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Chapter 1: Introduction

Models for linear wave propagation in a domain Ω with boundary ∂Ω are given
by linear hyperbolic equations

(1.0.1) Pu = 0 on Ω,

with initial conditions, and also with boundary conditions

(1.0.2) Bju = 0 on ∂Ω,

where Bju may involve u and various derivatives on ∂Ω. The most basic example
of this is the second order equation often called ‘the wave equation’:

(1.0.3)
( ∂2

∂t2
−∆

)
u = 0 on Ω,

where ∆ is the Laplace operator:

(1.0.4) ∆u =
∂2u

∂x2
1

+ · · ·+ ∂2u

∂x2
n

.

We impose in this case initial conditions on u(t, x) at t = 0 :

(1.0.5) u(0, x) = f(x), ∂tu(0, x) = g(x).

For example, u could describe the vibrations of a membrane, stretched across a
drum of shape O, with Ω = R×O. If the membrane is firmly attached to the bound-
ary, then the appropriate boundary condition for (1.0.3) is the Dirichlet boundary
condition:

(1.0.6) u
∣∣
∂Ω

= 0.

Equation (1.0.3) also models the linearized theory of sound propagation, with u
representing air pressure. In this case, if O is a region and ∂O a hard wall, then
the pressure u satisfies at the boundary the Neumann condition

(1.0.7)
∂u

∂ν

∣∣∣
∂Ω

= 0.

To take another example, the electromagnetic field (E,B) satisfies the wave
equation (1.0.3) in a vacuum:

(1.0.8) (∂2
t −∆)E = 0, (∂2

t −∆)B = 0.
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If O is a vacuum region and ∂O is a perfect conductor, then a set of boundary
conditions making (1.0.8) a well posed problem for the electromagnetic field is

(1.0.9)
ν ×E = 0, div E = 0,

ν ·B = 0, ν × curl B = 0 on ∂Ω,

where ν denotes the unit normal to ∂O. We will encounter more examples in this
monograph.

Waves tend to move in a given direction, at a given speed, and exhibit a rather
geometrical behavior. This is particularly true of waves at high frequency, or equiva-
lently of waves with singularities. The movement of singular wave fronts is governed
by what are called the laws of geometrical optics.

It is the purpose of this book to present analytical tools developed to study
the propagation of such wave fronts, for certain classes of domains with smooth
boundary, with particular emphasis on how the propagation is influenced by the
boundary.

In §1.1 we will describe in more detail what sort of wave propagation phenomena
we are going to study. Then we introduce some basic tools from linear PDE in
§1.2 and §1.3, which suffice to treat the simplest of these phenomena, including
transversal reflection of waves at a boundary. The bulk of our study concerns two
types of situations where wave fronts are tangent to the boundary, i.e., situations
with grazing and gliding rays. We give in §1.4 some model examples of this, due
to F.G. Friedlander, which can be analyzed via separation of variables, and which
provide a clue to solutions in more general cases. The basic form of the solution
to grazing and gliding ray problems is introduced in §1.5. Constructing the phase
functions and amplitudes that appear in the parametrices described in §1.5 is closely
related to some problems in symplectic geometry which we discuss in §1.6. Carrying
out the details of this construction and drawing some conclusions will take up
the rest of the book. In §1.7 we give an overview of the various geometrical and
analytical problems that will be treated in the course of this analysis.

§1.1: The propagation phenomenon

One of the most striking features of solutions to wave equations is the geometrical
character of propagation, particularly for ‘impulsive’ initial data. The simplest
example of this is the propagation of a plane wave solution, such as

(1.1.1) u(t, x) = δ(t− x · ω)

to the wave equation (1.0.3) on R×Rn, where ω ∈ Sn−1. Another example is given
by the ‘fundamental solution’ to (1.0.3), with initial data

(1.1.2) u(0, x) = 0, ∂tu(0, x) = δp(x).

When O = R3, the fundamental solution is

(1.1.3) u(t, x) = (4πt)−1δ(|t| − |x|),
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while if O = R2 it is

(1.1.4)
u(t, x) = c(sgn t)(t2 − |x|2)−1/2 if |x| < |t|

0 if |x| > |t|.

These fundamental solutions illustrate several important phenomena, such as finite
propagation speed. The phenomenon we are emphasizing here is the location of
the singularities of u, which is the set |x| = |t| in (1.1.3) and (1.1.4). The normals
to this surface form the wave front set of the solution, at fixed t, and one sees that
these normals propagate at unit speed, in straight lines, as the ‘light rays,’ in this
case.

Such a phenomenon also holds for initial data with simple singularities along a
more general surface S, as was first pointed out by Huygens, who argued as follows.
The solution will be a superposition of fundamental solutions and its singularity
will be located on the envelope of the family of spheres of radius |t|, centered at the
various points of S. For given t, this envelope is the set St of points of distance |t|
from S. One can obtain St by following normals to S to a distance |t|. Making this
intuitive argument precise is a pleasant exercise in distribution theory. Carrying it
out rests on the explicit hold we have in (1.1.3)–(1.1.4) on the fundamental solution.
For more general wave equations, e.g., on curved space, one may not have a closed
form expression for the fundamental solution. Obtaining a good approximation to
the fundamental solution is then essentially equivalent to analyzing the propagation
of singularities phenomenon. We go over some analytical tools which are effective
for this problem in the next two sections.

We have illustrated the propagation phenomenon in a region without boundary,
namely Rn. The method of images provides an illustration of the simplest sort of
reflection of waves. For example, consider the wave equation (1.0.3) on R×O where
O = {x ∈ R3 : x3 ≤ 0}, with boundary condition u|x3=0 = 0. If we take initial data
of the form (1.1.2), with p = (a, b, c), c < 0, we get the solution, for t ≥ 0,

(1.1.5) u(t, x) = (4πt)−1
[
δ(t− |x− p|)− δ(t− |x− p′|)

]∣∣∣
x3≤0

,

where p′ = (a, b,−c). Note that the second term in (1.1.5) represents the reflected
wave and is nonzero only for |t| ≥ |c| = dist(p, ∂O). If we match every ray from p
with its mirror image ray from p′, we see that, at the boundary, the reflection law
is given in terms of rays by: angle of incidence equals angle of reflection, again a
basic law of geometrical optics. This law continues to hold for curved boundaries.
The analysis required to prove this will be sketched in §1.3, for the case when the
ray hits the boundary transversally.

More subtle analytical problems arise in describing the situation when rays are
tangent to the boundary; such rays are said to be glancing. Here there are no truly
simple models with closed form solutions to guide one’s intuition. The purpose
of this book is to present the analysis of wave propagation for two types of rays
tangent to the boundary, known respectively as grazing and gliding rays.
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For the wave equation (1.0.3) on R × O with O ⊂ Rn, a grazing ray is a ray
(i.e., a straight line) that intersects ∂O tangentially, having exactly second order
contact, and locally lying inO. There is a natural generalization for other hyperbolic
equations, involving the notion of bicharacteristic, which we will discuss in the next
section. A gliding ray arises when there is such a line, tangent to ∂O with exactly
second order contact, lying locally in Rn \ O. In such a case, there are nearby
rays which are reflected arbitrarily often at the boundary, leading in the limit to a
curve which glides along the boundary, carrying singularities. These two cases are
illustrated in the figure below.

§1.2: Pseudodifferential operators and singularities

Pseudodifferential operators, first used to study elliptic PDE, provide a funda-
mental tool for studying singularities of distributions. We recall some definitions
and basic properties here.

A pseudodifferential operator has the form

(1.2.1) p(x,D)u =

∫
p(x, ξ)eix·ξû(ξ) dξ.

The amplitude, or symbol, p(x, ξ), is said to belong to the symbol space Smρ,δ pro-
vided

(1.2.2) |Dβ
xD

α
ξ p(x, ξ)| ≤ Cαβ〈ξ〉m−ρ|α|+δ|β|,

where 〈ξ〉 = (1 + |ξ|2)1/2. We then say p(x,D) ∈ OPSmρ,δ. We will consider only
situations in which

(1.2.3) 0 ≤ δ < ρ ≤ 1;

the case ρ = 1, δ = 0 is most common. We will denote by Smcl , or just Sm, the
subspace of Sm1,0 consisting of symbols with an asymptotic expansion

(1.2.4) p(x, ξ) ∼
∑

j≥0

pj(x, ξ),

where pj(x, ξ) is homogeneous of degree m− j in ξ, for |ξ| ≥ 1, and the meaning of
(1.2.4) is that the difference between p(x, ξ) and the sum of the first N terms on

the right belongs to Sm−N
1,0 . Given (1.2.4), p0(x, ξ) is called the principal symbol of

p(x,D).
We have the following central algebraic property. If pj(x, ξ) ∈ Smj

ρ,δ , then

(1.2.5) p1(x,D)p2(x,D) = q(x,D) ∈ OPSm1+m2

ρ,δ
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with

(1.2.6) q(x, ξ) ∼ p1(x, ξ)p2(x, ξ) +
∑

α>0

(−i)|α|
α!

∂αξ p1(x, ξ) · ∂αx p2(x, ξ).

In particular,

(1.2.7) q(x, ξ)− p1(x, ξ)p2(x, ξ) ∈ Sm1+m2−(ρ−δ)
ρ,δ .

In case ρ = 1, δ = 0, we then have for the commutator

(1.2.8) [p1(x,D), p2(x,D)] = C(x,D) ∈ OPSm1+m2−1
1,0

and

(1.2.9) C(x, ξ) = −i{p1, p2}(x, ξ) mod Sm1+m2−2
1,0

where {p1, p2} denotes the Poisson bracket.
The definition (1.2.1) easily gives

(1.2.10) p(x,D) : S(Rn) −→ S(Rn).

An integration by parts argument yields

(1.2.11) p(x,D) : S ′(Rn) −→ S ′(Rn).

There is L2-boundedness:

(1.2.12) p(x, ξ) ∈ S0
ρ,δ =⇒ p(x,D) : L2(Rn) −→ L2(Rn),

valid for δ ≤ ρ, as long as δ < 1. More generally we have Sobolev space mapping
properties:

(1.2.13) p(x, ξ) ∈ Smρ,δ =⇒ p(x,D) : Hs(Rn) −→ Hs−m(Rn).

The property (1.2.6) shows that, if φ1, φ2 ∈ C∞0 (Rn) have disjoint support, then
φ1p(x,D)φ2 ∈ OPS−∞; hence it maps H−∞(Rn) to H∞(Rn). From this it follows
that p(x,D) has the ‘pseudolocal’ property:

(1.2.14) sing supp p(x,D)u ⊂ sing supp u.

The algebraic property (1.2.7) allows one to construct a parametrix for an elliptic
operator. That is, if p(x, ξ) ∈ Smρ,δ and |p(x, ξ)| ≥ C|ξ|m for |ξ| large, then we have

a(x, ξ) ∈ S−m
ρ,δ , equal to p(x, ξ)−1 for |ξ| large, and

(1.2.15) a(x,D)p(x,D) = I + r1(x,D), p(x,D)a(x,D) = I + r2(x,D)
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with rj(x, ξ) ∈ S−(ρ−δ)
ρ,δ . Now one can produce sj(x, ξ) ∈ S−(ρ−δ)

ρ,δ such that

(1.2.16) I + sj(x,D) ∼ I − rj(x,D) + rj(x,D)2 − · · ·

and then

(1.2.17)
(I + s1(s,D))a(x,D)p(x,D)

= p(x,D)a(x,D)(I + s2(x,D)) = I mod OPS−∞.

In view of (1.2.14), we have local elliptic regularity:

(1.2.18) p(x,D) elliptic =⇒ sing supp p(x,D)u = sing supp u.

In our mention of wave fronts in §1.1, we indicated that these objects have a
direction as well as a location. We now define the wave front set WF (u) of a
distribution u on Rn to be a closed conic subset of Rn × (Rn \ 0) characterized
as follows; (x0, ξ0) /∈ WF (u) provided there exists ϕ ∈ C∞0 (Rn), ϕ(x0) 6= 0, and
p(x, ξ) ∈ Sm, such that |p(x0, ξ)| ≥ C|ξ|m for ξ in some conic neighborhood of ξ0,
and such that

(1.2.19) p(x,D)(ϕu) ∈ C∞.

It follows from elliptic regularity that the image of WF (u) under the natural pro-
jection π(x, ξ) = x is precisely supp u.

When one develops pseudodifferential operators on a manifold M, one finds that
the principal symbol of an operator in OPSm is well defined on the cotangent
bundle, T ∗M \ 0. Thus, for u ∈ D′(M), WF (u) is naturally defined as a closed
conic subset of T ∗M \ 0. ‘Microlocal analysis’ consists of emphasizing properties
of distributions and operators in terms of the properties of their wave front sets,
symbols, etc., on conic subsets of T ∗M \ 0.

For example, given P = p(x,D) ∈ OPSm, with homogeneous principal symbol
p0(x, ξ), the characteristic set of P is the closed conic set {(x, ξ) : p0(x, ξ) = 0},
denoted Char P. One says P is microlocally elliptic on the complement of Char P.
The microlocal version of elliptic regularity is that

(1.2.20) WF (u) ⊂WF (Pu) ∩ Char P.

Refining the pseudo-local property (1.2.14), we have the microlocal property

(1.2.21) WF (Pu) ⊂WF (u).

The property (1.2.21) is valid whenever P ∈ OPSmρ,δ, granted (1.2.3), or even more
generally, granted ρ > 0 and δ < 1.

When P ∈ OPSm has real principal symbol p(x, ξ), the integral curves of the
Hamilton vector field Ξp contained in Char P are called null bicharacteristic curves,
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or simply rays. Hörmander’s propagation of singularities theorem for such P states
that, if γ : [a, b]→ T ∗Rn \ 0 is a null bicharacteristic of P, disjoint from WF (Pu),
and if γ(a) ∈WF (u), then γ(b) ∈WF (u). In some cases this can be demonstrated
by constructing a parametrix, using Fourier integral operators, as we discuss in
the next section. The extension of Hörmander’s theorem to solutions to boundary
problems is the subject of most of this book. The natural question is what to do
when a ray passes over the boundary. Generally speaking, one’s goal is to show
that singularities propagate along reflected rays. We say two rays γj are related by
reflection if γj(sj) = (xj , ξj) ∈ T ∗

xj
Ω \ 0 are such that x1 = x2 ∈ ∂Ω and ξ1 − ξ2

annihilates vectors tangent to ∂Ω. If η denotes the restriction of ξj to T ∗
xj
∂Ω, and

if η 6= 0, we say the ray γj passes over (xj, η) ∈ T ∗∂Ω \ 0.

§1.3: Basic geometrical optics

One way to construct parametrices for hyperbolic equations away from a bound-
ary is with the use of Fourier integral operators. The most basic sort of Fourier
integral operator is one of the form

(1.3.1) Au(x) =

∫
a(x, ξ)eiφ(x,ξ)û(ξ) dξ,

where the amplitude a(x, ξ) belongs to a symbol class such as Sm or Smρ,δ, and the

phase function φ(x, ξ) is real valued and homogeneous of degree one in ξ, and sat-
isfies dxφ(x, ξ) 6= 0 on a conic neighborhood of the support of a(x, ξ). Such Fourier
integral operators can be used to transform the operator P (at least ‘microlocally’)
to the operator i∂/∂x1, for which propagation of singularities is transparent. Al-
ternatively, particularly for hyperbolic equations, the solution to an initial value
problem, at least near the initial surface, can be written as a linear combination
of such Fourier integral operators. In either case, one is left with the problem of
describing what a Fourier integral operator does to the wave front set of a distri-
bution to which it is applied. This problem is dealt with in Appendix C. There
it is shown that WF (Au) ⊂ C(WF (u)), where C is the canonical transformation
defined by

C(dξφ(x, ξ), ξ) = (x, dxφ(x, ξ)).

As an example of this representation of the solution operator, note that the
solution to the wave equation (1.0.3) on R× R

n, with initial data (1.0.5), is given
by

(1.3.2) u(t, x) =

∫
eix·ξ cos t|ξ| f̂(ξ) dξ +

∫
eix·ξ |ξ|−1 sin t|ξ| ĝ(ξ) dξ.

Thus for each t we have a sum of two Fourier integral operators with phase functions

(1.3.3) φ±(t, x, ξ) = x · ξ ± t|ξ|.
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As a warm-up for a calculation we shall do in §1.5, let us work out a local
parametrix for the initial value problem for a general second order hyperbolic equa-
tion

(1.3.4) p(x,D)u = 0,

with initial data on xn = 0 :

(1.3.5) u(x′, 0) = f,
∂

∂xn
u(x′, 0) = g; f, g ∈ E ′(Rn−1).

We denote by p2(x, ξ) the principal symbol of p(x,D); it is a second order homo-
geneous polynomial in ξ. We can think of p2(x, ξ) as a family of quadratic forms in
ξ, parametrized by x. Let 〈 , 〉 denote the associated family of symmetric bilinear
forms in ξ (with x dependence implicit but suppressed), so

(1.3.6) 〈ξ, ξ〉 = p2(x, ξ).

If p(x,D) is hyperbolic, then the form 〈 , 〉 is Lorentzian, and the initial value
problem is well posed if the hypersurface {xn = 0} is spacelike with respect to 〈 , 〉.
We construct a solution mod C∞ to (1.3.4)–(1.3.5) of the form

(1.3.7) u(x) =

2∑

j=1

∫

Rn−1

aj(x, ξ)e
iφj(x,ξ)F̂j(ξ) dξ

where Fj will be related to f, g below. We want aj(x, ξ) ∈ S0, say

(1.3.8) aj(x, ξ) ∼
∑

ν≥0

ajν(x, ξ)

with ajν(x, ξ) homogeneous of degree −ν in ξ. To begin, there is the computation
of p(x,D)(a eiφ), if

(1.3.9) P = p(x,D) =
∑

ajk(x)∂j∂k +
∑

bj(x)∂j + c(x),

which comes from

(1.3.10)

∂j(ae
iφ) = i(∂jφ)aeiφ + (∂ja)eiφ,

∂j∂k(aeiφ) = −(∂jφ)(∂kφ)aeiφ + i[(∂jφ)(∂ka) + (∂kφ)(∂ja)]eiφ

+ i(∂j∂kφ)aeiφ + (∂j∂ka)eiφ.

This gives
(1.3.11)

p(x,D)(aeiφ) = −
[ ∑

j,k

ajk(x)(∂jφ)(∂kφ)
]
aeiφ + i

∑

j,k

ajk(x)(∂j∂kφ)aeiφ

+ 2i
∑

j,k

ajk(x)(∂jφ)(∂ka)eiφ +
∑

j,k

ajk(x)(∂j∂ka)eiφ

+ i
∑

bj(x)(∂jφ)aeiφ +
∑

bj(x)(∂ja)eiφ + c(x)aeiφ,
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or, in a more invariant form,
(1.3.12)

p(x,D)(aeiφ) =
{
−p2(x, dxφ)a+ i[2〈dxφ, dxa〉+ (P bφ)a] + (Pa)

}
eiφ = beiφ.

We have set

(1.3.13) P b = P − c(x).

The condition that the term of highest order of homogeneity in b vanish is

(1.3.14) p2(x, dxφ) = 0,

which is the eikonal equation. In Chapter 4 we present a solution to the eikonal
equation via Hamilton-Jacobi theory. We specify

(1.3.15) φj(x
′, 0, ξ) = x′ · ξ, x′, ξ ∈ R

n−1,

with the idea in mind that, for x = (x′, 0), (1.3.7) is given by a pseudodifferential
operator. With φ(x, ξ) = x′ · ξ + xnψ(x, ξ), we see that (1.3.14) demands

(1.3.15A) p2(x′, 0; ξ, ψ) = 0 at xn = 0.

If P is hyperbolic and {xn = 0} is spacelike, then for each ξ 6= 0, (1.3.15A) has two
distinct real solutions ψj(x

′, 0, ξ). The eikonal equation (1.3.14) consequently has
two local solutions φj , with ∂φj/∂xn = ψj(x, ξ) at xn = 0.

Granted (1.3.14), the term in (1.3.12) homogeneous of degree 1− k, k ≥ 0, is

(1.3.16) 2i〈dxφj , dxajk〉+ i(P bφj)ajk + Paj,k−1,

where we adopt the convention that aj,−1 = 0. Thus, we have the following trans-
port equation for ajk in terms of aj,k−1.

(1.3.17) 2〈dxφj , dxajk〉+ (P bφj)ajk = iPaj,k−1.

This is solved by integrating along the trajectories of the vector field Z defined by

(1.3.18) Zf = 2〈dxφj , dxf〉.

Convenient initial conditions to pick are

(1.3.19) aj0(x′, 0, ξ) = 1, ajk(x′, 0, ξ) = 0 (k ≥ 1).

Now one can show that, if aj(x, ξ) ∈ S0 is picked satisfying (1.3.8) and u is given
by (1.3.7), then Pu ∈ C∞. One can correct by a C∞ term to get u solving (1.3.4).
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We next want to arrange (1.3.5). Indeed, granted (1.3.15) and (1.3.19), by (1.3.7)
we have

(1.3.20) u(x′, 0) =

∫

Rn−1

[F̂1(ξ) + F̂2(ξ)]eix
′·ξ dξ = F1 + F2.

and

(1.3.21)

∂

∂xn
u(x′, 0) =

∫ (
i
∂φ1

∂xn
+
∂a1

∂xn

)
eix

′·ξF̂1 dξ +

∫ (∂φ2

∂xn
+
∂a2

∂xn

)
eix

′·ξF̂2 dξ

= T1F1 + T2F2.

Thus Tj ∈ OPS1 is a pseudodifferential operator with principal symbol equal to

(1.3.22) τj1(x′, ξ) = i
∂φj
∂xn

∣∣∣
xn=0

.

Our initial value problem is hence equivalent to

(1.3.23)
F1 + F2 = f,

T1F1 + T2F2 = g.

We can use the first equation to eliminate F2, obtaining

(1.3.24) (T1 − T2)F1 = g − T2f.

The operator T1 − T2 ∈ OPS1 is elliptic, granted

(1.3.25)
∣∣∣ ∂φ1

∂xn
− ∂φ2

∂xn

∣∣∣ ≥ C1|ξ|, on xn = 0,

which follows for the solutions φj of (1.3.14)–(1.3.15), provided {xn = 0} is space-
like. Consequently, we can certainly solve (1.3.24), and hence (1.3.23), at least mod
C∞, for F1 and F2. Again, by adding a C∞ term we can correct for this last error
and get the solution to (1.3.4)–(1.3.5).

We now consider situations where the surface S = {xn = 0} is not spacelike;
for example, it could be the lateral surface ∂Ω for the wave equation (1.0.3) on
Ω = R × O. Consider in this case the eikonal equation (1.3.14)–(1.3.15). In this
case there are several possibilities for the equation (1.3.15A). Given xn = 0, ξ 6= 0,
we have either two distinct real roots ψj(x, ξ), two complex roots, or one double
real root. In these three respective cases, we have the following three geometrical
possibilities. Either two bicharacteristic rays for P pass over (x′, ξ) ∈ T ∗S \ 0, or
no rays, or one ray.

In the first case, one says (x′, ξ) belongs to the hyperbolic set Gh in T ∗S \ 0. In
such a case, we can let u consist of a single term in (1.3.7), say the term j = 1,
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with F = f, and produce u satisfying u|S = f, with singularities along one family
of rays. In this case, the rays pass over S transversally, and the geometrical optics
construction treats transversal reflection of singularities.

In the second case, one says (x′, ξ) belongs to the elliptic set Ge in T ∗S \ 0. In
such a case, we do not necessarily have an exact solution to the eikonal equation,
but a formal power series construction yields a pair of complex valued functions
φj(x, ξ), with φj(x

′, 0, ξ) = x′ · ξ and ∂φj/∂xn = ψj(x
′, 0, ξ) at xn = 0, satisfying

the eikonal equation (1.3.14) to infinite order at xn = 0. Say Im ψ1 > 0 and Im
ψ2 < 0. Then eiφ2(x,ξ) blows up as |ξ| → ∞, for xn > 0, and so this is not useful for
constructing a parametrix, if xn > 0 defines Ω. Again we take the single term j = 1
in (1.3.7). The vector field Z given by (1.3.18) is not real, so one also solves the
transport equations only to infinite order at xn = 0. We can rewrite the resulting
product a1(x, ξ)eiφ1(x,ξ) as

(1.3.26) b(x, ξ)eix
′·ξ with b(x, ξ) = a1(x, ξ)eixnψ1(x,ξ).

Since Im ψ1(x, ξ) ≥ C|ξ|, we can establish that, for xn ≥ 0,

(1.3.27) x`n|Dk
xn
Dβ
x′D

α
ξ b(x, ξ)| ≤ Cαβk`〈ξ〉|α|+k−`.

Thus
∫
b(x, ξ)f̂(ξ)eix

′·ξ dξ acts like a Poisson integral, and indeed this construction
is microlocally the same as the construction of the Poisson integral, solving the
Dirichlet problem for an elliptic PDE.

In the third case, one says (x′, ξ) belongs to the glancing set Gg in T ∗S \ 0. This
is the case to which the rest of the book is devoted.

§1.4: Glancing rays; Friedlander’s example

The simplest case of the wave equation that arises naturally in which tangential
rays are involved is the case Ω = R × O where O = Rn \ B with B = {x ∈
R
n : |x| ≤ 1}, or in the complementary case, O = B. The first case is the case of

scattering by a sphere in Euclidean space. It is amenable to separation of variables,
and is reducible to a problem in harmonic analysis on the cylinder R× Sn−1. This
analysis goes back at least to Watson [Wa]; the analysis in Nussensweig [Nu] is
more complete. We shall present a treatment of this special case, from a more
contemporary perspective, in Appendix B.

In the case just described, of scattering by a sphere, the bicharacteristics that
intersect the boundary ∂Ω = R × Sn−1 tangentially have exactly second order
contact with the boundary, and remain in Ω. These are grazing rays.

F.G. Friedlander [Fr] analyzed the following example of a boundary problem
with grazing rays. On the region

(1.4.1) Ω+ = {x ∈ R
n+1 : xn+1 > 0},

consider the equation

(1.4.2) Pu = (∂2
n+1 + xn+1∂

2
1 + ∂1∂n)u = 0
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with boundary condition

(1.4.3) u
∣∣
xn+1=0

= f ∈ E ′(Rn).

There is a unique solution u satisfying

(1.4.4) u ∈ C∞ for xn << 0.

In this example, as well as in the preceding example of scattering by a sphere,
the analysis is simplified by the presence of a large group of symmetries. However,
Friedlander’s example was designed for maximum simplicity, partly because we have
a large commutative group of symmetries, the translations in (x1, . . . , xn), whereas
the noncommutativity of the rotation group complicates the harmonic analysis
that is effective in the analysis of scattering by a sphere. Taking the partial Fourier
transform with respect to x′ = (x1, . . . , xn), we obtain from (1.4.2) the ODE (with
y = xn+1)

(1.4.5)
d2

dy2
û(y, ξ) = (yξ21 + ξ1ξn)û.

Another advantage of Friedlander’s example is that this ODE has a simpler struc-
ture than the Bessel equations obtained by applying separation of variables to the

problem of scattering by a sphere. The change of variable s = (yξ2
1 + ξ1ξn)ξ

−4/3
1

puts (1.4.5) in the form of the Airy equation

(1.4.6) A′′(s) + sA(s) = 0,

One solution to Airy’s equation is given by

(1.4.7) Ai(s) =

∫ ∞

−∞

ei(st+t
3/3) dt.

Any solution to (1.4.6) is entire; the functions

(1.4.8) A±(s) = Ai(e±2πi/3s)

are also seen to solve (1.4.6). These Airy functions are discussed in detail in Ap-
pendix A. One important feature that distinguishes among them is their various
asymptotic behavior as s → +∞. One sees that, if f̂(ξ) is supported in a cone
|ξ′| < ±Kξ1, where ξ′ = (ξ2, . . . , ξn), then the solution to (1.4.2)–(1.4.4) is given
by

(1.4.9) u(x) =

∫

Rn

A±(ζ)A±(ζ0)−1eix
′·ξf̂(ξ) dξ,
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with

(1.4.10) ζ = ζ(x, ξ) = |ξ1|−1/3ξn + xn+1|ξ1|2/3

and

(1.4.11) ζ0 = ζ
∣∣
xn+1=0

= |ξ1|−1/3ξn.

We can also consider the boundary problem (1.4.2)–(1.4.4) in the region

(1.4.12) Ω− = {x ∈ R
n+1 : xn+1 < 0}.

In this case, rays tangent to ∂Ω− stay in the complement of Ω−, still having second
order contact with ∂Ω−. We have multiply reflected rays, which tend in the limit
to curves traveling along the boundary, known as gliding rays. In this case, the
solution to (1.4.2)-(1.4.4) can be given by an integral analogous to (1.4.9), using
the Airy function Ai rather than A±. Since Ai(s) has real zeros, it is convenient
to translate into the complex domain to avoid them. This can be accomplished by
setting v = e−Txnu, so the equation for v is obtained by replacing ∂n by ∂n − T
in (1.4.2). Again, the partial Fourier transform yields Airy’s equation, and (with f
replaced by e−Txnf) we get

(1.4.13) v(x) =

∫

Rn

Ai(ζ)Ai(ζ0)−1eix
′·ξf̂(ξ) dξ,

with

(1.4.14) ζ = ζ(x, ξ) = ξ
−1/3
1 (ξn + iT ) + xn+1ξ

2/3
1

and

(1.4.15) ζ0 = ξ
−1/3
1 (ξn + iT ),

assuming f̂(ξ) is supported on a cone |ξ′| < Kξ1.
A qualitative analysis of a class of Fourier-Airy integral operators generalizing

(1.4.9) and (1.4.13) occupies Chapters 5 and 6. These more general operators will
be described in the next section, when we write down more general grazing and
gliding ray parametrices.

The wave equation (1.0.3) on the region R × B, where B is the unit ball in
Euclidean space, furnishes another model example of a boundary problem with
gliding rays. This example is also amenable to separation of variables, and there is
a literature on this example. However, we have not seen a treatment in sufficient
analytical detail to make manifest the propagation of singularities in a neighborhood
of gliding rays.
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§1.5: Outline of the glancing ray parametrices

For general grazing ray problems, we will construct parametrices of the form

(1.5.1) u(x) =

∫ [
gA±(ζ) + ihA′

±(ζ)
]
A±(ζ0)−1eiθF̂ (ξ) dξ,

where the phase functions θ(x, ξ), ζ(x, ξ) are real valued and homogeneous in ξ, of
degree 1 and 2/3, respectively, and

(1.5.2) ζ0(x, ξ) = ζ(x, ξ)|∂Ω = ξ
−1/3
1 ξn.

The amplitudes g(x, ξ) and h(x, ξ) belong to the symbol classes S0 and S−1/3,
respectively. The phase functions θ, ζ solve an eikonal equation, and the amplitudes
g, h satisfy a sequence of transport equations. We will derive here such equations
for the case of Pu = 0 where P is a second order differential operator,

(1.5.3) P = p(x,D) =
∑

ajk(x)∂j∂k +
∑

bj(x)∂j + c(x).

Parallel to the computation producing (1.3.11), we have (with fj = ∂jf),

(1.5.4) ∂j
(
gA(ζ)eiθ

)
= iθjgA(ζ)eiθ + ζjgA

′(ζ)eiθ + gjA(ζ)eiθ,

and
(1.5.5)

∂j∂k
(
gA(ζ)eiθ

)
=

[
−(θjθk + ζζjζk)g + i(θjgk + θkgj) + iθjkg + gjk

]
A(ζ)eiθ

+
[
i(θjζk + θkζj)g + (ζjgk + ζkgj) + ζjk

]
A′(ζ)eiθ,

where the Airy equation (1.4.6) has been used to replace A′′(ζ) by −ζA(ζ). Conse-
quently, for P given by (1.5.3), we have
(1.5.6)

P
(
gA(ζ)eiθ

)
=

[(
〈dθ, dθ〉+ ζ〈dζ, dζ〉

)
g + 2i〈dθ, dg〉+ i(P bθ)g + (Pg)

]
A(ζ)eiθ

+
[
2i〈dθ, dζ〉g+ 2〈dζ, dg〉+ (P bζ)g

]
A′(ζ)eiθ.

Here, as before, 〈ξ, η〉 is the form polarizing p2(x, ξ), so 〈ξ, ξ〉 = p2(x, ξ) and

(1.5.7) 〈ξ, η〉 =
∑

ajk(x)ξjηk.

Also, as before, P b = P − c(x). Similarly, we compute

(1.5.8)

P
(
hA′(ζ)eiθ

)
=

[
−2iζ〈dθ, dζ〉h− 2ζ〈dζ, dh〉 − 〈dζ, dζ〉h− ζ(P bζ)h

]
A(ζ)eiθ

+
[
−

(
〈dθ, dθ〉+ ζ〈dζ, dζ〉

)
h+ 2i〈dθ, dh〉+ i(P bθ)h+ Ph

]
A′(ζ)eiθ.
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Thus we see that

(1.5.9) P
(
gA(ζ)eiθ + ihA′(ζ)eiθ

)
= aA(ζ)eiθ + bA′(ζ)eiθ

where

(1.5.10)
a =

(
〈dθ, dθ〉+ ζ〈dζ, dζ〉

)
g + 2ζ〈dθ, dζ〉h

+ 2i〈dθ, dg〉 − 2iζ〈dζ, dh〉 − i〈dζ, dζ〉h+ i(P bθ)g − iζ(P bζ)h+ Pg,

and

(1.5.11)
b = 2i〈dθ, dζ〉g− i

(
〈dθ, dθ〉+ ζ〈dζ, dζ〉

)
h

+ 2〈dζ, dg〉 − 2〈dθ, dh〉+ (P bζ)g − (P bθ)h+ iPh.

We should like the amplitudes a and b to have asymptotic expansions that formally
vanish. Requiring the top order term to vanish yields the eikonal equation for θ, ζ :

(1.5.12)
〈dθ, dθ〉+ ζ〈dζ, dζ〉 = 0,

〈dθ, dζ〉 = 0.

If we set
g ∼

∑

ν≥o

gν , h ∼
∑

ν≥0

hν ,

with gν homogeneous of degree −ν in ξ and hν homogeneous of degree −1/3− ν,
the transport equations become

(1.5.13)
2〈dθ, dgν〉 − 2ζ〈dζ, dhν〉 − 〈dζ, dζ〉hν + (P bθ)gν − ζ(P bζ)hν = iPgν−1,

2〈dζ, dgν〉 − 2〈dθ, dhν〉 + (P bζ)gν − (P bθ)hν = −iPhν−1.

A thorough discussion of these eikonal and transport equations will be given in
Chapter 4.

In the study of grazing ray problems for other sorts of differential equations one
is led to similar eikonal and transport equations. Examples include various first
order systems, treated in Chapter 12.

For general gliding ray problems we will construct parametrices of the form

(1.5.14) u(x) =

∫
[gAi(ζ) + ihAi′(ζ)]Ai(ζ0)−1eiθF̂ (ξ) dξ.

One way to deal with the fact that Ai(s) has real zeros is to evaluate θ, ζ, g, and

h at (ξ1, . . . , ξn−1, ξn + iT ). In particular, ζ0 = ξ
−1/3
1 (ξn + iT ). These functions

satisfy the same eikonal and transport equations as above, at real ξ, and an almost
analytic continuation in ξn is taken.
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In addition to solving the eikonal equations so that ζ satisfies (1.5.2) on ∂Ω, we
will also produce a solution to the transport equations such that

(1.5.15) h(x, ξ) = 0 for x ∈ ∂Ω,

while g(x, ξ) is elliptic. Thus, in (1.5.1) and in (1.5.14), u and F are related by

(1.5.16) u|∂Ω =

∫
geiθF̂ (ξ) dξ = J(F ).

The operator J is an elliptic Fourier integral operator. Thus the parametrix for a
Dirichlet boundary problem, u|∂Ω = f, is given by (1.5.1) or (1.5.14), with F =
J−1f, where J−1 denotes a microlocal parametrix for J.

Constructing a parametrix for the Neumann problem (1.0.7) involves examining
the Neumann operator, defined as follows. If f ∈ E ′(∂Ω) and u is the solution to our
boundary problem, given by either (1.5.1) or (1.5.14), then Nu = (∂u/∂ν)|∂Ω. Thus
to solve the Neumann problem ∂u/∂ν|∂Ω = g, one is reduced to solving Nf = g
for f.

Applying ∂ν to (1.5.1), we obtain an expression for the Neumann operator in
the grazing case:

(1.5.17) N = J(AΦ± +B)J−1.

Here J is as in (1.5.16), A ∈ OPS2/3, is elliptic, with principal symbol ζν (which
is shown to be > 0), and B ∈ OPS0. The operators Φ± are Fourier multipliers:

(1.5.18) (Φ±f)ˆ(ξ) = Φ±(ζ0)f̂(ξ), Φ±(s) =
A′

±(s)

A±(s)
,

which can be seen to belong to OPS
1/3
1/3,0 microlocally on |ξ′| < Kξ1. In the gliding

case one gets

(1.5.19) N = J(AΦiT +B)J−1,

where

(1.5.20) ΦiT (ξ) = Φi(ξ
−1/3
1 (ξn + iT )), Φi(s) =

Ai′(s)

Ai(s)
.

§1.6: Symplectic geometry behind the parametrix

There is a deep geometrical reason underlying the similarity of the general graz-
ing and gliding ray parametrices described in §1.5 and those for Friedlander’s exam-
ples given in §1.4, which will facilitate solution of the eikonal and transport equa-
tions. Under the grazing and gliding hypotheses, the hypersurfaces Q1 = T ∗

∂ΩΩ
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and P1 = Char P = {(x, ξ) : p2(x, ξ) = 0} have glancing intersection. By defini-
tion, hypersurfaces defined by p = 0 and q = 0 have glancing intersection at m
provided {p, q} = 0 at m while {p, {p, q}} 6= 0 and {q, {q, p}} 6= 0 at m. The main
theorem established in Chapter 3 is that (in any given dimension) any two pairs of
hypersurfaces with glancing intersection are locally symplectically equivalent, via a
homogeneous canonical transformation (in the homogeneous case). Consequently,
there is a microlocally defined homogeneous canonical transformation

(1.6.1) χ : T ∗(Rn+1) −→ T ∗Ω

taking Q0 = {xn+1 = 0} to Q1 and taking P0, the characteristic set of Friedlander’s
operator (1.4.2), to P1.

Now, onQ1 (and similarly onQ0), the symplectic form gives a Hamilton foliation.
Let this determine an equivalence relation∼ . Then Q1∩P1/ ∼ has the structure of a
symplectic manifold with boundary, and is naturally isomorphic to the closure of the
‘hyperbolic set’ in T ∗(∂Ω), the region over which real rays pass, and similarly Q0 ∩
P0/ ∼ is naturally isomorphic to the closure of the hyperbolic region in T ∗(∂R

n+1
+ ).

Thus we get a canonical transformation

(1.6.2) χJ : T ∗(∂R
n+1
+ ) −→ T ∗(∂Ω),

defined in the hyperbolic regions, smooth up to the boundary, which consists of the
grazing directions.

The map χJ has the important property that it intertwines the ‘billiard ball
maps’ δ±0 and δ±. Here, the billiard ball maps δ± : T ∗(∂Ω) → T ∗(∂Ω), defined on
the hyperbolic region, continuous up to the boundary, smooth in the interior, are
defined at a point (x0, ξ0) by taking the two rays that lie over this point, in the
variety P1 = Char P, and following the null bicharacteristics through these points
until you pass over ∂Ω again, projecting such a point onto T ∗(∂Ω). For Friedlander’s
example, δ±0 has the specific formula

(1.6.3) δ±0 (x, ξ) =
(
x1 ±

2

3

(ξn
ξ1

)3/2

, x2, . . . , xn−1, x2 ∓ 2
(ξn
ξ1

)1/2

, ξ
)
.

The way in which χ helps one solve the eikonal equations is discussed in detail in
Chapter 4. We mention here that one can arrange that θ|∂Ω generate the canonical
transformation χJ , which is hence the canonical transformation associated with the
Fourier integral operator J in (1.5.16).

In our first papers on the grazing ray problem ([M2],[T3]), we did not take this
approach, and our solutions to the eikonal equation were not shown to have the
property (1.5.2). Taylor [T3], taking a cue from Ludwig [Lud2], made use of the
weaker result that one could arrange

(1.6.4) ζ(x, ξ)
∣∣
∂Ω

= ξ
−1/3
1 ξn + r(x, ξ)
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with

(1.6.5) ξ
−2/3
1 r(x, ξ) = O(|ξn/ξ1|N ),

for all N, with a similar weakening of (1.5.15). This result leads to an equation
slightly different from (1.5.16) for F, in the solution to the Dirichlet problem, and
one can go quite far with it, though some finer information is less accessible via
(1.6.4) than by (1.5.2). This approach to the grazing ray problem is discussed in
Chapter X of the book [T1]. The refined result (1.5.2) is particularly incisive in our
treatment of the gliding ray problem. Eskin [Es1] has proposed a construction of
parametrices in the gliding ray case which makes use of the weaker result (1.6.4).
In this case the boundary equations which arise have a more complicated nature
than (1.5.16), and are more difficult to analyze.

§1.7: Plan of the book

The first order of business will be to establish the geometrical results, especially
equivalence of glancing hypersurfaces, lying behind the construction of phase func-
tions and amplitudes in the parametrices. This task is divided into two parts. In
Chapter 2 we establish results purely in differential analysis, and in Chapter 3 bring
in the symplectic form. Equivalence of glancing hypersurfaces will be established as
a consequence of putting the billiard ball map δ± into normal form. The maps δ±

are a special case of folding canonical relations; we also establish results on putting
more general folding canonical relations into normal form.

In Chapter 4 we solve the eikonal and transport equations (1.5.12)–(1.5.13). As
mentioned, it is important to produce solutions to the eikonal equation such that ζ
satisfies (1.5.2), and we also produce solutions to the transport equations such that
h satisfies (1.5.15). For other uses, we also produce other solutions to the transport
equations with various relations between g and h specified on ∂Ω.

In Chapters 5 and 6 we examine analytical properties of the parametrices (1.5.1)
and (1.5.14), beginning with a study of the Fourier multipliers Φ± and ΦiT . As
mentioned, Φ± are pseudodifferential operators. On the other hand, ΦiT will be
seen to be a very singular sort of Fourier integral operator, with an infinite number
of canonical relations accumulating at a ‘gliding’ canonical relation. This reflects
the geometrical difference between grazing and gliding problems.

Using the assembled tools, we carry out the parametrix construction, for Dirich-
let boundary conditions, in Chapter 7. In that chapter we also produce A+/A−

as a microlocal model for the initial value problem with homogeneous Dirichlet
boundary conditions, in the grazing case.

In Chapter 8 we tackle the Neumann boundary problem. We analyze the Neu-
mann operator, establishing formulas (1.5.17) and (1.5.19). The operator AΦ± +B
is a hypoelliptic operator in OPS1

1/3,0;AΦiT + B is more complicated, but as we

show, its parametrix has a form not essentially more complicated then that of ΦiT
itself.
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We end Chapter 8 by showing that different choices of solutions to the transport
equations yield different expressions for the Neumann operator. This leads to op-
erator identities of a rather subtle nature, which we exploit in Chapters 9 and 10.
Chapter 9 studies a calculus of operators containing AΦ± +B, using Airy operator
identities. Some of these results can be obtained using Sm1/3,0 symbol calculus, but

combinatorial complications in symbol expressions seem to hide some of the fea-
tures of the Airy operator calculus. For the operator calculus containing AΦiT +B,
studied in Chapter 10, these Airy operator identities play an even more substantial
role, as the ordinary pseudifferential and Fourier integral calculi are not effective.

Using the results on Airy operator calculus from Chapters 9 and 10, we tackle a
number of other boundary problems in Chapters 11 and 12, including transmission
problems, the boundary problem (1.0.9) arising from Maxwell’s equations, and var-
ious types of coercive and non-coercive boundary problems for first order systems.

At the end are several appendices. In Appendix A we derive needed properties
of the Airy functions Ai(z) and A±(z), and associated Airy quotients. In Appendix
B we work out the problem of scattering by a sphere, via separation of variables.
We show how the results so obtained can be put in the form (1.5.1) using the
uniform asymptotic expansion of Bessel functions for large order and argument.
Appendix C covers background material on wave front sets on bounded domains,
and Appendix D discusses some results on Fourier integral operators with singular
phases, of use in Chapters 5 and 6.



25

Chapter 2: Folds, involutions and folding relations

As mentioned in Chapter 1, the basic geometric structure that arises in the
study of boundary problems, with bicharacteristics simply tangent to the boundary,
is a folding Lagrangian relation. The reduction of such relations to normal form
is carried out in the next chapter. This is a conjugation problem in symplectic
geometry. The underlying analytic problem, of the reduction to normal form of a
folding relation, is solved in this chapter, without the symplectic structure. This
somewhat simplifies the initial discussion. It should be noted however that the
stability, in the sense of singularity theory, of the symplectic problem is lost in the
case of a general folding relation.

The fundamental result of this chapter is Proposition 2.3.10 which gives a normal
form (under change of coordinates) for a pair of smooth involutions (both orienta-
tion reversing) which fix pointwise a certain hypersurface, and which have different
linearizations at a base point on the hypersurface.

In the first section we discuss Whitney folds and their relation to involutions.
The way folds arise from the tangency of a vector field to a hypersurface is exam-
ined in §2.2 and then in §2.3 the basic notion of a folding relation is introduced;
the fundamental result is then stated in terms of folding relations and equivalently
in terms of involutions. The reduction to normal form for two involutions is carried
out, in the sense of Taylor series, in §2.4. To remove the ‘flat’ error terms a con-
vergence argument is needed (the Taylor series does not converge in general, even
for real analytic problems). This is developed as a ‘scattering problem’ in §2.5.
The proof of the normal form for pairs of involutions is given in §2.6; this is briefly
extended in §2.7 to give the normal form for folding relations.

