Multivariate Gauss sums

MicHAEL TAYLOR

Let A € GI(N,Z) (so det A = £1) and assume A is symmetric. Let Q(§) =
¢ - A¢ and form the second-order differential operator L = Q(D). Consider the
Schrodinger equation
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with solution operator e*. We define u(t,z) on R x TV, where T = R/27Z. We
will be able to write out

(2) Sa(t,x) = e"to(x)

as a finite linear combination of delta functions, when ¢ is a rational multiple of 27.
There are two ways to make such a calculation, and comparing the results gives a
reciprocity formula for multivariate Gauss sums, as we will see below. Assume m
and n are positive integers.

Our first calculation uses Fourier series on TV. We have
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(3) Sa(2mm/n, ) = (

with convergence in D’(TV). Setting k = nj+/¢, £ € [0,n—1]", we obtain a double
sum

1\N , : o
(4) SA(Zwm/n, x) _ ( ) Z eQm(m/n)é-Aé ezEm Z eini-x

o ,
2e[0,n—1]N jeZN
Now
mj-x 27T N
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so we have

(6) Sa(2mm/n,x) = (%)N Z ( Z p2mi(m/n)t- At e27ri£'j/”>62ﬂj/n(m).

j€0,n—1]N ¢e[0,n—1]N

Our second calculation starts with the solution to (1) with initial data defined
on Euclidean space RY. There we have the relatively simple formula

(7) eL5(x) = det(—iA) V2 (amt) N2 miwB/At g — A7L
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Note that B € GI(N,Z). Now, if Sa(t,z) is regarded as defined for x € RY,
invariant under the translation action of Z", then we have

Sa(t,z) = Z ets(x — 27mv),

veZN
with convergence in S’(RY). Hence, setting d4 = det(—iA)~ /2, we have
Sa(2mm/n, x)
_ dA(47r)_N(2—n>N/2 Z o —i(w—2mv)-B(z—2mv)(n/8mm)
(8) m veZN
2n\ N/2 . )
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Setting v = 2mj + £, £ € [0,2m — 1]V, we obtain a double sum
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Now, since B € GI(N,Z), we have
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as an identity on RY. Descending to TV, we have
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Now, comparing (6) and (10), we have the identity
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for each j € Z~. In particular, taking j = 0, we have

(12) Y ermimmeat _ g, (ﬁ)N/z ST emmin/amene,
£el0n—1]¥ 2m €[0,2m—1]N



The case m = 1 of (12) gives

(13 ST emaam—ay(g) T 3T e

£e[0,n—1]N Lefo,1]N

Specializing in (13) to N =1 and A = B =1 gives the classical formula of Gauss:
n-! 2 1+2

(14) ZeZﬂié /n — T,n]./2 (1 +'l_n>
=0

Implicit in (14) is a computation of d4, which we now discuss. We have

et = lim e

it(L—icA)
e\\0 ’

for t >0,

where L — ie A = Q.(D) with Q. (&) = & - A¢ +ie|é|? = € - (A +iel)€. Hence

dy = lim det(el —iA)™1/2,
N0

the right side determined by analytic continuation in A from det(eI)*/? = ¢N/2 > 0,
for ¢ > 0. Suppose A ~ diag(ai,...,ar,—b1,...,—byn), with a,,b, >0, L+ M =
N. Hence ay ---arby---byy =1, det A= (—1)M, and

det(el —iA)™? = (e —iar) ™% (e —iap) TP (e +iby) V2 (e ibar) T,
SO
(15) dy = e E=M)mi/4

For example, when N = 1 and A = I, we have dy = ™/* = (1 +1i)/v/2.
Let us denote the left side of (11) by G a(m,n,j), i.e.,

(16) Galm,n,j) =, emmeaream,
£e[0,n—1]N

where m,n € Z%, j € Z~. Note that the right side of (16) depends only on the
class of j in (Z/(n))". The formula (6) takes the form

(17) S(2mim /n, z) = (%)N S Galmyn, ) rmsyn(a).

JE[0,n—1]N
Clearly the expression (11) is even in j. Hence, on the right side one can replace
eTriE-Bj/m by e—ﬂiE-Bj/m‘

One still has a somewhat different looking sum on the right side of (11), and we
are motivated to define

] LAY mi(me- -7
(18) T(m,k,j) = (ﬁ> § emimeAttt/E
£€]0,2m—1)N
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Comparing this with (16), we have

(19) Datm. k) = (57)" Galm,2%,5).

Note that for nonzero a € Z, T's(am,ak,aj) = Ts(m,k, 7). If we set n = 2k in
(17), we have G a(m, 2k, j) = (2k)NT 4(m, k, ), and hence

(20) Sa(mm/k,z) = Z La(m, k, ) Orj/u(z).
j€[0,2k—1]N

Meanwhile, the reciprocity formula (11) takes the form

m

N/2 P -
(21) Pa(m k) =da(r) " e ™0 BN T, ),

when n = 2k. As before, B = A~ here.
The reciprocity formula (11) was first established by A. Krazer [K]. More general
reciprocity results have been given by several people; see [T].

References
[K] A. Krazer, Zur Theorie der mehrfachen Gausschen Summen, H. Weber
Fetschrift, Leipzig, 1912, pp. 181-.

[T] V. Turaev, Reciprocity for Gauss sums on finite abelian groups, Math. Proc.
Cambridge Phil. Soc. 124(1998), 205-214.



