Multivariate Gauss sums

Michael Taylor

Let $A \in G l(N, \mathbb{Z})$ (so $\operatorname{det} A= \pm 1$) and assume A is symmetric. Let $Q(\xi)=$ $\xi \cdot A \xi$ and form the second-order differential operator $L=Q(D)$. Consider the Schrödinger equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=i L u \tag{1}
\end{equation*}
$$

with solution operator $e^{i t L}$. We define $u(t, x)$ on $\mathbb{R} \times \mathbb{T}^{N}$, where $\mathbb{T}=\mathbb{R} / 2 \pi \mathbb{Z}$. We will be able to write out

$$
\begin{equation*}
S_{A}(t, x)=e^{i t L} \delta(x) \tag{2}
\end{equation*}
$$

as a finite linear combination of delta functions, when t is a rational multiple of 2π. There are two ways to make such a calculation, and comparing the results gives a reciprocity formula for multivariate Gauss sums, as we will see below. Assume m and n are positive integers.

Our first calculation uses Fourier series on \mathbb{T}^{N}. We have

$$
\begin{equation*}
S_{A}(2 \pi m / n, x)=\left(\frac{1}{2 \pi}\right)^{N} \sum_{k \in \mathbb{Z}^{N}} e^{2 \pi i(m / n) k \cdot A k} e^{i k \cdot x} \tag{3}
\end{equation*}
$$

with convergence in $\mathcal{D}^{\prime}\left(\mathbb{T}^{N}\right)$. Setting $k=n j+\ell, \ell \in[0, n-1]^{N}$, we obtain a double sum

$$
\begin{equation*}
S_{A}(2 \pi m / n, x)=\left(\frac{1}{2 \pi}\right)^{N} \sum_{\ell \in[0, n-1]^{N}} e^{2 \pi i(m / n) \ell \cdot A \ell} e^{i \ell \cdot x} \sum_{j \in \mathbb{Z}^{N}} e^{i n j \cdot x} . \tag{4}
\end{equation*}
$$

Now

$$
\begin{equation*}
\sum_{j \in \mathbb{Z}^{N}} e^{i n j \cdot x}=\left(\frac{2 \pi}{n}\right)^{N} \sum_{j \in[0, n-1]^{N}} \delta_{2 \pi j / n}(x), \tag{5}
\end{equation*}
$$

so we have
(6) $S_{A}(2 \pi m / n, x)=\left(\frac{1}{n}\right)^{N} \sum_{j \in[0, n-1]^{N}}\left(\sum_{\ell \in[0, n-1]^{N}} e^{2 \pi i(m / n) \ell \cdot A \ell} e^{2 \pi i \ell \cdot j / n}\right) \delta_{2 \pi j / n}(x)$.

Our second calculation starts with the solution to (1) with initial data defined on Euclidean space \mathbb{R}^{N}. There we have the relatively simple formula

$$
\begin{equation*}
e^{i t L} \delta(x)=\operatorname{det}(-i A)^{-1 / 2}(4 \pi t)^{-N / 2} e^{-i x \cdot B / 4 t}, \quad B=A^{-1} \tag{7}
\end{equation*}
$$

Note that $B \in G l(N, \mathbb{Z})$. Now, if $S_{A}(t, x)$ is regarded as defined for $x \in \mathbb{R}^{N}$, invariant under the translation action of \mathbb{Z}^{N}, then we have

$$
S_{A}(t, x)=\sum_{\nu \in \mathbb{Z}^{N}} e^{i t L} \delta(x-2 \pi \nu)
$$

with convergence in $\mathcal{S}^{\prime}\left(\mathbb{R}^{N}\right)$. Hence, setting $d_{A}=\operatorname{det}(-i A)^{-1 / 2}$, we have

$$
\begin{align*}
& S_{A}(2 \pi m / n, x) \\
& =d_{A}(4 \pi)^{-N}\left(\frac{2 n}{m}\right)^{N / 2} \sum_{\nu \in \mathbb{Z}^{N}} e^{-i(x-2 \pi \nu) \cdot B(x-2 \pi \nu)(n / 8 \pi m)} \tag{8}\\
& =d_{A}(4 \pi)^{-N}\left(\frac{2 n}{m}\right)^{N / 2} e^{-(x \cdot B x) n / 8 \pi m} \sum_{\nu \in \mathbb{Z}^{N}} e^{-\pi i(\nu \cdot B \nu) n / 2 m} e^{i n(\nu \cdot B x) / 2 m} .
\end{align*}
$$