The last two sections contain some extensions of the normal form theorem. In
§2.8 problems concerning the existence of functions with specified relation between
their even and odd parts under the two involutions are solved; these will later be
applied to the solution of transport equations, in Chapter 4. In §2.9 the whole
discussion is (easily) extended to the homogeneous case.

§2.1: Folds

Let Y and Z be C∞ manifolds of the same dimension, k. Although all consid-
erations here will be local it is convenient to maintain invariant notation as much
as possible, to suggest always the freedom to make coordinate changes. Consider a
C∞ map from Y to Z:

(2.1.1) F : Y −→ Z.

The graph of F is a C∞ submanifold of the product Z × Y :

(2.1.2) G = gr(F ) = {(z, y) ∈ Z × Y ;F (y) = z}.
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Indeed, a C∞ submanifold G ⊂ Z×Y is, near m ∈ G, the graph of a C∞ map from
a neighborhood of ȳ ∈ Y to Z if and only if the projection

(2.1.3) πY : G −→ Y is a diffeomorphism near m with πY (m) = ȳ.

Now, if (2.1.3) holds then the image of ȳ is z̄ = πZ(m). Of course the map defined
by G is a local diffeomorphism from a neighborhood of ȳ to a neighborhood of z̄ if
and only if the analogue of (2.1.3) holds for the other projection:

(2.1.4) πZ : G −→ Z is a diffeomorphism near m.

The simplest case in which (2.1.3) holds but (2.1.4) is violated is that of a map
F with Whitney fold at y. The map F as in (2.1.1) is said to have a Whitney fold
at ȳ provided the differential:

(2.1.5) F∗ : TȳY −→ TzZ has rank k − 1,

and provided furthermore that, if νY and νZ are C∞ k-forms non-zero at ȳ and z̄
respectively, then

(2.1.6) F ∗νZ = fνY , f(ȳ) = 0, df(ȳ) 6= 0.

A classical result of Whitney shows that such a map may be brought to normal
form by diffeomorphisms in Y and Z. In fact, there are local coordinates y1, . . . , yk
in Y, based at ȳ, and z1, . . . , zk in Z, based at z̄ with respect to which:

(2.1.7) F (y1, . . . , yk) = (y1, . . . , yk−1, y
2
k) = (z1, . . . , zk).

The proof of (2.1.7) is elementary. First note that the function f in (2.1.6)
is well-defined up to a non-vanishing C∞ multiple so the singular surface of F is
well-defined by

(2.1.8) S = {f(y) = 0}.

From (2.1.6), S is a C∞ hypersurface in Y near ȳ and from (2.1.5) F is a diffeomor-
phism of a neighborhood of ȳ in S to a hypersurface SZ = F (S) in Z through z̄.
Now N∗SZ is the annihilator of the range of F∗ on TyY, y ∈ S, so if g is a defining
function for SZ , F

∗g must vanish with its differential at S. Thus F ∗g = g′f, g′

being C∞. In fact:

(2.1.9) F ∗g = h · f2, h being C∞ near ȳ with h(ȳ) 6= 0,

since from (2.1.6) g′ must vanish simply on S. In particular the image under F of
a neighborhood of ȳ lies on one side of SZ so the normal to SZ is oriented at z̄.
Now (2.1.7) can be stated in the strengthened form that if z1, . . . , zk−1, zk are any
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Figure 2.1, A Fold

coordinates in Z near z̄ in which SZ is locally defined with the correct orientation
by zk = 0, (so if g = zk in (2.1.9) then h > 0) there are local coordinates y1, . . . , yk
in Y with respect to which (2.1.7) holds. In fact this construction gives two different
coordinate systems of this type in Y, yj = F ∗zj , j < k, and yk = ±h1/2f, if g = zk
in (2.1.8).

This last ambiguity in the coordinates corresponds to the fact that a fold map
F defines a C∞ involution on Y, near ȳ, and on the graph G:

(2.1.10) I = I0 where I0(y1, . . . , yk) = (y1, . . . , yk−1,−yk) = (z1, ..., zk).

Indeed, I is invariantly defined on Y near ȳ by

(2.1.11) I(y) = y′ if f(y) = f(y′) and y 6= y′ unless y = y′ ∈ S.

As an involution on the graph G of F, I is defined by using the diffeomorphism
(2.1.4) intrinsically by:

(2.1.12) I(m′) = m′′ if πZ(m′) = πZ(m′′), m′ 6= m′′ unless m′ = m′′ ∈ S.

Here we abuse notation somewhat by regarding S as a submanifold of G. As has
just been shown the reduction of the fold map to the normal form (2.1.7) reduces
the corresponding involution to the normal form (2.1.10). If I is any C∞ involution
defined near some point m ∈ G, with the appropriate formal properties:

I·I = Id near m, I = Id on a hypersurface S and I exchanges the two sides of S,

then I can be reduced to the normal form (2.1.10) in some coordinates y1, . . . , yk in
G. Indeed if y′j , j = 1, . . . , k− 1 are C∞ functions with independent differentials on
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S at m the even parts yj = (I∗y′j+y′j)/2 are invariant under I and are independent
on S and together with the I-odd function yk = (I∗y′k − y′k)/2, where S is defined
by y′k = 0, give such coordinates.

More significantly the reduction of the fold map to normal form (2.1.7) can be
deduced directly from the reduction of the corresponding involution I to the normal
form (2.1.10). This an easy consequence of the following result which is left as an
exercise.

Exercise 2.1.13: Any C∞ function, f, defined near 0 ∈ Rk which is even (resp.
odd) under I0 can be written in the form

(2.1.14) f(y1, . . . , yk−1, yk) = g(y1, . . . , yk−1, y
2
k) (resp. ykg(y1, . . . , yk−1, y

2
k))

for some C∞ function g defined near 0 ∈ Rk. Is g uniquely defined by (2.1.14)?

§2.2: Tangency of vector fields

The manner in which maps with fold singularity arise in the study of boundary
problems is through the examination of the properties of vector fields tangent to
some hypersurface. Consider a manifold M, of dimension k, with base point m ∈M.
Suppose that, near m, M has a foliation with one dimensional leaves. That is, M
is equipped with a C∞ vector bundle

(2.2.1) W ⊂ TM, dimfibreW = 1.

The leaves of the foliation near m are just the integral curves of any C∞ section, V,
of W not vanishing at m. Of course any other C∞ section is a multiple of V near
m, so the (unparametrized) curves are independent of this choice. Now suppose in
addition that a hypersurface in M, passing through m, is given:

(2.2.2) m ∈ K ↪→M, codim(K) = 1.

The simplest, and generic, state of affairs is when W is transversal to K.

(2.2.3) TmK +Wm = TmM.

In this case, always locally near m, each leaf of M passes through a unique point
of K, so restricting M to be a small neighborhood of m there is a map

(2.2.4) ν : M −→ K,

sending each point of M to the point on K on the same curve of M. Then ν has
surjective differential at m, so every C∞ function on K is the restriction to K
of a C∞ function on M which is constant on the leaves of M. The transversality
condition (2.2.3) can be restated as:

(2.2.5) V κ(m) 6= 0, if κ = 0 on K, dκ(m) 6= 0, V a section of W, V (m) 6= 0.
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Thus if K is any hypersurface through m transversal to M the map (2.2.4) can be
considered as a local isomorphism

M/W ←→ K,

from the space of leaves of M. This gives M/W a C∞ structure which is clearly
independent of the choice of transversal K.

Another way of stating these elementary results is that if K is transversal to
W at m and V is a section of M with V (m) 6= 0 then there are local coordinates,
x1, . . . , xk, in M in which m is the origin and in terms of which

(2.2.6) K = {x1 = 0}, V =
∂

∂x1
spans W.

Suppose more generally that K ↪→ M is any submanifold passing through m.
Then sending each point of K to the leaf through it gives a map:

(2.2.7) ρK : K −→M/W.
This map is always C∞ since it is just the inclusion in M followed by projection
onto M/W. In view of (2.2.5), the simplest case of the failure of (2.2.3) is described
by:

(2.2.8) V κ(m) = 0, V [V κ] 6= 0 at m, V, κ as in (2.2.5),

which is the case of most interest here. This corresponds to the integral curves of
W being simply tangent to K. The foliation W near a point of simple tangency as
in (2.2.8) can always be reduced by a coordinate transformation to the model case
in M = Rk, with coordinates x1, . . . , xk:

(2.2.9) K = {x1 = 0}, W = Span
{ ∂

∂xk
− 2xk

∂

∂x1

}
.

Figure 2.2
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For this example the integral curves are the parabolas x1+x2
k =const, xj =const,

1 < j < k. The reduction to the normal form (2.2.9) is essentially equivalent to the
following fact:

(2.2.10) ρK has a Whitney fold at m ∈ K ⇐⇒ (2.2.8) holds.

If κ is a defining function for K then set θ = V κ, where V is some non-vanishing
section of M. By hypothesis (2.2.8) the surface

T = {θ = V κ = 0}

is transversal to W. Taking coordinates as in (2.2.6) (with different numbering)
gives

V =
∂

∂xk
, θ =

∂κ

∂xk
= xk =⇒ κ =

1

2
x2
k + g(x1, x2, . . . , xk−1).

Since dκ(m) 6= 0, by hypothesis, 2g can be introduced as a new variable in place
of one of the xp, p < k. Relabelling it as x1, ensures that K = {x1 + x2

k = 0}.
A further coordinate change in which x1 is replaced by x1 + x2

k reduces K and W
to the form (2.2.9). Not only does this prove the reducibility to (2.2.9) but shows
that, given (2.2.8), ρK has a Whitney fold as claimed in (2.2.10).

Conversely, suppose that K is a C∞ hypersurface through m such that the map
ρK in (2.2.7) has a Whitney fold. Thus K has an involution, J , exchanging the
points identified by ρK . Let x1, x2, . . . , xk−1, be coordinates in M/W such that
zk, ρ

∗
Kxp, 1 < p < k, form a coordinate system on K where z2

k = ρ∗Kx1 and
zk is odd under J . Such coordinates exist because ρK has a fold. Now, extend
x1, x2, . . . , xk−1 to functions x′1, x2, . . . , xk−1 on M constant on the leaves of W.
Let xk be a C∞ extension off K of zk, and set x1 = x′1 − x2

k. Since x′1 = x2
k on

K, x1 = 0 defines K. Moreover, x1 + x2
k, x2, . . . , xk−1 are constant on the leaves of

W, so (2.2.9) holds in these coordinates, and hence (2.2.8) holds too. Summarizing
this simple construction gives:

Lemma 2.2.11. Let K ⊂M be a hypersurface simply tangent to the one-dimensional
foliation W along the submanifold S, in the sense of (2.2.8) or (2.2.10). Assume
(x1, . . . , xk−1) are coordinates in M/W near m with the image of the fold set
in K given by S = {zk = 0} where (z2, . . . , zk) are coordinates in K such that
ρ∗Kxj = zj , 1 < j < k, ρ∗Kx1 = z2

k. Then there are coordinates (x1, . . . , xk) in M
with respect to which (2.2.9) holds, K can be identified with its original coordinates
as {x1 = 0} and on K, zj = xj , 1 < j < k, xk = z2

k.

Exercise 2.2.12: Suppose W is a 1-dimensional foliation and that K is a hyper-
surface, to which W is simply tangent in the sense of (2.2.8), at a point m. Show
that any C∞ function on K invariant under the involution, associated to ρK by
(2.2.10), can be extended to a C∞ function, near m, constant on the leaves of W.
Is this extension locally unique?
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§2.3: Folding relations

We have been considering here the properties of maps with simple Whitney folds.
We must however consider the more complicated problem of a C∞ relation G from
Y to Z, manifolds of the same dimension k, with folds in both directions. That is

(2.3.1) G ⊂ Z × Y, πY , πZ have folds at m ∈ G.

The generic case of such a structure would correspond to the two fold hypersurfaces
SY , SZ ⊂ G being transversal at m. This is not the case which we consider here
because, as will be discussed in the next chapter, the presence of a symplectic
structure imposes additional constraints. Instead we shall examine the case of a
folding relation defined as follows.

Definition 2.3.2. A C∞ submanifold G ⊂ Z × Y, where dim(Z) = dim(Y ) =
dim(G), is a folding relation at m ∈ G if near m the two projections πY and πZ
from G are both folds and have the same singular hypersurface S ⊂ G.

The main result of this chapter is:

Theorem 2.3.3. If G ⊂ Z × Y is a folding relation at m then there are local
coordinates y1, . . . , yk in Y near πY (m) and local coordinates z1, . . . , zk in Z near
πZ(m) with respect to which G = G0 where:

(2.3.4) G0 = {(z1, . . . , zk, y1, . . . , yk) ∈ R
k×R

k; zk = (z1−y1)2, zj = yj , j ≥ 2}.

Figure 2.3
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The principal step in the reduction of a folding relation to the normal form
(2.3.4) is the reduction of the two involutions on G to simultaneous normal forms.
On G0 we can take as coordinates

(2.3.5) y1, z1, z2, . . . , zk−1

and in terms of these coordinates the two involutions are

(2.3.6)

{
(y1, z1, z2, . . . , zk−1) 7−→ (y1, 2y1 − z1, z2, . . . , zk−1) from πY

(y1, z1, z2, . . . , zk−1) 7−→ (2z1 − y1, z1, z2, . . . , zk−1) from πZ .

In terms of the less symmetric coordinates

(2.3.7) t1 =
1

2
y1, t′′ = (y2, . . . , yk−2), tk = y1 − z1.

these two involutions become

(2.3.8) I0(t) = (t1, t
′′,−tk)

and

(2.3.9) J0(t) = (t1 + tk, t
′′,−tk).

Observe, from (2.1.5), (2.2.8) that the null space of the differential of a map at
a fold point is precisely the −1-eigenspace of the corresponding involution. Since
they agree on the common singular hypersurface S, the two involutions I and J
defined on a folding relation G by the two projections could have differentials the
same at m if and only if the differentials of the projections have the same null space.
However, if πY and πZ have a common null space then the inclusion:

πZ × πY : G ↪→ Z × Y

cannot have injective differential, which violates the assumption that G is a C∞ sub-
manifold. Thus the two involutions satisfy the hypothesis in the following proposi-
tion.

Proposition 2.3.10. Let G be a C∞ manifold of dimension k, m ∈ G a point
and I and J two C∞ involutions defined on a neighborhood of m both point wise
fixing a C∞ hypersurface S through m and exchanging the two sides of S. Then if I
and J have different differentials at m there exist local coordinates t1, t

′′, tk, t
′′ =

(t2, . . . , tk−1) in G near m with respect to which I = I0, J = J0, the normal forms
being given by (2.3.8) and (2.3.9).

The result in Proposition 2.3.10 is a conjugation problem. That is, we seek a
local diffeomorphism F fixing the origin, thought of as a coordinate transformation,
such that

(2.3.11) I = F−1 · I0 · F and J = F−1 · J0 · F.
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Obtaining the normal form (2.3.8) alone is straightforward as noted above. In
the next section the preliminary material required to solve the problem in the sense
of formal power series is developed. That is, we initially try only to find F so that
(2.3.11) is true only in the sense of Taylor series at the common fixed hypersurface
of the two involutions. In §2.5 a convergence argument is given which allows the
flat remainder terms in (2.3.11) to be removed. This is actually carried out in §2.6.

Exercise 2.3.12: Let U be a two dimensional foliation (so integrable) near some
point m and suppose that it is simply tangent to a hypersurface K along a sub-
manifold S ⊂ K of codimension 1, in the sense that each non-vanishing section of
U is simply tangent to K along S. Select a commuting basis of U and show that
the two involutions defined on K by (2.2.10) satisfy the hypotheses of Proposition
2.3.10. Use this result to show that local coordinates can be introduced in terms of
which

(2.3.13)

K = {x1 = 0}, S = {xk = x1 = 0},

U1 = Span
{ ∂

∂xk
− 2xk

∂

∂x1
,

∂

∂xk
+

∂

∂xk−1
− 2xk

∂

∂x1

}
.

§2.4: Formal power series

Consider first the linear version of Proposition 2.3.10.

Lemma 2.4.1. If I and J are two different linear involutions on a real vector
space, E, both point wise fixing a hyperspace S and neither being the identity, then
there are linear coordinates in which (2.3.8), (2.3.9) hold.

Proof. The reduction discussed above gives linear coordinates in which I = I0 is
given by (2.3.8). Thus S is given by {tk = 0} and J is the identity on S. Consider
ek = (0, ..., 0, 1) spanning the −1 eigenspace of I0:

J ek = −ek + e′,

where S 3 e′ 6= 0, since J · J = Id and J · I0 6= Id . Changing basis in S so
e′ = (1, 0, ..., 0) gives (2.3.9) without disturbing (2.3.8) and proves the Lemma.

Now consider the model case, with involutions (2.3.8), (2.3.9). Let Dp ⊂ C∞(Rk)
be the space of C∞ functions vanishing to order p at S, i.e.,

(2.4.2) g ∈ Dp ⇐⇒ g = tpkg
′, g′ ∈ C∞(Rk) and D∞ =

⋂

p

Dp.

For K = I0 and J0 consider the subspaces

DpE(K), DpO(K) ⊂ Dp

of functions respectively even and odd under the involution K.



34

Lemma 2.4.3. For any q ≥ p = 0, 1, 2, . . . ,∞,

(2.4.4) D2p = D2pE(I) +D2pE(J ) +D2q+2,

(2.4.5) D2p+1 = D2p+1O(I) +D2p+1O(J ) +D2q+1.

Proof. Consider (2.4.4) for q = p. From the definition (2.4.2) g ∈ D2p, modulo
terms in D2p+2, is just:

(2.4.6) g ≡ g(t′)t2pk + h(t′)t2p+1
k .

The first term is even under I0 so can be absorbed in the first term on the right in
(2.4.4). Moreover if f(t′) is any C∞ function then from Taylor’s formula

(2.4.7) −f(t1, t
′′)t2pk + f(t1 +

1

2
tk, t

′′)t2pk ≡
1

2

∂f(t′)

∂t1
· t2p+1
k modulo D2p+2.

Since the first and second terms on the left in (2.4.7) are in D2pE(I) and D2pE(J )
respectively, it is only necessary to solve the ordinary differential equation

(2.4.8)
∂f(t′)

∂t1
= 2h(t′)

to see that the second term in (2.4.6) is also in the sum on the right in (2.4.4). The
converse is obvious, so this proves (2.4.4) for q = p.

Iterating this special case gives (2.4.4) for every finite q ≥ p. Moreover, the
construction is such that for a fixed g ∈ D2p, the decomposition (2.4.4) can be
obtained for each q ≥ p:

g ≡ fI,q + fJ ,q mod D2q+2,

with the sequences {fI,q}, {fJ ,q} converging in the sense of formal power series:

(2.4.9) fI,q −→
∑

p≥r≥q

gr(t
′)t2rk

and similarly for fJ ,q. Using Borel’s Lemma these can be summed to give C∞
functions invariant under the two involutions, so proving (2.4.4) for q =∞.

The result, (2.4.5), dealing with functions odd under the two involutions follows
in the same way. The only difference between the two cases is that (2.4.4) shows
that, modulo D∞, any function g can be written as the sum of functions even under
the two involutions, whereas in the odd case (2.4.5) it is, of course, necessary that
the function g must vanish on S.
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Next we consider the analogous result for vector fields. Let Vp be the space of
C∞ vector fields on Rk which are tangent to S = {tk = 0} to order p in the sense
that:

V ∈ Vp ⇐⇒ V : Dq −→ Dq+p, ∀ q ≥ 0.

Thus V ∈ Vp if it is of the form

(2.4.10) V =

k∑

j=1

aj
∂

∂tj
,

with aj ∈ Dp, j < k, ak ∈ Dp+1. As above we shall use the notation:

V ∈ VpE(K) ⇐⇒ V ∈ Vp & K∗V = V, K = I0 or J0,

for the spaces of vector fields invariant under the two model involutions.

Lemma 2.4.11. For any q ≥ p ≥ 0,

V2p = V2pE(I) + V2pE(J ) + V2q.

Proof. Observe that

(2.4.12)

(I0)∗∂j = ∂j , 1 ≤ j < k, (I0)∗∂k = −∂k,

(J0)∗∂j = ∂j , 1 ≤ j < k, (J0)∗(∂k −
1

2
∂1) = −(∂k −

1

2
∂1).

Thus with the decomposition (2.4.10) V ∈ V2pE(I) if

aj ∈ D2pE(I), 1 ≤ j < k, ak ∈ D2p+1O(I),

and similarly, V ∈ V2pE(J ) if

a1 +
1

2
ak, aj ∈ D2pE(J ), 1 < j < n, ak ∈ D2p+1O(J ).

Thus to decompose a general vector field V, in (2.4.10), as desired first use (2.4.4)
to decompose the coefficients aj , 1 < j < k. Then use (2.4.5) to decompose ak:

ak = aI,k + aJ ,k,

with the aK,k odd under K0. Using (2.4.4) again it can be arranged that

a1 +
1

2
aJ ,k = aI,1 + aJ ,2,

with the aK,1 even under K. This ensures that

V = VI + VJ mod V∞,
with the VK invariant under K, proving the Lemma.

Exercise 2.4.13: Let f be a C∞ function which is invariant under both the model
involutions I0 and J0. Show that the Taylor series of f at tk = 0 is of the form

(2.4.14)
∞∑

k=0

fj(t2, . . . , tk−1)t2kk .

Show that, in a given neighbourhood of 0, there are infinitely many such C∞ in-
variant functions with the same Taylor series (2.4.14).
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§2.5: A scattering problem

As a second preliminary step to the proof of Proposition 2.3.10 we shall prove
a result analogous to the existence of wave operators in scattering theory. The
connection between such existence results and conjugation problems is well-known
– see in particular the work of Sternberg [St1].

On Rk let T be a map which is equal, to infinite order, to a shift in a particular
hyperplane and at infinity:-

(2.5.1)

{
T (y1, . . . , yk) = (y1 + 1 + Z1(y), y2 + Z2(y), . . . , yk + Zk(y)),

where ∀ p ∈ N, α ∈ N
k ∃ Cα,p s.t. |Dα

yZj(y)| ≤ Cα,p|yk|p(1 + |y|)−2p.

In particular this implies that T is invertible in a suitably small strip |yk| ≤ δ for
some δ > 0 with the inverse having similar estimates to (2.5.1) in that region, for
the deviation from the inverse of the shift. Setting

T0(y) = (y1 + 1, y2, . . . , yk),

we define ‘intertwining operators’ as limits, when they exist,

(2.5.2) W±(y) = lim
n→±∞

T−n
0 Tn.

These are analogous to ‘wave operators’ in the theory of scattering of waves.

Proposition 2.5.3. Given c > 0 there exists ε > 0 such that in the region R±(c) =
{|tk| < ε,∓t1 < c} the limit (2.5.2) exists in the Schwartz topology, i.e. the maps
W± : R±(c) −→ Rk are C∞ and such that

(2.5.4) T−n
0 · Tn(y) = W±(y) + En(y), En(y) = (En,1(y), . . . , En,k(y)),

where for each p ∈ N, α ∈ Nk there exists Cα,p such that

(2.5.5)

{
|Dα

yEn,`(y)| ≤ Cα,pn−p(1 + |y|)−2p|yk|p, ∀ ± n ≥ 0,

|Dα(W±,`(y)− y`)| ≤ Cα,p(1 + |y|)−2p|yk|p,

on R±(c).

One of the simplest ways that a sequence of maps with the property in (2.5.4)
and (2.5.5) might arise is as the sequence of values at integer times of the solution
of a system of differential equations. Since we shall in fact reduce the proof of
Proposition 2.5.3 to this case we first record a suitable result of this type.

Lemma 2.5.6. Let W (r, y) be a C∞ vector field on Rk depending smoothly on a
parameter r ∈ R and satisfying estimates
(2.5.7)
|D`

rD
α
yWj(r, y)| ≤ C`,α,p(1 + |r|+ |y|)−2p|yk|p, ∀ p, ` ∈ N, α ∈ N

k, j = 1, . . . , k.
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Then the solution to

(2.5.8)
d

dr
Yj(r, y) = Wj(r, Y ), Yj(0, y) = yj, j = 1, . . . , k

defines a family of C∞ maps Q(r) : Rk 3 y 7−→ Y (r, y) ∈ Rk which are invertible,
such that the Yj satisfy the estimates (2.5.7) for all ` > 0 and furthermore

(2.5.9) lim
t→∞

Q(r) = Q(∞)

exists in the sense of (2.5.4) and (2.5.5).

Proof. The main point is that the solution of (2.5.8) must exist for all r. Certainly
it exists locally so it suffice to prove that it remains bounded, uniformly in r and
locally uniformly in y. From (2.5.7) there is an absolute bound on the coefficients
of W :

(2.5.10) |Wj(r, ·)| ≤ C(1 + |r|)−2,

which shows, by integration of (2.5.8), that the solution is so bounded.
The estimates (2.5.7) for ` > 0 and with Wj replaced by Yj now follow by

differentiation of (2.5.8). Integrating (2.5.8) then gives:

(2.5.11) Yj(r, y) = yj +

∫ ∞

0

Wj(r, Y (r, y)) dr−
∫ ∞

r

Wj(r, Y (r, y)) dr.

The first two terms on the right give the limiting map Q(∞). Clearly the error,
the last term in (2.5.11), decreases rapidly with all its derivatives as |r| → ∞ or
|y| → ∞ and also as |yk| → 0, giving the estimate (2.5.5) and proving the lemma.

Proof of Proposition 2.5.3. The first step is to obtain T by integration of a (pa-
rameter dependent) vector field. Set S = T−1

0 T. By assumption S(y) = y + F (y)
where

(2.5.12) |Dα
yFj(y)| ≤ Cα,p(1 + |y|)−2p|yk|p, ∀ p.

Thus T (y) = (S1(y) + 1, S2(y), . . . , Sk(y)) . We shall interpolate between T (y) and
the identity by setting

(2.5.13) T (r)(y) = (y1 + φ(r)F1(y) + r, y2 + φ(r)F2(y), . . . , yk + φ(r)Fk(y)) ,

where φ ∈ C∞(R) has 0 ≤ φ(r) ≤ 1, φ(r) = 0 for r < 1/4 and φ(r) = 1 for r > 3/4.
Certainly, from (2.5.13), T (r) is a diffeomorphism from a region |yk| ≤ δ onto its
range, for all r ∈ [0, 1).

Differentiating the components of T (r) gives

(2.5.14)
d

dr
T

(r)
j (y) =

{
1 + φ′(r)F1(y), j = 1,

φ′(r)Fj(y), j > 1.
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Since T (r) is a diffeomorphism this defines a vector field, in some strip, by

(2.5.15) Wj(r, T
(r)(y)) = φ′(r)Fj(y) + δj1.

Setting Wj(r, y) = δj1 + Vj(r, y) it is clear that

(2.5.16) |D`
rD

α
y Vj(r, y)| ≤ C`,α,p(1 + |y|)−2p|yk|p, ∀ p, α, `.

As we shall see below the integral curves of W stay near yk = 0 so for simplicity
we shall assume that the Vj have been extended globally to vanish in |yk| > 1 and
still satisfy (2.5.15).

It is important to note that W is constant, equal to ∂1 near both r = 0 and r = 1.
It can therefore be extended to be periodic of period one in r and the estimates
(2.5.15) then hold uniformly for r ∈ (−∞,∞). Moreover from (2.5.14) it follows
immediately that

(2.5.17) T (n)(y) = Tn(y), ∀ n ∈ N.

This is the interpolating curve of diffeomorphisms which will be used below.
Consider next the 1-parameter family of diffeomorphisms

(2.5.18) S(r) = T−r
0 T (r), T r0 (y) = (y1 + r, y2, . . . , yk), ∀ r ∈ R.

We can immediately find the vector field which generates S(r) by differentiation:

d

dr
S

(r)
j (y) =

d

dr
T

(r)
j (y)− δj1

= Wj(r, T
(r)
j (y))− δj1

= Vj(r, S
(r)
1 (y) + r, S

(r)
2 (y), . . . , S

(r)
k (y)).

(2.5.19)

Thus the vector field generating S(r) is simply Vj(r, y1 + r, y2, . . . , yk). For any
constant c > 0 we can truncate this near y1 = −c and in r < 0 setting

(2.5.20) Ṽj = φ(r + 1)φ(y1 + c+ 1)Vj(r, y1 + r, y2, . . . , yk).

Now, as |y| or r → ∞ this vector field, Ṽ vanishes rapidly with all derivatives,

so Lemma 2.5.6 applies to it. The global diffeomorphisms S̃(r) generated by Ṽ
therefore satisfy (2.5.9). In particular these diffeomorphisms approach the identity
rapidly and uniformly as |yk| → ∞. Thus the extension of V, after (2.5.16), is
immaterial and

(2.5.21) S̃(r)(y) = S(r)(y) in y1 > −c, r > 0, |yk| < ε(c), ε(c) > 0.

Thus Lemma 2.5.6 applies directly to prove the half of Proposition 2.5.3 dealing
with R+(c). Since the other case is clearly similar this completes the proof.



39

The limiting maps W± defined by Proposition 2.5.3 are invertible in R+(c) for
any c. Moreover

(2.5.22) T0 · (T−n−1
0 · Tn+1) = (T−n

0 · Tn) · T.

Passing to the limit on both sides gives the desired intertwining property

(2.5.23) T0 ·W± = W±T.

Exercise 2.5.24: Assuming that T satisfies the hypotheses of Proposition 2.5.3
show that W+ is uniquely fixed in some region R+(c) by the estimates (2.5.5) and
the conjugation condition (2.5.23) (which may be required to hold in a larger strip).

§2.6: Proof of Proposition 2.3.10

As remarked after the statement of the Proposition it can be assumed that I = I0
is already in the form (2.3.8). Let J0 be the involution (2.3.9), to which J is to be
reduced, whilst preserving the form of I0. Since J fixes S = {tk = 0} pointwise,
(2.6.1)

J ∗g(t′) = g(t′)+Q(t′) ·(∂g(t′)

∂t′
) ·tk+O(t2k), J ∗tk = −T (t′) ·tk+O(t2k), ∀ g ∈ C∞,

with T > 0, Q = (Q1, .., Qk−1) 6= 0, at 0, since the involutions are different.
Moreover from J · J = Id, it follows that T = 1. There are k − 2 independent
solutions of

(2.6.2) Q · ∂
∂t′

Zj = 0, j = 2, ..., k− 1,

and a further independent solution of

Q · ∂
∂t′

Z1 = 1.

Together the change of variables from t = (t1, t
′′, tk) to (Z1(t′), Z ′′(t′), tk) reduces

J to the form (2.6.1) with T = 1, Q = (1, 0, ..., 0):

(2.6.3) J ∗tj = tj + δj1 · tk + O(t2k), 1 ≤ j < k, J ∗tk = −tk + T ′(t′) · t2k + O(t3k).

Next we use the freedom to make a change of variables preserving the form of
I0 to ensure that T ′(t′) = 1. Clearly, as long as g(t′) > 0 the transformation
(2.6.4)

(t1, t
′′, tk) 7−→ (h(t1, t

′′), t′′, g(t′)tk), t′′ = (t2, . . . , tk−1),
∂h(t1, t

′′)

∂t1
= g(t1, t

′′)

does leave I0 unchanged. Moreover the relationship between h and g means that
(2.6.5)

J ∗h(t1, t
′′) = h(t1, t

′′) +
∂h(t1, t

′′)

∂t1
· tk +O(t2k) = h(t1, t

′′) + (g(t1, t
′′) · tk) +O(t2k),
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so the pull-back under J of the each of the first k − 1 of the new coordinates still
satisfies (2.6.3). On the other hand for the last coordinate we obtain

J ∗(g(t′)tk) = −(g(t′)tk) +
[
T (t′)g(t′)− ∂g(t1, t

′)

∂t1

]
· t2k + O(t3k).

Thus if we choose g to satisfy the initial value problem

(2.6.6)
∂g(t1, t

′)

∂t1
= T (t′)g(t′), g

∣∣
{t=0}

= 1,

then in the new coordinates (2.6.4) we get (2.6.3) with T ′ = 0.
In fact we shall proceed to show that this achieves the desired reduction up to

the next higher order. Applying J again and using (2.6.3) shows that

J ∗(tj) = tj + δj1 + Fj(t
′) · t2k + O(t3k) =⇒

(J 2)∗(tj + δj1
1

2
tk) = (tj + δj1

1

2
tk) + 2Fj(t

′) · t2k + O(t3k), 1 ≤ j < k.

It therefore follows from the fact that J is an involution that

(2.6.7) J ∗(tk) + tk, J ∗(tj)− tj , J ∗(t1)− t1 − tk = O(t3k), 1 < j < k.

Now, (2.6.7) can be restated as saying that

(2.6.8) J = F−1J0F, near 0, with (Id−F ∗)Dp ⊂ Dp+2, ∀ p.

Thus the local diffeomorphism F is close to the identity. In particular there exists
a global 1-parameter family of diffeomorphisms Gt, t ∈ [0, 1] with

(2.6.9)
G1 = F near 0, G0 = Id, Gt = Id outside a compact set,

(Id−G∗
t )Dp ⊂ Dp+2, ∀ p.

In place of the original J we now consider

(2.6.10) Jt = G−1
t · J0 ·Gt,

since J1 = J near 0.
The last condition in (2.6.9) means that Gt is generated by a 1-parameter family

of vector fields Vt ∈ W2, to which Lemma 2.4.11 applies. Let WI(t) and WJ (t)
be the I-even and J -even parts of W(t), modulo W4. Let HI,t and HJ ,t be the
1-parameter families of diffeomorphisms they generate. Define

(2.6.11) G′
t = H−1

J ,t ·Gt ·H−1
I,t ⇐⇒ Gt = HJ ,t ·G′

t ·HI,t.
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This 1-parameter family of diffeomorphisms is generated by the family of vector
fields:

V ′(t) = W1(t) +W2(t) +W3(t),

where W1(t) is the push-forward under Gt ·H−1
I,t of the generator of H−1

J ,t, W2(t) is

the push-forward under H−1
I,t of V (t), the generator ofGt, and W3(t) is the generator

of H−1
I,t . Each of these maps has the last property of Gt in (2.6.9), so

W1(t) ≡ VJ , W2(t) ≡ V (t), W3(t) ≡ −VI(t), modulo W4.

Thus [Id−G′
t]
∗Dp ⊂ Dp+4, ∀ p.

Using Lemma 2.4.11 repeatedly in this way to further factorize Gt gives a se-
quence of factorizations improving (2.6.11),

(2.6.12) Gt = HJ ,t,m ·Gt,m ·HI,t,m,

where (Id−G∗
t,m)Dp ⊂ Dp+m, ∀ p, and HK,t,m are generated by vector fields in

V2E(K). Moreover, as m → ∞ these vector fields converge in the sense of formal
power series at S. That is, successive terms vanish to higher and higher order.
Thus, using Borel’s Lemma to sum, (2.6.12) can be improved to a factorization
(2.6.11) in which the HK,t commute with K and G′

t is a 1-parameter family of
global diffeomorphisms, equal to the identity outside a compact set and to infinite
order at S. Inserting this into (2.6.10), the factor HJ ,t commutes with J0 and so
cancels and the factor HI,t can be carried out as a change of coordinates under
which I0 is preserved. This reduces J to the form (2.6.8) where now in (2.6.10)
Gt = Id outside a compact set and to infinite order at S.

To remove this last factor we shall use Proposition 2.5.3. To do so consider the
singular transformation

(2.6.13) R(t1, t
′′, tk) = (s, t′′, tk), s =

t1
tk
.

This gives a C∞ diffeomorphism

(2.6.14)
R :Dc = {(t1, t′′, tk) ∈ R

k; t1 > ctk, tk > 0}
←→ Ec = {(s, t′′, tk) ∈ R

k; s > c, tk > 0},

for any constant c.

Lemma 2.6.15. Conjugation by R transforms the set of all C∞ maps E : Dc −→
Rk which are diffeomorphisms onto their ranges and are equal to the identity outside
a compact set and to all orders at tk = 0 into the set of all C∞ maps E ′ : Ec −→ Rk

which are diffeomorphisms onto their ranges and are equal to the identity to infinite
order at tk = 0, in tk > C and t1 > C/tk for some C > 0 and rapidly as t1 → ∞
in the sense that if f = (E ′)∗tj − tj , 1 < j ∈ k or f = (E ′)∗s− s then

(2.6.16) |D`
sD

β
t′′D

p
tk

(f)| ≤ C`,β,p,N (1 + |s|)−N , ∀ N.
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Proof. The regions where the maps are the identity correspond under R so it is
enough to check the regularity properties of

(2.6.17) E ′ = R · E ·R−1

in terms of those of E and conversely. Write

(2.6.18) E(t1, t
′′, tk) =

(
t1 + tkT1(t), t′′ + T ′′(t), tk(1 + Tk(t))

)

where the Tj(t) are C∞ with compact supports and vanish to all orders at tk = 0.
Then
(2.6.19)

E ′(s, t′′, tk) =

(
s

1 + T1(stk, t
′′, tk)

1 + Tk(stk, t′′, tk)
, t′′ + T ′′(stk, t

′′, tk), tk + tkTk(stk, t
′′, tk)

)
.

This shows that E ′ is C∞ up to tk = 0 and the rapid decrease in (2.6.16) is also
easy to see, since as s→∞, in the support, tk < C/s→ 0.

In the other direction we can suppose that E ′ is of the form

E ′(s, t′′, tk) =
(
s+G1(s, t′′, tk), t′′ +G′′(s, t′′, tk), tk(1 +Gk(s, t′′, tk))

)
,

where the Gj vanish rapidly as s→∞ or tk → 0. Then

(2.6.20)

E(t1, t
′′, tk) =

((
t1 + tkG1(

t1
tk
, t′′, tk)

)(
1 +Gk(

t1
tk
, t′′, tk)

)
,

t′′ +G′′(
t1
tk
, t′′, tk), tk

(
1 +Gk(

t1
tk
, t′′, tk)

))
.

Thus it is enough to show that if f is a C∞ function satisfying the estimates in
(2.6.16) and vanishing to all orders at tk = 0 then F (t1/tk, t

′′, tk) is C∞. Direct

differentiation shows that it suffices to show the boundedness of t−pk F (t) for all p
but this follows immediately from (2.6.16). This proves the lemma.

Consider the composite map

(2.6.21) T = J · I0.

By the reduction to this point this map is equal to the corresponding model

(2.6.22) T0 = J0 · I0, T0(t1, t
′′, tk) = (t1 + tk, t

′′, tk),

to infinite order at tk = 0 and outside a compact set. The singular change of
variable (2.6.13) transforms T0 to

T0 = R · T0 ·R−1, T (s, t′′, tk) = (s+ 1, t′′, tk),
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just the shift considered in (2.5.2). Applying Lemma 2.6.15 the conjugate of the
map T ,

(2.6.23) T = R · T ·R−1,

therefore satisfies the hypotheses of Proposition 2.5.3. By (2.5.23) the ‘intertwining
operator’ W+ conjugates T to the model operator T0 and the estimates (2.5.5) show
that Lemma 2.6.15 applies to W+.

Thus, the original map T is conjugate to T0 under a map Q+ = R−1 ·W+ · R,
defined in t1 > 0 and equal to the identity to all orders at tk = 0 :

(2.6.24) T = Q+ · T0 ·Q−1
+ .

By selecting the origin so that the base point is in {t1 > 0} this gives a local
conjugation to the model in tk ≥ 0. Now define the full conjugation map by

(2.6.25) Q(t) =

{
Q+(t), tk ≥ 0,

I0 ·Q+ · I0(t), tk ≤ 0.

Since Q+ is the identity to all orders at tk = 0 this is a C∞ local diffeomorphism.
Moreover, directly from (2.6.25)

(2.6.26) Q · I0 = I0 ·Q.

Rewriting (2.6.24) in the form

J · I0 ·Q+ = Q+ · J0 · I0,

and using (2.6.25) shows that

(2.6.27) J ·Q = Q · J0

in tk > 0. The same identity holds in tk < 0 since

J · (J ·Q+) = (Q+ · J0) · J0 = J · (Q · J0).

Thus Q conjugates the involution J to normal form, whilst simultaneously preserv-
ing the form of I0. This completes the proof of the proposition.

Exercise 2.6.28: Assume the hypotheses of Proposition 2.3.10 and in addition let
L be a C∞ submanifold of G through m which is invariant under I but has tangent
space TmL not invariant under the differential of J at m. Show that there are local
coordinates in terms of which the involutions are reduced to normal form and

(2.6.29) L = {t2 = · · · = tp = 0} for some p ≤ k.
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§2.7: Proof of Theorem 2.3.3

Theorem 2.3.3 is a straightforward consequence of Proposition 2.3.10.
Let t1, . . . , tk be coordinates on G as described in Proposition 2.3.10, in which

the two involutions take the reduced form (2.3.8), (2.3.9). Since xj = tj , 1 ≤ j < k
and xk = t2k are invariant under I0 they project to Y as C∞ functions on the image
of πY. These functions can be extended across S to give a coordinate system on
Y. Similarly yj = tj + 1

2 tk, yj = tj , 1 < j < k and yk = t2k project to Z to C∞
functions which may be extended across S to give a coordinate system in Z. Thus,
the defining functions of G0 certainly vanish on G and as they are independent,
G = G0 locally. This completes the proof of Theorem 2.3.3.

Exercise 2.7.1: Let G be a folding relation between two manifolds of the same
dimension, show that in suitable local coordinates G is the union of the graphs of
two maps:

(2.7.2) δ±(y1, y2, . . . , yk) = (y1 ± y1/2
k , y2, . . . , yk).

§2.8: Parity equations

We consider the following functional equation for the two standard involutions
(2.3.8), (2.3.9). Given C∞ functions c(t) and g(t), both even under I0, does there
exist a C∞ function a(t) satisfying:

(2.8.1)
1

2tk
[I∗0a− a] =

1

2
c(t)[I∗0a+ a] + g(t) and J ∗

0 a = a?

Proposition 2.8.2. If c(t) and g(t) are C∞ function defined near 0 and invari-
ant under I0 there is a C∞, J0-invariant, function a(t) satisfying (2.8.1) and the
normalization condition

(2.8.3) a(0) = 1.

The solution to this problem amounts to an extension of the formal power series
and convergence arguments used above to prove the equivalence theorem.

Proof. First consider this at the formal level, that is in terms of formal power series
at tk = 0. If g(t) = t2pk gp(t

′), a term in the Taylor series of an I0-invariant function,
we look for:

a(t) = ap(t1 +
1

2
tk, t

′′)t2pk

Ignoring, in the first instance, higher order terms, equation (2.8.1) becomes:

(2.8.4)
∂ap(t

′)

∂t1
= c(t′, 0)ap(t

′) + gp(t
′).
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If this is satisfied then the error in (2.8.1) is an additional, I0-even, term g(t)
vanishing to order 2p at least at tk = 0.

Proceeding inductively, this shows that there is a formal power series:

(2.8.5) a(t) =

∞∑

0

ap(t1 +
1

2
tk, t

′′)t2pk ,

satisfying (2.8.1) in the formal power series sense. From (2.8.4) each ap(t
′) can be

freely prescribed at t1 = 0, so certainly (2.8.3) can also be satisfied. Thus indeed
the problem can always be solved in the sense of formal power series.

Using Borel’s Lemma, as before, the series (2.8.5) can be summed to give a J0-
even solution of (2.8.1) modulo terms vanishing to all orders at tk = 0. By the
linearity of the problem we can therefore assume that g vanishes to all orders at
S = {tk = 0}. We can also assume it vanishes in t1 < −1, since the problem is local.
Similarly we can suppose that c(t) has support near 0. Suppose that the solution
also vanishes identically in t1 < −1.

Using the requirement that J ∗
0 a = a the equation (2.8.1) can be rewritten:

a = rB∗a+ r′B∗g, B(t) = (t1 − tk, t′′, tk) = T −1
0 in tk > 0,(2.8.6)

r(t) =
1− tkB∗c(t)

1 + tkB∗c(t)
, r′(t) =

−2tk
1 + tkB∗c(t)

.(2.8.7)

Iterating this identity gives

(2.8.8) a =
M+1∑

0

Rm · (Bm+1)∗g + R(M)(B
M+1)∗a,

where the coefficients are

(2.8.9) Rm(t) =



m−1∏

j=0

(Bj)∗r


 · (Bm)∗r′, R(M) =

M∏

j=0

(Sj)∗r.

Near any point in tk 6= 0 unless M satisfies

(2.8.10) M ≤ 2

tk
,

the last term in (2.8.8) is zero by hypothesis on the support of a. Nor does increasing
M change the sum, since g = 0 in t1 < −1 also by hypothesis.

That is, the solution we seek, in tk > 0 is simply

(2.8.11) a =

M+1∑

0

Rm · (Bm+1)∗g.



46

This is a finite sum of at most 2/tk non-zero terms at any point near 0. Naturally
we need to show that this series converges absolutely with all derivatives.

Directly from (2.8.7)

(2.8.12) |1− r(t)| ≤ c|tk|.

Thus the coefficients Rm in (2.8.9) satisfy bounds:

(2.8.13) |Rm(t)| < (1 + c|tk|)M < C if (2.8.10) holds.

Since this last estimate does indeed hold for all non-zero terms, the coefficients in
(2.8.8) are uniformly bounded. Moreover g vanishes to all orders at tk = 0, and
vanishes rapidly as t1 → −∞ (has indeed bounded support) so for any p there exist
Cp such that:

|(Bj)∗g(t)| ≤ Cp|t2pk |(1 + |t1 − 1− jtk|)−p ≤ Cp|tk|p(1 + j)−p, j <
2

tk
.

Thus, uniformly in tk > 0 near 0 the sum (2.8.8) converges rapidly, so defining a
continuous function a(t) which vanishes to all orders as tk ↓ 0.

Since each of the coefficients Rm is given as a product of up to M terms, differ-
entiation of the series (2.8.8) a fixed number, N, times gives a sum of NM series,
each of the same type as in (2.8.8) itself, except that a fixed number of the factors
in (2.8.9), or g, is replaced by some derivative. These series clearly all satisfy the
same type of estimates, uniformly for fixed N. Thus it follows that all derivatives of
a, given by (2.8.8) are continuous and vanish rapidly at tk = 0. Now, the invariance
condition J ∗

0 a = a can be used to define a in {tk < 0}, near 0 so that a vanishes in
{t1 < ∓1,±tk > 0}.

