,j)$$

Note that for nonzero $a \in \mathbb{Z}$, $\Gamma_A(am, ak, aj) = \Gamma_A(m, k, j)$. If we set n = 2k in (17), we have $G_A(m, 2k, j) = (2k)^N \Gamma_A(m, k, j)$, and hence

(20)
$$S_A(\pi m/k, x) = \sum_{j \in [0, 2k-1]^N} \Gamma_A(m, k, j) \,\delta_{\pi j/k}(x).$$

Meanwhile, the reciprocity formula (11) takes the form

(21)
$$\Gamma_A(m,k,j) = d_A \left(\frac{m}{k}\right)^{N/2} e^{-\pi i (j \cdot Bj)/2mk} \overline{\Gamma_B(k,m,j)},$$

when n = 2k. As before, $B = A^{-1}$ here.

The reciprocity formula (11) was first established by A. Krazer [K]. More general reciprocity results have been given by several people; see [T].

References

- [K] A. Krazer, Zur Theorie der mehrfachen Gausschen Summen, H. Weber Fetschrift, Leipzig, 1912, pp. 181–.
- [T] V. Turaev, Reciprocity for Gauss sums on finite abelian groups, Math. Proc. Cambridge Phil. Soc. 124(1998), 205–214.