Setting $\nu=2 m j+\ell, \ell \in[0,2 m-1]^{N}$, we obtain a double sum

$$
\begin{align*}
S_{A}(2 \pi m / n, x)= & d_{A}(4 \pi)^{-N}\left(\frac{2 n}{m}\right)^{N / 2} e^{-i(x \cdot B x) n / 8 \pi m} \\
& \times \sum_{\ell \in[0,2 m-1]^{N}} e^{-\pi i n \ell \cdot B \ell / 2 m} e^{i n \ell \cdot B x / 2 m} \sum_{j \in \mathbb{Z}^{N}} e^{i n j \cdot B x} . \tag{9}
\end{align*}
$$

Now, since $B \in G l(N, \mathbb{Z})$, we have

$$
\sum_{j \in \mathbb{Z}^{N}} e^{i n j \cdot B x}=\left(\frac{2 \pi}{n}\right)^{N} \sum_{j \in \mathbb{Z}^{N}} \delta_{2 \pi j / n}(x),
$$

as an identity on \mathbb{R}^{N}. Descending to \mathbb{T}^{N}, we have

$$
\begin{align*}
S_{A}(2 \pi m / n, x)=d_{A} & \left(\frac{1}{2 n}\right)^{N}\left(\frac{2 n}{m}\right)^{N / 2} \sum_{j \in[0, n-1]^{N}} e^{-\pi i(j \cdot B j) / 2 m n} \tag{10}\\
& \times\left(\sum_{\ell \in[0,2 m-1]^{N}} e^{-\pi i n \ell \cdot B \ell / 2 m} e^{\pi i \ell \cdot B j / m}\right) \delta_{2 \pi j / n}(x) .
\end{align*}
$$

Now, comparing (6) and (10), we have the identity

$$
\begin{align*}
& \sum_{\ell \in[0, n-1]^{N}} e^{2 \pi i(m / n) \ell \cdot A \ell} e^{2 \pi \ell \cdot j / n} \\
& =d_{A}\left(\frac{n}{2 m}\right)^{N / 2} e^{-\pi i(j \cdot B j) / 2 m n} \sum_{\ell \in[0,2 m-1]^{N}} e^{-\pi i(n / 2 m) \ell \cdot B \ell} e^{\pi i \ell \cdot B j / m}, \tag{11}
\end{align*}
$$

for each $j \in \mathbb{Z}^{N}$. In particular, taking $j=0$, we have

$$
\begin{equation*}
\sum_{\ell \in[0, n-1]^{N}} e^{2 \pi i(m / n) \ell \cdot A \ell}=d_{A}\left(\frac{n}{2 m}\right)^{N / 2} \sum_{\ell \in[0,2 m-1]^{N}} e^{-\pi i(n / 2 m) \ell \cdot B \ell} . \tag{12}
\end{equation*}
$$

The case $m=1$ of (12) gives

$$
\begin{equation*}
\sum_{\ell \in[0, n-1]^{N}} e^{2 \pi i(A \ell \cdot \ell) / n}=d_{A}\left(\frac{n}{2}\right)^{N / 2} \sum_{\ell \in[0,1]^{N}} i^{-(\ell \cdot B \ell) n} . \tag{13}
\end{equation*}
$$

Specializing in (13) to $N=1$ and $A=B=1$ gives the classical formula of Gauss:

$$
\begin{equation*}
\sum_{\ell=0}^{n-1} e^{2 \pi i \ell^{2} / n}=\frac{1+i}{2} n^{1 / 2}\left(1+i^{-n}\right) \tag{14}
\end{equation*}
$$