Clearly the function so constructed is C∞ and satisfies (2.8.1), (2.7.2) under these
additional assumptions on g. This completes the proof the proposition.

Exercise 2.8.14: Suppose that b(t) and c(t) are I0-invariant C∞ functions near 0
with c(0) 6= 0. Show that Proposition 2.8.2 remains true if (2.8.1) is replaced by

(2.8.15)
1

2
tkb(t)[I∗0a− a] =

1

2
c(t)[I∗0a+ a] + g(t).

§2.9: Homogeneous relations

In the next chapter symplectic versions of the results above are considered. First
let us briefly note the homogeneous versions. Thus suppose that Y and Z are both
conic manifolds, in the sense that they are R+-bundles over reduced manifolds Y ′,
Z ′. A relation, G, from Y to Z is said to be homogeneous if it intertwines the
R+-actions on the two manifolds. This is the same as demanding that G be a conic
submanifold of the product Z × Y, where the R+-action is the diagonal one:

Z × Y 3 (z, y) −→ (az, ay) ∈ Z × Y, a ∈ R
+.
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Definition 2.9.1. A homogeneous relation G ⊂ Z×Y between two conic manifolds
Y and Z is said to be a homogeneous folding relation at m ∈ Z×Y if it is a folding
relation at m and the generator of the R+-action, at m, is not in the range of the
map:

(2.9.2) (Id−I∗ · J∗) on TmG.

In fact from the normal form Theorem 2.3.3 above it is clear that for any point
in the singular surface S, the range of the map (2.9.2) is 1-dimensional. Clearly it
defines a C∞ line bundle along S, which we shall denote:

(2.9.3) L ⊂ TS.

Referring back to the proof of Lemma 2.4.11 the importance of L can be seen,
since the construction of the splitting of a function into I- and J -even parts uses
integration along the integral curves of L. Thus the independence condition in
Definition 2.9.1:

(2.9.4) the radial actions on S and L are linearly independent.

allows the splitting of homogeneous functions into homogeneous I- and J -even
parts. In fact we can proceed more directly to prove:

Proposition 2.9.5. If G ⊂ Z ×Y is a homogeneous folding relation at m = (z̄, ȳ)
then there are homogeneous diffeomorphisms defined in open cones ΓY , ΓZ around
z̄ and ȳ:

τY : ΓY −→ R
k \ 0, τZ : ΓZ −→ R

k \ 0,

taking ȳ and z̄ to (0, 1, 0, ..., 0) and reducing G to the coordinate form:
(2.9.6)

Gh = (z1, . . . , zk, y1, . . . , yk) ∈ R
2k \ 0; zj = yj , 1 < j ≤ k, yk = y−1

2 (y1 − z1)2.

Similarly there is a homogeneous version of Proposition 2.3.10 from which Propo-
sition 2.9.5 follows easily:

Proposition 2.9.7. Let G be a conic manifold on which there are two C∞ homo-
geneous involutions I and J both fixing, point wise, a hypersurface S through m,
neither the identity and with different differentials at m, then provided (2.9.4) holds
there is a homogeneous diffeomorphism from a cone, M, around m:

τ : Γ −→ R
k \ 0, k = dim(G),

taking m to m̄ = (0, 1, 0, . . . , 0) and conjugating I and J to the normal forms
I0, J0 in (2.3.8), (2.3.9).
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Proof. Using Proposition 2.3.10 this normal form can be achieved by some, possibly
non-homogeneous, diffeomorphism taking m to 0. Translation in t2 commutes with
(2.8.8), (2.8.9) so one can take the base point to be m̄. Then L is spanned by
∂/∂t1. The independence condition (2.8.8) means that there is some C∞ function
f(t2, t3, . . . , tk−1) which satisfies

(rf)(m̄) 6= 0, f(m̄) = 0.

Since f is invariant under I0 and J0, the surface F = {f = 0} is also invariant. The
functions t′j = tj , k 6= 2 on F, and t′2 = 1, then extend uniquely to be homogeneous
of degree one in some cone M around m̄, i.e. as solutions of

rt′j = t′j , j = 1, . . . , k.

The homogeneity of I0 and J0 now shows that they commute with the change of
coordinates from t to t′, since they do so when restricted to F. This completes the
proof of the Proposition.

The reader is left to make the obvious modifications to the proof above of The-
orem 2.3.3 in order to give a proof of Proposition 2.9.5.

Exercise 2.9.8: Show that under the assumption of Proposition 2.8.2, or Exercise
2.8.14, if g is also homogeneous, of any real degree s and c is homogeneous of degree
0, then a homogeneous solution can be found to the parity equation.
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Chapter 3: Folding Lagrangian relations, billiard ball

maps and glancing hypersurfaces

In this chapter symplectic versions of the conjugation result of Chapter 2 are
proved and applied, in particular to show the equivalence of glancing hypersurfaces
in a symplectic manifold. The basic method used is the ‘homotopy method’ in-
troduced by Moser ([Mo]) in a proof of Darboux’ theorem. These results are in
fact generalizations of Darboux’ theorem since the general principle is to first make
the reduction to normal form of the geometric invariants, using Chapter 2, and
then subsequently to reduce the symplectic form by using diffeomorphisms which
preserve the geometrical configurations.

In the first section we briefly recall some of the basic notions of symplectic geom-
etry, including a proof of Darboux’ theorem. Next we introduce the fundamental
notion of a folding Lagrangian relation, in §3.2 and show in §3.3 that the conju-
gation of such a folding relation to normal form, as given by Theorem 2.3.3 can
be carried out with a symplectic transformation. In §3.4 the conjugation theorem
is reformulated in terms of billiard ball maps. The case of primary interest below
concerns homogeneous problems and homogeneous symplectic equivalence is shown
in §3.5. In §3.6 and §3.7 the conjugation theorem is applied to the reduction to
normal form of pairs of glancing hypersurfaces.

§3.1: Darboux’ theorem

A symplectic form, ω, on a C∞ manifold, M, is a closed 2–form which is non–
degenerate in the sense that at each p ∈M,

(3.1.1) v ∈ TpM and ωp(v, w) = 0 ∀ w ∈ TpM =⇒ v = 0.

In particular this implies that M is of even dimension. A symplectic manifold is just
a manifold with a specified symplectic form. The basic form of Darboux’ theorem,
which we extend below, is:

Theorem 3.1.2. If ω is a closed non-degenerate 2-form near p ∈ M then there
are local coordinates x1, . . . , xn, ξ1, . . . , ξn based at p in which

(3.1.3) ω = ωD =
n∑

j=1

dξj ∧ dxj .

Proof. Linear algebra allows us to introduce a basis for TpM, v1, . . . , vn, w1, . . . , wn
such that

(3.1.4) ωp(vi, vj) = 0, ωp(ωi, vj) = δij , ωp(wi, wj) = 0, ∀ i, j = 1, . . . , n.



50

Such a basis can always be realized as the basis induced by local coordinates, x′
i, ξ

′
i,

i.e. vj = ∂/∂x′j and wj = ∂/∂ξ′j. In these coordinates

(3.1.5) ωp =

n∑

j=1

dξ′j ∧ dx′j ,

since this is precisely the meaning of (3.1.4). Thus the difference

(3.1.6) µ = ω − ωD,

where ωD is the form in (3.1.3), is a closed 2–form vanishing at p.
Poincaré’s lemma shows that

(3.1.7) µ = dν near p,

where ν is a C∞ 1–form which also vanishes at p. Indeed, ν can be obtained by
radial integration (see the proof of Lemma 3.2.11 below). Set

ωt = (1− t)ω + tωD,

so ω0 = ω, ω1 = ωD and dωt/dt = µ. Since ω = ωD at p the form ωt is non–
degenerate (and hence symplectic) in a fixed neighbourhood of Mp of p for all
t ∈ [0, 1]. Thus we can invert the coefficient matrix of ωt and solve

(3.1.8) ωt(V (t), ·) = ν,

with V (t) a C∞ vector field on M, near p, with coefficients depending smoothly on
t; moreover V (t) vanishes at p.

Integration of V (t), as a parameter–dependent vector field, gives a local 1–
parameter family of diffeomorphisms, χt, fixing p. The defining equation can be
written in terms of the pull–back operation on functions as

(3.1.9)
d

dt
χ∗
t f = χ∗

t [V (t)f ], ∀ f ∈ C∞(Mp), χ0 = Id .

From the formula for the Lie derivative,

(3.1.10)

d

dt
χ∗
tωt = χ∗

tLV (t)ωt + χ∗
t

dωt
dt

= χ∗
t {(dωt)(V (t), ·) + d(ωt(V (t), ·)− dν}

= dχ∗
t [ωt(V (t), ·)− ν] = 0.

Since χ0 = Id,

(3.1.11) χ∗
1ω1 = χ∗

1ωD = ω0 = ω.
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This proves the theorem.

Exercise 3.1.12: Generalize this proof to show that if H is a smooth hypersurface
through the point p then coordinates can be found in which (3.1.3) holds and in
addition

(3.1.13) H = {xn = 0}.

As noted above we shall generalize Darboux’ theorem further in this direction,
i.e., find additional geometric structures which can be brought to normal form si-
multaneously with the symplectic form. First we recall a little more of the structure
implicit in a symplectic manifold.

If f is a (real–valued) C∞ function on a symplectic manifold the Hamilton vector
field of f, written Hf , is defined by

(3.1.14) ω(Hf , ·) = −df.

The antisymmetry of ω means that Hff = 0, i.e., Hf is always tangent to the
surfaces {f = const}. If df(p) 6= 0 and f(p) = 0 then H = {f = 0} is a smooth
hypersurface through p. Any C∞ function vanishing on H is of the form af with a
C∞. From (3.1.14) it follows that

(3.1.15) Haf = aHf + fHa and hence Haf = aHf on H.

Thus the integral curves of Hf (but not their parametrizations) are well defined on
H; they are called Hamilton curves, or bicharacteristics, or leaves of the Hamilton
foliation.

Let H and G be two C∞ hypersurfaces in a symplectic manifold, M, and suppose
p ∈ H ∩G. The two hypersurfaces are said to meet transversally at p if

(3.1.16) TpH + TpG = TpM.

This just means that they are not tangent, so there is a vector tangent to H at p
which is not tangent to G. Using the symplectic structure we can impose a stronger
condition, namely

(3.1.17) The Hamilton foliation of H is not tangent to G at p.

If this is the case we say that H and G meet symplectically transversally at p.
Notice that the condition (3.1.17) is symmetric between H and G since if h and g
are defining functions for the two hypersurfaces

(3.1.18) {h, g} = Hhg = −Hgh = ω(Hg, Hh).

This expression is the Poisson bracket of h and g.
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Exercise 3.1.19: Let H and G be two C∞ hypersurfaces in a symplectic manifold
M and suppose p ∈ H∩G is a point at which they meet symplectically transversally.
Show that there are local coordinates based at p in which (3.1.3) holds and

(3.1.20) H = {xn = 0}, G = {ξn = 0}.

Notice that in any local coordinates in which (3.1.3) holds (Darboux coordinates)
the Hamilton vector field of a function is given by

(3.1.21) Hf =
n∑

j=1

(
∂f

∂ξj

∂

∂xj
− ∂f

∂xj

∂

∂ξj

)

and the Poisson bracket by

(3.1.22) {f, g} =
n∑

j=1

(
∂f

∂ξj

∂g

∂xj
− ∂f

∂xj

∂g

∂ξj

)
.

Exercise 3.1.23: Prove the Jacobi identity:

(3.1.24) {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0,

for all C∞ functions f, g, h and deduce that

(3.1.25) H{f,g} = [Hf , Hg].

We also briefly recall the classification of submanifolds of a symplectic manifold.
A submanifold Y ⊂ M is said to be involutive (in some quarters ‘coisotropic’) if
for every function f ∈ C∞(M) which vanishes on Y the Hamilton vector field Hf

is tangent to Y. We have already noted that every hypersurface is involutive. A
submanifold is said to be isotropic if the symplectic form vanishes identically when
pulled back to it. The dimension of an involutive submanifold is at least half the
dimension of M and that of an isotropic submanifold is at most half the dimension
of M. For manifolds of half the dimension of M the two concepts coincide and
these, specially important, submanifolds are Lagrangian. In each of these three
cases there is a local form of Darboux’ theorem:

Exercise 3.1.26: Show that if Y is an involutive (resp. isotropic) submanifold
through the point p in a symplectic manifold of dimension 2n, then there are Dar-
boux’ coordinates based at p in terms of which

(3.1.27)
Y = {ξ1 = · · · = ξk = 0}, k ≤ n,
(resp. Y = {x1 = · · · = xk = 0, ξ1 = · · · = ξn = 0}).
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Exercise 3.1.28: Show that a submanifold is involutive or isotropic (or both i.e.
Lagrangian) if and only if the symplectic form, when pulled back to it, has at every
point minimal rank for submanifolds of that dimension.

Exercise 3.1.29: Consider a pair of smooth hypersurfaces, H and G, intersecting
transversally at a point p in the symplectic manifold M, i.e., satisfying (3.1.16).
Consider the opposite extreme to (3.1.17), where the Hamilton foliation of H is
tangent toG at each point of the intersection. Show that this condition is symmetric
between H and G and equivalent to demanding that the intersection H ∩G be an
involutive submanifold. Show that an analogue of Exercise 3.1.19 continues to hold,
namely that there are Darboux coordinates in which

(3.1.30) H = {xn = 0}, G = {xn−1 = 0}.

§3.2: Folding Lagrangian relations

Let Y and Z be two symplectic manifolds of the same dimension, 2n, with sym-
plectic forms ωY and ωZ . A Lagrangian submanifold with respect to the difference
symplectic structure, ωY − ωZ , on the product:

(3.2.1) ιΛ : Λ ↪→ Z ×X, ι∗ΛσZ = ι∗ΛσY , dim (Λ) = 2n,

is called a Lagrangian relation from Y to Z. Let λ ∈ Λ be a point at which either
projection:

(3.2.2) πX : Λ −→ X, X = Y or Z.

has injective differential. Then Λ locally defines a map fromX = Y or Z to the other
space X ′ = Z or Y . This map must always be symplectic, because of (3.2.1), and
hence locally invertible. Thus, if one of the projections has injective (or surjective)
differential then both are local diffeomorphisms. That is if Λ is Lagrangian then

(3.2.3) the singular sets of the two projections are the same, S ⊂ Λ.

If Λ is a Lagrangian relation then it is folding at λ ∈ Λ if:

(3.2.4) the two projections (3.2.2) have Whitney folds at λ.

If one projection is singular then, by (3.2.3) so is the other. However it is possible
to find a Lagrangian relation with one projection having a fold and with the other
more singular, having for example a Whitney cusp (see [Me5]).

A folding Lagrangian relation is certainly a folding relation in the sense of Defi-
nition 2.3.2, since the folds have the same singular set S. Following the discussion
of maps with fold singularities in Chapter 2, if Λ is a folding Lagrangian relation
then there are two involutions I and J defined on Λ, near λ.
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Lemma 3.2.5. The two involutions defined on Λ near λ are symplectic in the sense
that if

(3.2.6) σ′ = π∗
Y σY = π∗

ZσZ ,

then

(3.2.7) I∗σ′ = J ∗σ′ = σ′.

Moreover, the differentials at λ of I and J are different.

Proof. The identity (3.2.6), implicit in the definition of the form σ′, follows imme-
diately from (3.2.1). The symplectic condition (3.2.7) follows trivially away from S
where I (or J ) is locally the projection followed by the appropriate local inverse.
By continuity it therefore holds everywhere. The independence of the differentials
follows from the remarks after the statement of Theorem 2.3.3.

We now pass to the symplectic version of Theorem 2.3.3:

Theorem 3.2.8. Let Y and Z be symplectic manifolds of the same dimension, 2n,
with symplectic forms σY , σZ and let Λ ⊂ Z × Y be a Lagrangian relation folding
at λ ∈ Λ. Then there are local Darboux coordinates (x, ξ) in Y and (y, η) in Z, i.e.
coordinates in which the symplectic forms are reduced to the Darboux form:

(3.2.9) σ0 =

n∑

j=1

dξj ∧ dxj,

in which Λ is given by:

(3.2.10) Λ0 = {xj = yj , 1 ≤ j < n, ξ = η, (xn − yn)2 = ξn}.

The main technical step in the proof of this result is a suitable invariant Poincaré
Lemma.

Lemma 3.2.11. Let µ be a C∞ p-form in a neighborhood of 0 ∈ Rk invariant
under the two maps I0, J0 in (2.3.8), (2.3.9). Then if µ is closed there exists a
C∞ (p-1)-form, τ , invariant under I0 and J0 with dτ = µ; if µ vanishes when
pulled-back (respectively restricted) to S = {tk = 0} then τ can be chosen to vanish
when pulled-back (respectively restricted) to S too.

Proof. The standard proof of the Poincaré Lemma suffices to give this result. Thus
in the coordinates z, contract µ with the radial vector field, giving

ν = µ(z · ∂
∂z
, ·) =

∑

I

νI dz
I ,
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and then integrate by parts radially:

τ =
∑

I

∫ 1

0

νI(rz)
dr

r
dzI .

The radial vector field is invariant under both linear maps so τ is invariant and
satisfies dτ = µ as may be checked by direct computation. Since {tk = 0} is radial,
if the coefficients of µ vanish there so do those of F , proving the Lemma.

Exercise 3.2.12: Consider the set

(3.2.13) X = {(ω,w) ∈ S
n−1 × R

n;ω · w = 0}.

The set of oriented rays in Rn can be identified with X, by the formula

(3.2.14) x = w + tω, t ∈ R.

The cotangent space of the sphere ι : Sn−1 ↪→ Rn can also be identified with X by
using the Euclidean structure to identify a 1–form by

(3.2.15) α = ι∗(w · dy), at ω ∈ S
n−1.

Then the ‘ray relation’ (for the sphere) is
(3.2.16)
G ⊂ X×X, G = {(ω,w, θ, u) ∈ X×X;u = ω− (ω · θ)θ, ∃ t ∈ R, s.t. θ = w+ tω}.

Show that this is a folding Lagrangian relation with respect to the symplectic
structure on X from the identification with T ∗Sn−1.

Figure 3.1
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§3.3: Proof of Theorem 3.2.8

Notice that if Λ takes the form (3.2.10) then in terms of the coordinates in Λ,

(3.3.1) zj = xj , 1 ≤ j ≤ n, ζp = ξp, 1 ≤ p < n, ζn = xn − yn,

(3.3.2) Is(z, ζ) = (z, ζ ′,−ζn),

(3.3.3) Js(z, ζ) = (z′, zn − 2ζn, ζ
′,−ζn).

where ζ ′ = (ζ1, . . . , ζn−1), etc. Thus the involutions take the form (2.3.8), (2.3.9)
apart from different notation for the coordinates. In any case since Λ0 in (3.2.10) is
the same as G0 in (2.3.4), apart from such a trivial renumbering of the coordinates,
Λ can be reduced to Λ0 using Theorem 2.3.3. The remaining task is to reduce
simultaneously the symplectic forms on Y and Z to the Darboux form (3.2.9).
Consider first the symplectic form σY on Y . Restricted to the fold, ξn = 0, this is
a closed 2-form of maximal rank, 2n− 2. Let L ⊂ TS be the line bundle defined as
the range of the map (2.9.2).

Lemma 3.3.4. If Λ0 in (3.2.10) is Lagrangian with respect to σZ − σY , then L,
transferred to S ⊂ X (X = Y or Z), is the kernel of σX restricted to S, i.e., the
Hamilton foliation.

Proof. By definition if F = I · J then the fiber at p ∈ S ⊂ Y is

Lp = (πY )∗ · (Id− F∗)[Tz], m ∈ Λ, πY (m) = p,

Thus it is enough to show that on Λ, the line bundle is just

(3.3.5) L is the kernel of σ′ pulled back to S.

Let L′ be the kernel of σ′ on S. This is clearly one dimensional. Using Lemma
3.2.5 and the fact that F is the identity on S, if v = w − F∗w is in the range of
Id−F∗ then,

σ′(v, w′) = σ′(w,w′)− σ′(F∗w,F∗w
′) = 0, ∀ w′ ∈ TzS.

Thus L ⊂ L′ so these bundles are equal and the Lemma is proved.

Now computation directly using (3.3.2) and (3.3.3) shows that for Λ = Λ0, L
on S ⊂ Y is spanned by ∂/∂xn, independently of the symplectic form. Then
Lemma 3.3.4 shows that the symplectic form σY projects to a symplectic form on
the local quotient manifold S/ Span{∂/∂xn}. Using the standard form of Darboux’
theorem, the restriction of σY to S = {ξn = 0} can be reduced by a change of
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variables amongst the (x1, . . . , xn−1, ξ1, . . . , ξn−1) to the form coming from (3.2.9).
This gives:

σY = α ∧ dξn +
n−1∑

j=1

dxj ∧ dξj + β,

where β is a 2-form vanishing at S and

(3.3.6) α =
n∑

j=1

(aj dxj + bj dξj)

is a C∞ 1-form with an(x, ξ′) 6= 0, by the assumed non-degeneracy of σY . Since the
change of variables can be chosen to be of the form

(x′, xn, ξ
′, ξn) 7→ (X ′(x′, ξ′), xn,Ξ

′(x′, ξ′), ξn),

if carried out in both factors Y, Z ⊂ R2n this leaves the form of Λ0 (and hence the
two involutions) the same. Denoting the new variables again by (x, ξ), (y, η) and
changing the sign of xn and ξn if necessary it can be assumed that an > 0. The
further change of variables

(x, ξ) 7→ (x′, xnan(x′, 0, ξ′), ξ′, ξna
1/2
n (x′, 0, ξ′)),

again in both manifolds Y, Z leaves Λ0 unchanged and ensures that

(3.3.7) σY = σ0 on S and at 0.

In view of (3.3.7) the 2-form µ = σY − σ0, is closed and vanishes on S and at
0. Thus the lift to Λ0:µ′ = π∗

Y (µ) is a closed 2-form vanishing on S and invariant
under Js and Is. Using Lemma 3.2.11, there is an Is-, Js-invariant 1-form, τ ′, on
Λ0 vanishing at the base point and such that

(3.3.8) dτ ′ = µ′.

As an Is–invariant form τ ′ descends to Y as a C∞ 1-form defined on the half space
ξn ≥ 0. Extending this to a C∞ 1-form τ1 gives

β = dτ1 − µ = 0 in ξn > 0.

Thus β is a closed 2-form vanishing in ξn > 0. Using the standard proof of the
Poincaré Lemma it follows that β = dτ2 for a C∞ 1-form τ2 also vanishing in
{ξn > 0}. Thus, τ = τ1 − τ2 satisfies

(3.3.9) dτ = µ, π∗
Y τ = τ ′.
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Following the homotopy proof of Darboux’ theorem define a C∞ vector field V (t)
by

(3.3.10) σY,t(V (t), ·) = −τ = −dtσY,t,

where σY,t = (1 − t)σ0 + tσY , t ∈ [0, 1]. From (3.3.7), σY,t consists of symplectic
forms near 0, so V (t) is well-defined by (3.3.10). Now, F is normal to S = {ξn = 0},
from which it follows that V (t) is tangent to S, and is therefore the push-forward
of a C∞ vector field, V ′(t), on Λ0; moreover V (t) vanishes at 0. Lifting (3.3.10)
to Λ0 and recalling the Js–invariance of τ ′ it follows that V ′(t) is invariant under
both involutions. Thus V ′(t) pushes forward to a C∞ 1-parameter family of vector
fields, W (t), on Z, in ηn ≥ 0. Clearly W (t) satisfies the same conditions as V (t):

(3.3.11) σZ,t(W (t), ·) = −τZ , π∗
ZτZ = τ ′, (πZ)∗V

′(t) = W (t),

and extends across S = {ηn = 0} uniquely with these properties. Let PX,t, X =
Y, Z, be the 1-parameter families of local diffeomorphisms generated by V (t) and
W (t); since V (t) and W (t) vanish at 0 they preserve the base point. From (3.3.10),
(3.3.11) it follows that

P ∗
X,tσX,t = σ0 for t ∈ [0, 1],

since
d

dt
P ∗
Y,tσY,t = P ∗

Y,tLV (t)σY,t + P ∗
Y,t

d

dt
σY,t.

The Lie derivative is
LV α = d[α(V )] + dα(V, ·),

so from (3.3.10), (3.3.9), d(P ∗
Y,tσY,t)/dt = 0. Thus PX,t, as a family of local diffeo-

morphisms on the corresponding X = Y, Z, reduces the symplectic form to (3.2.9),
as desired. The product family PZ,t × PY,t of diffeomorphisms is generated by
W (t) ⊕ V (t), as a vector field on Z × Y . Since this projects to V (t) and W (t)
under πY and πZ respectively it must be equal to V ′(t) at Λ0; hence tangent to Λ0

and invariant under both involutions. Thus it follows that Λ0 is invariant under
PZ × PY . This completes the proof of Theorem 3.2.8.

§3.4: Billiard ball maps

As a relation Λ0 in (3.2.10) defines two maps from Y to Z, in the half-space
{ξn ≥ 0}:

(3.4.1) δ±0 (x, ξ) = (x′, xn ± 2ξ1/2n , ξ) = (y, η).

preserving the Darboux form (3.2.9). Of course correspondingly a general folding
Lagrangian relation between Y and Z defines locally near any point of the fold two
maps:

(3.4.2) δ± = πZ · π±
Y : πY (Λ) −→ πZ(Λ),
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where π±
Y : πY (Λ) −→ Λ are the two local continuous inverses to πY on Λ. The

distinction between the two inverses corresponds to a choice of normal direction to
S in Λ. Thus, Theorem 3.2.8 shows that local coordinates can be introduced in Y
and Z with respect to which the symplectic forms are reduced to (3.2.9) and the
maps to (3.4.1). In fact it is clear that this is an assertion equivalent to Theorem
3.2.8.

Of particular interest is the case where Z = Y so that Λ is a relation from Y to
itself.

Definition 3.4.3. A Lagrangian relation, Λ, from the symplectic manifold Y to
itself is said to be a billiard ball map near y ∈ Y if Λ is folding near λ = (ȳ, ȳ) and
in addition, near λ, Λ is its own inverse (or transpose).

The singular symplectic maps (3.4.2) will also be called billiard ball maps if
they arise from a Lagrangian relation as in Definition 3.25. We have the following
consequence of Theorem 3.2.8.

Corollary 3.4.4. If Λ is a billiard ball map from the symplectic manifold Y to
itself, near y ∈ Y , then coordinates (x, ξ) can be introduced in Y , the same in
the two factors, with respect to which ȳ = 0, δ± takes the form (3.4.1) and the
symplectic form becomes (3.2.9).

Proof. Let K : Y ×Y −→ Y ×Y be the involution K(z, z′) = (z′, z). By assumption
K(λ) = λ and the additional hypothesis on Λ is just:

(3.4.5) K : Λ −→ Λ.

Now, if σ′ is the pull back to Λ of the symplectic form on Y by either of the
projections then K∗σ′ = σ′, and hence as the manifold of degeneracy of σ′, S
must be mapped to itself by K. Thus, K defines an involution on S, preserving
the restriction of the symplectic form. Projecting to the symplectic manifold, S
(identified with its image in Y ) modulo its local foliation, K must give a symplectic
involution with a fixed point. Such a map is necessarily the identity nearby. It
follows that on S K must be a translation, in Darboux coordinates in which S is
given by ξn = 0,K(x, ξ′) = (x′+h(x′, ξ′), ξ′). Again, as an involution fixing a point,

(3.4.6) K is the identity on S near y.

Reviewing the proof of Theorem 3.2.8 it is apparent that as a consequence of (3.4.6)
one can take W (t) = V (t) in (3.3.11). Thus the coordinate transformation to obtain
the reduced form (3.2.9), (3.2.10) and (3.4.1) can be the same in the two copies of
Y , proving the Corollary.

Since the definition of a billiard ball map involves considerable inherent symme-
try, it is worthwhile noting that there are indeed many examples:
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Corollary 3.4.7. If Λ ⊂ Z × Y is a folding Lagrangian relation at λ then the
composite relation:

(3.4.8) Λt · Λ = Σ ∪ Id ⊂ Y × Y,

where Id is the identity relation and Σ is a billiard ball map.

Proof. This is obvious from the normal form theorems, and is also easily proved
directly.

Remark 3.4.9: Suppose Λ ⊂ Z × Y is a folding Lagrangian relation. Suppose Σ is
defined by (3.4.8) and (y, η) are Darboux coordinates in Y with respect to which
the billiard ball map is given by (3.4.1). Then there are Darboux coordinates (x, ξ)
in Z with respect to which Λ becomes Λ0 as in (3.2.10). Indeed if γ± are the two
continuous inverses to πY and J is the involution associated to πZ then

δ± = πY · J · γ±.

Now the (y, η) lift to Λ as C∞ functions Y = π∗
Y y, Hk = π∗

Y ηk, k < n, H2
n = π∗

Y ηn,
with (Y,H) forming a coordinate system. Then (3.4.1) shows that with respect to
these coordinates, J takes the reduced form (3.3.3). Following the last part of the
proof of Theorem 3.2.8 now gives suitable coordinates in Z.

Exercise 3.4.10: Show how Exercise 3.2.12 can be generalized for an arbitrary
closed compact embedded hypersurface in Rn with positive principal curvatures.
Show further that if G is defined in analogy to (3.2.16) then G ·Gt is the ‘scattering
relation’ for the obstacle, i.e., relates two oriented rays if and only if they meet at a
point on the surface, lie in a plane containing the normal to the surface and make
equal (but opposite) angles with the normal in that plane.

Figure 3.2
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§3.5: Homogeneity

The billiard ball maps which are considered below have an additional property
which should be preserved under the reduction to normal form, namely homogene-
ity. Recall that the cotangent bundle T ∗X is a symplectic manifold where the
symplectic form is

ω = dα.

Here, α is the canonical 1-form. A point in T ∗X is by definition a 1-form γx, at
some point x ∈ X. Then by definition

α = π∗γx at (x, γx) ∈ T ∗X,

with π : T ∗X −→ X the natural projection. If x = (x1, . . . , xn) are local coordi-
nates in X then setting

γx =
n∑

j=1

ξj dxj

gives local ‘canonical coordinates’ (x, ξ) in T ∗X. With respect to these local co-
ordinates, α = ξ · dx and ω is given by (3.2.9). The manifold T ∗X \ 0, where 0
represents the zero section of T ∗X, is therefore a symplectic manifold with a lo-
cally free R+–action, from multiplication in the fibers. The infinitesimal generator
r = ξ · ∂/∂ξ of this action satisfies

(3.5.1) ω(r, ·) = α, i.e.,Lrω = rcdω + d(rcω) = dα = ω.

Any symplectic manifold with a locally free R
+-action satisfying the second of these

conditions is called a homogeneous symplectic manifold. Since there is a homoge-
neous version of Darboux’ theorem, showing that a homogeneous symplectic form
is locally diffeomorphic to any T ∗X \0, of the same dimension, by a symplectic map
intertwining the R+-actions, there is little point in considering, for local questions,
the general case of a homogeneous symplectic manifold. A symplectic map, defined
in some open cone (R+-invariant set) M ,

χ : Γ −→ T ∗X ′ \ 0, Γ ⊂ T ∗X \ 0,

is called a canonical transformation if it intertwines the R+-actions. A homogeneous
Lagrangian relation, for the difference symplectic structure is therefore called a
canonical relation.

Theorem 3.5.2. Suppose that Λ ⊂ (T ∗X \ 0) × (T ∗X \ 0) is a billiard ball map
near (m̄, m̄) which is a canonical relation, i.e., is invariant under the diagonal R+-
action on (T ∗X \ 0)× (T ∗X \ 0). Then, provided the R+-action is not tangent to
the line bundle L on the fold S, Λ can be reduced to the normal form

(3.5.3)

Λh = {(y, η, x, ξ) ∈ T ∗
R
n \ 0× T ∗

R
n \ 0;x′′ = (x2, . . . , xn−1) = y′′, ξ = η,

(x1 − y1) = −1

3
(xn − yn)3, ξ1(xn − yn)2 = ξn},
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by a canonical transformation from T ∗X \ 0 to T ∗Rn \ 0, the same in each factor
and taking m to (0, ξ0), ξ0 = (1, 0, . . . , 0).

Proof. This result is essentially just Corollary 3.4.4 with the additional requirement
that homogeneity be preserved. Notice however that (3.5.3) gives a different normal
form, in place of (3.4.1) for the billiard ball maps δ±, namely:

(3.5.4) δ±h (x, ξ) =
(
x1 ±

2

3

(ξn
ξ1

)3/2

, x′′, x∓ 2
(ξn
ξ1

)1/2

, ξ
)
.

This is necessarily more complicated than (3.4.1), which is not homogeneous.
By using the symplectic reduction result, Corollary 3.4.4, the homogeneous bil-

liard ball map can be reduced to the symplectic normal form (3.2.9), (3.2.10) by
symplectic transformation from T ∗X \ 0 to T ∗Rn \ 0, taking m̄ to 0. Let r′ be the
image under this transformation of the radial vector field. By hypothesis r′, whilst
tangent to the fold, is not tangent to the Hamilton foliation of S. Thus at 0,

r′(0) = a
∂

∂xn
+ ρ,

where ρ is in the span of the ∂/∂x′, ∂/∂ξ′ and is not zero. By a symplectic
transformation amongst the (x′, ξ′), leaving xn and ξn unchanged, ρ can be reduced
to ∂/∂ξn, for example. Thus it can be arranged that

(3.5.5) r′(0) = a
∂

∂xn
+

∂

∂ξn
,

by carrying out a symplectic transformation in both factors which does not affect
the normal form for Λ. Let χ1 be the symplectic transformation reducing Λ to Λ0,
and giving (3.5.5) for the new local R+-action. Let χ2 be a transformation of this
type which reduces the homogeneous model Λh to the same normal form Λ0 and
takes the R+-action to r′′ where (3.5.5) also holds for r′′(0). Then the difference
V = r′−r′′ is a C∞ vector field vanishing at 0. In fact it is Hamiltonian, since from
the homogeneity conditions,

ω1(r′, ·) = α′, ω1(r′′, ·) = α′′,

both satisfy dα = ω1. Thus,

ω1(r′ − r′′, ·) = dφ, φ(0) = 0,

fixes a unique C∞ function φ near 0. Consider the 1-parameter family of vector
fields rt = (1− t)r′ + tr′′, t ∈ [0, 1]. Because of (3.5.5) these are all transversal to
{ξ1 = 0} near 0. Thus the family of differential equations:

(3.5.6) rtψt − ψt = −φ, ψ = 0 on {ξ1 = 0}
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has a unique family of solutions, C∞ near 0 and in the parameter t.

By assumption r′ and r′′ are both tangent to S, hence so is rt. It follows that φ
is constant along the leaves of the foliation of S. Moreover, if V (= ∂/∂xn) is the
Hamilton vector field of a defining function for S,

ω1(V, ·) = dξn,

then applying the Lie derivative of rt to this defining equation shows that:

ω1([V, rt], ·) + ω1(V, ·) = γ dξn, at S,

i.e., [V, rt] = γ′V on S is tangent to the Hamilton foliation. Applying V to the
equation (3.5.6) it follows that ψ is constant on the leaves of the Hamilton foliation
of S, since the initial surface {ξ1 = 0} on which ψ vanishes is fibred by these leaves.
This means that the Hamilton vector field of ψt, W (t),

ω1(W (t), ·) = dψt,

is tangent to S. Lifting (3.5.6) to Λ0 it is clear that φ must be invariant under
both involutions, as is rt. Thus ψ must also be invariant under these involutions as
its initial data is invariant. Lifting the defining equation for W (t) to Λ0, which is
possible since it is tangent to S, it follows that it too is invariant under both invo-
lutions. Thus the 1-parameter family of symplectic diffeomorphisms, Pt, generated
by W (t), if carried out in both factors leaves Λ0 invariant. Now the original choice
(3.5.6) of ψt ensures that:

dtP
∗
t αt = 0,

if αt = (1− t)α′ + tα′′, since dαt = ω1 and

ω1(W (t), ·) + d(ω1(W (t), ·) + (α′ − α′′) = d[ψt − rtψt + φ] = 0.

Thus if χ = P1 then χ∗α′′ = α′ and therefore χ∗r
′ = r′′.

Combining these three transformations, first from the general homogeneous bil-
liard ball map to the symplectic model then changing r′ to r′′ and then mapping to
the homogeneous model gives a local reduction to the homogeneous model which
intertwines the local R+-actions. This composite symplectic transformation then
extends to give the desired canonical transformation in a conic neighborhood of the
base points. This completes the proof of Theorem 3.5.2.

Although we have chosen to prove a conjugation result for a homogeneous billiard
ball map essentially the same proof applies to the general case of a homogeneous
folding canonical relation. For later use we record this homogeneous version of
Theorem 3.2.8.
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Theorem 3.5.7. Let C be a folding canonical relation from T ∗X to T ∗Y near λ0,
with X and Y manifolds of dimension n. That is, C is a canonical relation which is
folding and for which the R+–action is not tangent to the fold. Then there are local
canonical transformations ξX and χY from T ∗

R
n to T ∗X and T ∗Y respectively,

taking πX(λ0) and πY (λ0) to (0, ξ0), ξ0 = (1, 0, . . . , 0) and such that near λ0

(3.5.8) C = χY · Λh · χ−1
X ,

with the model given by (3.5.3).

Exercise 3.5.9: Assume the same geometric setup as in Exercise 3.4.10 but con-
sider in addition a time variable, t and its dual variable τ. Then

(3.5.10) Y = (T ∗
Rt ×X) \ 0 ∼= (T ∗

R× T ∗Sn−1) \ 0

is a homogeneous symplectic manifold. On Y the ‘time-augmented’ ray relation is
fixed by

G = {(t,τ, ω, w, t′, τ ′, θ, u) ∈ Y × Y ;w = τŵ, u = τ ′û,

t′ = t, τ = τ ′, θ = tω + w, u = ω − (ω · θ)θ}.

(3.5.11)

Show that this is a homogeneous folding canonical relation. Check that G ·Gt is the
union of the graphs of two continuous maps defined in the region |w| ≤ 1, one being
the identity and the other, γ, the ‘time-augmented scattering relation’ in the sense
that γ(t, τ, ω, ŵ) = (t′, τ, θ, û) means that (ω,w, θ, u) is in the scattering relation
discussed in Exercise 3.4.10 and t′ − t is the ‘time delay’ (see [Gu1])

(3.5.12)
t′ − t = signed dist(P, {τ · y = 0})− signed dist(P, {ω · x = 0}),

P the point of reflection.

§3.6: Glancing hypersurfaces

The main application of these conjugation theorems is to reduce to normal form
the geometry of boundary problems with simply glancing rays. Thus, let Y be
a symplectic manifold with symplectic form σ. In Y consider two hypersurfaces
passing through a point m:

P ↪→ Y, Q ↪→ Y, m ∈ P t Q = K.

The transversality condition on the intersection, stated symbolically as P t Q, is
just:

(3.6.1) TmP + TmQ = TmY.
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Let p, q ∈ C∞(Y ) be defining functions, near m, for P and Q. Recall that the
Hamilton vector field of p, defined by:

σ(Hp, ·) = dp,

spans the bicharacteristic foliation of P , the kernel in TP of ι∗Pσ. Thus the condition

(3.6.2) Hpq = −Hqp = {p, q} 6= 0, at m

is precisely the condition (2.2.8) for K as a hypersurface in P with respect to its
bicharacteristic foliation or equivalently for K as a hypersurface in Q with respect
to its bicharacteristic foliation.

Definition 3.6.3. Two hypersurfaces P,Q in a symplectic manifold (Y, σ) are said
to be glancing at m if they meet transversally at m and in terms of (any) local
defining functions:

(3.6.4) {p, q} = 0 at m,

(3.6.5) {p, {p, q}} 6= 0, {q, {q, p}} 6= 0 at m.

If Y = T ∗X then P,Q are homogeneous glancing hypersurfaces at m ∈ T ∗X \ 0 if
they are conic, glancing and the transversality condition (3.6.1) is strengthened to:
(3.6.6)

NmP,NmQ and the fundamental 1-form α are linearly independent at m.

Since the two parts of (3.6.5) give precisely the condition (2.2.10) for K as
a submanifold of P , with respect to its bicharacteristic foliation, and of Q with
respect to its bicharacteristic foliation, Lemma 2.2.11 can be applied. Now we wish
to show that any pair of glancing hypersurfaces can be brought to normal form by a
symplectic transformation, or a canonical transformation in the homogeneous case.
In the homogeneous case a simple model (Friedlander’s example [Fr1]) is given by:

(3.6.7) Q0 = {q0(x, ξ) = xn+1 = 0}, P0 = {p0(x, ξ) = ξ2n+1 − xn+1ξ
2
1 − ξ1ξn = 0}

which is a pair of hypersurfaces glancing at the point

(3.6.8) m̄ = (0, ξ0) ∈ T ∗
R
n+1 \ 0, ξ0 = (1, 0, . . . , 0).

In the purely symplectic case the simpler model:

(3.6.9) Qs = {qs(x, ξ) = xn = 0}, Ps = {ps(x, ξ) = ξ2n − xn − ξn−1 = 0},

where m̄ = 0 ∈ T ∗Rn, is available.
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Theorem 3.6.10. If P and Q are hypersurfaces glancing at m in a symplectic
manifold, Y , of dimension 2n then there is a symplectic transformation from a
neighborhood N of m in Y ,

(3.6.10A) τ : N −→ T ∗
R
n,

mapping m to 0, and P,Q to the model (3.6.7). If P and Q are homogeneous
glancing hypersurfaces in T ∗X \ 0, X of dimension n+ 1, then there is a canonical
transformation from a conic neighborhood M of m:

χ : Γ −→ T ∗
R
n+1 \ 0,

taking m to m̄ and P and Q to the model (3.6.9).

In the proof of this theorem the following simple symplectic version of Lemma
2.2.11 will be useful.

Lemma 3.6.11. Suppose M ⊂ Y is a hypersurface in a symplectic manifold of
dimension 2n and K ⊂ M is a hypersurface such that at m ∈ K the Hamilton
foliation M of M is simply tangent to K. Let (x′, ξ′) be Darboux coordinates in
YM = M/M and (z′, τ ′) coordinates in K such that ν∗(x′, ξ′) = (z′, τ ′′, τ2

n−1),
in terms of the natural projection ν : K −→ YM . Then there exist coordinates
(t, x′, ξ′), based at m, on M , with respect to which:

(3.6.12) K = {ξn−1 = t2}, z′ = x′, τ ′′ = ξ′′, τn−1 = t on K,

and

(3.6.13) ι∗Mσ =

n−1∑

j=1

dξj ∧ dxj , where ιM : M ↪→ Y.

Proof. Applying Lemma 2.2.11 directly gives local coordinates (t,X ′,Ξ′) in P with
respect to which K is the surface Ξn−1 = 0, and on it z′ = X ′, τ ′′ = Ξ′′, τn−1 = t,
M is spanned by ∂/∂t−2t∂/∂Ξn−1 and if YM is identified with t = 0 then (x′, ξ′) =
(X ′,Ξ′) on t = 0. Thus defining the coordinates

x′ = X ′, ξ′′ = Ξ′′, ξn−1 = Ξn−1 + t2

gives (3.6.12), M is then spanned by V = ∂/∂t and identifying YM with {t = 0}
(3.6.13) holds after pulling back to {t = 0}. Since σ, on M , is a 2-form with kernel
spanned by V (3.6.13) must hold at {t = 0}. As σ is closed, it must satisfy the
differential equation

LV σ = 0 on M,

which has a unique solution, (3.6.13), with the given initial condition at {t = 0},
completing the proof of the Lemma.

Exercise 3.6.14: Consider the two hypersurfaces

(3.6.15) Qs = {xn = 0}, P = {p(x, ξ) = ξ2
n − xnxn−1 − ξn−1}.

Show that these surfaces intersect transversally and that in xn−1 6= 0 this intersec-
tion is glancing with respect to the standard symplectic structure on R2n but that
this is not the case at 0. Sketch the bicharacteristic curves on P.
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§3.7: Proof of Theorem 3.6.10

Let YQ = Q/Hq be the local quotient of Q by its bicharacteristic foliation, a
symplectic manifold. The presence of the second, glancing, hypersurface P defines
a billiard ball map on YQ by setting:
(3.7.1)

Σ = {(y2, y1) ∈ YQ × YQ; ∃ a bicharacteristic on P meeting both y1 and y2}.

To prove that Σ has the stated properties consider instead the pure intersection
relation:

(3.7.2) Λ = {(z, y) ∈ YP × YQ; y and z meet},

where y and z are considered as curves on P and Q. Of course bicharacteristics on
Q and P can only meet at K and through each point of K there is precisely one
bicharacteristic on P and one on Q. Thus, if

ιK : K −→ P ×Q is the diagonal embedding,

Λ is the image of K :

(3.7.3) Λ = (νP × νQ) · ιK .

where νP and νQ are the projections from P and Q to YP and YQ. From the
equivalence of (3.2.7) and (3.2.9) discussed above, both the projections on K are
folds at m, with differentials having kernel the corresponding Hamilton field, Hp

or Hq at m, both of which are tangent to K by hypothesis. Since these two vector
fields are independent (dp and dq are independent by assumption) ιΛ has injective
differential, hence

(3.7.4) ιΛ : K ←→ Λ near m

is a local embedding of K with image Λ. Thus Λ is a Lagrangian relation from YQ
to YP , since it is a smooth manifold of the appropriate dimension, on which the
difference of the 2-forms vanishes, by (3.7.3), and from which the two projections
are folds. Thus the results of Chapter 2 and their symplectic extensions discussed
above can be applied. In fact from the two definitions (3.7.1) and (3.7.2) it is
immediate that

(3.7.5) Λt · Λ = Id∪Σ,

so Theorem 3.4.7 provides a proof that Σ is indeed a billiard ball map. Using
Theorem 3.2.8 let

(y1, . . . , yn−1, η1, . . . , ηn−1) and (x1, . . . , xn−1, ξ1, . . . , ξn−1)
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be Darboux coordinates in YP and in YQ respectively, with the property:

(3.7.6) K ∼= Λ = Λh,

where the identification is (3.7.4). Thus the coordinates (z′, ζ ′) in K:

(3.7.7)
zj = π∗

Qxj , 1 ≤ j ≤ n− 1, ζp = π∗
Qξp, 1 ≤ p ≤ n− 2,

ζn−1 = π∗
Qyn−1 − π∗

Pxn−1,

reduce the two involutions I, corresponding to YQ and J , corresponding to YP , to
the normal forms (3.3.2), (3.3.3). First apply Lemma 3.6.11 to

K ↪→ Q ↪→ Y,

around the base point m, with respect to the Darboux coordinates (x′, ξ′) in YQ
and (z′, ζ ′) in K given by (3.7.7). Replace the additional variable by ξn = t, to give
coordinates (x′, ξ) on Q, with respect to which the symplectic form is (3.6.13) and

(3.7.8) K = {ξn−1 = ξ2n in Q}, z′ = x′, ζ ′′ = ξ′′, ξn = ζ2
n−1 on K.

Next consider
K ↪→ P ↪→ Y,

around the same point m. On K consider the coordinates (Z ′, ζ ′), where in terms
of (3.7.7),

(3.7.9) Z ′′ = z′′, Zn−1 = zn−1 + ζn−1 = π∗
P yn−1 on K.

Thus, (Z ′, ζ ′) satisfy the hypotheses of Lemma 3.6.11 with respect to the Darboux
coordinates (y′, η′) on YP . Let (t, y′, η′) be the coordinates on P given by the
application of Lemma 3.6.11. Consider the functions:

(3.7.10) x′′ = y′′, xn−1 = yn−1 − t, xn = ηn−1 − t2, ξ′′ = η′′, ξn = t on P.

Clearly these form a coordinate system, (x, ξ′′, ξn) on P , based at m. Moreover in
these coordinates, K is {xn = 0}, and the symplectic form is

(3.7.11) σ =
n−2∑

j=1

dξj ∧ dxj + d(ξn + xn−1) ∧ d(xn − ξ2n),

as follows from (3.7.10) and the fact that (3.6.13) holds in terms of the coordinates
(t, y′, η′). Combining (3.6.12), (3.7.8), (3.7.9) and (3.7.10) it also follows that the
functions x′′, xn−1, ξ

′′, ξn defined on bothQ and P are consistent at the transversal
intersection K. Since xn vanishes at K in P and ξn−1−ξ2n vanishes at K in Q there
are local coordinates (x, ξ) in Y near m with respect to which P and Q are reduced
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to the special forms (3.6.10) and the symplectic form is (3.6.13) on Q, with respect
to (x, ξ′) and (3.7.11) on P with respect to (x, ξ′′, ξn). The final stage in the proof
of the Theorem is to make a further coordinate change in Y , near m = 0, reducing
the symplectic form σ to the Darboux form. Since (3.6.12) holds on Q = Qs and
(3.7.11) holds on P = Ps, it follows that σ = σ0, given by (3.2.9) at 0, modulo at
most a multiple of dxn ∧ dξn−1. This does not affect the non-degeneracy, so the
homotopy:

(3.7.12) σt = (1− t)σ0 + tσ for t ∈ [0, 1]

consists of symplectic forms near 0. Moreover σt − σ0 vanishes when restricted
to either Ps or Qs. Using the radial integration proof of the Poincaré Lemma to
construct µ such that

(3.7.13) dµ = σ0 − σ,

in coordinates in which Ps and Qs are coordinate hypersurfaces, µ also vanishes
when restricted to P or Q and at 0. Thus, the C∞ 1-parameter family of vector
fields V (t) defined by:

(3.7.14) σt(V (t), ·) = µ

is tangent to both Ps and Qs and vanishes at 0. It follows that the 1-parameter fam-
ily of local diffeomorphisms, Pt, obtained by integration of V (t) from the identity,
leaves P and Q fixed and by (3.7.12), (3.7.13) and (3.7.14) satisfies

dtP
∗
t σt = 0 =⇒ P ∗

1 σ = σ0.

This completes the proof of the purely symplectic part of Theorem 3.6.10.
The homogeneous part of the Theorem can be proved in very much the same

way as Theorem 3.5.2 was deduced from the symplectic case. Thus suppose P
and Q are homogeneous glancing hypersurfaces in T ∗X \ 0 through m. Applying
the symplectic conjugation result just proved there is a symplectic transformation
reducing P and Q to the model (3.6.9) and the symplectic form to the Darboux
form (3.2.9). Let r′ be the infinitesimal generator of the (local) R+-action on the
image space. Since P and Q are by assumption conic, r′ must be tangent to Ps and
Qs and hence to Ks, their intersection. The obvious homogeneity of the involutions
on K implies that r′ is invariant under the two involutions Is, Js on Ks. Let

Ss = {ξn = ξn−1 = xn = 0} ⊂ Ks

be the fold set of the two involutions on Ks. Clearly r′ must also be tangent to Ss.
Now ∂/∂xn−1 spans the part of the sum of the Hamilton foliations tangent to Ks.
From the independence condition on the R+-action.

r′(0) = a
∂

∂xn−1
+ ρ,
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where ρ is in the span of ∂/∂dx′′ and ∂/∂ξ′′ and is non-zero. A symplectic transfor-
mation just amongst the (x′′, ξ′′) coordinates, leaving xj , ξj , j ≥ n− 1 fixed can
be found to reduce ρ to ∂/∂ξ1, and obviously leaves Ps and Qs invariant. Thus it
can be arranged that

(3.7.15) r′(0) = a
∂

∂xn−1
+

∂

∂ξ1
.

In particular there is such a transformation (χ′)−1 from the homogeneous model
(3.6.7) to the symplectic model (3.6.9), with (3.7.15) valid. Let r′′ be the image of
the generator of the R+–action on (3.6.9) under (χ)−1. Consider the two 1-forms:

α′ = σ0(r, ·)′, α′′ = σ0(r′′, ·).

Following the corresponding argument in the proof of Theorem 3.5.2 verbatim gives
a symplectic transformation fixing the base point and reducing α′ to α′′, and hence
r′ to r′′. The same commutation argument on (3.5.6) discussed there to show
that this transformation preserves S now shows that this transformation preserves
both Ps and Qs. Composing the three symplectic transformations then gives the
desired canonical transformation which reduces the general pair of homogeneous
glancing hypersurfaces to the homogeneous model (3.6.9). This completes the proof
of Theorem 3.6.10.

Exercise 3.7.16: Consider the billiard ball map (3.7.1) in the model case of Fried-
lander’s example (3.6.9). In terms of the coordinates

y = (x′, ξ′) = (x1, . . . , xn−1, ξ1, . . . , ξn−1),

show that the two maps defined by Σ are

δ±(x′, ξ′) = exp
(
±4

3
Hζ3/2

)
,(3.7.17)

ζ = ξn−1.(3.7.18)

(Cf. (3.4.1)). Conclude that for a general billiard ball map there is always a C∞
function ζ for which (3.7.17) holds. Such a function is called an interpolating
Hamiltonian for the billiard ball map; is it unique? Show, by examining the model
(3.6.7), that in the homogeneous case the interpolating Hamiltonian can be taken
to be homogeneous of degree 2/3.
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Chapter 4: Eikonal and transport equations

As the discussion in Chapter 1 indicates, the first step in the construction of a
microlocal parametrix for a boundary problem with glancing rays is the solution of
the eikonal equation. The second step is the solution of the closely related transport
equations, which are essentially linearizations of the eikonal equations. If p2(x, ξ)
is the principal symbol of the operator we need to find solutions θ, ζ to:

〈dxθ, dxθ〉+ ζ〈dxζ, dxζ〉 = 0,(4.0.1)

〈dxθ, dxζ〉 = 0.(4.0.2)

Here 〈·, ·〉 is the symmetric bilinear form obtained by polarization of the second
order homogeneous polynomial p2(x, ·). This form is Lorentzian if p(x,D) is hyper-
bolic. The system (4.0.1), (4.0.2) can be reduced to the standard eikonal equation:

(4.0.3) p2(x, dxφ
±) = 0,

by introducing the singular phase functions:

(4.0.4) φ± = θ ± 2

3
(−ζ)3/2.

Thus (4.0.1) and (4.0.2) are obtained, respectively, just by taking the sum and the
difference of the equations (4.0.3).

In a certain sense (4.0.3) is the more fundamental equation. In particular to
generalize the problem to higher order operators it is only necessary to generalize
(4.0.3) directly to:

(4.0.5) p(x, dxφ
±) = 0,

where p : T ∗X \ 0 → R is homogeneous of some degree, m, and has simple zeros.
Of course it is easy, by Hamilton–Jacobi theory, to find many smooth solutions
to the eikonal equation (4.0.5). Solutions with the singularity (4.0.4) arise from
solving the initial–value problem for (4.0.5) off an initial surface which does not
have the usual transversality condition, corresponding to the fact that there are
bicharacteristics tangent to the boundary.

For the model problem, Friedlander’s example, with p as defining P0 in (3.6.7),
(4.0.5) has the solution:

(4.0.6) φ±0 = θ0 ±
2

3
(−ζ0)3/2,

where:

(4.0.7) θ0 =
n∑

j=1

xjξj , ζ0 = (ξn + xn+1ξ1)ξ
−1/3
1 ,
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as can be seen by direct computation. This solution serves very much as a guide
to the general construction.

Remark. Starting with this chapter, we reverse a sign convention used in Chapter
3. The result is that the model billiard ball maps δ±h (x, ξ) are defined for ξn ≤ 0
rather than for ξn ≥ 0 (we still take ξ1 > 0), by

(4.0.8) δ±h (x, ξ) =
(
x1 ±

2

3

(
−ξn
ξ1

)3/2

, x′′, xn ± 2
(
−ξn
ξ1

)1/2

, ξ
)
.

We trust the reader will adjust to this change without pain.

§4.1: Geometric reduction

As in Chapter 3 it is useful to take a symmetric position, considering the two
hypersurfaces,

(4.1.1) P = {(x, ξ); p(x, ξ) = 0},

which is the characteristic surface for p, and the bounding hypersurface,

(4.1.2) Q = {(x, ξ);x ∈ B, ξ 6= 0},

on the same footing. Here we are working in some canonical coordinates, and
B ⊂ Rn is a fixed hypersurface forming the boundary. We shall suppose that P
and Q are glancing hypersurfaces at some point m ∈ P ∩ Q. Thus, if Q is defined
by q(x, ξ) = q(x) = 0 then

(4.1.3) dp, dq and α =
n+1∑

j=1

ξj dxj are linearly independent at m,

and

(4.1.4) {p, q}(m) = 0,

while

(4.1.5) {p, {p, q}}(m) 6= 0 and {q, {q, p}}(m) 6= 0.

Note that (4.1.4) is just the condition that the null bicharacteristic of P, i.e.,
Hamilton curve of p, through m be tangent to Q (or equivalently to B after pro-
jection to R

n). The first condition in (4.1.5) requires this tangency to be simple.
The second condition in (4.1.5) is also easily interpreted in the case that p = p2 is
a second order polynomial in ξ. Indeed it is then the condition that the operator
p2(x,D) be non-characteristic with respect to the hypersurface B. To see this just
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take local coordinates x1, . . . , xn in which B is given by {x1 = 0}, with x = 0 at
m. Since (4.1.5) is coordinate-invariant the second condition becomes:

(4.1.6)
∂2p

∂ξ21
6= 0 at 0.

That is the coefficient of ξ2
1 should be non-zero, i.e., p2(x,D) should be non-

characteristic with respect to B.
The results of Chapter 3, especially Theorem 3.6.10, can be applied directly to

P and Q defined by (4.1.1), (4.1.2) subject to (4.1.3), (4.1.4) and (4.1.5). Thus,
there is a canonical transformation,

(4.1.7) χ : Γ −→ T ∗X \ 0, Γ ⊂ T ∗
R
n+1 \ 0,

defined in a conic neighborhood, Γ, of m̄ taking the standard pair (Ph, Qh) defined
in (3.6.9), to (P,Q) and taking m̄ to m. As was already noted in the construction
of χ, the fact that χ, which is symplectic, maps Qh onto Q means that it defines
a local canonical transformation (i.e., a homogeneous symplectic transformation)
from the quotient space of Qh, modulo its Hamilton fibration, to the corresponding
quotient space of Q. Notice that when a hypersurface Q ⊂ T ∗X \ 0 is just the lift
of a hypersurface in the base, B ⊂ X, then this quotient is naturally identified as
the cotangent space of the hypersurface:

(4.1.8) Q/RHq
∼= T ∗B.

Thus, χ induces a canonical transformation

(4.1.9)

χ∂ : γ −→ T ∗B \ 0, γ ⊂ T ∗
R
n.

γ = {(x1, . . . , xn, ξ1, . . . , ξn) ∈ T ∗
R
n;

(x1, . . . , xn, 0, ξ1, . . . , ξn, ξn+1) ∈ Γ for some ξn+1}.

This boundary transformation must intertwine the billiard ball maps δ±h , defined
by Ph and Qh and δ±, defined by P and Q. The billiard ball maps for the standard
pair, Ph, Qh are:

(4.1.10) δ±h (x, ξ) =
(
x1 ±

2

3

(
−ξn
ξ1

)3/2

, x2, . . . , xn−1, xn ± 2
(
−ξn
ξ1

)1/2

, ξ
)

where (x, ξ) = (x1, . . . , xn, ξ1, . . . , ξn). We will use this normal form to produce
solutions of the eikonal equations of the desired form.

Before doing so we shall strengthen the transversality condition (4.1.3). As we
shall see later this does not limit the parametrix construction since the general case
can be treated by first making a transformation in the boundary variables. Observe
first that (4.1.3) is just the independence of Hp, Hq and the radial direction of
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T ∗X \ 0 at m. Since Hp is tangent to Q, by hypothesis, and Hq spans the kernel of
the projection to T ∗B at m, (4.1.3) just states that the image of Hp in T ∗

xB, where
π(m) = x, is not in the radial direction. The strengthened form of this condition
we need is:

(4.1.11) Hp is not tangent to the fibre Tx̄X at x̄ = π(m).

This condition is useful since it allows the canonical transformation (4.1.7) to be
so chosen that:

χ∗
∂(dξj), j = 1, . . . , n, are linearly independent on T ∗

x̄B at m.

To see this just follow the reasoning above to conclude from (4.1.11) that the
projection of Hp into T ∗B is not tangent to the fibre T ∗

x̄B. Since this image is the
direction of the Hamilton vector field on the fold set it follows that the corresponding
direction, ∂/∂xn is not tangent to

(4.1.12) χ−1
∂ (T ∗

x̄B) = H.

Now H is Lagrangian, and conic, so dξn 6= 0 on H at m̄. From the fact that H
is conic it also follows that ∂/∂ξ1 is tangent to H at m̄. Thus, by a canonical
transformation fixing x1, ξ1, xn and ξn it is possible to arrange that the dξj be
independent on the image of H. Since such a transformation can be extended to
leave the normal form Ph, Qh completely unchanged this shows that (4.1.11) allows
us to assume (4.1.12).

Now, consider the mapping:

P −→ R
n, P 3 p 7−→

(
ξ1(χ−1(p)), . . . , ξn(χ−1(p))

)
∈ R

n,

defined by sending p to the values of the ξj , j = 1, . . . , n, at the image point under
(4.1.7). Combining this map with the projection from P to the base gives a map:

(4.1.13) Y : P −→ X × R
n.

Lemma 4.1.14. The map (4.1.13), defined from a reduction of the glancing pair
P, Q to normal form Ph, Qh by a canonical transformation satisfying (4.1.12), is
a fold at m. The fold set meets the boundary Q transversally in {ξn = 0}.
Proof. If q ∈ C∞(X) is a defining function for B then dq 6= 0 on P, near m, since
this is part of the transversality condition (4.1.3). Thus it is enough to show that
the restriction of (4.1.13) to the intersection of P and Q is a fold. This is just the
map:

Y ′ : P ∩Q −→ B × R
n, Y ′ = Y

∣∣
P∩Q

.

Now, the map from P ∩ Q to T ∗B is indeed a fold and since Y ′ is this projection
followed by the replacement of the fibre variables by the ξj , j = 1, . . . , n, the
transversality condition (4.1.12) shows that Y ′, and hence Y, is a fold, with the fold
set having the properties stated.
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§4.2: Hamilton–Jacobi theory

We briefly recall how Hamilton-Jacobi theory can be used to construct a parametriz-
ing phase function in case Hp is transversal to Q. Then P ∩ Q projects locally
diffeomorphically to T ∗B under (4.1.8). The fibration of T ∗B by the (coordinate)
Lagrangian submanifolds η = const can therefore be lifted to a fibration (always lo-
cally) of P ∩Q. The Hp-flow-out of these leaves gives a fibration of P, by Lagrangian
submanifolds near m; the leaves Λη are still parametrized by η. Now the canonical
1-form α restricts to be closed in Λη (since ω = 0.) Moreover the Λη project dif-
feomorphically to the base, so the base variables can be used as coordinates on Λη.
Thus there is a function Φ(x, η) fixed by

(4.2.1)
dΦ = α on each Λη

Φ = 0 on T ∗
π(m)B.

The second condition normalizes the constant on each leaf, since the fibre through
m is certainly transversal to each Λη.

By construction Φ(x, η) is C∞ and dxΦ(x, η) = ξ(x, η) where Λη = {(x, ξ(x, η).}
This can be restated as saying that

(4.2.2)
p
(
x, dxΦ(x, η)

)
≡ 0,

(x, η)←→
(
x, dxΦ(x, η)

)
∈ P.

In this sense Φ is a phase function parametrizing P. It can be used to construct
parametrices for boundary problem for the operator P. In the case of interest here
Hp is not transversal to the boundary so we have to work harder to construct a
suitable Lagrangian fibration of P and then the resulting phase function is not
smooth; the main effort is to keep the singularity as simple as possible.

Consider in P the submanifolds defined by the constancy of the ξj , j = 1, . . . , n :

Λξ = {p ∈ P ; Y (p) = (·, ξ)}.

These are Lagrangian submanifolds of T ∗X \ 0 foliating P near m; the fact that
they are Lagrangian follows by making the transformation χ which shows that the
ξj and Ph Poisson commute. The canonical 1-form:

α =
n+1∑

j=1

ξj dxj

restricted to P is therefore closed on each of the submanifolds Λξ near m. Thus
there is a C∞ function Φ on P such that:

(4.2.3) d(Φ|Λξ
) = α|Λξ

, for ξ near ξ0.
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In fact Φ is locally unique up to a normalization constant on each fibre. Let T ⊂ P
be a conic submanifold of dimension Rn transversal to the fibration by Λξ, i.e.,
meeting each one transversally in a point. Clearly one can choose T so that:

(4.2.4) T is contained in the fold of Y.

The transversality means that Φ satisfying (4.2.3) is uniquely fixed by requiring:

(4.2.5) Φ = 0 on T.

Consider again the projection Y. Note that the image Y (P ) is a half-space (near
x̄) of the form:

(4.2.6) Y (P ) = {ξn ≤ xn+1f(x, ξ)}

for some smooth function f, f(m) 6= 0. Since Y is a fold, Φ can be written uniquely
in the form:

(4.2.7) Φ = Y ∗
(
θ ± 2

3
(−ζ)3/2

)
, where θ, ζ : Y (P ) −→ R are C∞.

The odd part of Φ vanishes to second order (and hence to third order) at the fold
because Φ is the integral of a smooth 1-form on each leaf Λξ.

Proposition 4.2.8. Let P and Q ⊂ T ∗X \0 be hypersurfaces as in (4.1.1), (4.1.2)
satisfying (4.1.3), (4.1.4) and (4.1.11) at some point m ∈ P ∩Q. Then there exists a
canonical transformation reducing P, Q to the normal form Ph, Qh and satisfying
(4.1.12). If Y in (4.1.13) is defined from this transformation and T satisfies (4.2.4)
then the function Φ defined by (4.2.3), (4.2.5) in an open cone around (x̄, ξ0) is of
the form:

Φ = Y ∗
(
θ ± 2

3
(−ζ)3/2

)
,

where θ, ζ : Y (P ) −→ R, are smooth, homogeneous of degrees one and two-thirds,
Y ∗ζ is a defining function for the fold and:

(4.2.9) ζ = ξ
−1/3
1 ξn on Y (P ) ∩ (B × R

n).

Proof. In view of the analysis above it only remains to show that when Φ is written
in the form (4.2.7) the term ζ is a defining function for the fold and that (4.2.9)
holds. Notice that (4.2.9) is a formula for ζ, at the boundary, which is independent
of the choice of either χ, the reduction to normal form, or T, the submanifold
used in the normalization of Φ. Keeping χ fixed for the moment, let Φ1 and Φ2 be
two smooth solutions of (4.1.13) corresponding to different surfaces T1 and T2 of
normalization, both satisfying (4.2.4). Thus the difference:

w = Φ1 − Φ2
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is constant on each leaf of Λξ, in particular it is a function only of ξ. The involution
defined by Y preserves the fibration by the Λξ, essentially by definition, so the
Y -odd part of w is also a function of ξ only. From the form of the fold of Y
it follows that the odd part of w vanishes identically. That is, the two solutions
Φ1 and Φ2 have the same odd part. As noted above, over the boundary B, the
involution of the map Y is just that of the projection of P ∩ Q to T ∗B. Now, the
function constructed above pulls back under χ to a solution of the same problem for
the model case, with of course some particular normalization. Together these two
observations show that the odd part of Φ, restricted to the boundary, is actually
independent of both the normalization and the reduction to normal form chosen.
In particular it is the same as that of the solution to the model problem obtained
in (4.0.6), (4.0.7). This completes the proof of the Proposition since (4.2.7) implies
in particular that ζ is a defining function for the fold.

§4.3: Phase functions

Since ζ is a defining function for the fold of the map Y used in the definition of θ
and ζ, we have succeeded in constructing solutions of the form (4.0.4) to the eikonal
equations in the region {ζ ≥ 0}, a region of the type (4.2.6). We next extend these
functions outside this domain in such a fashion that the eikonal equations continue
to hold to infinite order at the boundary. It is not in general possible to solve the
eikonal equations exactly across this hypersurface because the problem becomes
elliptic.

Proposition 4.3.1. Let p2 be the (real) principal symbol of a differential operator
defined and with C∞ coefficients in some neighborhood of a hypersurface B ⊂ Rn+.
If (4.1.1)–(4.1.5) hold at a point m ∈ P∩Q ⊂ T ∗Rn+1 then there exist real functions
θ and ζ which are C∞ in a conic neighborhood Σ of π(m)×(1, 0, . . . , 0) ∈ Rn+1×Rn,
are homogeneous of degrees 1 and 2/3, respectively, and have the properties:

ζ = ξ
−1/3
1 ξn on Σ ∩ (B × R

n)(4.3.2)

dx

(
∂θ

∂ξj

)
, j = 1, . . . , n are linearly independent on Σ(4.3.3)

equations (4.0.1), (4.0.2) hold in ζ ≥ 0 and in Taylor series on B.(4.3.4)

Proof. We start with the results of Proposition 4.2.8. As noted above it is only
necessary to extend the φ and ζ so obtained from the region (4.2.6) so that (4.0.1),
(4.0.2) continue to hold in the sense of formal power series at B and (4.3.6) holds
on B. Thus, we first specify θ and ζ as Taylor series on the boundary, then choose
appropriate functions with these Taylor series.

Applying the Malgrange preparation theorem to p allows it to be written:

p = p′[(ξn+1 − a(x, ξ′))2 − b(x, ξ′)],
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where ξ′ = (ξ1, . . . , ξn) and a and b are real, p′ 6= 0 near the base point m. Thus in
solving (4.1.13) the term p′ can be dropped. The conditions (4.1.11), (4.1.4) and
(4.1.5) imply that

ξn+1 = a, b = 0, dξ′b 6= 0 at m,

with b = 0, xn+1 = 0 being the glancing surface. The differential equation (4.0.5)
then becomes:

(4.3.5)
∂φ±

∂xn+1
− a

(
x,
∂φ±

∂x′

)
= ±b

(
x,
∂φ±

∂x′

)1/2

= 0, in ζ ≥ 0.

If θ and ζ are simply extended as smooth, real-valued and homogeneous functions
across ζ = 0, i.e. into ζ ≤ 0, then (4.3.5) continues to hold for the extended φ±,
which we write as φ±′, with a smooth error term which vanishes to all orders at
ζ = 0.

(4.3.6)
∂φ±′

∂xn+1
− a

(
x,
∂φ±′

∂x′

)
∓ 1

2
b
(
x,
∂φ±′

∂x′

)1/2

= e±; with e± = 0 in ζ ≥ 0.

To solve (4.3.5) in the sense of formal power series at {xn+1 = 0} it is only necessary
to add to φ′ a formal power series:

φ′′ =
∞∑

k=1

xkn+1 gk(x′, ξ).

In view of (4.3.6) one can solve for the gk successively, uniquely as C∞ functions
vanishing in ξn > 0, so that (4.3.5) holds formally for φ = φ′ + φ′′. Clearly this
gives extension of φ and ζ with the properties desired.

Exercise 4.3.7: Show that you can arrange that θ|B generates the canonical trans-
formation (4.1.9).

§4.4: Transport Equations

We next proceed to the discussion of the transport equations, derived in Chap-
ter 1 for the case of a second order hyperbolic equation. These are all of the form:

(4.4.1) 2〈dθ, dg〉+ 2ζ〈dζ, dh〉+ 〈dζ, dζ〉h+ Ag + ζBh = F1,

(4.4.2) 2〈dζ, dg〉+ 2〈dθ, dh〉+Bg + Ah = F2,

(see (1.5.13)). Here, θ and ζ are the solutions of the eikonal equations, (4.0.1)
and (4.0.2), just constructed. The forcing terms F1 and F2 and the coefficients
A, B are given (in general complex–valued) C∞ functions. Just as for the eikonal
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equation, (4.4.1) and (4.4.2) can be reduced to the usual type of transport equations
by introducing the singular dependent variables:

a± = g ± (−ζ)1/2h, in ζ ≤ 0,

and the functions:

G± = (A± (−ζ)1/2B), F± = (F1 ± (−ζ)1/2F2).

Indeed, if g and h satisfy (4.4.1) and (4.4.2) then:

(4.4.3) 2〈dxφ±, dxa±〉+G±a± = F±.

Conversely we can recover (4.4.1) and (4.4.2), in ζ ≥ 0 by taking linear combinations
of (4.4.3) for the two signs.

To interpret (4.4.3) note that a±, G± and F± are C∞ functions of x, ξ and
ζ1/2 in ζ ≥ 0. Referring back to the construction of the phase function φ±, this
means that these functions pull back under Y in (4.1.13) to smooth functions on
the characteristic surface P. Thus, writing a, G, F for these smooth lifts, (4.4.3)
becomes:

(4.4.4) 2〈dΦ, da〉+Ga = F.

Here the differential is still with respect to x alone, but this can be reinterpreted as
being on each of the Lagrangian submanifolds Λξ used in the definition of Φ. In fact
the vector field 2〈dΦ, ·〉 is just of the Hamilton vector field of p. Indeed since the
projection from Λξ to the base is a diffeomorphism, and this is used to introduce
the xj as coordinates in Λξ, the Hamilton vector field in these coordinates is just
given by the projection of Hp to the base, i.e., precisely

n∑

j=1

∂p

∂Ξj
(x,Ξ).

Thus (4.4.4) becomes:

(4.4.5) Hpa+Ga = F,

Now (4.4.5) is the usual form of the transport equation.
There is no difficulty in solving (4.4.5), but returning to the source of the trans-

port equations (4.4.1), (4.4.2) we find that a solution should be sought with:

(4.4.6) h = 0 on B, g = 1 at the base point m.

In terms of the function a obtained by lifting a± to P, these can be written

(4.4.7) a on P ∩Q is the lift of a C∞ function on T ∗B, a(m) = 1.
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Before tackling this problem directly let us simplify (4.4.5) by removing some of
the data. Certainly the equation:

Hpa1 +G′a1 = F ′

has a solution with a1(m) = 0, since this just involves integration of a real non–
vanishing vector field. The solution can be chosen homogeneous of degree m−1+r
if F ′ is of degree r and p of degree m. Subtracting a1 from a in (4.4.5) reduces us
to consideration of the homogeneous equation. Similarly the term of order zero can
be removed by solving:

Hpb = G′, b(m) = 0,

and setting

a− a1 = exp(−b)u.

The equation has thereby been simplified to:

(4.4.8) Hpu = 0,

at the expense however of complicating the boundary condition (4.4.7) to:

(4.4.9) [exp(−b)u]O = e, vO = (I∗Qv − v)τ−1, u(m) = 1.

where τ is some primitve IQ-odd function. Thus v = vE+τvO where vE and vO are
both even under IQ. The error, e, in (4.4.9) is also some IQ-even function coming
from a1, and IQ is the involution on P ∩Q arising from projection to T ∗B. Observe
that the differential equation (4.4.8) just reduces to the evenness of u, on P∩Q under
the involution corresponding to the projection into the manifold of bicharacteristics
on P. Since the canonical transformation χ reduces these two involutions to normal
form, equivalent to (2.3.8) and (2.3.9), this problem has already been solved in §2.8.
One only needs to observe that if

u = uE + τuO,

then (4.4.9) can be written:

(4.4.10) uO = cuE + f,

where c and f are given IQ-even functions. This can be solved using Proposition
2.8.2.

This solves the transport equations in the region ζ ≥ 0. The extension of the
smooth functions g, h into the region ζ < 0 in such a way that the transport
equations continue to hold to all orders at the boundary B can be accomplished
directly, as in §4.3.
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Proposition 4.4.11. Suppose P and Q satisfy the hypotheses of Proposition 4.3.1
and θ, ζ are as constructed there. Then for any C∞ functions A, B, F1, F2

homogeneous of degrees 1, 2/3, r and r−1/3, and for any real-valued C∞ functions
c, d on the boundary and homogeneous of degrees −1/3 and r − 4/3 there is a C∞
solution g, h (in ζ ≥ 0 and to all orders at the boundary) to (4.4.1)–(4.4.2) satisfying
the boundary condition:

(4.4.12) h = cg + d, g(m) = 1,

and homogeneous of degrees r − 1 and r − 4/3, respectively.

Proof. This proposition just summarizes the discussion above, except that the
boundary condition has been generalized. Following the discussion of the boundary
conditions beginning at (4.4.6), gives in place of (4.4.9) the condition:

(4.4.13) [e−bu]O = c[e−bu]E + e′,

in terms of the IQ-odd and even parts. Since

[αβ]E = [α]E · [β]E + τ2[α]O · [β]O,

one again arrives at (4.4.10), with different functions c, and f even under I0. Thus
the proof above suffices to give the more general result as stated.

If we replace appeal to Proposition 2.8.2 by a use of the result of Exercise 2.8.14,
we obtain the following useful variant of Proposition 4.4.11.

Proposition 4.4.14. Under the hypotheses of Proposition 4.4.11, given b, d, ho-
mogeneous of degrees −1/3 and r−1, respectively, one can obtain solutions g, h (on
ζ ≥ 0 and to all orders at the boundary) to (4.4.1)–(4.4.2), satisfying the boundary
condition

(4.4.15) g = bζh+ d,

and homogeneous of degrees r − 1 and r − 4/3, respectively.
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Chapter 5: Airy multipliers

In this chapter we shall consider the operators which are given by Fourier mul-
tiplication or division by one of the functions

(5.0.1)
Φ±(ζ0) =

A′
±(ζ0)

A±(ζ0)
, Φi(ζ0) =

Ai′(ζ0)

Ai(ζ0)
, Ai(ζ0)A±(ζ0),

Ai′(ζ0)A±(ζ0), Ai(ζ0)A′
±(ζ0), Ai′(ζ0)A′

±(ζ0),

and certain others, where ζ0 is the function

(5.0.2) ζ0(ξ) = ξ
−1/3
1 (ξn + iT ).

The corresponding Fourier multipliers will be denoted, respectively, by

(5.0.3)
Φ±, ΦiT , (AiA±)T ,

(Ai′A±)T , (AiA′
±)T , (Ai′A′

±)T .

Of the Fourier multipliers in (5.0.3) the first two are particularly important since
they constitute the ‘non-classical’ parts of the Neumann operator in the diffractive
and gliding cases respectively, as we will see in Chapter 8.

We begin in §5.1 with the even simpler Airy multipliers Ai and Ai′, which
define Fourier integral operators with folding canonical relations. The main result
of this section is that these operators give rise to microlocal models for arbitrary
Fourier integral operators with folding canonical relations. In §5.2 we gather certain
estimates on Airy functions, established in Appendix A, which are then brought
to bear in §5.3 to establish mapping properties of the operators listed in (5.0.3)
and their inverses on Sobolev spaces. Finally, in §5.4 we show how these operators,
applied to distributions, move wave front sets around.

Of course our study is microlocal, so we typically compose the operators in (5.0.3)
and their inverses with a microlocal cutoff φ(D), where φ(ξ) ∈ S0

1,0(Rn) satisfies

(5.0.4)
φ(ξ) = 1 for |ξn| ≤

1

2
ξ1, |ξ| ≥ 1,

0 for |ξn| ≥ ξ1.

§5.1: Fourier integral operators with folding canonical relations

A simple example of a Fourier integral operator associated to a folding canonical
relation is the convolution operator with Schwartz’ kernel:

α = δ(x1 −
1

3
x3
n)δ(x2) · · · δ(xn−1).



83

The Fourier multiplier corresponding to this convolution operator is:

(5.1.1)

F (ξ) =

∫
δ
(
x1 −

1

3
x3
n

)
e−iξ1x1−iξnxn dx1 dxn

=

∫
exp

(
−1

3
iξ1x

3
n − iξnxn

)
dxn

= ξ
−1/3
1 Ai(ξ

−1/3
1 ξn),

where the formula (A.0.1):

Ai(s) =
1

2π

∫ ∞

−∞

exp(ist+
1

3
it3) dt

has been used. Acting on distributions with wavefront set in a suitably small
conic neighborhood of {ξn = 0} this operator differs from the operator Ai defined
by (5.0.3) with the Fourier multiplier Ai(ζ) by an elliptic factor and an additive
smoothing operator:

(5.1.2) α∗ ≡ |D1|−1/3Ai, near {ξn = 0, ξ1 = 1}.

From the form (5.1.1) of α this shows that in the notation of Hörmander ([H1]),

Ai ∈ I−1/6(Rn,Rn;C0),

where C0 is the canonical relation associated to the phase function

φ(x, y, ξ, τ) = (x− y) · ξ + ξnτξ
−1
1 − 1

3
τ3ξ−2

1 .

Namely, the (twisted) conormal bundle to the surface

S =
{

(x, y) ∈ R
2n;x1 − y1 −

1

3
(xn − yn)3 = 0, x2 = y2, . . . , xn−1 = yn−1

}
.

That is,

N∗S = {(x, y, ξ, η) ∈ R
4n; (x, y) ∈ S, η + ξ = 0, ξn = (xn − yn)2ξ1},

so

C0 =
{

(x, ξ, y, η); ξ = η, xj = yj , 2 ≤ j ≤ n− 1,

x1 − y1 =
1

3
(xn − yn)3, ξ1(xn − yn)2 = ξn,

}
,

(5.1.3)
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which is the relation considered in (3.5.3).
The same argument shows that

Ai′ ∈ I1/6(Rn,Rn;C0),

since up to an elliptic factor and a smoothing error, Ai′, obtained from (5.0.3) with
the multiplier Ai′ is given by convolution with xnα.

Now, let C be a general folding canonical relation from X1 to X2, with fold set
Σ. Consider the space Im(X1, X2;C) of Fourier integral operators associated with
C. Of course, Im(X1, X2;C) is a module over the (properly supported) pseudodif-
ferential operators:

(5.1.4) OPS0
P (X2) · Im(X1, X2;C) ⊂ Im(X1, X2;C),

and similarly from the other side. If C were microlocally a canonical transformation
near a point λ then one elliptic element would generate Im(X1, X2;C) microlocally
as a module (5.1.4). In the case of a folding canonical transformation two elements
are needed. Naturally one of them, A1, should be elliptic but this does not suffice.
Indeed the symbol of P · A1 is σ(P )σ(A1), with σ(P ) necessarily even under the
involution J2 of C corresponding to the points identified by projection into T ∗X2.
Thus the symbol of P ·A cannot be an arbitrary symbol on the relation C.

Proposition 5.1.5. Suppose that λ ∈ Σ, the fold of the folding canonical relation
C from X1 to X2, and A1 ∈ Im(X1, X2;C) is elliptic at λ. If A2 ∈ Im(X1, X2;C)
is such that on C, σ(A2) = βσ(A1) where β −J ∗

2 β vanishes to precisely first order
on Σ near λ, then any A ∈ IM (X1, X2;C) can be written microlocally near λ:

(5.1.6) A = P1 ·A1 + P2 ·A2, with Pi ∈ OPSM−m(X2), i = 1, 2.

Proof. The basic result in the theory of Fourier integral operators (or Lagrangian
distributions) is that modulo IM−1(X1, X2;C), an element A ∈ IM (X1, X2;C) is
determined by its symbol σ(A), a section of the Keller-Maslov (line) bundle over
C. Since A1 is elliptic,

σ(A) = qσ(A1),

with q a symbol of order M − m on C. From the remarks above it suffices to
decompose q as:

(5.1.7) q = p1 + p2β,

where p1 and p2 are even under J2, and β is as in the statement of the proposition.
Decomposing β into its J2-odd and even parts gives

β = βe + βo,

where by hypothesis βo is a defining function for the fold. The decomposition of q
into J2-odd and even parts can therefore be written

q = p′1 + p2βo,

with p′1 and p2 J2-even. The (5.1.7) holds with p1 = p′1 − p2βe. This gives (5.1.6)
modulo Im−1(X1, X2;C) and a standard inductive argument over the symbol fil-
tration completes the proof of the proposition.
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Theorem 5.1.8. Let A ∈ Im(X1, X2;C) be a Fourier integral operator of order
m associated to a folding canonical relation C from X1 to X2. Given any point
λ = (m2,m1) ∈ Σ, the fold of C, there exist elliptic Fourier integral operators
J1 ∈ I0(X1,R

n;χ1), J2 ∈ I0(Rn, X2;χ2) associated to canonical transformations
and pseudodifferential operators P1 ∈ OPSm+1/6(Rn), P2 ∈ OPSm−1/6(Rn) such
that:

(5.1.9) A ≡ J2 · (P1Ai+ P2Ai′) · J1 microlocally near λ.

Proof. We take the canonical transformations χ1 and χ2 from Theorem 3.5.7,
reducing the folding canonical relation C to the normal form Λh near λ. Let
J1 ∈ I0(X1,R

n;χ1) and J2 ∈ I0(Rn, X2;χ2) be any properly supported Fourier
integral operators elliptic at the appropriate base points, with small essential sup-
ports and microlocal inverses J−1

i . Then,

A′ = J−1
2 ·A · J−1

1 ∈ Im(Rn,Rn;C0).

Applying Proposition 5.1.5, with A1 = |D|1/6Ai and A2 = |D|−1/6Ai′, which
clearly satisfy the hypotheses, the decomposition (5.1.6) immediately gives (5.1.9)
microlocally near λ.

As a simple application of this reduction result one can give the sharp order of
continuity of such operators on Sobolev spaces.

Corollary 5.1.10. If C is a folding canonical relation from X1 to X2 and A ∈
Im(X1, X2;C) has essential support near some point λ in the fold of C then

(5.1.11) A : Hs
c (X1) −→ H

s−m−1/6
loc (X2), ∀ s.

Furthermore, if A has a homogeneous principal symbol of degree m then

(5.1.12) A : Hs
c (X1) −→ Hs−m

loc (X2),

if and only if σ(A) vanishes on the fold of C.

Proof. The continuity statement (5.1.11) follows directly from the decomposition
(5.1.9), standard continuity results for pseudodifferential operators and Fourier in-
tegral operators associated to canonical transformations and the bounds:

Ai(ζ) ∈ L∞(Rn), (1 + |ξ|)−1/6Ai′(ζ) ∈ L∞(Rn),

which follow from Appendix A.
Moreover the second term in (5.1.9) always gives an operator bounded as in

(5.1.12). Since the Fourier integral operators are elliptic, (5.1.12) holds precisely
when

(5.1.13) P1 · Ai : Hs
c −→ Hm−s

loc .
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Now, if σ(A) restricted to the fold set is not zero then P1 is elliptic at some point
on the fold. Then (5.1.13) implies that |D|1/6Ai is itself microlocally bounded on
Hs. This is clearly not the case, proving the Corollary.

Exercise 5.1.14: Prove the analogue of Theorem 5.1.8 for the action of pseudodif-
ferential operators as a right module, i.e., that in place of (5.1.9) one can obtain a
microlocal decomposition

(5.1.15) A ≡ J2 · (AiP1 +Ai′P2) · J1.

§5.2: Estimates on the multipliers

All the functions b(ζ) in (5.0.1) are meromorphic in the entire complex plane.
We note here basic estimates on these multipliers in three regions, a strip around
the positive real axis extending into a neighborhood of the origin:

(5.2.1) PT = {z ∈ C; Re(z) ≥ −γ(1 + | Im(z)|), | Im(z)| ≤ T},
a similar strip around the negative real axis:

(5.2.2) TT = {z ∈ C; Re(z) ≤ −γ(1 + | Im(z)|), | Im(z)| ≤ T},
and a smaller neighborhood of the negative real axis:

(5.2.3) DT = {z ∈ C; Re(z) ≤ −γ(1 + | Im(z)|), | Im(z)| ≤ T (1 + |z|)−1/2}.
In all cases γ > 0. Of course for T > 0 the region DT is contained in TT , but the
estimates in DT will be stronger than those in TT . We shall also use the notation:

(5.2.4) D±
T = {z ∈ DT ;± Im(z) > 0}, T ±

T = {z ∈ TT ;± Im(z) > 0}.

Figure 5.1
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The proof of each of the following Lemmas can be found in Appendix A, where
a detailed study of the behaviour of the Airy functions is carried out.

Lemma 5.2.5. For γ > 0 sufficiently small and all T > 0 the functions in (5.0.1)
are holomorphic in PT and satisfy symbol estimates there:

(5.2.6) |b(j)(z)| ≤ Cj(1 + |z|)m−j in PT

where

(5.2.7) m =





1

2
for b = Φ±, Φi, A′

±Ai
′, (A±Ai)

−1

0 for b = A′
±Ai, A±Ai

′, (A′
±Ai)

−1, (A±Ai
′)−1

−1

2
for b = Φ−1

± , Φi−1, A±Ai, (A′
±Ai

′)−1

.

The region DT is important first because the branch of the fractional power
(−z)3/2 that is real and positive on the negative real axis is defined and analytic
in DT . More importantly:

(5.2.8) −CT ≤ Im(−z)3/2 ≤ CT on DT ,

and because of this the exponential factor exp[±(2/3)(−z)3/2] is bounded on DT .

Lemma 5.2.9. For γ > 0 sufficiently small and each T > 0 there are constants
c, C > 0 such that in DT

|A±(z)|, |Ai(z)| ≤ C(1 + |z|)−1/4,(5.2.10)

c| Im(z)|(1 + |z|) ≤ |Φi(z)| ≤ C| Im(z)|−1,(5.2.11)

c| Im(z)| ≤ |A±(z)Ai(z)| ≤ C(1 + |z|)−1/2,(5.2.12)

c| Im(z)|(1 + |z|)1/2 ≤ |A′
±(z)Ai(z)|, |A±Ai

′| ≤ C,
(5.2.13)

c| Im(z)|(1 + |z|) ≤ |A′
±(z)Ai′(z)| ≤ C(1 + |z|)1/2.(5.2.14)

In the larger region TT similar, but in some cases weaker estimates hold:

Lemma 5.2.15. If γ > 0 is sufficiently small then, for each T > 0, Φ± and
Φ−1

± satisfy the symbol estimates (5.2.6) in TT , with m = 1/2 and m = −1/2,
respectively. Moreover,

(5.2.16) c| Im(z)|(1 + |z|)1/2 ≤ |Φi(z)| ≤ C| Im(z)|−1(1 + |z|)1/2,

and for the remaining cases of b± and m as in (5.2.7)

(5.2.17) c| Im(z)|(1 + |z|)m ≤ |b±(z)| ≤ C| Im(z)|−1(1 + |z|)m in T ±
T
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and

(5.2.18)
c| Im(z)|(1 + |z|)m exp[±2 Re(−z)1/2 Im(z)] ≤ |b±(z)|
≤ C| Im(z)|−1(1 + |z|)m exp[±2 Re(−z)1/2 Im(z)] in T ∓

T .

In the region DT there are more refined decompositions which capture the as-
ymptotic behaviour of the various functions in (5.0.1). The simplest case after Φ±

is for the products of two Airy functions.

Lemma 5.2.19. If T > 0 is sufficiently small then for each choice of

(5.2.20) b = A±Ai, A
′
±Ai, A±Ai

′, A′
±Ai

′,

there are functions a1, a2 holomorphic in DT , satisfying the symbol estimates
(5.2.6) there with the order given by (5.2.7) and such that

(5.2.21) b± = a1 exp
[
±4

3
i(−Re(z))3/2

]
+ a2 in D±

T .

The behaviour of Φi, or of any of the functions involving division by Ai or Ai′ is
similar but more subtle, as it involves an infinite series expansion of this type. For
any open set V ⊂ C let ‖b‖j,m,V denote the infimum over the constants for which
(5.2.6) is valid.

Lemma 5.2.22. Given T > 0 there exist CT > 0 and functions ak,δ, k = 0, 1, . . . , δ =
±, holomorphic in the region:

(5.2.23) Vδ = (DδT \ DδT/2) ∩ {Re(z) < −CT },

such that, for m = 1/2

(5.2.24)

∞∑

k=0

‖ak,δ‖m,j,Vδ <∞ j = 0, 1, . . .

and

(5.2.25) Φi(z) =
∞∑

k=0

ak,δ exp
[
−δ 4

3
ki(−Re(z))3/2

]
in Vδ, δ = ±.