Implicit in (14) is a computation of d_{A}, which we now discuss. We have

$$
e^{i t L}=\lim _{\varepsilon \searrow 0} e^{i t(L-i \varepsilon \Delta)}, \quad \text { for } \quad t>0
$$

where $L-i \varepsilon \Delta=Q_{\varepsilon}(D)$ with $Q_{\varepsilon}(\xi)=\xi \cdot A \xi+i \varepsilon|\xi|^{2}=\xi \cdot(A+i \varepsilon I) \xi$. Hence

$$
d_{A}=\lim _{\varepsilon \searrow 0} \operatorname{det}(\varepsilon I-i A)^{-1 / 2}
$$

the right side determined by analytic continuation in A from $\operatorname{det}(\varepsilon I)^{1 / 2}=\varepsilon^{N / 2}>0$, for $\varepsilon>0$. Suppose $A \sim \operatorname{diag}\left(a_{1}, \ldots, a_{L},-b_{1}, \ldots,-b_{M}\right)$, with $a_{\mu}, b_{\nu}>0, L+M=$ N. Hence $a_{1} \cdots a_{L} b_{1} \cdots b_{M}=1$, $\operatorname{det} A=(-1)^{M}$, and

$$
\operatorname{det}(\varepsilon I-i A)^{-1 / 2}=\left(\varepsilon-i a_{1}\right)^{-1 / 2} \cdots\left(\varepsilon-i a_{L}\right)^{-1 / 2}\left(\varepsilon+i b_{1}\right)^{-1 / 2} \cdots\left(\varepsilon+i b_{M}\right)^{-1 / 2}
$$

so

$$
\begin{equation*}
d_{A}=e^{(L-M) \pi i / 4} \tag{15}
\end{equation*}
$$

For example, when $N=1$ and $A=I$, we have $d_{A}=e^{\pi i / 4}=(1+i) / \sqrt{2}$.
Let us denote the left side of (11) by $G_{A}(m, n, j)$, i.e.,

$$
\begin{equation*}
G_{A}(m, n, j)=\sum_{\ell \in[0, n-1]^{N}} e^{2 \pi i(m \ell \cdot A \ell+\ell \cdot j) / n} \tag{16}
\end{equation*}
$$

where $m, n \in \mathbb{Z}^{+}, j \in \mathbb{Z}^{N}$. Note that the right side of (16) depends only on the class of j in $(\mathbb{Z} /(n))^{N}$. The formula (6) takes the form

$$
\begin{equation*}
S(2 \pi i m / n, x)=\left(\frac{1}{n}\right)^{N} \sum_{j \in[0, n-1]^{N}} G_{A}(m, n, j) \delta_{2 \pi j / n}(x) \tag{17}
\end{equation*}
$$

Clearly the expression (11) is even in j. Hence, on the right side one can replace $e^{\pi i \ell \cdot B j / m}$ by $e^{-\pi i \ell \cdot B j / m}$.

One still has a somewhat different looking sum on the right side of (11), and we are motivated to define

$$
\begin{equation*}
\Gamma_{A}(m, k, j)=\left(\frac{1}{2 k}\right)^{N} \sum_{\ell \in[0,2 m-1]^{N}} e^{\pi i(m \ell \cdot A \ell+\ell \cdot j) / k} \tag{18}
\end{equation*}
$$

Comparing this with (16), we have

$$
\begin{equation*}
\Gamma_{A}(m, k, j)=\left(\frac{1}{2 k}\right)^{N} G_{A}(m, 2 k, j) \tag{19}
\end{equation*}
$$

Note that for nonzero $a \in \mathbb{Z}, \Gamma_{A}(a m, a k, a j)=\Gamma_{A}(m, k, j)$. If we set $n=2 k$ in (17), we have $G_{A}(m, 2 k, j)=(2 k)^{N} \Gamma_{A}(m, k, j)$, and hence

$$
\begin{equation*}
S_{A}(\pi m / k, x)=\sum_{j \in[0,2 k-1]^{N}} \Gamma_{A}(m, k, j) \delta_{\pi j / k}(x) . \tag{20}
\end{equation*}
$$

Meanwhile, the reciprocity formula (11) takes the form

$$
\begin{equation*}
\Gamma_{A}(m, k, j)=d_{A}\left(\frac{m}{k}\right)^{N / 2} e^{-\pi i(j \cdot B j) / 2 m k} \overline{\Gamma_{B}(k, m, j)}, \tag{21}
\end{equation*}
$$

when $n=2 k$. As before, $B=A^{-1}$ here.
The reciprocity formula (11) was first established by A. Krazer [K]. More general reciprocity results have been given by several people; see [T].

References

[K] A. Krazer, Zur Theorie der mehrfachen Gausschen Summen, H. Weber Fetschrift, Leipzig, 1912, pp. 181-.
[T] V. Turaev, Reciprocity for Gauss sums on finite abelian groups, Math. Proc. Cambridge Phil. Soc. 124(1998), 205-214.