More generally if Φi is replaced by Φi−1 the same result holds with m = −1/2.
If Φi is replaced by b−1

± , the inverse of one of the functions in (5.2.20), then a
similar result holds with m given as in (5.2.7) and the corresponding series (5.2.25)
convergent in the region V∓.
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§5.3: Airy multiplier operator estimates

We proceed to examine the (local) boundedness on Sobolev spaces of the oper-
ators listed in (5.0.3), and their inverses.

The first case we consider is the basic one for diffractive problems, with the
multipliers Φ± in (5.0.3). The operators Φ± are analytically and geometrically
simpler even than Ai of §5.1. Although representing essentially the same geometry
they are in fact pseudodifferential operators.

Proposition 5.3.1. For any cut-off φ as in (5.0.4),

(5.3.2) Φ± ∈ OPS1/3
1/3,0, Φ−1

± ∈ OPS0
1/3,0.

Proof. Consider a general region:

(5.3.3) U = {(x, ξ) ∈ R
n × R

n; |ξn| < cξ1, ξ1 > 0, |ξ| > 1},

which includes the area in which the cut-off function in (5.0.4) is essentially sup-
ported. Since φ is a classical symbol of order 0, the first part of (5.3.2) follows from
symbol estimates of type (1/3, 0) and order 1/3 for Φ±(ζ) in the region U . These
in turn follow from the chain rule and the estimates on Φ±(z) in Lemma 5.2.5 and
Lemma 5.2.15. Similarly for Φ−1.

In fact these symbols satisfy somewhat more precise estimates:

(5.3.4) |Dγ
ξn
Dα
ξ′Φ±(ζ0)| ≤ Cαγ |ξ1|1/3−|α|(ξ

1/3
1 + |ξn|)−|γ|,

and similarly:

(5.3.5) |Dγ
ξn
Dα
ξ′Φ

−1
± (ζ0)| ≤ Cαγ |ξ1|1/6−|α|(|ξ1|1/3 + |ξn|)−1/2−|γ|.

Some consequence of these estimates will be used in later discussions.
Next we consider the Fourier multipliers defined by Φi. This case is more com-

plicated than either Ai or Φ±, since the multiplier is not well-defined because of
singularities on the real axis. To overcome this it is only necessary to complexify
the argument. Thus consider for any T ∈ R \ 0 sufficiently small

(5.3.6) Φi(ξ
−1/3
1 (ξn + iT )).

The estimates (5.2.11) show that these are of tempered growth in U . If a cut-off
function φ, as in (5.0.4), or more generally

(5.3.7) φ ∈ S0(Rn), supp(φ) ⊂
{
ξ1 >

1

3
(|ξ|+ 1)

}
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is inserted this gives smooth functions of tempered growth on Rn. Thus convolution
operators

(5.3.8) ΦiT , Φi−1
T

are well-defined.
Similarly the other functions in (5.0.1) all lead to tempered functions on the

region U with slow growth as |Re(ξn)| → ∞ so the corresponding operators

(5.3.9)
(A± · Ai)T , (A± · Ai′)T , (A′

± · Ai)T , (A′
± · Ai′)T ,

(A±Ai)−1
T , (A± · Ai′)−1

T , (A′
± · Ai)−1

T , (A′
± · Ai′)−1

T ,

are all well-defined for T 6= 0.

Proposition 5.3.10. For any T 6= 0 sufficiently small and any s ∈ R, the oper-
ators in (5.3.8) and (5.3.9) are bounded from Hs(Rn) to Hs−q(Rn), where corre-
sponding to the values of m in (5.2.7) q = 1/3 if m = 1/2 and q = 0 if m = 0 or
m = −1/2.

Proof. These continuity statements follow from the estimates in §5.2 above. Setting

z = ξ
−1/3
1 ξn + iT ξ

−1/3
1 , the region DT in (5.2.4) contains the points with ξ1 ≥

c(T ), ξn ≤ 0 for each T 6= 0. From (5.2.11) and (5.2.12) it follows that

|Φi(ξ−1/3
1 (ξn + iT ))| ≤ CT−1ξ

1/3
1 ,(5.3.11)

|Φi−1(ξ
−1/3
1 (ξn + iT ))| ≤ CT−1ξ

1/3
1 (1 + ξ

−1/3
1 |ξn|)−1,(5.3.12)

|(A± ·Ai)(ξ−1/3
1 (ξn + iT ))| ≤ C(1 + ξ

−1/3
1 |ξn|)−1/2,

(5.3.13)

and

(5.3.14) |(A± ·Ai)−1(ξ
−1/3
1 (ξn + iT ))| ≤ CT−1ξ

1/3
1 .

Estimates on the complementary region ξn ≥ 0 are more elementary and follow
directly from Lemma 5.2.5. Thus in the region ξ1 ≥ C, ξn ≥ 0, 0 < |T | < T0,

|Φi(ξ−1/3
1 (ξn + iT ))| ≤ C(1 + ξ

−1/3
1 |ξn|)1/2 ≤ C(1 + |ξ|)1/3,(5.3.15)

|Φi−1(ξ
−1/3
1 (ξn + iT ))| ≤ C(1 + ξ

−1/3
1 |ξn|)−1/2,

(5.3.16)

|(A± ·Ai)(ξ−1/3
1 (ξn + iT ))| ≤ C(1 + ξ

−1/3
1 |ξn|)−1/2,

(5.3.17)

|(A± ·Ai)−1(ξ
−1/3
1 (ξn + iT ))| ≤ (1 + ξ

−1/3
1 |ξn|)1/2 ≤ C(1 + |ξ|)1/3.

(5.3.18)

The assertions of the proposition now follow directly from (5.3.11)–(5.3.14) and
(5.3.15)–(5.3.18).
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§5.4: Wavefront relations

To start with we shall consider the ‘classical’ region, away from the fold ξn = 0.
Thus let ψ1 ∈ S0(Rn) be a conic cut-off function such that for some ε > 0

(5.4.1) ψ1(ξ) = 0 if |ξn| ≤ ε|ξ|,

(5.4.2) ψ1(ξ) = 1 if |ξn| ≥ 2ε|ξ|, |ξ| ≥ 1.

We shall consider the convolution operators, denoted for example ψ1ΦiT , ob-
tained by inserting ψ1 into (5.0.3) when B is one of the multipliers considered
above. Recall the form of the canonical relation C0, given in (5.1.3) above. Away
from the fold set:

Σ = {ξn = 0},
C0 is the graph of a pair of canonical transformations, the billiard ball maps δ±
discussed in Chapter 3. Away from Σ these maps have no recurrent points, since
under iteration,

xn(δk±) −→∞ as k −→∞.
The composite relation with k factors:

C0 · C0 · · ·C0

has, always away from Σ, k + 1 components, namely the graphs of the iterates,

δk+, δ
k−2
+ , . . . , δk−,

where in case the identity, as δ0±, occurs the graph is restricted to ξn < 0. We shall
denote by

(5.4.3) Ck,reg = C0 · · ·C0 ∪ [graph(Id) ∩ {ξn > 0, ξ1 > 0}] over ξ1 > 0, ξn 6= 0,

the relation consisting of the k-fold iterate of C0, over ξ1 > 0, ξn < 0 and the
identity over ξ1 > 0, ξn > 0.

All these graphs, of the powers of the δ±, are disjoint away from Σ and locally
finite in the sense that only a finite number of components meet any compact subset
of ξn > 0, ξ1 > 0. This allows us to define the formally infinite composite:

(5.4.4) C∞,reg =

[
⋃

k∈N

(graph(δk±)

]
∪ [graph(Id) ∩ {ξn > 0, ξ1 > 0}] =

⋃

k

Ck,reg,

as a C∞ locally embedded canonical relation. The subrelations:

(5.4.5) C±∞,reg =


 ⋃

±k≥0

graph(δk±)


 ∪ [graph(Id) ∩ {ξn > 0, ξ1 > 0}] .
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are of particular importance. Notice that in ξ1 > 0, in which region the δ± are
defined,

±[δ∗±xn − xn] ≥ 0.

Thus C±∞,reg are the parts of C∞,reg where xn ≥ yn and xn ≤ yn respectively. We
shall also use the further notation:

C±,reg = [graph(Id) ∩ {ξ1 > 0, ξn 6= 0}] ∪ [graph(δ±)] ,

δ±C±∞,reg =


 ⋃

±k≥1

graph(δk±)


 [graph(Id) ∩ {ξ1 > 0, ξn 6= 0}] .

Let us briefly consider the structure of Fourier integral operators associated with
these various relations. Since they are all immersed canonical relations it is only
necessary to find a parametrizations of each to get at least microlocal represen-
tations of the associated operators. In fact from the discussion above of Fourier
integral operators associated to C0 it is apparent that

τ± = (x− y) · ξ ∓ 2

3
(−ξn)3/2ξ

−1/2
1

are parametrizations of the graphs of δ± in ξn < 0, ξ1 > 0. More generally then
the powers, δk+, are parametrized by the phase functions:

τk = (x− y) · ξ − 2

3
k(−ξn)3/2ξ

−1/2
1 .

Fourier integral operators in, for example, the space Im(Rn, C+∞) associated with
C+∞ just consists of those operators with Schwartz’ kernels which can be written
microlocally as finite sums of oscillatory integrals:

Ik =

∫
exp(iτk)ak(x, y, ξ) dξ,

where ak is a symbol of appropriate type and k ≥ 0.

Proposition 5.4.6. If ψ1 is a conic cut-off as in (5.4.1)–(5.4.2) then

(5.4.7) ψ1ΦiT ∈ I1/3(Rn, Csgn(T )
∞,reg ),

(5.4.8) ψ1(Φi)−1
T ∈ I−1/3(Rn, Csgn(T )

∞,reg ),

(5.4.9)
ψ1(A− sgn(T )Ai)−1

T ∈ I1/3(Rn, Csgn(T )
∞,reg ),

ψ1(Asgn(T )Ai)−1
T ∈ I1/3(Rn, δ2sgn(T )Csgn(T )

∞,reg ),
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(5.4.10)
ψ1(A− sgn(T )Ai′)−1

T ∈ I0(Rn, Csgn(T )
∞,reg ),

ψ1(Asgn(T )Ai′)−1
T ∈ I0(Rn, δ2sgn(T )Csgn(T )

∞,reg ),

and

(5.4.11) ψ1A±Ai ∈ I0(Rn, C±,reg), ψ1A±Ai′ ∈ I0(Rn, C±,reg)

are all classical Fourier integral operators.

Proof. These results follow from the asymptotic expansions derived in Appendix
A. Since ψ1 has essential support in two disconnected cones, one in ξn > 0 and the
other in ξn < 0, we can consider separately the two regions, by replacing ψ1 by

(5.4.12) ψ1 = ψ′
1 + ψ′′

1 ,

where ψ′
1 has support in ξn > 0 and ψ′′

1 has support in ξn < 0 outside some large
ball. Now, ψ′

1ΦiT , ψ′
1(ΦiT )−1 and ψ′

1(A±AiT )−1 are classical pseudodifferential
operators.

As for ψ′′
1 ΦiT , etc., write

ζ0 = ξ
−1/3
1 (ξn + iT ) = ωξ

2/3
1 + iT ξ

−1/3
1 , ω =

ξn
ξ1
,

and note that on the support of ψ′′
1 (ξ), ζ0 runs over a subset of C to which Lemma

5.2.22 applies. The results of Proposition 5.4.6 follow from this.

Next we consider the behaviour of these various convolution operators microlo-
cally near the non-classical region Σ. If fact the simplest possible extension of the
result in Proposition 5.4.6 is valid. Take the closures of the various relations defined
above:

C± = cl


 ⋃

k≥0

graph(δk±)


 ∪ [graph(Id) ∩ {ξn ≥ 0, ξ1 > 0}] ,

(5.4.13)

C± = [graph(Id) ∩ {ξ1 > 0}] ∪ cl [graph(δ±)] ,
(5.4.14)

δ±C±∞ = cl


 ⋃

±k≥1

graph(δk±)


 [graph(Id) ∩ {ξ1 > 0, ξn 6= 0}] .

(5.4.15)

The form of C0 is such that the additional points obtained in this way are easily
described.
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Lemma 5.4.16. We have

Csgn(T )
∞ \ Csgn(T )

∞,reg = Csgn(T )
∞ ∩ {ξn = 0}

(5.4.17)

= {(x, y, ξ, η); ξn = ηn = 0, ξ = η, xj = yj for j < n, sgn(T )(xj − yj) ≥ 0}.

Proof. The first equality is clear from the discreteness of C±∞,reg in ξn 6= 0. The
second follows immediately from the form of the iterated billiard ball maps:

δk±(x, ξ) =
(
x1 ±

k

3

(
−ξn
ξ1

)3/2

, x′′, xn ± k
(
−ξn
ξ1

)1/2

, ξ
)
, ξn < 0, ξ1 ≥ 0.

Thus if a sequence in C±∞,reg is to converge as ξn → 0 then k(−ξn/ξ1)1/2 must
converge. The only restriction on the limit is that it must be positive. Necessarily,
k →∞ and x1 − y1 → 0, giving (5.4.17).

Similar remarks apply to the other relation, so

δ±C±∞ \ δ±C±∞,reg

is also given by the same formula (5.4.17). One the other hand,

(5.4.18) C± \ C±,reg = graph(Id) ∩ {ξn = 0, ξ1 > 0}.

Theorem 5.4.19. If φ is a cut-off as in (5.0.6) then the operators in (5.0.3) satisfy:

WF′(ΦiT ), WF′((Φi)−1
T ) ⊂ Csgn(T )

∞ ,(5.4.20)

WF′((A∓ sgn(T )Ai)−1
T ), WF′((A∓ sgn(T )Ai′)−1

T ) ⊂ C± sgn(T )
∞ ,(5.4.21)

and

(5.4.22) WF′(A±Ai), WF′(A±Ai′) ⊂ C±.

Proof. Consider first (5.4.20). Let us assume for simplicity that T > 0. After
Proposition 5.4.6 it remains only to show that if u is a distribution of compact
support with wavefront set contained in a cone Γ, and if

Γ+
e = {(x, y, ξ, η);xn ≥ yn, xj = yj , 1 ≤ j < n, ξ = η, ξn = ηn = 0}

then

(5.4.23) WF(ΦiT (u)) ∩ {ξn = 0} ⊂ Γ+
e ·WF(u), T > 0,
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obtained by flowing out from Γ in the positive xn direction within the fold surface.
First we show this without the sign condition.

Consider the vector field

V1 =
∂

∂ξ1
+

1

3
ξ−1
1 (ξn + iT )

∂

∂ξn
.

With ζT = ξ
−1/3
1 (ξn + iT ),

(5.4.24) V1ζT = 0.

Thus,

(5.4.25) V1 [φ(ξ)Φi(ζT )] = V1φ(ξ)Φi(ζT ).

It follows that if b is the kernel of the convolution operator ΦiT then

(5.4.26) f = φ(D)

[
x1 +

1

3
|D1|−1(Dn + iT )xn

]
b

is the kernel of a convolution operator, F , of the form (5.0.3) except that φ is
replaced by a symbol of order minus one supported away from {ξn = 0}. Thus
f has no wavefront near {ξn} and F has no wavefront relation there. Since the
operator applied to b in (5.4.26) is elliptic on the fold set, away from {x1 = 0}

WF (b) ∩ {ξn = 0} ⊂ {x1 = 0}.

Similarly the simpler vector fields

Vj =
∂

∂ξj
, j = 2, . . . , n− 1,

can be used to show that

WF (b) ∩ {ξn = 0} ⊂ {x1 = 0, x2 = 0, . . . , xn−1 = 0}.

This proves (5.4.23) except for the sign condition on xn.
The sign condition follows from the observation that

(5.4.27)
T > 0⇒ ΦiT δ(x) = 0, for xn < 0,

T < 0⇒ ΦiT δ(x) = 0, for xn > 0,

and similarly for the other Airy multipliers. This follows from the holomorphy

of the function Φi(ξ
−1/3
1 (ξn + iT )) for ξn in a half-plane (Im ξn > 0, for T > 0;

Im ξn < 0, for T < 0), the estimate (A.4.35), and the Paley-Wiener theorem.
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Chapter 6: Fourier-Airy Operators

This chapter contains a discussion of some of the properties of the operators that
will be used in the next chapter to give parametrices for boundary problems. There
are three related types of Fourier-Airy integral operators we will consider. These
can be written symbolically:

(6.0.1) Av =

∫ [
gA±(ζ) + ihA′

±(ζ)
]
A±(ζ0)−1eiθv̂(ξ) dξ,

(6.0.2) Bv =

∫ [
gAi(ζ) + ihAi′(ζ)

]
A±(ζ0)eiθ v̂(ξ) dξ,

and

(6.0.3) Cv =

∫ [
gAi(ζ) + ihAi′(ζ)

]
Ai(ζ0)−1eiθ v̂(ξ) dξ.

Note that the operator C in (6.0.3) can be written as the composite:

(6.0.4) C = B ◦ (A±Ai)−1
T ,

where (A±Ai)T is an Airy multiplier studied in Chapter 5. For this reason we
concentrate our attention on the two operators A, B given by (6.0.1), (6.0.2).

In §6.1 we lay down our basic hypotheses on the phase functions ζ and θ, and
on the amplitudes g and h. These hypotheses are satisfied in the case of operators
that will be proposed in Chapter 7 as parametrices for solutions to wave equations
with grazing and gliding rays, as consequences of the material developed in Chapter
4. Section 6.2 gives a brief justification that A and B are well defined on smooth
functions with compact support. Sections 6.3 and 6.4 make a more detailed study
of the operators B and A, respectively, on distributions. These operators are de-
composed into various pieces, which can be treated as Fourier integral operators
with singular phase functions. These results are applied in §6.5 to the study of the
microlocal singularities of Av, Bv, and Cv.

§6.1: Basic hypotheses

Here we set conditions on the various ingredients in (6.0.1)–(6.0.3). First, we
take

(6.1.1) ζ0 = ξ
−1/3
1 (ξn + iT ).

The phase functions ζ, θ and amplitudes g, h are defined and smooth for x is some
neighborhood U in Ω of a boundary point x0 ∈ ∂Ω and for real ξ in Γ = {|ξn| ≤
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C0ξ1, ξ1 > 0}, and in a complex neighborhood Γ̃ in the ξn variable. The two phase
functions are

(6.1.2) θ = θ(x, ξ′, ξn + iT )

and

(6.1.3) ζ = ζ(x, ξ′, ξn + iT ),

which were constructed in Chapter 4, and the amplitudes are

g = g(x, ξ′, ξn + iT ),(6.1.4)

h = h(x, ξ′, ξn + iT ).(6.1.5 )

These of course are classical symbols. In (6.0.1) we can take T = 0, but in (6.0.2)–
(6.0.3) we want to take T 6= 0. We make the following hypotheses on the phase
functions and amplitudes, which, as we have seen in Chapter 4, can be arranged to
hold:

ζ(x, ξ), θ(x, ξ) real valued for ξ ∈ R
n, almost analytic in ξn,

(6.1.6)

and homogeneous of degree 2/3 and 1, respectively, in ξ,

(6.1.7) dxθ(x, ξ) 6= 0 in U × (Γ \ 0),

(6.1.8) ζ(x, ξ) = ξ
−1/3
1 ξn for x ∈ ∂Ω,

(6.1.9)
∂ζ

∂ν
< 0 in (6.0.1);

∂ζ

∂ν
> 0 in (6.0.2), x ∈ ∂Ω.

(6.1.10) g ∈ Sm(U × Γ), h ∈ Sm−1/3(U × Γ),

(6.1.11) F ∈ E ′(Rn), WF (F ) ⊂ {ξ : |ξn| ≤ C0ξ1/2, ξ1 > 0}.
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§6.2: Action of A and B on C∞c
Our first task is to give A(F ) and B(F ) a meaning for F ∈ C∞0 (Rn). In such a

case, the integrals (6.0.1) and (6.0.2) are absolutely convergent, but even this fact
requires an argument. Indeed, we have the following.

Lemma 6.2.1. We have the estimates, for |T | ≤ T0,

(6.2.2) |Dβ
xA±(ζ)A±(ζ0)−1| ≤ Cβ(1 + |ξ|)1/6+|β|,

and

(6.2.3) |Dβ
xAi(ζ)A±(ζ0)| ≤ Cβ(1 + |ξ|)|β|,

with similar estimates holding for x-derivatives of A′
±(ζ)/A±(ζ0) and for Ai′(ζ)A±(ζ0).

Proof. Use of the chain rule gives

(6.2.4) Dβ
xA±(ζ) =

∑

|µ|≤|β|

aµ(x, ξ)A
(µ)
± (ζ),

with Aµ ∈ S2µ/3. The Airy equation implies

(6.2.5) A
(µ)
± (z) = pµ(z)A±(z) + qµ(z)A′

±(z),

where pµ(z) and qµ(z) are polynomials, of the following orders:

(6.2.6)
p2k(z) = O(|z|k), p2k+1(z) = O(|z|k−1),

q2k(z) = O(|z|k−2), q2k+1(z) = O(|z|k).

These formulas (and analogues for Ai) reduce the proof of the lemma to establishing
(6.2.2)–(6.2.3) for β = 0, as well as obtaining the estimates

(6.2.7) |A′
±(ζ)A±(ζ0)−1| ≤ C(1 + |ξ|)1/3, |Ai′(ζ)A±(ζ0)| ≤ C(1 + |ξ|)1/6.

Now to establish (6.2.2) with β = 0, use the asymptotic expansion

A±(z) = Ψ(ω∓2z)e∓(2/3)i(−z)3/2

,

derived in Appendix A; see (A.1.5). We have

(6.2.8)
A±(ζ)

A±(ζ0)
=

Ψ(ω∓2ζ)

Ψ(ω∓2ζ0)
e∓(2i/3)[(−ζ)3/2−(−ζ0)3/2].

The asymptotic behavior of Ψ(z) given by (A.1.4) implies

(6.2.9)
∣∣∣ Ψ(ω∓2ζ)

Ψ(ω∓2ζ0)

∣∣∣ ≤ C(1 + |ξ|)1/6.

Furthermore the hypothesis (6.1.9) implies the exponential factor in (6.2.8) is
bounded. This gives the estimate (6.2.2), for β = 0, and the other estimates
are similarly established. This proves the lemma.

From Lemma 6.2.1 it follows immediately that, if F ∈ C∞
0 (Rn), then A(F ) and

B(F ) belong to C∞(U). The main task of the rest of this chapter is to define A(F )
and B(F ) for F ∈ E ′(Rn) satisfying (6.1.11) and to analyze the singularities of
these distributions on U .



99

§6.3: Analysis of B on distributions

Our finer investigation of the operators A and B will start with B, given by
(6.0.2). First, we separate ζ and ζ0 into their real and imaginary parts:

(6.3.1) ζ = ω + iσ, ζ0 = ω0 + iσ0.

Note that σ, σ0 ∈ S−1/3 and ω, ω0 ∈ S2/3; ω0 = ξ
−1/3
1 ξn and σ0 = Tξ

−1/3
1 . We

introduce a cut-off:

(6.3.2) χ1(ω0) + χ2(ω0) = 1,

where χj are smooth with χ1(s) = 0 for s ≤ −1, χ2(s) = 0 for s ≥ 1, so χ1(s) = 1
for s ≥ 1 and χ2(s) = 1 for s ≤ −1. Extend to complex argument by

(6.3.3) χj(s) = χj(Re s).

Consider now

(6.3.4) B1(F ) =

∫ [
g Ai(ζ) + ihAi′(ζ)

]
A±(ζ0)χ1(ζ0)eiθF̂ (ξ) dξ.

We claim B1 behaves like a Poisson integral. We introduce a class of symbols as
follows. Suppose U = [0, a)×O, O ⊂ ∂Ω, with coordinates x = (y, x′).

Definition 6.3.5. We say p(y, x′, ξ) ∈ Smρ,δ,ν(U × Γ) if, on U × Γ, we have

(6.3.6) |Dk
yD

β
x′D

α
ξ p(y, x

′, ξ)| ≤ Cαβk(1 + |ξ|)m−ρ|α|+δ|β|+νk.

The key to the behavior of (6.3.4) is given by the following result.

Lemma 6.3.7. We have

Ai(ζ)A±(ζ0)χ1(ζ0) ∈ S0
1/3,2/3,1(U × Γ),(6.3.8)

Ai′(ζ)A±(ζ0)χ1(ζ0) ∈ S1/6
1/3,2/3,1(U × Γ).(6.3.9)

Furthermore, if the left sides are multiplied by yj, the orders on the right sides can
be reduced by 2j/3.

Proof. Note that, by assumption (6.1.9),

(6.3.10) Re ζ ≥ Re ζ0 + C1y|ξ|2/3, C1 > 0.
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Now it is easy to establish

(6.3.11) Ai(ζ)χ3(ζ0) ∈ S0
1/3,2/3,1(U × Γ),

for any χ ∈ C∞
0 (R) (with χ3(ζ0) = χ3(Re ζ0)), with a similar result for Ai′(ζ)χ3(ζ0),

so without loss of generality we can replace χ1(ζ0) by χ′
1(ζ0), supported on Re ζ0 ≥

1/2. Use the decompositions

A±(ζ0) = Γ±(ζ0)e(2/3)ζ
3/2

0 , Re ζ0 > 0,(6.3.12)

Ai(ζ) = Ψ(ζ)e−(2/3)ζ3/2

, Re ζ > 0,(6.3.13)

derivable from (A.1.3)–(A.1.4), where

(6.3.14) Γ±(ζ0) ∼ ζ−1/4
0

∑

j≥0

γ±j ζ
−3j/2
0 .

We have

(6.3.15) Ai(ζ)A±(ζ0)χ′
1(ζ0) = χ′

1(ζ0)Γ±(ζ0)Ψ(ζ)e−(2/3)(ζ3/2−ζ
3/2

0
).

We can replace χ′
1(ζ0) by

(6.3.16) χ′
1(ζ0) = χ#

1 (ζ0)2 = χ#
1 (ζ0)2χb1(ζ)2,

with χ#
1 (s), χb1(s) supported on Re s ≥ 1/4, equal to 1 for s ≥ 1, and in order to

prove (6.30), it suffices to show

χ#
1 (ζ0)Γ±(ζ0) ∈ S0

1/3,0(Γ),(6.3.17)

χb1(ζ)Ψ(ζ) ∈ S0
1/3,2/3,2/3(U × Γ),(6.3.18)

χ#
1 (ζ0)χb1(ζ)e−(2/3)(ζ3/2−ζ

3/2

0
) ∈ S0

1/3,2/3,1(U × Γ).(6.3.19)

The containments (6.3.17) and (6.3.18) are equivalent to routine estimates on the
derivatives of these functions, so we concentrate on the details of (6.3.19). The
chain rule gives
(6.3.20)

Dk
yD

β
x′D

α
ξ e

−(2/3)(ζ3/2−ζ
3/2

0
)

=
∑

C Dk1
y D

β1

x′ D
α1

ξ (ζ3/2 − ζ3/2
0 ) · · ·Dkµ

y D
βµ

x′ D
αµ

ξ (ζ3/2 − ζ3/2
0 ) e−(2/3)(ζ3/2−ζ

3/2

0
).

Here the sum is over

α1 + · · ·+ αµ = α, β1 + · · ·+ βµ = β, k1 + · · ·+ kµ = k.
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Note that (6.1.9) implies

(6.3.21) Re(ζ3/2 − ζ3/2
0 ) ≥ C ′y3/2|ξ|, for ζ0 ≥ 0, |ξ| large.

Elementary estimates give, on the support of χ#
1 (ζ0)χb1(ζ),

|Dk
yD

β
x′D

α
ξ (ζ3/2 − ζ3/2

0 )| e−cy3/2|ξ| ≤ C|ζ|1/2|ξ|2k/3−|α|/3, k ≥ 1,

(6.3.22)

|Dβ
x′D

α
ξ (ζ3/2 − ζ3/2

0 )| e−cy3/2|ξ| ≤ C(|ξ|−|α|/3 + |ζ|1/2|ξ|−|α|), |β| ≥ 1,

(6.3.23)

|Dα
ξ (ζ3/2 − ζ3/2

0 )| e−c(ζ3/2−ζ
3/2

0
) ≤ C|ξ|−|α|/3, |α| ≥ 1.

(6.3.24)

From these estimates, (6.3.19) is a simple consequence. This gives (6.3.8), and the
assertion (6.3.9) is similarly established. The last assertion of Lemma 6.3.7 comes
about because

yje−cy
2/3|ξ| ≤ Cj |ξ|−2j/3.

This proves the lemma.

We turn next to the analysis of

(6.3.25) B2(F ) =

∫ [
g Ai(ζ) + ihAi′(ζ)

]
A±(ζ0)χ2(ζ0)eiθF̂ (ξ) dξ.

Indeed, the operators A± defined by

(6.3.26) (A±F )̂ (ξ) = A±(ζ0)χ2(ζ0)F̂ (ξ)

are easily analyzed as Fourier integral operators with singular phase, and we have

(6.3.27) B2(F ) = B#
2 (A±F ),

with

(6.3.28) B#
2 (G) =

∫ [
g Ai(ζ) + ihAi′(ζ)

]
eiθĜ(ξ) dξ.

One way to analyze (6.3.28) is to use the partition of unity

(6.3.29) χ1(ζ) + χ2(ζ) = 1,

with χj(s) as in (6.3.2). Call the resulting decomposition of B#
2

(6.3.30) B#
2 = B21 +B22.

An analysis similar to that of (6.3.4), even a little simpler, exhibits B21 as a Poisson-
like integral. Indeed, an argument parallel to but a little simpler than the proof of
Lemma 6.3.7 gives:
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Lemma 6.3.31. We have

Ai(ζ)χ1(ζ) ∈ S0
1/3,2/3,2/3(U × Γ),(6.3.32)

Ai′(ζ)χ1(ζ) ∈ S1/6
1/3,2/3,2/3(U × Γ).(6.3.33)

Furthermore, if the left sides are multiplied by yjχ#
2 (ζ0), where χ#

2 (ζ0) is smooth
and equal to 0 for ζ0 > 2, equal to 1 for ζ0 < 1, the orders are reduced by 2j/3.

Thus, in order to understand B2(F ), given by (6.3.25), we are reduced to under-
standing

(6.3.34) B22(G) =

∫ [
g Ai(ζ) + ihAi′(ζ)

]
χ2(ζ)eiθĜ(ξ) dξ.

Our analysis is simplified if we make the following (permissible) hypothesis:

(6.3.35) χ2(s) = 0 for Re s ≥ −1

2
.

We will write (6.3.34) as a sum of two Fourier integral operators with singular phase
functions, using the decomposition

(6.3.36)
Ai(ζ) = ωA+(ζ) + ωA−(ζ)

= ωΨ+(ζ)e−(2i/3)(−ζ)3/2

+ ωΨ−(ζ)e(2i/3)(−ζ)
3/2

,

for Re ζ < 0, which is given by (A.0.4) and (A.1.5), where we have set

(6.3.37) Ψ±(ζ) = Ψ(ω∓2ζ).

The functions Ψ±(ζ) have asymptotic expansions derived from (A.1.4), so

(6.3.38) Ψ±(ζ) ∼ ζ−1/4
∑

j≥0

a±j (−ζ)−3j/2, −ζ →∞.

Similarly we have

(6.3.39) Ai′(ζ) = Ψ̃+(ζ)e−(2i/3)(−ζ)3/2

+ Ψ̃−(ζ)e(2i/3)(−ζ)
3/2

, Re ζ < 0,

with

(6.3.40) Ψ̃±(ζ) ∼ ζ1/4
∑

j≥0

b±j (−ζ)−3j/2.

It follows that

(6.3.41) B22 = B+
22 + B−

22,

with

(6.3.42) B±
22(G) = ω∓1

∫ [
gΨ±(ζ) + ihΨ̃±(ζ)

]
ei(θ∓(2/3)(−ζ)3/2)χ2(ζ)Ĝ(ξ) dξ.

From the support condition (6.3.35) on χ2(ζ) and the fact that

(6.3.43)
Ψ±(ζ) ∈ S0

1/3,2/3,2/3(U × Γ),

Ψ̃±(ζ) ∈ S1/6
1/3,2/3,2/3(U × Γ),

it follows that (6.3.42) defines a pair of Fourier integral operators with singular
phase function, such as treated in Appendix D.
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§6.4: Analysis of A on distributions

The operator A, given by (6.0.1), can be analyzed by a process similar to that
applied to B above. We start with the partition (6.3.29) and write

(6.4.1) A = A1 + A2,

with

(6.4.2) Aj(F ) =

∫ [
g A±(ζ) + ihA′

±(ζ)
]
χj(ζ)A±(ζ0)−1eiθF̂ (ξ) dξ.

The same reasoning used in the proof of Lemma 6.3.7 gives:

Lemma 6.4.3. We have

A±(ζ)χ1(ζ)A±(ζ0)−1 ∈ S1/6
1/3,2/3,1(U × Γ),(6.4.4)

A′
±(ζ)χ1(ζ)A±(ζ0)−1 ∈ S1/3

1/3,2/3,1(U × Γ),(6.4.5)

multiplication by yj decreasing the orders by 2j/3. Thus A1 is a Poisson-like inte-
gral.

We rewrite A2 as

(6.4.6) A2(F ) = D2(A−1
± F ),

where

(6.4.7) (A−1
± F )̂ (ξ) = A±(ζ0)−1F̂ (ξ)

is treated in Chapter 5. The operator D2 is defined by

(6.4.8) D2(G) =

∫ [
g A±(ζ) + ihA′

±(ζ)
]
χ2(ζ)eiθĜ(ξ) dξ.

The analysis of D2 as a Fourier integral operator with singular phase proceeds
exactly as that of C22, given by (6.3.34). We have

(6.4.9) D2(G) =

∫ [
gΨ±(ζ) + ihΨ̃±(ζ)

]
ei(θ∓(2/3)(−ζ)3/2)χ2(ζ)Ĝ(ξ) dξ,

assuming, as we might, that χ2(s) = 0 for s ≥ −1/2.
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§6.5: Microlocal behavior of A, B, and C

Here we describe the singularities of AF, BF , and CF for distributions F . We
start with BF , considering the two pieces that arose in §6.3:

(6.5.1) BF = B1F + B#
2 A±F,

with B1 given by (6.3.4) and B#
2 given by (6.3.28).

Proposition 6.5.2. On the interior region Ω,

(6.5.3) B1F ∈ C∞(Ω).

Proof. Indeed, given ` ∈ Z+, we can pick k such that

ykB1F ∈ C`(Ω),

by the results of Lemma 6.3.7.

To state a result on the singularity of B1F at the boundary of Ω, we bring in
the Fourier integral operator K, given by

(6.5.4) KF (x′) =

∫
eiθ0 F̂ (ξ) dξ, θ0 = θ

∣∣
∂Ω
.

We will augment the hypothesis (6.1.7) as follows:

(6.5.5) θ0 generates a (locally bijective) canonical transformation.

Hence K is an elliptic Fourier integral operator, which is microlocally invertible.

Proposition 6.5.6. Assume WF (KF ) is disjoint from an open conic set Γ ⊂
T ∗∂Ω \ 0. Let P ∈ OPS0(∂Ω) have symbol supported in Γ. Then

P (x′, Dx′)B1F ∈ C∞(Ω).

Recall from §6.3 that

(6.5.7) A± = A±χ2(ζ0(D)),

and

(6.5.8) B#
2 G =

∫ [
gAi(ζ) + ihAi′(ζ)

]
eiθĜ(ξ) dξ.

One way to analyze B#
2 A±F is to expand it out as

(6.5.9) B#
2 A±F = B21χ

#
2 (ζ0(D))A±F + ωB+

22A±F + ωB−
22A±F,
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with B21 defined by (6.3.29)–(6.3.30) and B±
22 by (6.3.42). Straightforward ana-

logues of Proposition 6.5.2 and Proposition 6.5.6 give

(6.5.10) B21χ
#
2 (ζ0(D))A±F ∈ C∞(Ω),

and, when P ∈ OPS0(∂Ω) has symbol supported in Γ ⊂ T ∗∂Ω \ 0 and Γ ∩
WF (KG) = ∅,

(6.5.11) P (x′, Dx′)B21χ
#
2 (ζ0(D))G ∈ C∞(Ω).

This is applicable to (6.5.9) with G = A±F , and the formula (6.5.7) for A± yields

(6.5.12) WF (A±F ) = δ
±1/2
h WF (F ) ∩ {ξn ≤ 0},

assuming WF (F ) ⊂ {ξ1 > 0}, where

(6.5.13) δ
±1/2
h (x, ξ) =

(
x1 ±

1

3

(
−ξn
ξ1

)3/2

, x′′, xn ±
(
−ξn
ξ1

)1/2

, ξ
)
.

As for the last two terms in (6.5.9), we can specify the singularities in the interior
region Ω as follows. Recall that

(6.5.14) B±
22G =

∫
e(x, ξ)ei(θ∓(2/3)(−ζ)3/2)Ĝ(ξ) dξ,

with

(6.5.15) e(x, ξ) =
[
gΨ±(ζ) + ihΨ̃±(ζ)

]
χ2(ζ) ∈ Sm1/3,2/3,2/3(U × Γ).

(We assume χ2(s) = 0 for Re s ≥ −1/2.) The operators B±
22 act as Fourier integral

operators with singular phase, and we have

(6.5.16)
WF B±

22G
∣∣
Ω
⊂ image of WF (G) under

(∇ξϕ±, ξ) 7→ (x,∇xϕ±),

where

(6.5.17) ϕ±(x, ξ) = θ ∓ 2

3
(−ζ)3/2,

and the wave front relation is supported in the region where ζ(x, ξ) ≤ 0.

A couple of remarks on the operator B#
2 are in order. One is that the integrand

in (6.5.8) can be extended to x in a two-sided neighborhood Ω̃ of ∂Ω, and then
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(6.5.9)–(6.5.17) hold on Ω̃. Furthermore, the two pieces in (6.5.17) actually fit
together to form a smooth canonical relation, and

(6.5.18) B#
2 : C−∞(Rn) −→ C−∞(Ω̃)

is a classical Fourier integral operator, at least microlocally on a conic neighborhood
of {ξn = 0}. To see this, one can plug the integral representation (A.0.1) of Ai(ζ)
and its analogue for Ai′(ζ) into (6.5.8) and make a change of variable to get (modulo
a smoothing operator)

(6.5.19) B#
2 G(x) =

∫∫∫
a(x, ξ, τ)eiψ(x,y,ξ,τ)G(y) dy dτ dξ,

with

(6.5.20) a(x, ξ, τ) = ξ
−2/3
1

[
g(x, ξ) + iξ

−2/3
1 τh(x, ξ)

]
b(ξ, τ),

and

(6.5.21) ψ(x, y, ξ, τ) = θ(x, ξ)− y · ξ + (ξ−1
1 τ)ξ

1/3
1 ζ(x, ξ) +

1

3
(ξ−1

1 τ)2τ.

Here b(ξ, τ) ∈ S0 is a cut-off supported in {(ξ, τ) : |τ | < cξ1}, equal to 1 on a conic
neighborhood of τ = 0. The representation (6.5.19) as a Fourier integral operator

yields a description of the microlocal singularities of B#
2 A±F = B#

2 G consistent
with that given above, but in a somewhat neater form. Note that the canonical

relation for B#
2 is given by

(6.5.22) Λ′
ψ = {((x,∇xψ), (y,−∇yψ)) : ∇ξ,τψ(x, y, ξ, τ) = 0},

and ∇ξ,τψ = 0 if and only if

(6.5.23) y = ∇ξ
(
θ + ξ

−2/3
1 τζ +

1

3
ξ−2
1 τ3

)
, τ2 = −ξ4/31 ζ(x, ξ).

The constraint |ξn| ≤ C ′ξ1 forces |ζ(x, ξ)| ≤ Cξ2/3
1 when x is close to ∂Ω, and hence

forces |τ | ≤ Cξ1 when (6.5.23) holds.
Next we consider the microlocal behavior of AF , which, following §6.4, we de-

compose as

(6.5.24) AF = A1F + A2F,

with Aj given by (6.4.2). Using Lemma 6.4.3, we have the following analogue of
Proposition 6.5.2 and Proposition 6.5.4.
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Proposition 6.5.25. On the interior region Ω,

(6.5.26) A1F ∈ C∞(Ω).

Furthermore, if WF (KF ) is disjoint from an open conic set Γ ⊂ T ∗∂Ω \ 0 and
P ∈ OPS0(∂Ω) has symbol supported in Γ, then

(6.5.27) P (x′, Dx′)A1F ∈ C∞(Ω).

We could analyze the second term in (6.5.24) using (6.4.6), i.e., A2 = D2A−1
± .

Alternatively, we can decompose it further:

(6.5.28) A2F = A21F + A22F,

with

(6.5.29) A2jF =

∫ [
gA±(ζ) + ihA′

±(ζ)
]
χ2(ζ)χj(ζ0)A±(ζ0)−1eiθF̂ (ξ) dξ.

Parallel to Lemma 6.4.3 we have:

(6.5.30)
A±(ζ)χ2(ζ)χ1(ζ0)A±(ζ0)−1 ∈ S1/6

1/3,2/3,1(U × Γ),

A′
±(ζ)χ2(ζ)χ1(ζ0)A±(ζ0)−1 ∈ S1/3

1/3,2/3,1(U × Γ),

and multiplication by yj decreases the order by 2j/3. Thus:

Proposition 6.5.31. On the interior region Ω,

(6.5.32) A21F ∈ C∞(Ω).

Furthermore, if WF (KF ) is disjoint from an open conic set Γ ⊂ T ∗∂Ω \ 0, and
P ∈ OPS0(∂Ω) has symbol supported in Γ, then

(6.5.33) P (x′, Dx′)A21F ∈ C∞(Ω).

This leaves A22F , which we write as

(6.5.34) A22F =

∫
e(x, ξ)ei(θ∓(2/3)[(−ζ)3/2−(−ζ0)3/2])F̂ (ξ) dξ,

with

(6.5.35)
e(x, ξ) =

[
gΨ±(ζ) + ihΨ̃±(ζ)

]
χ2(ζ)χ2(ζ0)Ψ±(ζ0)−1

∈ Sm+1/6
1/3,2/3,1(U × Γ).

From this we can deduce that

(6.5.36)
WF A22F

∣∣
Ω
⊂ image of WF (F ) ∩ {ξn ≤ 0} under

(∇ξψ±, ξ) 7→ (x,∇xψ±),

where

(6.5.37) ψ±(x, ξ) = θ ∓ 2

3

[
(−ζ)3/2 − (−ζ0)3/2

]
.

As for the behavior at the boundary, we have the following.
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Proposition 6.5.38. Let (p0, η0) ∈ T ∗∂Ω \ 0 and assume (p0, η0) /∈ WF (KF ).
Then there exists a conic neighborhood Γ of (p0, η0) in T ∗∂Ω\0 and a neighborhood
U of p0 in Ω such that if P ∈ OPS0(∂Ω) has symbol supported in Γ, then

(6.5.39) P (x′, Dx′)A22F ∈ C∞(U).

As for the microlocal behavior of CF , this follows directly from the formula
(6.0.4), the analysis of B given above, and the analysis of (A±Ai)−1

T given in
Chapter 5.



109

Chapter 7: Parametrices for the Dirichlet problem

The material developed in the preceding six chapters will now be brought to-
gether in order to construct microlocal parametrices for the Dirichlet problem:

P (x,D)u = 0 in Ω,(7.0.1)

u
∣∣
∂Ω

= f.(7.0.2)

Here we shall suppose that P is a second order differential operator of real principal
type (this is later generalized in Chapter 12) with bicharacteristics which have
simple tangency to the boundary, ∂Ω, of the region of interest, Ω. We shall assume
that Ω is either bicharacteristically convex, or else bicharacteristically concave, for
P. This condition on the principal symbol p, of P, was analyzed in §4.1. Since the
conditions imposed are all coordinate independent we can suppose that Ω ⊂ Z =
[0,∞)× R

n and that ∂Ω ⊂ R
n.

By a parametrix for (7.0.1)–(7.0.2) we mean a map

(7.0.3) E : C−∞(∂Ω) −→ C−∞(Ω),

with the property that, for all f ,

(7.0.4) P (x,D)Ef ∈ C∞(Ω), Ef
∣∣
∂Ω
− f ∈ C∞(∂Ω).

In §7.1 we bring to fruition the method first described in §1.5, yielding a pair of
parametrices E±, in the diffractive case. Implementing this method is at this point a
matter of using the results of Chapter 4 to solve the eikonal and transport equations
and the results of Chapters 5–6 to deal with the Fourier-Airy operators that arise.
In §7.2 we treat the analogous construction when gliding rays are present.

The parametrices E+ and E− send singularities in either of two directions. It is
significant that the parametrices constructed in §§7.1–7.2 are unique, up to smooth-
ing operators. Let us expand on this in the case Ω = R×O, with coordinates (t, x),
and P hyperbolic with respect to t. Say f ∈ C−∞

c (R × O). Then the hpyerbolic
PDE (7.0.1)–(7.0.2) has a unique outgoing solution u+, satisfying u+(t, x) = 0 for
t << 0, and a unique incoming solution u−, satisfying u−(t, x) = 0 for t >> 0. In
this case the microlocal uniqueness is the statement that

(7.0.5) E+f − u+ ∈ C∞(Ω), E−f − u− ∈ C∞(Ω).

This can be established using well known global energy estimates for hyperbolic
equations, as we briefly discuss in §7.3. We follow this up in §7.4 with a discussion
of the propagation of singularities for u±, which follows via (7.0.5) and the analysis
of the Fourier-Airy operators used to produce E±.

In §7.5 we apply the construction of diffractive parametrices of §7.1 together
with other geometrical results established in Chapters 3–4 to the production of a
microlocal model, die to M. Farris, of the solution operator to the wave equation
on a region with diffractive boundary.
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§7.1: Diffractive points

We briefly recall the hypotheses we are placing on the differential operator in the
diffractive case and then recall the constructions of the preceding sections, leading
to microlocal parametrices for the Dirichlet problem (7.0.1), (7.0.2). Thus, P is a
second order differential operator defined and with C∞ coefficients in some region:

Ω = {(x, y) ∈ R× R
n = R

n+1; 0 ≤ x ≤ ε, |y| ≤ ε}, ε > 0.(7.1.1)

P =
∑

k+|α|≤2

pk,α(x, y)Dk
xD

α
y , pk,α ∈ C∞(Ω).(7.1.2)

The first thing we require is that the coefficients of the second order part be real-
valued, or equivalently that the principal symbol:

(7.1.3) p(x, y, ξ, η) =
∑

k+|α|=2

pk,α(x, y)ξkηα

be real-valued.
Now we shall construct a parametrix to solve (7.0.1) and (7.0.2), modulo C∞

errors, when WF(f) is concentrated near some point ρ̄ = (ȳ, η̄) ∈ T ∗Rn \ 0. This
point is a glancing point for p if and only if:

(7.1.4) ∃ ξ′ ∈ R, such that p(0, ȳ, ξ′, η̄) = dξp(0, ȳ, ξ
′, η̄) = 0.

In §4.1 it is noted that this condition can be written in terms of the Hamilton vector
field

Hp =
∂p

∂ξ

∂

∂x
− ∂p

∂x

∂

∂ξ
+

n∑

j=1

[ ∂p
∂ηj

∂

∂yj
− ∂p

∂yj

∂

∂ηj

]
,

as

(7.1.5) Hpx = 0 at (0, ȳ, ξ′, η̄).

The additional conditions we impose are that ∂Ω be a non-characteristic hypersur-
face for P at (0, ȳ) :

(7.1.6) H2
xp =

∂2p

∂ξ2
(0, ȳ, ξ′, η̄) = p2,0(0, ȳ) 6= 0,

and that ρ̄ be a diffractive (i.e., grazing) point for P :

(7.1.7) H2
px > 0 at (0, ȳ, ξ′, η̄).

We also require, at least initially, the non-degeneracy condition:

(7.1.7A) d(ξ,η)p(0, ȳ, ξ
′, η̄) 6= 0.
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The parametrix will be constructed in the form of a Fourier-Airy integral oper-
ator (6.0.1), i.e.,

(7.1.8)

E±(f)(x, y) = L±F (x, y)

=

∫ [
gA±(ζ) + ihA′

±(ζ)
]
A±(ζ0)−1eiθ(x,y,ξ)F̂ (ξ) dξ,

where F and f are related below. The phase functions θ, ζ and amplitudes g, h
are as introduced in Chapter 1; their construction will also be recalled below. In

particular, we arrange that g be elliptic and h|x=0 = 0, and ζ|x=0 = ζ0 = ξ
−1/3
1 ξn.

Thus

(7.1.8A) LF (0, y) =

∫
g0e

iθ0(y,ξ)F̂ (ξ) dξ = JF (y),

where θ0 = θ|x=0, g0 = g|x=0. Thus J is microlocally an elliptic Fourier integral
operator, and to have E±f(0, y) = f(y) mod C∞, we take

(7.1.8B) F = J−1f,

where J−1 denotes a microlocal parametrix for J .

Proposition 7.1.9. Let P be a second order operator of real principal type as in
(7.1.1)–(7.1.3) and suppose ρ̄ = (ȳ, η̄) is a glancing point for P in the sense that
(7.1.4)–(7.1.7) hold. Then there exist phase functions θ and ζ and symbols g and h
satisfying (6.1.6)–(6.1.8), the first condition in (6.1.9), and (6.1.10) such that E±

in (7.1.8) give microlocal parametrices for the Dirichlet problem (7.0.1)–(7.0.2) at
ρ̄, for some open conic neighbourhood γ of ρ in T ∗∂Ω \ 0.

Proof. The conditions (6.1.6)–(6.1.8), the first condition in (6.1.9), and (6.1.10)
should hold so that E± is defined and the results of Chapter 6 apply. Assuming
this for the moment, the composite operator P ·E is also of the type (6.0.1), with
the formula (1.5.9)–(1.5.11) valid for the symbols a, b of P · E. Indeed, this is
immediate when g and h are rapidly decreasing and follows in general from the
continuity of E in the symbol topology. This relationship can be written:

(7.1.10) a = Q11g +Q12h, b = Q21g +Q22h,

with the Qij differential operators.
As we will show below, in order that P · E be a smoothing operator, it suffices

for the symbols a and b to satisfy:

(7.1.11) a, b ∈ S−∞ in ζ < 0 and in Taylor series at x = 0 over Ω′.

As is briefly explained in Chapter 1, these conditions will be arranged by taking g
and h to be asymptotic sums of symbols:

(7.1.12) g ∼
∞∑

j=1

gj, h ∼
∞∑

j=1

hj ,
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where the gj and hj are symbols of orders −j and −j − 1/3 respectively. Then the
symbols a and b given by (7.1.10) have corresponding asymptotic expansions:

(7.1.13) a ∼
∞∑

j=1

aj, b ∼
∞∑

j=1

bj

with aj and bj of orders −j+2 and −j+5/3 obtained by decomposing the operators
in (7.1.10) according to homogeneity. The leading terms in Q in (7.1.10) in terms
of homogeneity are:

(7.1.14)
Q0

11 = 〈dθ, dθ〉+ ζ〈dζ, dζ〉, Q0
12 = 2ζ〈dθ, dζ〉,

Q0
22 = −i(〈dθ, dθ〉+ ζ〈dζ, dζ〉), Q0

21 = 2i〈dθ, dζ〉,

where 〈·, ·〉 is the bilinear form obtained by polarization from the quadratic form
which is the principal symbol of P. Thus the eikonal equations:
(7.1.15)
〈dθ, dθ〉+ ζ〈dζ, dζ〉 = 〈dθ, dζ〉 = 0, in ζ < 0 and in Taylor series at x = 0,

ensure that these terms of top homogeneity in (7.1.10) make no contribution to the
singularities. Equating the lower order terms in (7.1.10) formally to zero gives the
transport equations:

2〈dθ, dgj〉 − 2ζ〈dζ, dhj〉+ (P2θ)gj − (〈dζ, dζ〉+ P2ζ)hj = iPgj−1,
(7.1.16)

2〈dζ, dgj〉 − 2〈dθ, dhj〉+ (P2ζ)gj − (P2θ)hj = −iPhj−1.(7.1.17)

Here g−1 = h−1 = 0, by convention, and these equations also only need hold in
ζ < 0 and in Taylor series at x = 0; P2 is the operator P with the term of order
zero dropped.

With these preliminaries the construction of E can proceed easily. The eikonal
equations (7.1.15) are solved in §4.2, with θ and ζ satisfying the conditions (6.1.3),
(6.1.4), (6.1.5) and (6.1.6) in a small cone satisfying (6.1.2). The successive trans-
port equations (7.1.16) and (7.1.17) are solved in §4.3. In fact the solutions obtained
there allow the additional constraints:

(7.1.18) h
∣∣
{x=0}

= 0,

and

(7.1.19) g
∣∣
{x=0}

∈ S0 is elliptic at ρ̄ with essential support in γ ′,

for any preassigned conic neighborhood γ ′ of ρ̄, to be imposed. Here g and h
are functions of (x, y, η) only. Moreover the condition (7.0.3) allows the transport
equations to be solved in a neighborhood of ȳ, with the symbols having support
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within a closed conic subset of the open cone in which the phase functions are
defined. Thus the Fourier integral operator J defined by (7.1.8A) is elliptic, and
we can define F by (7.1.8B).

At this point we have

(7.1.20)

PE±f =

∫ [
aA±(ζ) + bA′

±(ζ)
]
A±(ζ0)−1eiθF̂ (ξ) dξ

=

∫
G(x, y, ξ)eiθF̂ (ξ) dξ.

The result (7.1.11) implies the estimates

(7.1.21)
|G(x, y, ξ)| ≤ CN |ξ|−N , ξn ≤ 0, (x, y) ∈ Ω,

|G(x, y, ξ)| ≤ CN (|ξ|−N + xN )
∣∣e−(2/3)(ζ

3/2

0
−ζ3/2)

∣∣ · |ξ|m, ξn ≥ 0.

Recall that x is a defining coordinate for ∂Ω, x > 0 in Ω. In both cases we have

(7.1.22) |G(x, y, ξ)| ≤ CN |ξ|−N ,

and such estimates also hold for all x, y-derivatives, so PE±f ∈ C∞(Ω).
This shows that E± give microlocal parametrices for the Dirichlet problem for

each choice of sign, proving the proposition.

Remark. The Fourier integral operator J has the following geometrical signifi-
cance. Namely, its canonical transformation χJ conjugates the billiard ball map
δ± on T ∗∂Ω to the normal form δ±h given in (4.1.10). This geometrical fact will be
useful in §7.5.

§7.2: Gliding points

The construction of microlocal parametrices for the Dirichlet problem near a
gliding point on the boundary is very similar to the diffractive case analyzed above.
Indeed, the only difference in terms of the hypotheses on P is that we are working
‘on the other side’ of the boundary, so that (7.1.7) is replaced by:

(7.2.1) H2
px < 0 at (0, ȳ, ξ′, η̄).

The microlocal parametrices are now of the form (6.0.3):

(7.2.2)

E±(f)(x, y) = LF (x, y)

=

∫ [
Ai(ζ) + ihAi′(ζ)

]
Ai(ζ0)−1eiθF̂ (ξ) dξ,
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In this case we evaluate the phase functions and amplitudes at (x, y, ξ ′, ξn + iT ).
In particular,

(7.2.3) ζ0 = ξ
−1/3
1 (ξn + iT ).

There are two issues that make this construction a bit more complicated than
the case treated in §7.1. One is the fact that we are evaluating at ξn + iT rather
than at real ξn. Now the eikonal and transport equations hold (for ζ < 0) at real ξn.
However, the almost-analytic continuation yields phase functions and amplitudes
that satisfy the appropriate eikonal and transport equations (on ζ < 0) modulo
O(|ξ|−∞).

The other issue is that the eikonal and transport equations, which hold on ζ < 0,
do not hold on all of Ω for ζ < 0, in the gliding case, but only on

(7.2.4) Ωξ = {(x, y) : ζ(x, y, ξ) ≤ 0}.

The upshot of this is the following more elaborate analysis of (7.1.20)–(7.1.21). We
have

(7.2.5)

PE±f =

∫ [
aAi(ζ) + bAi′(ζ)

]
A±(ζ0)eiθ[A±(ζ0)Ai(ζ0)]−1F̂ (ξ) dξ

=

∫
G(x, y, ξ)eiθ[A±(ζ0)Ai(ζ0)]−1F̂ (ξ) dξ,

and this time

(7.2.6)

|G(x, y, ξ)| ≤ CN |ξ|−N , ξn ≤ 0, (x, y) ∈ Ωξ,

|G(x, y, ξ)| ≤ CN (|ξ|−N + γN )e−cγ
3/2|ξ||ξ|m, ξn ≤ 0, (x, y) ∈ Ω \ Ωξ,

|G(x, y, ξ)| ≤ CN (|ξ|−N + xN )
∣∣e−(2/3)(ζ

3/2

0
−ζ3/2)

∣∣ · |ξ|m, ξn ≥ 0.

Here γ = |ξ|−2/3ζ(x, y, ξ). In all cases

(7.2.7) |G(x, y, ξ)| ≤ CN |ξ|−N ,

and such estimates also hold for all x, y-derivatives, so again PE±f ∈ C∞(Ω).
Hence we have:

Proposition 7.2.8. If the diffractive hypothesis, (7.1.7), is replaced by the gliding
hypothesis (7.2.1) then the conclusions of Proposition 7.1.9 still hold with (7.1.8)
replaced by (7.2.2).
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§7.3: Justification in the hyperbolic case

Here we justify the parametrix construction in the case when P is hyperbolic,
using global energy estimates. For simplicity we take

(7.3.1) P =
∂2

∂t2
−∆,

on Ω = R×O, where ∆ is the Laplace operator on the Riemannian manifold with
boundary O. We allow either grazing or gliding rays, and in either case let E+ be
the appropriate parametrix constructed in §7.1 or §7.2.

Proposition 7.3.2. Let f ∈ C−∞(∂Ω) be supported in {t ≥ 0}. Assume u+

satisfies

(7.3.3) Pu+ = 0 on Ω, u+
∣∣
∂Ω

= f,

and

(7.3.4) u+(t, x) = 0 for t < 0.

Then

(7.3.5) u+ −E+f ∈ C∞(Ω).

The analysis of Fourier-Airy operators done in §6.5 shows that E+f is smooth
on (−∞, 0)×O, so, altering it by an element of C∞(Ω) if necessary, we can assume
that

E+f(t, x) = 0 for t < −1.

Since we also have (7.0.4) for E+f , we see that v = u+−E+f satisfies the hypotheses
of the following global regularity result.

Proposition 7.3.6. Assume v satisfies

(7.3.7) Pv ∈ C∞(Ω), v
∣∣
∂Ω
∈ C∞(∂Ω),

and

(7.3.8) v(t, x) = 0 for t << 0.

Then

(7.3.9) v ∈ C∞(Ω).

Proofs of such a result in a rather general context can be found in [ChP], [RaM],
and [Sak]. We sketch a very simple demonstration for the case (7.3.1). First, a
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finite propagation speed argument allows us to assume O is compact. Next, a
formal power series construction yields

(7.3.10) v = v0 + v1

with

(7.3.11) v0 ∈ C∞(Ω), vj(t, x) = 0 for t << 0,

and

(7.3.12) Pv1 = g, v1
∣∣
∂Ω

= 0,

where g ∈ C∞(Ω) vanishes to infinite order at ∂Ω. We desire to prove that v1 ∈
C∞(Ω). To this end, write

(7.3.13) v1(t, x) =

∫ t

−T

sin(t− s)
√
−∆√

−∆
g(s) ds,

where T is fixed so that v1(t, x) = 0 for t ≤ −T . Now we have

(7.3.14) g(s) ∈ D(∆k), ∀ k,

since g vanishes to infinite order at ∂Ω, so (7.3.13) displays v1(t) as a continuous

function of t with values in D(∆k), for all k. Similarly ∂jt v1(t) has this property,
so indeed v1 ∈ C∞(Ω).

§7.4: Propagation of singularities

The second order operator P has a generalized bicharacteristic flow on bT ∗Ω\0 =
(T ∗Ω \ 0) ∪ (T ∗∂Ω \ 0), characterized as follows. If ρ ∈ T ∗Ω \ 0 is characteristic
for P , the bicharacteristic through ρ is the standard integral curve of Hp through
ρ. If ρ ∈ T ∗∂Ω \ 0, the bicharacteristic through ρ is defined if ρ ∈ H ∪ Gd ∪ Gg.
(Throughout this section we assume the glancing set is exhausted by Gd ∪ Gg.) If
ρ ∈ H, two null bicharacteristics of P in T ∗Ω \ 0 pass over ρ, one reflecting into
the other. If ρ ∈ Gd, a grazing ray passes through ρ. If ρ ∈ Gg, a gliding ray passes
through ρ.

Given f ∈ C−∞
c (∂Ω), we see that E+f and E−f send singularities off along

bicharacteristics lying over WF f . (For simplicity take Ω = R × O and P given
by (7.3.1).) We have from §7.3 that the outgoing solution u+ to (7.3.3)–(7.3.4) has
the property that

(7.4.1) WFb u
+ ⊂ F+(WF f),
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where F+(WF f) denotes the union of generalized bicharacteristic curves of P
starting at points in WF f ⊂ T ∗∂Ω \ 0 and going forward in time, reflecting off or
travelling along the boundary as indicated above. Similarly, with obvious notation,

(7.4.2) WFb u
− ⊂ F−(WF f).

Actually, what we know at this point is a local version of these results, since we
have available from §§7.1–7.2 local parametrices E±. Nevertheless, these results are
globally valid. To see this, first note that we can write any f ∈ C−∞

c (∂Ω) as a finite
sum of terms (which we relabel f) for which local parametrices are available. Then
(7.4.1)–(7.4.2) hold on a small neighborhood in Ω of the support of each such f .
That they hold globally is then a consequence of the following result on propagation
of singularities.

Proposition 7.4.3. (Assume the glancing set of T ∗∂Ω\0 is exhausted by Gd∪Gg.)
Suppose u ∈ C−∞(Ω) satisfies

(7.4.4) Pu = F ∈ C∞(Ω), u
∣∣
∂Ω

= G ∈ C∞(∂Ω).

Then WFb u ⊂ bT ∗Ω \ 0 is invariant under the generalized bicharacteristic flow of
P .

Indeed, the local validity of (7.4.1)–(7.4.2) can be used to establish Proposition
7.4.3, as we now show. For simplicity we continue to assume P is given by (7.3.1),
and Ω = R × O, and we will also assume u ∈ C(R, H1(Ω)) ∩ C1(R, L2(Ω)). Also,
using well known existence results, we can assume F = 0 and G = 0 in (7.4.4).

Assume ρ ∈ bT ∗Ω \ 0 and ρ /∈ WFb u. Let γ be the generalized bicharacteristic
curve through ρ. We want to show that γ ∩WFb u = ∅. Suppose to the contrary
that there exists ρ1 ∈ γ such that ρ1 ∈ WFb u. Say for the sake of argument that
the t-coordinate (call it t1) of ρ1 exceeds that of ρ. In such a case, we can pick
ρ1 ∈ γ having minimal t-coordinate greater than that of ρ, with ρ1 ∈WFb u. Now
we will obtain a contradiction.

We only worry about the cases ρ1 ∈ Gd and ρ1 ∈ Gg. Pick ρ0 ∈ γ, close to ρ1,
with t-coordinate t0 slightly less than t1 (so a local parametrix construction will be
applicable). Note that if ρ1 ∈ Gd then ρ0 ∈ T ∗Ω \ 0 and if ρ1 ∈ Gg then ρ0 ∈ Gg.
By out set-up, ρ0 /∈ WFb u.

Assume O is contained in a complete Riemannian manifold Õ without boundary.

Let f(x) = u(t0, x) and g(x) = ut(t0, x), and extend f and g by 0 on Õ \ O. For
t > t0, write u = v + w where v satisfies

(7.4.5) Pv = 0 on I × Õ, v(t0, x) = f(x), vt(t0, x) = g(x), x ∈ Õ,

(with I = (t0 − ε, t1 + ε)) and, on I ×O, w satisfies

(7.4.6) Pw = 0, w
∣∣
I×∂O

= −vχt≥t0(t), w(t, x) = 0 for t < t0.
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Now it is clear that ρ1 /∈ WFb v|Ω. Finally, the constructions of §§7.1–7.3 show
that ρ1 /∈WFb w, providing the desired contradiction, and completing the proof of
Proposition 7.4.3.

Remark. The propagation of singularities result given in Proposition 7.4.3 has
been proven under general conditions, not requiring that all glancing points be
either diffractive of gliding, in [MeS1] and [MeS2]; see also [Iv].

§7.5: A representation for the wave evolution operator

in the diffractive case

In this section we give a microlocal model for the solution operator eiTΛ where
Λ = (−∆)1/2 and ∆ is the Laplace operator on a Riemannian manifold Ω with
diffractive boundary. Let O be an open set bounded away from ∂Ω, and assume
the following property: any geodesic segment of length T issuing from a point of
O, reflecting off ∂Ω by the usual rules of geometrical optics, hits ∂Ω at most once,
and ends away from ∂Ω, in an open set U. It follows that, for any u ∈ E ′(O), eiTΛu
is C∞near ∂Ω, having singular support inside U.

Any u ∈ E(O) can be written as a sum u = u1 + u2 where the rays issuing
from WF (u1) avoid glancing intersection with ∂Ω and those issuing from WF (u2)
intersect ∂Ω at or near glancing. The analysis of eiTΛu1 as a Fourier integral
operator acting on u1 is elementary, so we can restrict attention to u = u2. Also
note there is no loss of generality in suppposing the closure of U is close to ∂Ω
(though disjoint from it), since further propagating by eitΛ just acts as a Fourier
integral operator.

Our goal here is to produce the microlocal form

(7.5.1) eiTΛu = K2

(A−

A+

)
K1u

for such u, where Kj are elliptic Fourier integral operators. This result was obtained
by Farris [Fa]. The operator A−/A+ is Fourier multiplication:

(7.5.2) F
(A−

A+

)
f(ξ) =

A−

A+
(ζ0)f̂(ξ).

We will assume for convenience that Ω is compact, though the considerations here
are purely local, so this hypothesis can easily be dropped. The results aply in
particular to the case Ω = Rn \K, where K is compact and strictly convex.

To start, let ∆0 be the Laplace operator on a compact Riemannian manifold M,
containing Ω in its interior, so ∂Ω is a smooth hypersurface. Let FT = eiTΛ0 where
Λ0 = (−∆0)1/2, and let R : E ′(O) −→ D′(R× ∂Ω) be given by

(7.5.3) Ru = eiTΛ0u
∣∣
R×∂Ω

.
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Also let ET : E ′(R× ∂Ω) −→ D′(Ω) be defined as follows. ET f is the value at t = T
of the outgoing solution w to the wave equation on R×Ω, (w = 0 for t << 0) with
boundary condition w|R×∂Ω = f. In other words, ET f = E+f |t=T . Let us modify R
by multiplying by a cutoff ψ(t), equal to 1 for 0 ≤ t ≤ t and supported on a small
neighborhoood of [0, T ]; keep the notation R for the altered operator. Then ETR
is well defined, and

(7.5.4) eiTΛ = FT − ETR,

modulo a smoothing operator, when aplied to elements u such as specified above.
Note that for such u,Ru has wave front set near glancing. Thus F = J−1f =

J−1(Ru) has wave front set near ξn = 0, where J is the Fourier integral operator

defined by (7.1.8A). Making a smooth perturbation we can suppose F̂ (ξ) is sup-
ported on a small conic neighborhoood Γ of ξn = 0. For ξ ∈ Γ and x away from
∂Ω, ζ is bounded away from 0, so we can replace A(ζ) and A′(ζ) by their asymptotic
expansions, and write

(7.5.5) ET = LA−1
+ J−1,

where (for F̂ supported in Γ)

(7.5.6) LF =

∫
[gA+(ζ) + ihA′

+(ζ)]eiθF̂ (ξ) dξ,

the integral being evaluated at t = T and restricted to x ∈ U. Thus L is an elliptic
Fourier integral operator.

The map R is a Fourier integral operator with folding canonical relation, whose
boundary maps δ± on T ∗(R × ∂Ω) \ 0 are seen to coincide with the billiard ball
map. Thus, by Theorem 5.1.8, one can write

(7.5.7) J−1RK = AiP̃1 +Ai′P̃2,

for certain pseudodifferential operators P̃j . Here J is the elliptic Fourier integral
operator used above, and K is an ellliptic Fourier integral operator, which can be
taken to be of the form

(7.5.8) KF =

∫
[gA+(ζ) + ihA

′

+(ζ)]eiθF̂ (ξ) dξ,

(for F̂ supported in Γ), the integral being evaluated at t = 0. Note that A+ = A−

(for real arguments). From the form of (7.5.8) it is clear that

(7.5.9) KA−1
− J−1 = E−0 ,

where E−0 f is the value at t = 0 of the incoming solution w̃ to the wave equation
on R × Ω (w̃ = 0 for t >> 0) with boundary condition w̃ = f on R × ∂Ω, i.e.,
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E−0 f = E−f |t=0. The fact that K, given by (7.5.8), works in (7.5.7), follows from
the fact that J−1RK is a Fourier integral operator whose (folding) canonical re-
lation coincides with that of Ai, which in turn is a simple consequence of (7.5.9).
Combining (7.5.5) and (7.5.7) gives

(7.5.10) ETR = LA−1
+ (AiP̃1 +Ai′P̃2)K−1.

The following simple consequence of the geometry of the various Fourier integral
operators will be useful.

Lemma 7.5.11. L−1FTK and its microlocal inverse K−1F−1
T L are (elliptic) pseu-

dodifferential operators on ξn ≤ 0.

Proof. It suffices to give the proof for ξn < 0. Use the representations

(7.5.12) FTK = FTE−0 JA−,  L = ETJA+,

(on ξn < 0). Each of these operators is an elliptic Fourier integral operator in this
region, and to see that they move wave front sets in the same fashion, it suffices to
note that

(7.5.13) J
A−

A+
J−1

has, in χJ (ξn < 0), the canonical transformation equal to δ−, i.e., the ‘-’ half of
the billiard ball map, since A−/A+ has canonical transformation δ−h (half of δ±h of
(4.1.10)).

Given this lemma, we have, in addition to (7.5.7),

(7.5.14) J−1R(F−1
T L) = AiP1 +Ai′P2,

for certain pseudodifferential operators Pj , of respective orders 0 and −1/3. Hence,
as a convenient modification of (7.5.10), we have

(7.5.15) ETR = LA−1
+ (AiP1 +Ai′P2)L−1FT .

Returning to (7.5.4) we see that, microlocally,

(7.5.16) eiTΛ = L[1−A−1
+ (AiP1 +Ai′P2)]L−1FT .

We are well on the way to proving (7.5.1), with K2 = L and K1 = L−1FT (up
to a pseudodifferential factor). The rest of the argument wil consist of simplifying
the operator in brackets in (7.5.16), and showing how A−/A+ arises. Note that, by
virtue of the known propagation of singularities for the operator eiTΛ, the operator
in brackets above must move wave front sets the same way that A−/A+ does. This
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observation will give rise to a cancellation effect below that will be instrumental in
yielding the normal form.

To start working on this operator, use

Ai = ωA+ + ωA−, ω = e−πi/3,

to write 1 = (ωAi− ω2A−)A−1
+ and hence

(7.5.17) 1−A−1
+ (AiP1 +Ai′P2) =

A−

A+
[−ω2−A−1

− (Ai(P1 +ω)+Ai′P2)] =
A−

A+
W.

Using the Wronskian relation

A′
+Ai−A+Ai

′ = α, α =

we rewrite the operator W in (7.5.16) as

(7.5.18) W = −ω2 − αA−1
− A−1

+ P2 −A−1
− Ai(P1 + ω − Φ+P2),

recalling Φ+ = A′
+/A+ ∈ OPS1/3

1/3,0. By the observation in the last paragraph, W

must preserve wave front sets. In particular the last term, involving A−1
− Ai, must

preserve wave front sets. This implies

(7.5.19) P1 + ω − Φ+P2 ∈ OPS−∞ on ξn < 0.

Taking adjoints gives the same result for P ∗
1 +ω−P ∗

2 Φ+. The following result gives
the cancellation effect mentioned above.

Lemma 7.5.20. Let A ∈ OPSm, B ∈ OPSm−1/3. Supppose

(7.5.21) T = A+ BΦ ∈ OPS−∞ on ξn < 0.

Then all the terms in the asymptotic expansion of the symbols of A and B must
vanish to infinite order at ξn = 0. The same is true for the case

(7.5.22) T = A+ ΦB ∈ OPS−∞ on ξn < 0.

In either case, we have

(7.5.23) TA−1
± , TAi, A−1

± T, AiT ∈ OPS−∞.

Proof. Replacing Φ(ζ0) by its asymptotic expansion gives an infinite set of identities
from (7.5.21), a priori satisfied for ξn < 0 only, but, by continuity, satisfied for
ξn ≤ 0. For the principal symbols one gets

a0 + b0|ξ1/31 ξn|1/2 = 0,
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which implies a0 and b0 must each vanish to infinite order at ξn = 0. Such vanishing
of lower order terms follows inductively, so case (7.5.21) is done. The treatment of
the case (7.5.22) follows from the standard formulas for the complete symbols of
A∗ and B∗, and (7.5.23) is an elementary consequence.

Applying the lemma to (7.5.19), we conclude that

(7.5.24) W = −ω2 − α(A+A−)−1P2,

modulo a smoothing operator and that each term in the symbol expansion of P2

vanishes to infinite order at ξn = 0. Consequently, even though we only have

(A+A−)−1 ∈ OPS1/3
1/3,0,

this yields

(7.5.25) α(A+A−)−1P2 = P3 ∈ OPS0.

Our analysis of (7.5.16) has hence yielded the main result of this section:

Theorem 7.5.26. If Ω has diffractive boundary, then a microlocal representation
for eiTΛ, acting on u ∈ E ′(Ω) such that eiTΛu has singular support away from ∂Ω,
is given by

eiTΛ = K2
A−

A+
K1,

where Kj are elliptic Fourier integral operators. With L given by (7.5.6), we can
take K2 = L and L1 = −(ω2 + P3)L−1FT .
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Chapter 8: Neumann problem

Associated to a second order differential operator with real principal symbol on
a region, Ω, with smooth boundary non-characteristic for P, there are two geomet-
rically natural boundary problems. First is the Dirichlet problem, discussed above.
Secondly, and somewhat less well-behaved, there is always a natural Neumann prob-
lem in which the value of the normal derivative of the solution is specified at the
boundary.

Let p be the principal symbol of the operator. In any local coordinates (x, y, ξ, η)
dual to local coordinates in Ω in which ∂Ω = {x = 0} the coefficient of ξ2 in p does
not vanish at x = 0, since the boundary is non-characteristic. Thus completing the
square:

(8.0.1) p(0, y, ξ, η) = ±
(
a0(y)ξ +

n∑

i=1

ai(y)ηi

)2

+

n∑

i,j=1

bij(y)ηiηj , a0(y) > 0.

This decomposition is unique, with the quadratic form only involving η. In fact
under a change of coordinates to a new system (x′, y′, ξ′, η′) dual to coordinates in
which the boundary is {x′ = 0} the new variables η′, at x = x′ = 0 depend linearly
on the variable η, not on ξ. Thus the decomposition (8.0.1) is actually coordinate
independent and the linear form

(8.0.2) l = a0(y)ξ +
n∑

i=1

ai(y)ηi

is well-defined on T ∗
∂ΩΩ. This defines a vector field, ∂ν , on Ω at ∂Ω by:

(8.0.3) σ1(∂ν) = l.

If Ω = Rt ×Ω′
x ⊂ Rn+1 is a product, with P = ∂2

t −∆ the standard wave operator
it is easy to check that ∂ν is then the inward unit normal to Ω′ with respect to the
Euclidean structure.

Thus the Neumann problem,

(8.0.4) Pu = 0, ∂νu
∣∣
∂Ω

= g,

is always well-defined. It can be treated by methods similar to those used above to
examine the Dirichlet problem (7.0.1), (7.0.2). This is not necessary however since
the solution of the Dirichlet problem allows the Neumann problem (8.0.4), or any
other boundary problem, to be replaced by the discussion of the invertibility of the
appropriate operator on the boundary; i.e., to be reduced to the boundary.



124

§8.1: Neumann operator: diffractive case

The Neumann operators are microlocally defined via the parametrices E± con-
structed in Chapter 7, as:

(8.1.1) N±(f) = ∂νE±(f)
∣∣
∂Ω
.

To solve (8.0.4) it is only necessary to solve the equation in the boundary:

(8.1.2) N±(f) = g at ρ,

since then from the definition (8.1.1),

(8.1.3) u = E±(f) =⇒ ∂νu
∣∣
∂Ω
≡ g at ρ.

This gives a microlocal solution to the Neumann problem (8.0.1). The microlocal
invertibility properties of the Neumann operators are easily deduced from their
properties as Airy operators.

Proposition 8.1.4. The microlocal Neumann operators at ρ̄ ∈ Gd can be written
in the form

(8.1.5) N± ≡ J · [A · Φ± + B] · J−1 at (ρ̄, ρ̄)

where J is an elliptic Fourier integral operator associated to a canonical diffeomor-
phism from a conic neighbourhood of ρ̄ to a conic neighbourhood of (0, . . . , 0, 1) ∈
T ∗Rn, J−1 is a microlocal inverse for J and A, B are pseudodifferential operators

A ∈ OPS2/3(Rn), B ∈ OPS0(Rn), and A is elliptic.

Proof. We apply ∂ν to the representation (7.1.8) of E±, obtaining

(8.1.6) ∂νE±(f) =
1

(2π)n

∫ [
g′
A±(ζ)

A±(ζ0)
+ ih′

A′
±(ζ)

A±(ζ0)

]
eiθF̂ dξ,

with the new symbols satisfying:

(8.1.7)
g′ = ∂νg + i[∂νθ]g − iζ[∂νζ]h,
h′ = ∂νh+ [∂νζ]g + i[∂νθ]h.

By construction the symbol h vanishes at the boundary, x = 0. Moreover, from
(4.2.5) ∂νζ

∣∣
x=0
6= 0 so the second equation in (7.1.15) shows that

(8.1.8) ∂νθ = 0 at x = 0.

Thus from (8.1.7)

(8.1.9) g′ = ∂νg, h′ = [∂νζ]g + ∂νh on ∂Ω
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and hence

(8.1.10) g′
∣∣
x=0
∈ S0, h′

∣∣
x=0
∈ S2/3, h′ elliptic.

This gives the representation of the Neumann operator (8.1.5) by taking J to
be the Fourier integral operator defined by (7.1.8A), J−1 a microlocal inverse for
J near the base point and then setting

(8.1.11)

∫
g′eiθ0 F̂ (ξ) dξ = JB(F ),

i

∫
h′eiθ0 F̂ (ξ) dξ = JA(F ),

uniquely defining pseudodifferential operators B and A, microlocally near ρ. The
remaining properties of A and B stated in the Proposition follow from (8.1.10).

Returning to the microlocal solvability of the equation (8.1.2) we have:

Proposition 8.1.12. Near a diffractive point for a second order differential opera-
tor with real principal symbol the Neumann operator is microlocal and microlocally
hypoelliptic.

Proof. As shown in Chapter 5, Φ± = A′
±/A± belong to OPS

1/3
1/3,0 and hence

(8.1.13) AΦ± +B ∈ OPS1
1/3,0 .

This operator is hypoelliptic; indeed Φ−1
± ∈ OPS0

1/3,0, so

(8.1.14) A+BΦ−1
± ∈ OPS

2/3
1/3,0 is elliptic,

and therefore

(8.1.15) (AΦ± + B)−1 = Φ−1
± (A+ BΦ−1

± )−1 ∈ OPS
−2/3
1/3,0 .

Consequently, for N given by (8.1.5), we have that

(8.1.16) N−1 ≡ JΦ−1
± (A+ BΦ−1

± )−1J−1

is a microlocal inverse for the Neumann operator (8.1.5) near the point ρ̄.

This microlocal invertibility enables us to construct a parametrix for the Neu-
mann Problem under the same hypotheses as in Proposition 7.1.9.
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§8.2: Neumann operator: gliding case

Near a gliding point for a second order differential operator the Neumann op-
erator takes a form similar to (8.1.5) but involving the oscillatory Airy operators
discussed in Chapter 5.

Proposition 8.2.1. The microlocal Neumann operators of P at a gliding point
ρ̄ ∈ Gd are Airy operators:

(8.2.2) N± ≡ J−1 · [A ·Φi± + B] · J at (ρ̄, ρ̄),

where J is an elliptic Fourier integral operator associated to a canonical diffeomor-
phism from a conic neighbourhood of ρ̄ to a conic neighbourhood of (0, . . . , 0, 1) ∈
T ∗Rn, J−1 is a microlocal inverse for J and A, B are pseudodifferential operators

A ∈ OPS2/3(Rn), B ∈ OPS0(Rn), with A elliptic.

Proof. The derivation of this formula is precisely the same as for Proposition 8.1.4
only starting with the formula (7.2.2) for the parametrix in the gliding case.

As distinct from the diffractive case considered above, the Neumann operator
is not a pseudodifferential operator near a gliding point, nor is it microlocal. The
propagation of singularities for such operators is discussed extensively in Chapter
5. Fortunately the microlocal invertibility is still easily established.

Proposition 8.2.3. The Neumann operators (8.2.3) at a gliding point have unique
microlocal parametrices with the same wavefront relation as given in (5.9.20) for
Φi.

Proof. From Proposition 5.3.10, it follows that, microlocally near the point ρ̄,

(8.2.4) Φi−1
± A−1B : Hs −→ Hs+1/3.

Now write, at least formally,

(8.2.5) AΦi± +B = AΦi±(I + Φi−1
± A−1B).

By (8.2.4) we can asymptotically expand this formal inverse modulo microlocally
smoothing operators as

(8.2.6) (AΦi± + B)−1 ∼ Φi−1
± A−1

∑

j≥0

(−1)j [Φi−1
± A−1B]j.

Consequently, the Neumann operator can be inverted microlocally by

(8.2.7) N−1
± ∼ JΦi−1

± A−1
∑

j≥0

(−1)j [Φi−1
± A−1B]jJ−1.

Since each of the terms in (8.2.7) has wavefront set in the same relation as the
Neumann operator itself, and the Sobolev regularity of these terms increases to
infinity, it follows that the microlocal inverse has this wavefront relation. From
this the uniqueness follows directly, since operators with such an estimate on the
wavefront relation microlocally form a group under composition.
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§8.3: Microlocal energy estimates

Note that (8.2.4) and the standard continuity properties of Fourier integral op-
erators give, for (8.2.7),

(8.3.1) N−1 : Hs −→ Hs+1/3.

This is a weaker result than in the diffractive case, where (8.1.16) implies

(8.3.2) N−1 : Hs −→ Hs+2/3.

The difference between (8.3.1) and (8.3.2) reflects a difference in estimates for
solutions to the Neumann problem (8.0.4) in the gliding and grazing cases, respec-
tively. We note that the solution to (8.1.16) with Dirichlet boundary condition

(8.3.3) u
∣∣
R×∂K

= f ∈ C−∞
c (R× ∂K)

satisfies the strong estimates

(8.3.4) ‖u‖Hs([−T,T ]×B) ≤ CT,B‖f‖Hs ,

for any bounded B ⊂ Rn \K, f supported in −T ≤ t ≤ T. This is a special case
of estimates of Kreiss [Kr] and Sakamoto [Sak]. Now if the boundary is diffractive,
(8.3.2) implies, for solutions of the Neumann problem (8.0.4), that

(8.3.5) ‖u‖Hs([−T,T ]×B) ≤ CT,B‖g‖Hs−2/3 .

In the gliding case, (8.3.1) implies

(8.3.6) ‖u‖Hs([−T,T ]×B) ≤ CT,B‖g‖Hs−1/3 .

This last estimate is not sharp. In fact, for a general boundary, elementary consid-
erations show that we have an estimate

(8.3.7) ‖u‖Hs([−T,T ]×B) ≤ CT,B‖g‖Hs−1/2 .

Indeed, choose G on R × B such that G ∈ Hs+1 and (∂/∂ν)G
∣∣
R×∂K

= g. Then

write u = G+ v where v solves

( ∂2

∂t2
−∆

)
v = −

( ∂2

∂t2
−∆

)
G = H on K{,

∂v

∂ν
= 0 on R× ∂K, v = 0 for t << 0.

The formula

v(t) =

∫ t

−∞

(−∆)−1/2 sin[(t− s)(−∆)1/2]H(s) ds
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shows

‖v‖H1([−T,T ]×B) ≤ CT,B‖H‖L2 ≤ C ′
T,B‖G‖H2 ≤ C ′′

T,B‖g‖H1/2 ,

which gives (8.3.7) for s = 1. We refer to [RaMa] for the general argument.
Now the general estimate (8.3.7) is stronger than the estimate (8.3.6). On the

other hand, applying the trace theorem to (8.3.7) yields only the very weak result

(8.3.8) ‖u‖Hs−1/2([−T,T ]×∂K) ≤ CT ‖g‖Hs−1/2 ,

or

(8.3.9) N−1 : Hs −→ Hs,

which is weaker than the result (8.3.1) on N−1 in the gliding case.

Remark. Estimates on solutions to the Neumann problem stronger than (8.3.5)–
(8.3.7) have been established by D. Tataru, [Tat].

§8.4: Neumann operator identities

The forms (8.1.5) and (8.2.2) for the Neumann operator N used the prescription
h|∂Ω = 0. We now show how other sets of solutions g′, h′ to the transport equations
yield other forms of the Neumann operator. Comparing these forms for N yields
some non-obvious identities among Airy operators, which will be further discussed
in Chapters 9 and 10. We give details for the gliding case.

If we take (7.2.2) as the parametrix for the gliding ray problem, with g, h replaced
by g′, h′, other solutions to the transport equations, and do not require h′|∂Ω = 0,
but still require θν |∂Ω = 0, we get, modulo C∞,

(8.4.1) u
∣∣
∂Ω

=

∫ (
g′ + ih′Φi(ζ0)

)
eiθF̂1(ξ) dξ,

for a certain F1, hence

(8.4.2) ∂νu
∣∣
∂Ω

=

∫
(ζνg

′ + ih′ν)eiθΦiT F̂1 dξ +

∫
(ih′ζνζ + g′ν)eiθF̂1 dξ.

If we set

(8.4.3) J ′G =

∫
g′eiθĜ(ξ) dξ,

then

(8.4.4) u
∣∣
∂Ω

= J ′(I +RΦiT )F1
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and

(8.4.5) ∂νu
∣∣
∂Ω

= (J ′
1ΦiT +K ′

0)F1

with

(8.4.6) J ′
1 = J ′A′, K ′

0 = J ′B′.

Here

(8.4.7) A′ ∈ OPS2/3 has principal symbol ζν ,

and, if g′0 and h′0 are the principal symbols of g′ and h′,

(8.4.8) B′ ∈ OPS1 has principal symbol i(h′0/g
′
0)ζνζ0.

We suppose g′0 6= 0 on ∂Ω. The operator R occurring in (8.4.4) satisfies

(8.4.9) R ∈ OPS−1/3 has principal symbol h′0/g
′
0.

Now we see that

(8.4.10) ∂νu
∣∣
∂Ω

= J ′(A′ΦiT + B′)F1,

which implies

(8.4.11) N = J ′(A′ΦiT + B′)(I +RΦiT )−1(J ′)−1,

granted the invertibility of I + RΦiT , a point that will be established in the next
chapter.

We can compare (8.4.11) with the form (8.2.2) for N. Note that

(8.4.12) J ′ = JD,

where

(8.4.13) D ∈ OPS0 has principal symbol g′0/g0.

Thus identity of the two expressions for N is equivalent to the identity:

(8.4.14) AΦiT +B = D(A′ΦiT +B′)(I + RΦiT )−1D−1.

We remark on some aspects of the general form (8.4.11) for the Neumann opera-
tor (in the gliding case). First, the principal symbol of A′, ζν , is independent of the
choice of solutions to the transport equations. Also, the principal symbol of B ′ is a
smooth multiple of ξn (assuming g′ 6= 0), so it always vanishes at ξn = 0. As for R,
whose principal symbol is h′0/g

′
0, as shown in Proposition 4.4.11, this can be taken

to be an arbitrary smooth function, homogeneous of degree −1/3. This freedom to
specify the principal symbol of R will be utilized in the next two chapters. Here
we remark it allows the principal symbol of B′ to be an arbitrary multiple of ξn.

Of course, we have similar results for the Neumann operator in the diffractive
case. There is no need to write down the details.
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Chapter 9: Airy operator calculus – the diffractive case

As discussed in Chapter 8, to construct microlocal parametrices for more gen-
eral boundary problems near diffractive, or gliding, points there are two obvious
methods. The first is to construct the parametrix directly, as for the Dirichlet prob-
lem, and to prove the solvability of the transport equations, with the appropriate
boundary conditions. The second method, adopted from now on, is to reduce the
problem to the boundary. The reduction of quite general boundary problems to
the boundary yields an operator equation involving the Neumann operator, an Airy
operator. In this chapter the solvability of such equations:

(9.0.1) (A ·N+ + B)u = f

is considered microlocally near diffractive points. The same type of analysis near
gliding points will be given in Chapter 10.

In fact these two methods for analyzing general boundary problems are closely
related. Thus to solve the equation (9.0.1) in the simplest case, when B is elliptic,
we use identities for Airy operators established in §9.1, exploiting the Neumann
operator identities of §8.4. We note that, if B in (9.0.1) is elliptic the microlocal
solvability of the equation is trivial, i.e. is a consequence of the usual pseudodifferen-
tial calculus. However the investigation of the algebraic properties of Airy operators
carried out below gives a quite simple form for the inverse in this and other cases
considered in subsequent chapters. It also serves as a simple introduction to the
somewhat more subtle calculus of Airy operators in the gliding case.

§9.1: Simple Airy operators

Working microlocally near the usual base point ξ̄ = (0; 0, . . . , 1) ∈ T ∗Rn consider

the two-sided module generated by the basic convolution operator Φ+ ∈ OPS
1/3
1/3,0 .

This is spanned by the simple Airy operators:

(9.1.1)
Q = A ·Φ+ ·A′ + B ∈ Am,+S ⇐⇒ A ∈ OPSµ, A′ ∈ OPSµ

′

,

µ+ µ′ = m− 1

3
, B ∈ OPSm .

In particular

(9.1.2) OPSm ⊂ Am,+S , ∀ m ∈ R.

The suffix ‘S’ here corresponds to the fact that there is only one factor and one
term involving Φ in the definition (9.1.1), as opposed to the more general spaces
considered below. From the computations in Chapter 5:

(9.1.3) Am,+S ⊂ OPSm1/3,0 .

These sets Am,+S are not even linear spaces, but are of prime importance here
since the Neumann operator is certainly of this type. An important part is played
in the consideration of these operators by the following identity.
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Proposition 9.1.4. Given H ∈ OPSm−2/3 there exist Gi ∈ OPSm−1/3, i = 1, 2
with equal principal symbols and L ∈ OPSm such that

(9.1.5) Φ+ ·H · Φ+ = G1 · Φ+ − Φ+ ·G2 + L.

Proof. It suffices to consider the case m = 1/3 since an elliptic operator, such as
〈D〉m, which commutes with Φ+ can be used to change the order. Also, given H,
it suffices to prove (9.1.5) for some operator H ′ with the same principal symbol as
H, since then an inductive argument yields a proof of the full statement.

We will obtain (9.1.5) from the Neumann operator identity (8.4.14), or rather
its Φ+ analogue:

(9.1.6) (AΦ+ + B)D(I +RΦ+) = D(A′Φ+ + B′)

where

(9.1.7) σ2/3(A) = σ2/3(A′) = ζν , σ0(D) =
g′

g
, and σ−1/3(R) =

h′

g′
.

and furthermore σ1(B′) = i(h′/g′)ζνζ, while B ∈ OPS0. Hence, with H ′ = DR,

(9.1.8) Φ+H
′Φ+ = (A−1DA′ − A−1BDR)Φ+ − Φ+D + A−1(DB′ − BD),

where A−1 denotes a microlocal parametrix of the elliptic operator A. This identity
is of the form (9.1.5). Note that

(9.1.9) σ−1/3(H ′) =
h′

g
.

Recall that g, h solve the transport equations with h
∣∣
∂Ω

= 0, g
∣∣
∂Ω

elliptic. By
Proposition 4.4.11, given g, we can solve the transport equations for g ′, h′, with
h′

∣∣
∂Ω

specified to be equal to σ−1/3(H ′)g, for any given symbol σ−1/3(H ′) ∈ S−1/3,
so the Proposition is proved.

Since the identity (9.1.5) is rather useful in what follows it is important to note
that the principal symbols of H,Gj, and L are related by (9.1.9) and

(9.1.10) σ0(Gj) =
g′

g
, σ1/3(L) = iζ

h′

g
.

Let us note the following elementary special case of (9.1.5):

(9.1.11) Φ2
+ = (D

1/3
1 xn)Φ+ − Φ+(D

1/3
1 xn)−D−1/3

1 Dn,

which follows immediately from the ODE

(9.1.12) Φ′(ζ) = Φ(ζ)2 − ζ.
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We further remark that any choice of second order operator P on a region with
a diffractive boundary could have been made. One convenient choice would be the
Friedlander example (3.6.7), for which

g = 1, ζν = ξ
2/3
1 on {x = 0},

by the solution (4.0.7) to the eikonal equations in this case.
One immediate consequence of the identity (9.1.5) is that the linear space of

operators spanned by the simple Airy operators is a filtered algebra. Set

(9.1.13) Am,+F = sp(Am,+S ).

Then:

Proposition 9.1.14. For any m,m′ ∈ R with composition defined microlocally:

(9.1.15) Am,+F · Am
′,+

F ⊂ Am+m′,+
F .

Proof. Clearly it suffices to show that

(9.1.16) Am,+S · Am
′,+

S ⊂ Am+m′,+
F .

Expanding a product gives immediately:

(A1 · Φ+ ·A′
1 + B1) · (A2 · Φ+ ·A′

2 +B2) ≡ A1 ·Φ+ ·H · Φ+ ·A′
2 mod Am+m′,+

F ,

with

H = A′
1 ·A2.

Then the identity (9.1.5) allows the remaining term to be expanded into a finite
sum of simple Airy operators.

As is shown below the ‘natural’ space of Airy operators Am,+ is slightly larger
than this finite span.

We have only described here the composition properties of the pseudodifferential
operators associated to Φ+. Those associated to Φ− are simply the adjoints of these
operators, as is immediately apparent:

Proposition 9.1.17. If Φ+ is replaced by Φ− in (9.1.1) and the resulting space of

operators is denoted Am,−S then:

(9.1.18) Q ∈ Am,+S ⇐⇒ Q∗ ∈ Am,−S .
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§9.2: Ellipticity in A∗,±
S

Here we will examine parametrices near {ξn = 0} for operators of the form

(9.2.1) Q = AΦ + B ∈ Am,±S , with B ∈ OPSm elliptic.

We set Φ = Φ±. Part of the interest in (9.2.1) is its natural appearance in boundary
problems satisfying a Lopatinski condition, as will be seen in Chapter 12. First, it
is clear that the hypothesis implies

(9.2.2) Q ∈ OPSm1/3,0 is elliptic near {ξn = 0},

so we have a parametrix

(9.2.3) Q−1 ∈ OPS−m
1/3,0,

with a symbol expansion of a straightforward, though complicated form. We will
use Airy operator identities to give a special form for the parametrix here, a special
case of more general results to be presented in §9.7.

Composing Q on the right with a parametrix B−1 ∈ OPS−m for B, we can
reduce our study to that of

(9.2.4) Q = I + AΦ, A ∈ OPS−1/3.

Note that, for any elliptic D ∈ OPS0,

(9.2.5) (I + AΦ)(I −ADΦD−1) = I +AΦ− ADΦD−1 − AΦADΦD−1.

Now exploit the identity (9.1.5), with H = AD, choosing D = −G2, which by
(9.1.10) we can suppose to be elliptic. We obtain

(9.2.6)

(I +AΦ)(I − ADΦD−1) = I + A(G2 −G1)DΦD−1

= (I − ALD−1) + A(G2 −G1)ΦD−1

= E + FΦD−1,

with E ∈ OPS0 elliptic near {ξn = 0}, D−1 ∈ OPS0, F ∈ OPS−4/3, the ellipticity
of E following from the vanishing of the principal symbol of L on {ξn = 0}. Thus,
setting C = E−1F, we have:

Proposition 9.2.7. For A ∈ OPS−1/3, I + AΦ has near {ξn = 0} a microlocal
parametrix

(9.2.8) (I + AΦ)−1 = (I −ADΦD−1)(I + CΦD−1)−1E−1,

with C ∈ OPS−4/3, and E,D elliptic in OPS0.
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Note that CΦD−1 ∈ OPS−1
1/3,0, so the Neumann expansion

(9.2.9) (I + CΦD−1)−1 ∼ I +
∑

j≥1

(−CΦD−1)j

is asymptotic. Note that, by Proposition 9.1.14, the jth term in this sum belongs
to A−j,±

F .
Let us note the result of a slightly cruder argument. Namely, we have

(9.2.10)

(I + AΦ)(I −AΦ) = I − AΦ2A+ A[A,Φ]A

= (I + AD
−1/3
1 DnA)−A[Φ, D

1/3
1 xn]A+ A[A,Φ]A

= E1 +R,

with E1 ∈ OPS0 elliptic near {ξn = 0} and R ∈ OPS−2/3
1/3,0. The ellipticity of this

operator in OPS0
1/3,0, microlocally near {ξn = 0}, is clear, but (9.2.6) has a neater

form than this identity.

§9.3: Hypoellipticity in A∗,±
S

The ellipticity of simple Airy operators discussed in §9.2 corresponds precisely to
ellipticity in OPSm1/3,0 . There is another condition on the principal symbol which
implies microlocal invertibility. Namely, consider the operator Q = AΦ+ + B ∈
Am,+S , with

(9.3.1) A ∈ OPSm−1/3 elliptic and B ∈ OPSm with σm(B) = 0 on {ξn = 0}.

Under this hypothesis we can write Q = (A + BΦ−1
+ )Φ+, with A + BΦ−1

+ elliptic

in OPS
m−1/3
1/3,0 , and apply the OPS∗

1/3,0 pseudodifferential operator calculus to con-

struct a parametrix. As before, we will exploit Airy operator identities to produce
a neater form for the parametrix.

Proposition 9.3.2. If Q = AΦ+ + B ∈ Am,+S satisfies (9.3.1), then there exists

an operator Q′ ∈ A−m,+
S such that

(9.3.3) Q ·Q′ = RΦ+ +E, R ∈ OPS−1/3 elliptic and E ∈ OPS−1 .

In fact, Q′ = CΦ+ +D, with D elliptic in OPS−m.

Proof. Taking Q′ = CΦ+ +D, we apply (9.1.5) with H = C to obtain

(9.3.4) (AΦ++B)·(CΦ++D) = (A·G1+B ·C)·Φ++A·Φ+ ·(D−G2)+(L+B ·D).

First we choose D to make the second term trivial:

(9.3.5) D = G2.
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Here G2 is determined by the choice of C. The symbolic equation to be satisfied is
therefore:

(9.3.6) σ0(L+ B ·D) = ζ
(
h+ b′

g′

g

)
= 0,

by (9.1.9)–(9.1.10). Here the hypothesis on B is used to write its principal symbol
as ζb′. Again, as shown in Proposition 4.4.11 there is a solution of this equation
making g, and hence A · G1 + B · C elliptic. This completes the proof of the
Proposition.

Notice that Proposition 9.3.2 allows the microlocal inverse to Q, under the hy-
potheses (9.3.1), to be written in the form:

(9.3.7) Q−1 ∼ (C +DΦ−1
+ )D′

[ ∞∑

j=0

(−1)j(E · Φ−1
+ ·D′)j

]
,

where D′ is a parametrix for R. Since

(9.3.8) E · Φ−1
+ ·D′ ∈ OPS

−2/3
1/3,0,

the sum in (9.3.7) is asymptotic, i.e., consists of progressively lower order operators.
The leading part of the inverse therefore determines its regularity:

(9.3.9) Q−1 ∈ OPS
−m+1/3
1/3,0 .

Since there is no possibility of better regularity we see:

(9.3.10) Q of the form (9.3.1) is hypoelliptic with loss of
1

3
derivatives.

§9.4: The operator classes A∗,±

Next we consider a microlocal algebra of operators containing both the finite
span A∗,+

F and the inverses of the elliptic elements discussed in Proposition 9.2.7.

For each j ∈ N, let Φ(j) represent the operator with symbol

(9.4.1) Φ(j)(ξ
−1/3
1 ξn) = ξ

j/3
1

( ∂

∂ξn

)j
Φ(ξ

−1/3
1 ξn).

Then set

(9.4.2)

Am,± =
{
Q ∈ OPSm1/3,0;Q− B ∼

∑

j≥0

Aj ·Φ(j)
± ,

with B ∈ OPSm, Aj ∈ OPSm−(j+1)/3
}
.

As usual this definition is microlocal, in a small conic neighborhood of ξ̄ = (0; 1, 0, . . . , 0).
Each operator in Am,± can be represented in terms of an oscillatory integral in-
volving only the Airy quotient.
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Proposition 9.4.3. An operator Q belongs to Am,± if and only if it can be written
in the form

(9.4.4)
Qu(x) =

∫
[a(x, y, ξ)Φ±(ξ

−1/3
1 ξn) + b(x, y, ξ)]u(y)ei(x−y)·ξ dy dξ,

a(x, y, ξ) ∈ Sm−1/3, b(x, y, ξ) ∈ Sm.

Proof. Since we can always compose with some elliptic operator such as Dm
1 it

suffices to consider the case m = 0. Suppose Q has the form (9.4.2). Take the
symbol of a particular term:

(9.4.5) Qj(x, ξ) = Aj(x, ξ)Φ
(j)(ξ

−1/3
1 ξn) ∈ S−(j+1)/3, j ≥ 1.

We see that, with Bj(x, ξ) = Aj(x, ξ)ξ
j/3
1 ,

(9.4.6)

Qju =

∫
Bj(x, ξ)

[( ∂

∂ξn

)j
Φ±

]
ei(x−y)·ξu(y) dy dξ

=

∫
Φ±

(
− ∂

∂ξn

)j [
Bj(x, ξ)e

i(x−y)·ξ
]
u(y) dy dξ

= (−1)j
j∑

l=0

il
(
j

l

) ∫ [
∂j−lξn

Bj(x, ξ)
]

(xn − yn)l Φ ei(x−y)·ξu(y) dy dξ.

As j or l → ∞ the symbol in (9.4.6) converges in the sense of formal power
series at x = y or asymptotically. Clearly then it is possible to choose a(x, y, ξ) in
(9.4.4) to expand to this double series with errors either vanishing to high order at
x = y or of low symbolic order. Note that we can take the leading term a0(x, y, ξ)
of a(x, y, ξ) to be

(9.4.7) a0(x, y, ξ) = A0(x, ξ).

and we can set b(x, y, ξ) = B(x, ξ). This shows that every operator in A0,± is of
the form (9.4.4). The converse statement follows from the standard method of ob-
taining the symbol of a pseudodifferential operator in OPS0

1/3,0 from a multisymbol

representation such as (9.4.4), so the proposition is proved.

The following simple observation will be useful.

Lemma 9.4.8. For any m ∈ R, Am,± is a two-sided OPS0-module. An operator
Q belongs to Am,+ if and only if Q∗ ∈ Am,−.
Proof. It is clear from the definition that

A ∈ OPS0, Q ∈ Am,± =⇒ AQ ∈ Am,±.
The behavior under adjoints follows from the representation (9.4.4), and then the
implication QA ∈ Am,± follows by taking adjoints.

Knowing that Am,± is a two-sided OPS0-module, we see that

(9.4.9) Am,±F ⊂ Am,±.
The following is a partial converse.
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Proposition 9.4.10. Any finite sum

B +

N∑

j=0

AjΦ
(j), B ∈ OPSm, Aj ∈ OPSm−(j+1)/3

belongs to Am,±F .

Proof. It suffices to show that

(9.4.11) Φ
(j)
± ∈ A(j+1)/3,±

F , for j ≥ 1.

(Note that Φ
(j)
± ∈ OPS0

1/3,0 for j ≥ 1.) This can be established by exploiting the

identity

(9.4.12) Φ′(ζ) = ζ − Φ(ζ)2,

which implies, by induction,

(9.4.13) Φ(j−1)(ζ) =

j∑

l=0

pjl(ζ)Φ(ζ)l,

where pjj is a nonzero constant and more generally pjk(ζ) is a polynomial belonging
to the space Pj−k, where Pi is the space of polynomials in ζ spanned by monomials
ζl with

(9.4.14) l ≤ 1

2
i, 2l ≡ i(mod 3).

The inclusion (9.4.11) then follows from (9.4.13), since, by Proposition 9.1.14, we
have

(9.4.15) Φj± ∈ Aj/3,±F .

Another way to see (9.4.11) is to note that

(9.4.16) Φ
(j)
± =

(
ad xnD

1/3
1

)j
Φ±,

since both left and right multiplication by B ∈ OPS1/3 map Am,±F to Am+1/3,±
F .

We now show that A∗,± contains the parametrices constructed in §9.2.
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Proposition 9.4.17. If Q = AΦ± + B ∈ Am,±S with B ∈ OPSm elliptic, then we
have Q−1 ∈ A−m,±.

Proof. Following the proof of Proposition 9.2.7, it suffices to show that the series

(9.4.18)
∑

j≥0

(−CΦ±B
−1)j =

∑

j≥0

Sj

with C ∈ OPS−4/3, B−1 ∈ OPS0, is asymptotic to an element of A0,±. Note that
Sj ∈ A−j,±. Thus we can write

(9.4.19) Sj = AjΦ±Bj + Cj ,

with

(9.4.20) Aj, Cj ∈ OPS−j, Bj ∈ OPS−1/3.

Applying the S∗
1/3,0 symbol calculus to (9.4.19) yields asymptotic series

(9.4.21) Sj ∼ Cj +
∑

l≥0

AjlΦ
(l)
± , Ajl ∈ OPS−j−(l+1)/3,

and the sum over j of this clearly yields an asymptotic series of the form (9.4.2).

§9.5: Microlocal completeness of Am,±

A linear subspace L of OPSmρ,δ is said to be microlocally complete if

(9.5.1) Pj ∈ L, Pj ∼ P ∈ OPSmρ,δ =⇒ P ∈ L,

where Pj ∼ P means P − Pj ∈ OPSmj

ρ,δ with mj → −∞. It is clear from (9.4.9)

and Proposition 9.4.10 that Am,± and Am,±S have the same microlocal completion.
The goal of this section is to prove:

Proposition 9.5.2. For each m ∈ R, Am,± is microlocally complete.

This result is not entirely trivial for the following reason. Suppose Q ∈ Am,±
has an expansion of the form (9.4.2) and that Q ∈ OPSµ1/3,0 with µ < m. It does

not follow that Q ∈ Aµ,±. It will be useful to record some of the properties that
such operators Q do have. To begin, we characterize those T ∈ A0,± which belong

to OPS
−2/3
1/3,0:

Lemma 9.5.3. T ∈ A0,±∩OPS
−2/3
1/3,0 if and only if it has an expansion of the form

(9.4.2), with B ∈ S−1 and A0 ∈ S−4/3.
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Proof. Certainly if T has such an expansion it is in OPS
−2/3
1/3,0 . Thus suppose that

T ∈ A0,± ∩OPS
−2/3
1/3,0. Let b0 ∈ S0, a00 ∈ S−1/3 be the principal symbols of B and

A0 in (9.4.2). Due to the asymptotic expansion

Φ(ζ) ∼ c
√
ζ + · · · ,

we see that T ∈ OPS
−2/3
1/3,0 implies the identity

(9.5.4) b0 = Cξ
1/3
1 a00

(ξn
ξ1

)1/2

.

This in turn implies that both b0 and a00 must vanish to infinite order at ξn = 0.
Thus (for A00 with full symbol a00),

B + A00Φ ∈ OPS0,

so we can replace B in (9.5.2) by B +A00Φ and suppose without loss of generality
that a00 = 0. Then (9.5.4) implies b0 = 0, which proves the lemma.

One might think that Lemma 9.5.3 has the following generalization, namely if
T ∈ Am,±∩OPSµ1/3,0 with µ < m, then it has an expansion of the form (9.4.2) with

B ∈ OPSµ and Aj ∈ OPSµj , µj = min (µ,m− (j + 1)/3), but this does not hold

for µ < m− 2/3. To see an example of this, start with Φ′
+ ∈ A2/3,+ ∩OPS0

1/3,0, to

which Lemma 9.5.3 applies, and square it. Making use of the ODE (9.1.12) for Φ,
we can establish

(9.5.5) (Φ′
+)2 = −Φ+ + 2ζΦ′

+ −
1

2
Φ′′′

+ ∈ A4/3,+ ∩ OPS0
1/3,0;

cf. (9.6.14), in the next section. The low order of the right side of (9.5.5) results

from a partial cancellation of Φ+ and 2ζΦ′
+, each of which is in S

1/3
1/3,0. Note that

Lemma 9.5.3 does apply to (9.5.5). We now present the appropriate generalization
of this Lemma.

Proposition 9.5.6. Let Q ∈ Am,± ∩ OPSµ1/3,0. Fix N < ∞. Then there exists

K <∞ such that, if µ < m−K, then Q has an expansion of the form (9.4.2) with
the following property. All the terms homogeneous of degree m,m − 1, · · · ,m−N
in the expansion of the symbol of B and all the terms homogeneous of degree m −
2/3, · · · ,m− 2/3−N in the expansion of the symbols of the Aj vanish to order at
least N at {ξn = 0}.

The proof of this Proposition will be postponed until §9.7, as it forms part of
the argument proving Proposition 9.7.1.

We now prove Proposition 9.5.2. Thus let Qj ∈ Am,±, Qj ∼ Q ∈ OPSm1/3,0.

Consider the differences Rj = Qj+1−Qj , which have large negative order as j →∞,
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so Proposition 9.5.6 applies to each Rj . We can substitute the expansion of the form
(9.4.2) so described, into each term of the asymptotic series

Q1 + R1 + R2 + · · ·+ Rj + · · · ;

grouping together the terms homogeneous of fixed order which are coefficients of
each Φ(l), one obtains a series

B′ +
∑

l

A′
lΦ

(l),

asymptotically summing to a term Q′ ∈ Am,±. It is easy to verify that Q − Q′ ∈
OPSmcl , so indeed Q ∈ Am,±.

§9.6: Algebraic properties of Am,±

Using the algebraic properties of A∗,±
F established before plus the microlocal

completeness result of the last section, we will be able to derive fairly easily the
major algebraic properties of A∗,±.

Proposition 9.6.1. If Qk ∈ Amk,±, then

(9.6.2) Q1Q2 ∈ Am1+m2,±,

and

(9.6.3) [Q1, Q2] ∈ Am1+m2,± ∩ OPSm1+m2−2/3
1/3,0

Proof. If Qkj ∼ Qk with each Qkj ∈ Amk,±
F , then for each j,Q1jQ2j ∈ Am1+m2,±

F ,
while as j →∞, Q1jQ2j ∼ Q1Q2, so (9.6.2) follows from microlocal completeness.

To see that the order of the commutator is m1 + m2 − 2/3, it suffices to note
that

∂ξj
Φ(ξ

−1/3
1 ξn) ∈ S−1/3

1/3,0 ,

which has been established in Chapter 5.

Next we turn to the construction of parametrices for elliptic operators in A∗,±.
The following result is a generalization of Proposition 9.2.7.

Proposition 9.6.4. If Q ∈ A0,+ has the form (9.4.2) with B ∈ OPS0 elliptic, then
Q−1 ∈ A0,+.

Proof. We know that Q−1 ∈ OPS0
1/3,0 . To verify the proposition, factor out B and

write

(9.6.5) Q = B(I + AΦ +R),
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with A ∈ OPS−1/3, R ∈ A0,+ ∩ OPS
−2/3
1/3,0 . By Proposition 9.4.17, the operator

I +AΦ has a parametrix S ∈ A0,+. Now

(9.6.6) (I +AΦ + R)S = I + RS,

with RS ∈ A0,+ ∩ OPS−2/3
1/3,0, and then

(9.6.7) Q−1 = S(I + RS)−1B−1.

By Proposition 9.5.2, the Neumann series

(9.6.8) (I + RS)−1 ∼
∑

k≥0

(−RS)k

produces an element

(9.6.9) (I + RS)−1 ∈ A0,+,

so Q−1 ∈ A0,+, as asserted.

Here’s another approach to products of Airy operators. Suppose A,B ∈ A0,+.
We have, with E ∈ A0,+,

(9.6.10)

AB ∼
∑

j,k

AjΦ
(j)BkΦ(k) + E, Aj ∈ OPS−(j+1)/3, Bk ∈ OPS−(k+1)/3

∼
∑

j,k

CjkΦ(j)Φ(k) + E, Cjk ∈ OPS−(j+k+2)/3 .

We want to show AB can be asymptotically represented in the form

(9.6.11) AB ∼
∑

j

DjΦ
(j) + F, Dj ∈ OPS−(j+1)/3, F ∈ OPS0 .

In order to achieve this, we use the identity (9.4.13), with coefficients pjl described
there; recall pjj is a nonzero constant. Thus we can invert the triangular system
(9.4.13) to get

(9.6.12) Φj(ζ) = rj0(ζ) +

j∑

k=1

rjk(ζ)Φ(k−1), rjk(ζ) ∈ Pj−k, rjj = 1/pjj 6= 0.

Passing to (9.4.13) and back via (9.6.12) enables us to write

(9.6.13) Φ(j)Φ(k) = α0,j,k(ζ) +

j+k+2∑

`=1

α`,j,k(ζ)Φ
(l−1)(ζ)
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where α`,j,k(ζ) ∈ Pj+k−2−` is a polynomial of degree at most (j + k − ` + 2)/2;

in particular αj+k+1,j,k is a non-zero constant. Note that, even though Φ(j)Φ(k) is
of order 1 − j − k in ζ, terms on the right side of (9.6.13) can be of order up to
(j + k + 2)/2 in ζ. Particular examples of (9.6.13) are:

(9.6.14)
ΦΦ = ζ − Φ′, ΦΦ′ =

1

2
+

1

2
Φ′′,

Φ′Φ′ = −Φ + 2ζΦ′ − 1

2
Φ′′′, ΦΦ′′ = Φ− 2ζΦ′ + Φ′′′.

If we substitute (9.6.13) into (9.6.10), rearrangement produces a formal sum

(9.6.15)
∑

j,k

FjkΦ(j) + E′,

with E′ ∈ A0,+, Fjk ∈ OPS−(j+1)/3 . However, for each j, there are infinitely many
terms Fjk, and

∑
k Fjk is not asymptotic in the usual sense. But as k →∞, terms

homogeneous of a fixed degree vanish to increasingly high order at ζ = 0 (i.e.,

ξn = 0.) Thus we can find Fj ∈ OPS−(j+1)/3 such that
∑N
k=1 Fjk − Fj vanishes to

arbitrarily high order at ζ = 0 for N large. Now form

(9.6.16) T ∼
∑

j≥0

FjΦ
(j).

We see that T ∈ A0,+ and

(9.6.17) AB − T ∈ OPS0 .

This proves again that AB ∈ A0,+.

§9.7: A cancellation effect

In §7.5 we found it convenient to know that, if an operator of the form P =

A0 + A1Φ, A0 ∈ OPSm, A1 ∈ OPSm−1/3, has the property that it is of order −∞
on the open cone ξn < 0, then in fact the complete symbols of A0 and of A1 vanish
to infinite order at ξn = 0, P ∈ OPSm, and PA−1

± and related operators belong to

OPS−∞ . Here, we prove a more general result. We will draw further conclusions
from this in Section 9.8. Our general result is the following.

Proposition 9.7.1. Let P ∈ Am,+; say

(9.7.2) P ∼ A0 +
∑

k≥0

Ak+1Φ(k),

with Φ(0) = Φ,Φ(1) = Φ′, etc., A0 ∈ OPSm, Ak+1 ∈ OPSm−(k+1)/3 . Suppose P
belongs to OPS−∞ in the open cone ξn < 0. Then each Ak, k ≥ 0, has complete
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symbol vanishing to infinite order at ξn = 0. Consequently, P ∈ OPSm, and the
operators

PAi, PAi′, PA−1
±

are all infinitely smoothing.

Say the symbols of the operators Ak in (9.7.2) have asymptotic expansions

(9.7.3) ak(x, ξ) ∼
∑

j≥0

akj(x, ξ),

with a0j(x, ξ) homogeneous of degree m−j, and generally ak+1,j(x, ξ) homogeneous

of degree m− (k+ 1)/3− j in ξ. Recall that Φ(k)(ζ) has the asymptotic expansion

(9.7.4) Φ(k)(ζ) ∼
∑

j≥0

αkj(−ζ)1/2−k−3j/2, ζ → −∞.

The elementary argument given in the proof of Lemma 7.5.20 shows that the prin-
cipal symbols a00(x, ξ) and a10(x, ξ) of A0 and A1 both vanish to infinite order at
ξn = 0. That type of argument also shows that a01(x, ξ) vanishes to infinite order
at ξn = 0 and that, modulo an infinitely flat term,

(9.7.5) a20(x, ξ) =
(α00

α10

)
ζ a11(x, ξ).

Then looking at the coefficients of (−ζ)−1 and (−ζ)−2 in a11(x, ξ)Φ(ζ) and a20(x, ξ)Φ′(ζ),
respectively, we see that, modulo an infinitely flat term,

(9.7.6) a11(x, ξ) =
(
α01 +

α00

α10

)−1

ζ a02(x, ξ).

The strategy of groping ahead in this fashion rapidly runs out of steam, and a more
systematic strategy is called for. If we set ξ1 = 1, ξn = s, and suppress the variables
x and (ξ2, ..., ξn−1), set

(9.7.7) bkj(s) = akj(x, ξ)|ξ1=1,ξn=s.

Then, via (9.7.4), the hypothesis of Proposition 9.7.1 is equivalent to the sequence
of identities

(9.7.8) b0j(s) +
∑

k≥1,k+r+p=j+1

αk−1,pbkr(s)(−s)3/2−k−3p/2 = 0,

for s > 0, and for j = 0, 1, 2, .... Since bkj(s) are smooth in s, these identities must

also hold in the sense of formal power series in (−s)1/2, and one has, for j ≥ 0, ` ≥ 0,

(9.7.9) (`!)−1∂`sb0j(0) +
∑

k≥1

(q!)−1∂qsbkr(0)αk−1,p = 0,
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where the sum runs over (k, r, q, p), all non-negative, also satisfying k+r+p = j+1
and q + 3/2 − k − 3p/2 = `. From this it follows that, for any integer q ≥ 0, as
t→∞,

(9.7.10)
∑

`

(`!)−1∂`sb0j(0)(−t)` +
∑

k≥1

(`!)−1∂`sbkj(0)(−t)`Φ(k−1)(−t) ∼ 0,

where the first sum is over (`, j), non-negative integers, such that 3j + 2` = q, and
the second sum is over (`, j, k), non-negative, such that 3j + 2` + k = q. Indeed,
if one substitutes the expansion (9.7.4) into (9.7.10), one sees that the coefficients
of all powers of t vanish, by virtue of (9.7.9). With the following lemma, we will
see that all the coefficients ∂`sbkj(0) that appear in any expression (9.7.10) must
vanish; since for any (j, k, `) there is a q such that such a coefficient does appear,
this will provide the proof that all the bkj(s) vanish to infinite order at s = 0, which
yields all the assertions of Proposition 9.7.1. Thus it remains only to establish the
following.

Lemma 9.7.11. If pk(t) are polynomials in t such that

(9.7.12)
N∑

k=0

pk(t)Φk(t) ∼ 0, as t→ −∞,

then all pk(t) are identically zero. Consequently, if qk(t) are polynomials in t such
that

(9.7.13) q0(t) +

N−1∑

k=0

qk+1(t)Φ(k) ∼ 0, as t→ −∞,

then all qk(t) are identically zero.

Proof. Assuming (9.7.12), there exists a function Ψ(t) algebraic in t−1, near t =∞,
such that

N∑

k=0

pk(t)Ψk(t) = 0

for large negative t, and such that Ψ(t) has the same asymptotic behavior as Φ(t) as
t→ −∞. It follows that the power series of Ψ(t)−α00(−t)1/2 in (−t)−1/2 converges
near t =∞, and consequently Ψ(t) satisfies the ODE equivalent to Airy’s equation,

Ψ′(z) = z −Ψ(z)2.

From this it follows that

A(t) = exp
(∫ t

Ψ(s) ds
)
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is an Airy function. Hence Ψ = Φ, i.e., Φ must be algebraic near infinity. This
contradicts the fact that Φ(z) has an infinite number of poles tending to ∞ in
C. Thus we have that (9.7.12) implies all pk(t) = 0. As for (9.7.13), since Airy’s
equation also gives

(9.7.14) Φ(k)(t) =
∑

`≤k

pk`(t)Φ
`(t),

with pkk(t) = pkk a nonzero constant, this case is reduced to (9.7.12), and the proof
of the lemma is complete.

Note that, if we assume that P belongs to OPSm−K on the open cone {ξn < 0},
the argument above gives ∂lsbkj(0) = 0 for k+ j + l ≤ N, with N →∞ as K →∞,
thus proving Proposition 9.5.6.

Lemma 9.7.11 is also valid if t → −∞ is replaced by t → +∞, and one obtains
the following variant of Proposition 9.7.1.

Proposition 9.7.15. Let P ∈ Am,+ be as in (9.7.2). If P belongs to OPS−∞ on
the open cone {ξn > 0} then each Ak, k ≥ 0, has complete symbol vanishing to
infinite order at ξn = 0. Consequently P ∈ OPSm, with complete symbol vanishing
on {ξn ≥ 0}.

§9.8: Some Egorov-type theorems

Egorov’s theorem on conjugating a pseudodifferential operator by an elliptic
Fourier integral operator plays an important role in linear PDE. The appearance of
the operator A+/A− as a microlocal model for the solution operator to a diffrac-
tive boundary problem, as discussed in §7.5, makes it of interest to conjugate a
pseudodifferential operator by this operator. The fact that A+/A− behaves like a
Fourier integral operator with a singular phase makes it plausible that the conju-
gated operator will be of non-classical type, and indeed Airy operators of the sort
considered in this chapter arise naturally, as well as one further sort of pseudodiffer-
ential operator, as we will see. The results in this section refine some of the results
of [Fa].

The tools used in our analysis here will include results on Fourier integral oper-
ators with folding canonical relations obtained in Chapter 5, and the cancellation
effect established in Section 9.7. We begin with the following simpler result.

Proposition 9.8.1. If P ∈ OPSm, then

(9.8.2) A−1
− P = (P1 + Φ−P2)A−1

− mod OPS−∞,

with P1 ∈ OPSm, P2 ∈ OPSm−1/3 . The principal symbols of P and P1 agree on
{ξn = 0}.
Proof. The Wronskian relation (cf. (A.2.2))

(9.8.3) A′
−Ai−A−Ai

′ = c,
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implies the operator identity

(9.8.4) cA−1
− = −Ai′ − Φ−Ai.

Now, since Ai′P and AiP are Fourier integral operators associated to the folding
canonical relation C0, by Theorem 5.1.8 we have

(9.8.5) Ai′P = P#
1 Ai+ P#

2 Ai′, AiP = P b1 + P b2Ai′,

where P#
j and P bj are classical pseudodifferential operators, of orderm+1/3, m, m, andm−

1/3, respectively. Consequently, we have

(9.8.6)

cA−1
− P = −Ai′P − Φ−AiP

= −P#
1 Ai− P#

2 Ai′ − Φ−P
b
1Ai− Φ−P

b
2Ai′

= (−P#
1 + P#

2 Φ− + Φ−P
b
1 + Φ−P

b
2 Φ−)Ai+ c(P#

2 + Φ−P
b
2 )A−1

−

where (9.8.4) is again used in the last identity. Now, since Ai is, on the open cone
ξn < 0, a sum of two elliptic Fourier integral operators, one with canonical relation
coinciding with that of A−1

− and one with canonical relation disjoint from that one,

we see that the factor T = −P#
1 + P#

2 Φ− − Φ−P
b
1 + Φ−P

b
2 Φ− belongs to OPS−∞

on the open cone ξn < 0. By the cancellation effect given in Proposition 9.7.1, this

implies TAi ∈ OPS−∞, so we have (9.8.2), with P1 = P#
2 , P2 = P b2 .

Via the identity

(9.8.7) Ai = ωA+ + ω̄A−,

which gives the operator identity

(9.8.8) ω
A+

A−
= −ω̄ +AiA−1

− ,

we can use (9.8.2) to establish our main result of this section, which is the following.

Proposition 9.8.9. If P ∈ OPSm, then, modulo OPS−∞,

(9.8.10)
(A+

A−

)
P =

[
P + (P1 + ΦP2)(A+A−)−1

](A+

A−

)
,

with P1, P2 classical of order m− 1/3 and m− 2/3 respectively, and Φ = Φ−.

Proof. Using (9.8.8) and (9.8.2) gives

(9.8.11)
ω
(A+

A−

)
P = −ω̄P +AiA−1

− P

= −ω̄P +Ai(P̃1 + ΦP̃2)A−1
− ,
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with P̃1 ∈ OPSm, P̃2 ∈ OPSm−1/3 . If we apply Proposition 5.1.5, and the Wron-
skian identity (9.8.3), we get

(9.8.12)

ω
(A+

A−

)
P

= −ω̄P + (P#
1 Ai+ P b1Ai′)A−1

− + Φ(P#
2 Ai+ P b2Ai′)A−1

−

= −ω̄P + (P#
1 − P b1Φ + ΦP#

2 − ΦP b2 Φ)AiA−1
− − c(P b1 + ΦP b2 )A−2

− .

If we once more apply the operator identity (9.8.8), and also write the operator
A−2

− as A−2
− = (A+A−)−1(A+/A−), and note that, on a conic neighborhood of

{ξn = 0}, we have

(9.8.13) (A+A−)−1 ∈ OPS
1/3
1/3,0,

then (9.8.12) becomes

(9.8.14)

ω
(A+

A−

)
P =

[
(P#

1 − P b1 Φ + ΦP#
2 − ΦP b2Φ)

− c

ω
(P b1 + ΦP b2 )(A+A−)−1

]
ω
(A+

A−

)
+ T,

where

(9.8.15) T = −ω̄P + ω̄(P#
1 − P b1 Φ + ΦP#

2 − ΦP b2 Φ).

Again noting the wavefront relation of A+/A− on {ξn < 0}, we see that the Airy
operator T is of order −∞ on the open cone {ξn < 0}, so, by Proposition 9.7.1, we
have

(9.8.16) T ∈ OPSm,

with the complete symbol of T vanishing for {ξn ≤ 0}. Consequently, by (9.8.8),
we can write, modulo OPS−∞,

(9.8.17) T = −ω2T
A+

A−
,

and thereby absorb T into the term in brackets in (9.8.14), producing the identity

(9.8.18)
(A+

A−

)
P = [P − (c/ω)(P b1 + ΦP b2 )(A+A−)−1]

(A+

A−

)
.

Relabelling (c/ω)P bj gives (9.8.10) and completes the proof.
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Chapter 10: Airy operator calculus – gliding points

We next consider the oscillatory Airy operators, which occur as the Neumann
operator at a gliding point for a second order boundary problem. The basic ques-
tions considered here are the same as in Chapter 9. The main difference arises from
the geometric complexity of the gliding case. As explained in Chapter 8, the Neu-
mann operator at a gliding point has wavefront relation consisting of all the positive
powers of the billiard ball map together with the limit of this relation on the gliding
surface, namely the (forward part of the) Hamilton foliation. Analytically this is
reflected in the fact that a series such as (9.4.2) is not microlocally convergent if Φ+

is replaced by Φi. Nevertheless, with some additional work a reasonably complete
theory of such Airy operators is described here.

In §10.1, we derive the basic Airy operator identities; as in §9.1, we use the
Neumann operator identities of §8.4. We treat elliptic operators in §10.2. In the
diffractive case, we pointed out two approaches to the elliptic case, one using the
S∗

1/3,0 pseudodifferential operator calculus, the other using Airy operator identities

to give neater results. In the gliding case we also present two approaches, one (the
second) again using Airy operator identities. The other approach we present is not
at all symbolic, but rather exploits energy estimates, thus leading to a somewhat
less detailed description of the parametrices than one would like. Thus the method
of Airy operator identities provides an even more substantial advantage in the
gliding case than it did in Chapter 9. We use this method in §10.3 to treat a class
of hypoelliptic operators. We study some general classes of Airy operators in §10.4.

§10.1: The classes Aim,±S

Recall that the Airy multipliers ΦiT are well-defined, provided T 6= 0, see Chap-
ter 5. The simple Airy operators are defined by analogy with (9.1.1):

Q = A · ΦiT ·A′ + B ∈ Aim,±S ⇐⇒(10.1.1)

A ∈ OPSµ, A′ ∈ OPSµ
′

, µ+ µ′ = m− 1

3
, B ∈ OPSm, sgn(T ) = ±.

From the results in §5.8 it is immediately clear that

(10.1.2) WF ′(Q) ⊂WF ′(A) ◦ Csgn(T )
∞ ◦WF ′(A′).

The first thing to justify here is the notation, that the class of simple Airy operators
only depends on the sign of T and not its value. Indeed, the value of T can
be changed by conjugation with an exponential, which can be absorbed into the
pseudodifferential factors.

Again the elementary treatment of these Airy operators is based on the iden-
tity (8.4.14). It is only necessary to be a little more careful about the notion
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of microlocal equality of operators. Recall from Appendix C that two operators,
mapping functions on one manifold, X, to another, Y , are microlocally equal at
(ξ̄, η̄) ∈ T ∗X × T ∗Y \ 0 if ρ1 · (A−B) · ρ2 is a smoothing operator provided ρ1 and
ρ2 are pseudodifferential operators with compact supports and essential supports
sufficiently near the points ξ̄ and η̄. This relation is written:

A ≡ B at (ξ̄, η̄).

Proposition 10.1.3. There exists a conic neighborhood Γ of (ξ̄, ξ̄) such that, given

H ∈ OPSm−2/3 with essential support in Γ, there exist Gi ∈ OPSm−1/3, i = 1, 2
and L ∈ OPSm such that

(10.1.4) ΦiT ·H · ΦiT ≡ G1 · ΦiT − ΦiT ·G2 + L in Γ.

Proof. The proof of Proposition 9.1.4 carries over essentially unchanged. Of course
the results from Chapter 8, including the microlocal uniqueness of the Neumann
operator in the gliding case, need to be used.

Similarly, Proposition 9.1.14 carries over directly, provided a little care is taken
with the microlocality:

Proposition 10.1.5. If Γ is a sufficiently small conic neighborhood of (ξ̄, ξ̄) then
the span:

(10.1.6) Aim,+F =
{
Q = B +

∑

finite

Aj · ΦiT ·A′
j

}
⊂ sp(Aim,+S ),

taken with pseudodifferential operators with proper support and essential support in
Γ, forms an algebra with

(10.1.7) Aim,+F · Aim
′,+

F ⊂ Aim+m′,+
F .

Proof. Again the proof of Proposition 9.1.14 carries over essentially unchanged.

Parallel to (9.1.11), we note the special case

(10.1.7A) Φi2T = D
1/3
1 xnΦiT − ΦiTD

1/3
1 xn −D−1/3

1 (Dn + iT ),

again a consequence of the identity Φi′(ζ) = Φi(ζ)2 − ζ.
Notice also that Proposition 9.1.17 can be immediately generalized:

(10.1.8) Q ∈ Aim,+K ⇐⇒ Q∗ ∈ Aim,−K , K = S or F.
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§10.2: Ellipticity in Aim,+S

We seek to construct a microlocal inverse for (A + BΦiT ), with A ∈ OPSm

elliptic, B ∈ OPSm−1/3. Composing by A−1, we consider the equation

(10.2.1) (I + FΦiT )u = g, F ∈ OPS−1/3.

By adjusting F by a smoothing operator, we can suppose that, on any given range
|σ| ≤M, there is a constant K with

(10.2.2) F : Hσ−1/3 −→ Hσ

having operator norm less than K.
We are assuming g has wave front set in a cone Γ on which |ξn| ≤ C1|ξ1|. Since

we anticipate obtaining a solution u, mod C∞, to (10.2.1), with wave front set also
in Γ, we will alter (10.2.1) to

(10.2.3) (I +GΦiT )u = g,

where

(10.2.4) G = Fχ(D),

with χ(ξ) ∈ S0 supported in |ξn| ≤ 2C1|ξ1| and equal to 1 on a conic neighborhood
of the set Γ. If we obtain a solution mod C∞, u, to (10.2.3) and show that such u
has wave front set in Γ, it will follow that u is a solution mod C∞ to (10.2.3). Our
actual argument will be a little more subtle than this.

We claim that, if the constant C1 defining Γ is small enough and T is large
enough, then, for |σ| ≤M

(10.2.5) ‖GΦiT ‖L(Hσ,Hσ) ≤
1

8
.

Indeed, this is a simple consequence of the estimates (5.3.11) and (5.3.15):

(10.2.6)
∣∣Φi

(
ξ
−1/3
1 (ξn + iT )

)∣∣ ≤ C
(
T−1 + |ξ−1

1 ξn|1/2
)
ξ
1/3
1 ,

for large ξ1, because the coefficient of ξ
1/3
1 in (10.2.6) is small if T is large and

|ξ−1
1 ξn| is small. Granted (10.2.5), if g ∈ Hσ ∩ E ′ for some |σ| < M, the Neumann

series expansion gives

(10.2.7) u =
∞∑

j=0

(−GΦiT )jg,

as the solution to (10.2.3).
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We want to compare u with ψ(D)u where ψ(D) is 1 on a conic neighborhood of
Γ, so ψ(D)g = g mod C∞. This implies

(10.2.8) [ψ(D) + ψ(D)GΦiT ]u = g mod C∞,
so

(10.2.9) (I +GΦiT )(ψ(D)u) = g − [ψ(D), G]ΦiTu (mod C∞) = g − h,
with

(10.2.10) h ∈ Hσ+1.

Thus, if |σ + 1| ≤M, we have

(10.2.11) u− ψ(D)u ∈ Hσ+1.

This implies that

(10.2.12) (I + FΦiT )u = g + h̃,

with

(10.2.13) h̃ ∈ Hσ+1.

Applying this argument again we obtain v with

(10.2.14) (I + FΦiT )v = −h̃ mod Hσ+2

if |σ + 2| ≤M, and continuing and summing we obtain ũS ∈ Hσ with

(10.2.15) (I + FΦiT )ũ = g mod HM .

Indeed, replace u by ψ(D)u in (10.2.12), obtaining a modified h̃, still satisfying
(10.2.13), and with wave front set in the conic support of ψ(ζ), well within the set
where χ(ζ) = 1. Repeating this, we can suppose ũ solving (10.2.15) has wave front
set inside the region where χ(ζ) = 1. Thus

(10.2.16) (I +GΦiT )ũ = g mod HM ,

which, by uniqueness of solutions to (10.2.3) implies

(10.2.17) ũ = u mod HM .

Here M can be taken arbitrarily large. We conclude that u, given by (10.2.7), is a
solution mod C∞ to (10.2.1), with wave front set in Γ.

The next point we shall strive to understand is that, if, in (10.2.3), g is smooth
for t < to, then the solution u is also smooth for t < to.

We can take u to be given by (10.2.7). It suffices to show that if g ∈ Hσ, |σ| ≤M,
and g vanishes for xn < 0 , then u belongs to HM for xn < −a, given any a > 0.
We will rewrite the term (−GΦiT )j in (10.2.7) by decomposing −G. Write

(10.2.18) −G = Aj +Bj ,

where we specify Aj and Bj to satisfy the following conditions.
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Lemma 10.2.19. Given G ∈ OPS−1/3 constructed above, we can pick Aj ∈
OPS−1/3, Bj ∈ OPS−∞, so that (10.2.18) holds, with the kernel KAj

(x, x′) of Aj
supported on

|xn − x′n| ≤
a

j
,

and such that, for |σ| ≤M

‖AjΦiT ‖L(Hσ ,Hσ) ≤
1

4
,(10.2.20)

‖BjΦiT ‖L(Hσ ,Hσ) ≤
1

4
,(10.2.21)

‖Bj‖L(Hσ−1/3,HM ) ≤ C1j
µ,(10.2.22)

for some constants C1, µ.

Proof. If KG is the kernel of G, we define KAj
by

(10.2.23) KAj
(x, x′) = χj(xn − x′n)KG(x, x′).

Here χj(s) = χ
(
(j + 1)s

)
where χ(s) ∈ C∞

0 (−a, a) is equal to 1 for |s| ≤ a/2. Now,
if G = G(x,D), then Aj = Aj(x,D) with

(10.2.24) Aj(x, ξ) =

∫
χ̂j(ξn − ξ′n)G(x, ξ1, ..., ξn−1, ξ

′
n) dξ′n.

Note that the behavior as a function of ξ1 is not affected. In particular, we can
suppose all functions are supported on ξ1 ≥ B, a large number. This makes it
easy to obtain (10.2.20) and (10.2.21). Finally, the estimate (10.2.22) is a simple
consequence of the basic estimates on the kernel of a pseudodifferential operator.

Now we have

(10.2.25) u =

∞∑

j=0

Tjg

with

(10.2.26) Tj = (AjΦiT +BjΦiT )j .

We will estimate the HM norm of Tjg on the set xn < −a, assuming g ∈ Hσ is
supported on xn ≥ 0.Note that ΦiT is the operation of convolution by a distribution
supported in xn ≥ 0. Now Tj is a sum of 2j terms, each term being a product of j
factors, each factor being either AjΦiT or BjΦiT . Let us write

(10.2.27) Tj =
2j∑

k=1

Pjk.
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If a factor of the form BjΦiT occurs in Pjk, we have

(10.2.28) ‖Pjkg‖HM ≤ C1j
µ4−j+1.

The sum of all such terms is thus an operator T ′
j with

(10.2.29) ‖T ′
j‖L(Hσ,HM ) ≤ 4c1j

µ2−j .

meanwhile, if all the factors in Pjk are of the form AjΦiT , then

(10.2.30) Pjkg = 0 for xn < −a.

by the support conditions on g,ΦiT , and Aj. It follows that

(10.2.31) ‖u‖HM (Ωa) ≤ ‖gS‖Hσ · 4c1 ·
∞∑

j=0

jµ2−j ,

where Ωa = {x : xn < −a}. This proves our contention that u belongs to HM for
xn < −a.

We now want to investigate the singularities of u for xn ≥ 0. Since the equation
(I + FΦiT )u = g has elementary nature away from ξn = 0, we need only show
that, if WF (g) is contained in a small neighborhood of a point where ξn = 0, then
WF (u) is contained in a small conic neighborhood of the gliding ray through this
point. Now if Q ∈ OPS0 is any operator commuting with χ(D), which has symbol

ξ
−1/3
1 (ξn + iT ), we have

(10.2.32) [Q,ΦiT ] = 0.

Such operators exist in great profusion. In particular given any gliding ray γ we
can find such Q with symbol equal to 1 on a small conic neighborhood of γ and
vanishing outside a slightly larger conic neighborhood, such that (10.2.32) holds,
at least modulo a smoothing operator. Now, with g as above, g ∈ Hs, and u ∈ Hs,
smooth for xn < 0 , solving

(10.2.33) (I + FΦiT )u = g, F ∈ OPS−1/3,

we have, for Q ∈ OPS0 satisfying (10.2.32), the relation

(10.2.34) (I + FΦiT )Qu = Qg − [Q,F ]ΦiTu.

Note that [Q,F ] ∈ OPS−4/3, so [Q,F ]ΦiT has order −1. Thus

(10.2.35) Qg ∈ C∞ =⇒ Qu ∈ Hs+1.
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Picking a sequence Qν satisfying (10.2.32), with the symbol of Qν−1 equal to 1 on
the conic support of the symbol of Qν , we can iterate this argument, to obtain

(10.2.36) Q1g ∈ C∞ =⇒ Qνu ∈ Hs+ν .

This controls the singularities of the solution to (10.2.33).
We now give another analysis of solutions to (10.2.1) which will make the singu-

larities of u manifest. Parallel to (9.2.5)–(9.2.6), as a consequence of Proposition
10.1.3, we have

(10.2.37) (I + FΦiT )(I − FDΦiTD
−1) = E(I + CΦiTD

−1),

for certain eliptic D, E ∈ OPS0, and

(10.2.38) C ∈ OPS−4/3.

Thus

(10.2.39) CΦiTD
−1 : Hs −→ Hs−1

for all s, so the Neumann expansion (parallel to (9.2.9))

(10.2.40) (I + CΦiTD
−1)−1 ∼ I +

∑

j≥1

(−CΦiTD
−1)j

is asymptotic, in the sense of consisting of operators which are smoothing to pro-
gressively higher degrees. We hence have a right parametrix to A+ BΦiT :

(10.2.41) S = (I − FDΦiTD
−1)(I + CΦiTD

−1)−1E−1A−1

A similar construction produces a left parametrix, and the standard argument shows
the two parametrices must agree. We have the following result.

Theorem 10.2.42. Let A ∈ OPSm be elliptic, B ∈ OPSm−1/3. Then A+ BΦiT
has a two sided parametrix S of the form (10.2.41). Furthermore, the wave front

relation of S is contained in Csgn(T )
∞ , describing the wave front relation of ΦiT .

Having constructed a two sided parametrix, we could dispense with the argu-
ments based on operator norm estimates in the first part of this section.

We remark that A and B in Theorem 10.2.42 need not be scalar. It is also useful
to understand the inverse of

(10.2.43) A+ B1ΦiTB2,

with A ∈ OPSm elliptic and Bj ∈ OPSmj ,m1 + m2 = m − 1/3. Multiplying by
A−1, we may as well consider the inverse of

(10.2.44) I + S1ΦiTS2, Sj ∈ OPSmj , m1 +m2 = −1

3
.
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Note that comparing Neumann series

(I + S1ΦiTS2)−1 = I − S1ΦiTS2 + · · ·+ (−1)kS1ΦiT (S2S1) · · · (S2S1)ΦiTS2 + · · · ,

and
(I + S2S1ΦiT )−1 = I − S2S1ΦiT + S2S1ΦiTS2S1ΦiT − · · ·

gives

(10.2.45) (I + S1ΦiTS2)−1 = I − S1ΦiT (I + S2S1ΦiT )−1S2,

so Theorem 10.2.42 can be applied to the study of (I + S1ΦiTS2)−1.

§10.3: Hypoellipticity in Aim,±S

Inverses of operators of the form A + BΦiT with A ∈ OPSm elliptic and B ∈
OPSm−1/3 as above arise in the treatment of strongly well posed problems, for
which a Lopatinski condition is satisfied; see Chapter 12. As we have seen, treating
the Neumann boundary condition involves inverting ΦiT . Other situations lead one
to invert A+ BΦiT under the hypothesis
(10.3.1)

B ∈ OPSm−1/3 elliptic; A ∈ OPSm with principal symbol vanishing at ξn = 0.

Note that
A+ BΦiT = (A+ BΦi−1

T )ΦiT .

Thus we may as well study invertibility of A + BΦi−1
T . That this operator is mi-

crolocally invertible, at least for T large and on |ξn| ≤ εξ1, ε small, is a consequence
of the following estimate, analogous to the estimate (5.3.12), valid for ξ1 large

(10.3.2)
∣∣(ξn + iT )Φi

(
(ξn + iT )ξ

−1/3
1

)−1∣∣ ≤ C
(
T−1 + |ξ−1

1 ξn|1/2
)
ξ
1/3
1 .

As in (5.4.12), this estimate follows from

(10.3.3) |zΦi(z)−1| ≤ C
(
| Im z|−1 + |z|1/2

)
for 0 ≤ Im z ≤ C1,

and (10.3.3) is proved the same way (5.2.11) is.
To understand the singularities of (A + BΦiT )−1 in this case we look for an

identity so we can parallel the argument of Theorem 10.2.42. Such an identity is
readily obtained, in parallel with the proof of Proposition 9.3.2. Thus, parallel to
(9.3.3), we obtain

(10.3.4) C ∈ OPS−m elliptic, D ∈ OPS−m−1/3,

such that

(10.3.5) (A+BΦiT )(C +DΦiT ) = RΦiT + E,
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with

(10.3.6) R ∈ OPS−1/3 elliptic, E ∈ OPS−1.

Writing

(10.3.7) RΦiT + E = (I + EΦi−1
T R−1)RΦiT ,

we have a right parametrix of A+ BΦiT of the form

(10.3.8) S = (CΦi−1
T +D)R−1(I + EΦi−1

T R−1)−1

where, since

(10.3.9) EΦi−1
T R−1 : Hs −→ Hs+1/3

for all s, the Neumann series

(10.3.10) (I +EΦi−1
T R−1)−1 ∼

∑

j≥0

(−CΦi−1
T R−1)j

is asymptotic. We note parenthetically one difference from the proof of Proposition
9.3.1, namely that EΦ−1

+ R−1 has order −2/3 on Sobolev spaces, rather than merely
order −1/3, as in (10.3.9). In any event, (10.3.9) is strong enough to produce the
right parametrix (10.3.8). Similarly a left parametrix is constructed, yielding the
desired result:

Theorem 10.3.11. Under the hypothesis (10.3.1), A + BΦiT has a two-sided
parametrix S of the form (10.3.8)–(10.3.10), with wave front relation contained

in Csgn(T )
∞ .

§10.4: The operator classes Aim,± and Aim,±σ

It is desirable to have an equally precise theory of an algebra of operators con-
taining those of the form

(10.4.1) AΦi+B, A ∈ OPS−1/3, B ∈ OPS0 .

The first difference with the case of Φ is that, in formal sums analogous to (9.4.2):

(10.4.2) B +
∑

j≥0

Aj(x, ξ) Φi(j), Aj(x, ξ) ∈ S−(j+1)/3,

the jth term has order zero on Sobolev spaces, so (10.4.2) could not be asymptotic
in the usual sense. We can still make use of the following concept.



157

Definition 10.4.3. Aim,+ consists of operators of the form

(10.4.4) Cu(x) =

∫ [
a(x, y, ξ)Φi(ζ0) + b(x, y, ξ)

]
u(y)ei(x−y)·ξ dy dξ,

with a(x, y, ξ) ∈ Sm−1/3, b(x, y, ξ) ∈ Sm.
Note that adjoints of operators in Aim,+ are characterized as being given by

(10.4.4) with Φi replaced by Φi. If P ∈ OPSµ is applied to (10.4.4), it can be
applied under the integral on the right to give:

Proposition 10.4.5. If P ∈ OPSµ and C ∈ Aim,+, then

(10.4.6) PC ∈ Aim+µ,+.

If we use (CP )∗ = P ∗C∗ we have:

Corollary 10.4.7. Under the hypotheses above, also

(10.4.8) CP ∈ Aim+µ,+.

Since the operator Φi clearly belongs to Ai1/3,+, we have

(10.4.9) A ∈ OPSm =⇒ AΦi ∈ Aim+1/3,+,

and furthermore, if A′ ∈ OPSµ,

(10.4.10) AΦiA′ ∈ Aim+µ+1/3,+.

We can also analyze the operator Φi2, using the identity

(10.4.11) Φi2(ζ0) = ζ0 − Φi′(ζ0).

Of course, ζ0 = ξ
−1/3
1 (ξn + iT ) ∈ S2/3. As for the operator Φi′, we have

(10.4.12)

Φi′u(x) =

∫
ξ
1/3
1 [∂ξn

Φi(ζ0)]ei(x−y)·ξu(y) dy dξ

= i

∫
ξ
1/3
1 (xn − yn)Φi(ζ0)ei(x−y)·ξu(y) dy dξ,

integrating by parts. Thus we see that

(10.4.13) Φi′ ∈ Ai2/3,+,

and hence, by (10.4.11),

(10.4.14) Φi2 ∈ Ai2/3,+.
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It is difficult to parallel for Aim,+ the development of Am,+ given in Chapter
9. The failure of (10.4.2) to be asymptotic is largely behind this. In particular, we
do not establish that Ai∗,+ is an algebra. However, we will obtain good algebraic
properties for a subclass Ai∗,+σ , which we will define shortly, and we will show that

this class contains parametrices of elliptic elements in Ai∗,+F .
Proposition 10.1.3 allows us to replace a product involving two factors of Φi by

terms linear in Φi. Consequently, any product of the form

(10.4.15) A1 Φi A2 Φi · · ·Ak Φi, Aj ∈ OPSmj ,

can be rewritten as

(10.4.16)

l∑

j=1

BjΦiCj +G0,

where Bj ∈ OPSµj , Cj ∈ OPSλj , with

µj + λj +
1

3
=
k

3
+

k∑

j=1

mj = σ, G0 ∈ OPSσ .

This makes it natural to consider the following class of operators.

Definition 10.4.17. Aim,+σ consists of operators with asymptotic expansion of the
form

(10.4.18) T ∼ B +
∑

j≥0

AjΦiCj ,

with

(10.4.19) B ∈ OPSm,

and

(10.4.20) Aj ∈ OPSµj , Cj ∈ OPSλj , µj + λj +
1

3
= m− lj,

where

(10.4.21) lj ≥ 0 is an integer, lj →∞ as j →∞.

The result (10.1.7) proves the following.
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Proposition 10.4.22. If Tj ∈ Aimj ,+
σ for j = 1, 2, then

(10.4.23) T1T2 ∈ Aim1+m2,+
σ .

Meanwhile, (10.4.6) and (10.4.8) imply

(10.4.24) Aim,+σ ⊂ Aim,+.

We can now obtain the analogue of Proposition 9.4.17 for these Airy operators.

Proposition 10.4.25. Suppose

(10.4.26) T = B + AΦi,

with

(10.4.27) B ∈ OPS0 elliptic, A ∈ OPS−1/3 .

Then

(10.4.28) T−1 ∈ Ai0,+σ ⊂ Ai0,+.

Proof. By Theorem 10.2.42, we have

(10.4.29) T−1 = D(I + FDΦiD−1)(I + CΦiD−1)−1E−1B−1,

with F ∈ OPS−1/3, E and D elliptic in OPS0, and

C ∈ OPS−4/3 .

Thus the Neumann expansion

(10.4.30) (I + CΦiD−1)−1 ∼
∑

j≥0

(−CΦiD−1)j

is asymptotic, with (−CΦiTB
−1)j ∈ Ai−j,+F , by Proposition 10.4.22, so we get

(10.4.31) (I + CΦiD−1)−1 ∈ Ai0,+σ .

Applying Proposition 10.4.22 once more, to (10.4.29), we complete the proof.

It is useful to record the symbolic nature of the parametrix (10.4.28). Factoring
out B, we may as well look at

(10.4.32) T = I + SΦi, S ∈ OPS−1/3 .

A straightforward check of the symbols of the operators in the fundamental Airy
operator identity (10.1.4) (cf. (9.1.7)–(9.1.9)) establishes the following.
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Corollary 10.4.33. Let S ∈ OPS−1/3 be given. Let (g′, h′) be solutions to the
transport equations, for Friedlander’s model, such that

(10.4.34)
h′

g′
= −σ(S) on ∂Ω.

Let D ∈ OPS0 have principal symbol

(10.4.35) σ(D) = g′
∣∣
∂Ω
.

Then

(10.4.36) (I + SΦi)(I − SDΦiD−1) = I +B′ mod Ai−1,+
σ ,

where B′ ∈ OPS0 has principal symbol

(10.4.37) σ(B′) = σ(S)(h′/g′)ζ0 = −σ(S)2ξ
−1/3
1 ξn.

We remark that Proposition 10.4.25 has a natural extension:

Proposition 10.4.38. Let T ∈ Ai0,+σ have the form (10.4.18) with B ∈ OPS0

elliptic. Then T−1 ∈ Ai0,+σ .

Proof. We will apply the formula (10.2.45). We may as well suppose

T = I +

K∑

1

AjΦiCj ,

since after a finite number of terms in (10.4.18) the rest have lower order and can
be handled by the usual Neumann expansion. Now if Aj , Cj are k × k matrices of

operators (we may as well suppose Aj ∈ OPS−1/3, Cj ∈ OPS0), define

C∞(Ω,Ck)
S2−→ C∞(Ω,CkK)

S1−→ C∞(Ω,Ck)

by

S2u = (C1u, . . . , CKu), S1(v1, . . . , vK) = A1v1 + · · ·+AKvK .

We have, by (10.2.45),

T−1 = I − S1Φi(I + S2S1Φi)−1S2,

and by Proposition 10.4.25, in conjunction with Proposition 10.4.22, we have T−1 ∈
Ai0,+σ , as asserted.



161

We now obtain a result complementary to Proposition 10.1.3, which will be useful
in the study of certain classes of Airy operator equations. We rewrite (10.1.4) as

(10.4.39) DΦi− ΦiD = ΦiHΦi− L+ Φiδ1.

Here, the symbols of D = G1, H, and L are, respectively, the restrictions to ∂Ω of

(10.4.40) g′, h′, h′ζ

where (g′, h′) solves the transport equations (for Friedlander’s model), and δ1 =
G2 − G1. In Theorem 10.1.3, we exploited our ability to pick h′|∂Ω arbitrarily
(homogeneous of order −1/3), which was proved in Proposition 4.4.11. Exploiting
instead Proposition 4.4.14, we can solve the transport equations for g ′, h′ and specify
arbitrarily

(10.4.41) g′
∣∣
∂Ω

= d.

We can then prove the following.

Theorem 10.4.42. Let D ∈ OPS0 be given. Then there exist H ∈ OPS−1/3, L ∈
OPS1/3, and δ1 ∈ OPS−1 such that

(10.4.43) DΦi− ΦiD = ΦiHΦi− L+ Φiδ1.

The principal symbols of D,H, and L are given as in (10.4.40).

A useful corollary is obtained by multiplying (10.4.43) by Φi−1. We obtain

(10.4.44) Φi−1DΦi−D = HΦi− Φi−1L+ δ1.

This permits the following boundedness result.

Corollary 10.4.45. For any D ∈ OPS0, we have the continuous map

Φi−1DΦi : Hs −→ Hs.

Proof. By (10.4.44), we have

(10.4.46) Φi−1DΦi = (D + δ1) +HΦi− Φi−1L.

It suffices to show the right side of (10.4.46) is continuous on Hs. Clearly D + δ1
is. Since Φi : Hs → Hs−1/3 and Φi−1 : Hs → Hs−1/3, and since H ∈ OPS−1/3, we
also see that HΦi is appropriately bounded. It remains to check Φi−1L. Now

L ∈ OPS1/3 has principal symbol h′ζ0, which vanishes on ξn = 0. Thus the
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boundedness of Φ−1L would follow from the boundedness of the Fourier multiplier

〈ξ〉−1/3ζ0Φi(ζ0)−1, with ζ0 = ξ
−1/3
1 (ξn + iT ). Indeed, (5.4.12) says

|Φi(ζ0)|−1 ≤ CT 〈ξ〉1/3〈ζ0〉−1 on ξn ≤ 0,

so

(10.4.47)
∣∣〈ξ〉−1/3ζ0Φi(ζ0)−1

∣∣ ≤ C ′
T on ξn ≤ 0.

Meanwhile (5.4.16) says

|Φi(ζ0)|−1 ≤ C〈ζ0〉−1/2 on ξn ≥ 0,

so

(10.4.48)
∣∣〈ξ〉−1/3ζ0Φi(ζ0)−1

∣∣ ≤ C ′ on ξn ≥ 0.

This completes the proof.
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Chapter 11: Transmission problems

In this section we consider various phenomena which arise in the study of the
transmission of waves from one medium to another, across an interface. Thus we
suppose we are working on a smooth manifold O, divided into two parts O1 and
O2 by a smooth surface Σ. Suppose that the Oj are given separate Riemannian
metrics, smooth up to the common boundary Σ from either side. Let Aj be the
Laplace operator on Oj , perhaps with some first order terms added on:

(11.0.1) Aj = ∆j + Lj(x,D).

We consider solutions uj to the wave equations

(11.0.2)

(
∂2

∂t2
−Aj

)
uj = 0 in Ωj = R×Oj

with transmission conditions at Γ = R× Σ :

u1 − u2 = f,(11.0.3)

∂u1

∂ν1
+ a(x)

∂u2

∂ν2
+

2∑

j=1

bj(x)uj = g.(11.0.4)

Here uj is the limiting value at Γ of uj in Ωj , and ∂/∂νj is the normal vector field
to Γ, with respect to the metric in Γj , pointing into Ωj . We assume the factor a(x)
in (11.0.4) to be positive. In particular (11.0.3), (11.0.4) then include the trivial
case where the two metrics are simply the restrictions of one C∞ metric and the
transmission conditions represent continuity of the solution and its first derivative
across the (illusory) interface; namely

(11.0.5) u1 = u2,
∂u1

∂ν1
= −∂u2

∂ν2
.

In general we shall suppose that f, g in (11.0.3)–(11.0.4) are distributions with
compact supports and require uj to be outgoing, i.e.,

(11.0.6) uj = 0 for t << 0.

Using a superposition argument we may also suppose that f and g have wave front
set in a small conic neighborhood U × V of a point (y0, η0) ∈ T ∗Γ \ 0. Now we
impose the basic hypothesis that, from either side, Γ is globally either bicharacter-
istically convex or concave. Thus at the point (y0, η0) there are four possibilities
corresponding to the disjoint decomposition:

(11.0.7) (y0, η0) ∈ T ∗Γ \ 0 = H(i) ∪ E(i) ∪ G(i)
d ∪ G(i)

g i = 1, 2.
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These four cases for each side give a total of sixteen overall possibilities, or ten
when the freedom to renumber the sides is taken into account. Some of these are
elementary, especially the three cases where (y0, η0) is not glancing from either side.
For example, when no rays pass over (y0, η0) from either side, one has microlocally
an elliptic boundary value problem. When there is a ray passing over (y0, η0) from
one or both sides, and all such are transversal to Γ, the construction of parametrices
is a special case of a general construction for strongly well posed hyperbolic systems,
going back to [Nir] as pointed out in [Tay1]; in these cases Nosmas [Nos] gives a
detailed construction.

The cases where there is a tangential ray over (y0, η0) from just one side are also
readily analysed in terms of the methods already used above. This is examined
in §11.1. For the case where (y0, η0) is diffractive with respect to both sides a
parametrix was constructed in [Tay3]. This is recalled briefly in §11.2. A situation
more likely to arise physically is that (y0, η0) is diffractive from one side and gliding
from the other. This is one of the cases which will be considered in some detail, in
§11.3.

§11.1: Glancing and transversal

We consider first transmission problem when (y0, η0) is a glancing point from Ω1

but from Ω2 is either hyperbolic or elliptic, i.e., either from Ω2 there passes over
(y0, η0) a transversal ray or no ray. This case can be resolved using the calculus
developed above.

We know that in all cases the solution to (11.0.2) and (11.0.6) is given, at least
microlocally, by the parametrix for the Dirichlet problem in each Ωj . Thus it suffices
to understand the restrictions of the uj to Γ, which we also denote uj . Thus we
need to solve the boundary equations

u1 − u2 = f,(11.1.1)

N1u1 + a(x)N2u2 +
∑

bj(x)uj = g.(11.1.2)

Here theNj are the forward Neumann operators for Ωj , which we studied in Chapter
8. Our problem therefore is to produce a solution (u1, u2) modulo C∞ to the system
(9.5), (9.6). Using (11.1.1) we can eliminate u2 and obtain the single equation

(11.1.3) [N1 + a(x)N2 + b(x)]u1 = h,

where

(11.1.4) h = g + af − b2f,

and

(11.1.5) b(x) = b1(x) + b2(x).
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Now if (y0, η0) is a gliding point for Ω1, then, by the results of Chapter 8, we know
that microlocally near (y0, η0) the operator N1 takes the form

(11.1.6) N1 = J1(A1ΦiT +B1)J−1
1 .

In this decomposition J1 is an elliptic Fourier integral operator associated to a
canonical tranformation which puts the billiard ball map of Ω1 into normal form,
B1 ∈ OPS0, and A1 ∈ OPS1/3 is elliptic. The principal symbol of given by A1

is (∂/∂ν1)ζ1|Γ if (7.6.4) is the parametrix in Ω1. Thus, by (4.2.7), the principal
symbol of A1 is positive near (y0, η0).

If (y0, η0) is an elliptic or a hyperbolic point for Ω2, then

(11.1.7) N2 ∈ OPS1 is elliptic, at (y0, η0),

and the principal symbol of N2 is either purely imaginary with positive imaginary
part (hyperbolic point) or real and positive (elliptic point). Thus we can transform
equation (11.1.3) to

(11.1.8) [A1ΦiT + J−1
1 (aN2 + b)J1 + B1]v = J−1

1 h

where

(11.1.9) v = J−1
1 u1.

Finally therefore we obtain as a microlocal equation

(11.1.10) (ΦiT +E)v = h̃,

where

(11.1.11) h̃ = A−1
1 J−1

1 h,

and

(11.1.12) E = A−1
1 [J−1

1 (aN2 + b)J1 +B1] ∈ OPS1/3.

Note that E is elliptic, and its principal symbol is either
√
−1 times a positive

function (hyperbolic point) or real and positive (elliptic point).
Thus the equation (11.1.10) is a special case of a class of equations treated in

Chapter 10. The operator ΦiT + E is an elliptic element of Ai1,+S , so Theorem
10.2.42 describes a parametrix for the transmission problem in this case. This
problem has also been considered by Petkov [Pet1].

Similarly in case (y0, η0) is a diffractive point with espect to Ω1 we obtain in
place of (11.1.6)

(11.1.13) N1 = J1(A1Φ± +B1)J−1
1 ,

where J1 is again an elliptic Fourier integral operator associated to a canonical
tranformation reducing the billiard ball map on Ω1 (which only exists as a Taylor
series) to normal form. The same discussion reduces the boundary equation to

(11.1.14) (Φ± +E)v = h̃,

with E and h̃ still given by (11.1.11) and (11.1.12). In this case the problem is
reduced to one discussed in Chapter 9.

Summarizing we have therefore shown:
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Proposition 11.1.15. If γ is a sufficiently small conic neighborhood of (y0, η0) ∈
T ∗Γ, where (y0, η0) ∈ H(2) ∪ E(2), and f, g ∈ C−∞

c (Γ) have WF(f), WF(g) ⊂ γ
then the solution (u1, u2) to (11.0.2)–(11.0.6) satisfies

(11.1.16) WF(ui
∣∣
Γ
) ∩ γ ⊂WF(f) ∪WF(g) if (y0, η0) ∈ G(1)

d ,

(11.1.17)

WF(ui
∣∣
Γ
) ∩ γ ⊂WF(f) ∪WF(g) ∪

∞⋃

j≥0

δj+
(
WF(f) ∪WF(g)

)
if (y0, η0) ∈ G(1)

g ,

for i = 1, 2, where δ+ is the forward billiard ball map, i.e., δ∗+(t) ≥ t.

§11.2: Diffractive and diffractive

We now consider the boundary equation (11.1.3) microlocally near a point (y0, η0) ∈
T ∗Γ \ 0 which is diffractive from each side. In this case we have

(11.2.1) Nj = Jj(AjΦ± +Bj)J
−1
j

and each canonical transformation χ−1
Jj

maps (y0, η0) to a point in T ∗Rn \ 0 on

which ξn = 0.
If we set v = J−1

1 u1, the equation (11.1.3) becomes

(11.2.2)
[
(A1Φ± + B1) +K∗(A3Φ± +B3)K

]
v = J−1h = h̃,

where

(11.2.3) K = J−1
2 J1

is an elliptic Fourier integral operator, whose principal symbol we can suppose to
be unitary,

(11.2.4) A3 = (J−1
2 aJ2)A2

is, like A1, an elliptic operator in OPS2/3 with positive principal symbol, and, like
B1, B3 ∈ OPS0.

Denote by P the operator in brackets in (11.2.2):

(11.2.5) P = Q1 +K∗Q3K,

where Qj = AjΦ±+Bj are Airy operators described above. Without extra geomet-
rical restrictions, K∗Q3K is not contained in a class of pseudodifferential operators
with a good symbol calculus; it can be shown to belong to OPS1

1/3,2/3, but that

is not particularly useful. Therefore we will not use a symbolic construction of a
parametrix to show that P is microlocally hypoelliptic. Rather we will use energy
estimates, based on the fact that

(11.2.6) λ ∈ R =⇒ Re Φ+(λ) > 0 and Im Φ+(λ) > 0.

This is established in Appendix A; see (A.3.13)–(A.3.14). This leads to the following
energy estimate.
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Proposition 11.2.7. Set β = e−πi/4, and let σ < 1/3. Then, for u ∈ C∞0 (Rn),

(11.2.7A) Re (βPu, u) ≥ C1‖u‖2H1/3 − C2‖u‖2Hσ ,

provided Φ = Φ+; for Φ = Φ−, use β = eπi/4.

Proof. Such an estimate is valid for each of the two terms in (11.2.5); G̊arding’s
inequality implies

Re (βAjΦ+u, u) ≥ C Re (βΦ+Λ1/3u,Λ1/3u)− C ′‖u‖2Hσ .

Also one can replace u by Ku in such an estimate. Then use (11.2.6). This yields
(11.2.7A) for σ = 0, which suffices.

From (11.2.7A) it follows that, for u ∈ C∞0 (Rn),

(11.2.8) ‖u‖H1/3 ≤ C‖Pu‖H−1/3 + C‖u‖Hσ .

To pass from such an estimate to a regularity result, we need to microlocalize this
estimate. This can be done once we take into account estimates for commutators
of P with operators in OPSm1,0. The fact that

∇ξΦ ∈ S−1/3
1/3,0

implies that

(11.2.9) Ad Qj : OPSm1,0 −→ OPS
m+1/3
1/3,0 ,

where (Ad Qj)P = [Qj , P ] is the commutator. Thus, if O(ρ) denotes the class of
operators with the property

(11.2.10) T ∈ O(ρ)⇐⇒ T : Hs −→ Hs−ρ, ∀ s,

we see that

(11.2.11) Ad P : OPSm1,0 −→ O
(
m+

1

3

)
.

Note that P ∈ O(1). Replacing u be Λs−1/3u in (11.2.8), we see that one immediate
consequence of (11.2.11) is the more general a priori estimate

(11.2.12) ‖u‖Hs ≤ C‖Pu‖Hs−1/3 + C‖u‖Hσ , σ << s,

for all s ∈ R.
Suppose γ is an open conic subset of T ∗Rn \ 0, and E(x, ξ) ∈ S0 has support in

a closed subcone γ1, and is elliptic on a smaller subcone γ2. If we apply (11.2.12)
to E(x,D)u, we obtain

(11.2.13) ‖Eu‖Hs ≤ C‖EPu‖Hs−2/3 + C‖[P, E]u‖Hs−2/3 + C‖u‖Hσ .

To proceed, we need the following.
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Lemma 11.2.14. Let F (x, ξ) ∈ S0 be supported in γ and equal to 1 on γ1. Then

(11.2.15) [P, E] = [P, E]F mod O(−∞).

Proof. [Q1, E] = [Q1, E]F mod OPS−∞ since [Q1, E] ∈ OPS
−2/3
1/3,0 has complete

symbol supported in γ1. That [K∗Q3K,E](I − F ) ∈ O(−∞) follows from the
identity

[K∗Q3K,E]F = K∗[Q3, KEK
∗](KFK∗)K mod O(−∞),

and the fact that KFK∗ ∈ OPS0 has complete symbol equal to 1 on the conic
support of the symbol of [Q3, KEK

∗], by Egorov’s theorem.

Thus we obtain from (11.2.13) the estimate

(11.2.16) ‖Eu‖Hs ≤ C‖EPu‖Hs−2/3 + C‖Fu‖Hs−1/3 + C‖u‖Hσ .

The principal result of this section is that the corresponding microlocal regularity
result holds.

Proposition 11.2.17. If u ∈ C−∞ and if Pu belongs to Hs−2/3 microlocally on
γ, then u belongs to Hs microlocally on γ.

Proof. Let Jε = ϕ(εD) be a Friedrichs mollifier, and apply (11.2.16) to Jεu, ob-
taining

(11.2.18)
‖EJεu‖Hs ≤ C‖JεPu‖Hs−2/3 + C‖E[Jε,P]u‖Hs−2/3

+ C‖FJεu‖Hs−1/3 + C‖u‖Hσ ,

Since {Jε : ε ∈ (0, 1]} is bounded in OPS0
1,0, we see that

(11.2.19) {[Jε,P] : ε ∈ (0, 1]} is bounded in O(
1

3
).

Furthermore, in analogy with (11.2.15), we have

(11.2.20) {[Jε,P](I − F ) : ε ∈ (0, 1]} is bounded in O(−∞).

Therefore (11.2.18) yields

(11.2.21) ‖EJεu‖Hs ≤ C‖EJεPu‖Hs−2/3 + C‖F#u‖Hs−1/3 + C‖u‖Hσ ,

with C independent of ε ∈ (0, 1], where F# has symbol supported in γ and equal to
1 on a conic neighborhood of supp F (x, ξ). Taking ε→ 0 and applying a standard
inductive argument proves the Proposition.

Corollary 11.2.22. If γ is a small conic neighborhood of (y0, η0) ∈ T ∗Γ \ 0, which
is diffractive from each side, then the solutions u1, u2 to (11.0.2)–(11.0.6) satisfy

(11.2.23) WF (ui
∣∣
Γ
) ∩ γ ⊂WF (f) ∪WF (g), i = 1, 2.
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§11.3: Diffractive and gliding

The next transmission problem we consider is the case where gliding points in
T ∗Γ \ 0 for Ω1 exactly coincide with diffractive points for Ω2 :

(11.3.1) G(1)
g = G(2)

d in T ∗Γ \ 0 near (y0, η0).

Since these glancing surfaces G(i) are the null surfaces of the Lorentzian metric
induced on Γ by the two Riemannian metrics induced on Σ from the two sides, the
equality (11.3.1) automatically extends to the lift of a neighborhood of y0 in the
base. In fact (11.3.1) is equivalent to:

(11.3.2) the two induced metrics on Γ are equal near y0.

The case we are most interested in here corresponds to the strengthening of
(11.3.1). We always have the freedom to make a coordinate change on the two
sides of Γ separately, provided the transformations agree on Γ itself. The condition
should be independent of such a tranformation. For example simple equality of the
metrics on the fibres above Γ :

(11.3.3) the two metrics are equal at Γ in a neighborhood of y0

can always be assumed, i.e., arranged by choice of coordinates. Indeed this equality
always holds in normal Riemannian coordinates, obtained from the Collar Neighbor-
hood Theorem. The first geometric invariants at Γ are the principal, or directional
curvatures. The equality of these curvatures from the two sides can be stated in
the obviously intrinsic form:

(11.3.4) Any curve in Γ has the same curvature measured from the two sides.

Recall from Chapter 3 that in the reduction of the billiard ball map to normal
form the Taylor series of the function ζ was shown to be well-defined at the glancing
surface. Of course the glancing surface is just ζ = 0. This function gives a useful
reinterpretation of the geometric assumption (11.3.4).

Lemma 11.3.5. Given (11.3.1) the condition (11.3.4) on the metrics on the two
sides of Γ is equivalent to requiring

(11.3.6) d(ζ1) = d(ζ2) at G = G(1) = G(2);

it is also equivalent to the existence of two canoncial transformations J1, J2 on
T ∗Γ reducing the two billiard ball maps to the same normal form and such that

(11.3.7) J ∗
1 = J ∗

2 on T ∗
λΓ, ∀ λ ∈ G.
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Proof. In §4.5 the particular properties of ζ and the reduction to normal form
for the wave operator were discussed. It follows directly from (4.5.xx) that the
curvature condition (11.3.4) is equivalent to (11.3.6). Moreover, since a canonical
tranformation reducing the billiard ball map δ± to normal form only needs to satisfy

(11.3.8) J ∗ζ = ζ0,

it is clear that the Ji can be chosen to satisfy (11.3.7) if (11.3.6) holds. Conversely
(11.3.7) certainly implies (11.3.6) so the lemma is proved.

In the case of second order scalar operators Aj that we are considering these
conditions amount to supposing the coefficients of the principal parts of A1 and A2

have the same limiting values on Γ, although perhaps derivatives of these quantities
could jump across Γ, and lower order terms could also have jumps. In this case, the
boundary equation (11.1.3) is to be analyzed. The Neumann operator N1 is given
by (11.1.6), and the operator N2 is given by

(11.3.9) N2 = J2(A2ΦT + B2)J−1
2 .

We can write

(11.3.10) a(x)N2 = J2(αA2ΦT + B̃2)J−1
2 .

Thus equation (11.1.3) becomes

(11.3.11)
[
J1(A1ΦiT +B1)J−1

1 + J2(αA2ΦT + B̃2)J−1
2 + b(x)

]
u1 = h.

If we set

(11.3.12) J = J−1
1 J2,

we can rewrite this as

(11.3.13)
[
A1ΦiT + B1 + J(αA2ΦT + B̃2)J−1 + b̃

]
v = J−1

1 h,

where b̃ = J−1
1 b(x)J1 and

(11.3.14) v = J−1
1 u1.

Here the Ji, i = 1, 2 are associated to the two canoncial tranformations in (11.3.7),
thus J is a Fourier integral operator associated to a canonical tranformation which
is the identity on G and hence at G.

Now to analyze JΦTJ
−1, we write J in the form

(11.3.15) Ju(x) =

∫
a(x, ξ)eiφ(x,ξ)−iy·ξu(y) dy dξ,
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and write J−1 as

(11.3.16) J−1u(x) =

∫
b(y, ξ)eiφ(y,ξ)+ix·ξu(y) dy dξ.

Thus, since ΦT is a convolution operator with multiplier ΦT (ξ), (11.3.15) gives:

(11.3.17) JΦTJ
−1u(x) =

∫
a(x, ξ)ΦT (ξ)b(y, ξ)ei[φ(x,ξ)−φ(y,ξ)]u(y) dy dξ.

Now set

(11.3.18) φ(x, ξ)− φ(y, ξ) = (x− y) · η(x, y, ξ),

with η(x, y, ξ) homogeneous of degree 1 in ξ, and smooth. Furthermore, this can
be inverted locally to give

(11.3.19) ξ = Ξ(x, y, η).

If a factor α(ξ) with small conic support is inserted in (11.3.17) (this can be removed
by a partition of unity argument), we get, upon changing variables of integration

(11.3.20) JΦTJ
−1u(x) =

∫
q
(
x, y,Ξ(x, y, η)

)
ei(x−y)·η u(y)D(x, y, η) dy dη,

where

(11.3.21) q(x, y, ξ) = a(x, ξ)ΦT (ξ)b(y, ξ),

and D(x, y, η) is the absolute value of the Jacobian determinant:

(11.3.22) D(x, y, η) =
∣∣∣det

(∂Ξ

∂η

)∣∣∣.

Thus, if we set

(11.3.23) a(x, y, η) = q
(
x, y,Ξ(x, y, η)

)
D(x, y, η),

we have

(11.3.24) JΦTJ
−1u(x) =

∫
a(x, y, η)ei(x−y)·ηu(y) dy dη.

It is easy to verify that, for a general elliptic Fourier integral operator of the form
(11.3.15), for which (11.3.19) holds, we have realized JΦTJ

−1 as a pseudodifferential
operator with multiple symbol

(11.3.25) JΦTJ
−1 ∈ OPS1/3

1/3,2/3,2/3,
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where we say an operator whose form is given by the right side of (11.3.24) belongs
to OPSmρ,δ1,δ2 provided

(11.3.26) |Dγ
yD

β
xD

α
η a(x, y, η)| ≤ Cαβγ(1 + |η|)m−ρ|α|+δ1|β|+δ2|γ|.

But in fact, if J satisfies the conclusion of Lemma 11.3.5, so its associated canonical
transformation J is the identity on ξn = 0, we can do better than (11.3.25). The
transformation J is related to Φ by

(11.3.27) J
(
∇ξφ(x, ξ), ξ

)
=

(
x,∇xφ(x, ξ)

)
.

That J is the identity on {ξn = 0} is equivalent to

(11.3.28) ∇x,ξ
[
φ(x, ξ)− x · ξ

]
= 0 for ξn = 0,

which implies

(11.3.29) φ(x, ξ) = x · ξ + ξ2
nγ(x, ξ),

for a smooth γ(x, ξ), homogeneous of degree −1 in ξ. Thus, in this case

(11.3.30) η(x, y, ξ) = ξ + ξ2
nσ(x, y, ξ),

and hence

(11.3.31) Ξ(x, y, η) = η + h2
nσ̃(x, y, η),

with σ, σ̃ smooth and homogeneous of degree −1 in their Greek variables. Thus

(11.3.32) ΦT
(
Ξ(x, y, η)

)
= Φ

(
η
−1/3
1 (α0(x, y, η)ηn + iβ0(x, y, η)T )

)
,

with

(11.3.33)
α0(x, y, η) = 1 + ηnα−1(x, y, η),

β0(x, y, η) = 1 + η2
nβ−2(x, y, η).

A simple application of the chain rule gives

(11.3.34) ΦT
(
Ξ(x, y, η)

)
∈ S1/3

1/3,0,0

and hence the amplitude a(x, y, η) given by (11.3.23) belongs to S
1/3
1/3,0,0, which

improves (11.3.25) to

(11.3.35) JΦTJ
−1 ∈ OPS1/3

1/3,0,0.

Now we can apply the standard result on reducing pseudodifferential operators
with multiple symbols (see [Ho5], vol.3, or [Tay7], Chapter II, Theorem 3.8) and
conclude:
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Proposition 11.3.36. If the canonical transformation associated with J is the
identity on {ξn = 0}, then we have

(11.3.36A) JΦTJ
−1 = ΦJ (x,D) ∈ OPS1/3

1/3,0

with

ΦJ (x, ξ) = ΦT
(
Ξ(x, x, ξ)

)
mod S

−1/3
1/3,0

= Φ
(
Ξ
−1/3
1 (Ξn + iT )

)
.

(11.3.37)

The remainder term has order 2/3 below the principal term because first order

derivatives of ΦT (ξ) belong to S
−1/3
1/3,0 .

Now we return to the analysis of the equation (11.3.13). We will suppose for the

rest of this section that a(x) ≡ 1, so α = I in (11.3.13), and B̃2 = B2. Multiplying
by A−1

1 gives

(11.3.38) [ΦiT + PΦJ (x,D) + B3]v = A−1
1 J−1

1 h

where

P = A−1
1 (JA2J

−1) ∈ OPS0,

(11.3.39)

B3 = A−1
1 B1 +A−1

1 (JB2J
−1) +A−1

1 b̃ ∈ OPS−2/3.

(11.3.40)

From (11.3.37) it is straightforward to check that

(11.3.41) ΦJ (x, ξ) = Φ(ζ∗0 ), mod OPS
−1/3
1/3,0,

where

(11.3.42) ζ∗0 = J ∗ζ0,

with, as usual

(11.3.43) ζ0 = ξ
−1/3
1 (ξn + iT ).

It is useful to have the following information on the symbol P (x, ξ) of P, defined

by (11.3.39). Let ζ00 = ξ
−1/3
1 ξn and ζ∗00 = J ∗ζ00.
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Lemma 11.3.44. We have

P (x, ξ) = −
(ζ00
ζ∗00

)1/2

, mod S−1.

Proof. Since we know that P ∈ OPS0, it suffices to prove the result off {ξn = 0}.
There it follows by comparing the two Neumann operators N1 and N2, which, off
any conic neighborhood of {ξn = 0} are both (locally) pseudodifferential opera-
tors of classical type. The result is therefore straightforward. We note that the
principal symbol of P in {ξn < 0} is uniquely determined by the condition that,
for transversally intersecting rays, the reflected wave is smoother than the incident
wave or the refracted wave, which holds for solutions to the transmission problem
considered here, assuming a(x) = 1 in (11.0.4).

From Lemma 11.3.44 we derive the following result which will make the analysis
of (11.3.38) straightforward.

Lemma 11.3.45. We have

(11.3.46) PΦJ (x,D) = −ΦT + R,

with

(11.3.47) R ∈ OPS−1/3
1/3,0.

Proof. It is clear from Proposition 11.3.36 and Lemma 11.3.44 that it suffices to
show that

(11.3.48) s(x, ξ) =
(ζ00
ζ∗00

)1/2

Φ(ζ∗00)− Φ(ζ00) ∈ S−2/3
1/3,0.

Now recall that

(11.3.49) Φ(λ) ∈ S1/2
1,0 (R), Φ′(λ) ∈ S−1/2

1,0 (R),

and
Φ(λ)2 = λ− Φ′(λ).

Thus

(11.3.50)
λ

Φ(λ)2
= 1 +

Φ′(λ)

Φ2(λ)
= 1 + β(λ); β(λ) ∈ S−3/2

1,0 (R),

so

(11.3.51)
ζ00
ζ∗00

Φ(ζ∗00)2

Φ(ζ00)2
=

1 + β(ζ00)

1 + β(ζ∗00)
.
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Note that this is bounded, and bounded away from zero. Thus to estimate the
difference between (11.3.51) and 1, we can take logs:

(11.3.52) log
[1 + β(ζ00)

1 + β(ζ∗00)

]
=

[
β(ζ00)− β(ζ∗00)

]
F

(
β(ζ00), β(ζ∗00)

)
,

with F smooth, so

(11.3.53) F
(
β(ζ00), β(ζ∗00)

)
∈ S0

1/3,0.

Now, if µ = ζ∗00/ζ00, then

β(ζ∗00)− β(ζ00) = ζ00

∫ µ

1

β′(τζ00)dτ

= ζ00(µ− 1)G(µ, ζ00)

= (µ− 1)H(µ, ζ00),

where G(µ, λ) ∈ S−5/2 and H(µ, λ) ∈ S−3/2. Thus

β(ζ∗00)− β(ζ00) =

(
ζ∗00
ζ00
− 1

)
H(ζ∗00/ζ00, ζ00).

Now
ζ∗00
ζ00
− 1 = C̃ζ00, C̃ ∈ S−2/3,

so

(11.3.54) β(ζ∗00)− β(ζ00) = C̃H̃(ζ∗00/ζ00, ζ00),

with

(11.3.55) H̃(µ, λ) ∈ S−1/2.

Consequently, (11.3.51) and (11.3.52) yield

(11.3.56)
(ζ00
ζ∗00

)1/2 Φ(ζ∗00)

Φ(ζ00)
= 1 + ξ

−2/3
1 H#,

with

(11.3.57) H# ∈ S0
1/3,0, |H#| ≤ C(1 + |ζ00|)−1/2.

This shows that

(11.3.58)
(ζ00
ζ∗00

)1/2

Φ(ζ∗00)− Φ(ζ00) = ξ
−2/3
1 H#Φ(ζ00) = ξ−2/3K#,



176

with K# ∈ S0
2/3,0. This proves the Lemma.

We proceed with our analysis of the equation (11.3.38). We have

(11.3.59) ΦiT + PΦJ (x,D) + B3 = ΦiT − ΦT + B4,

with

(11.3.60) B4 ∈ OPS−1/3
1/3,0.

We can invert the operator (11.3.59) using the Wronskian relation

A′

A
− Ai′

Ai
=

c

AAi
,

which implies (A′

A
− Ai′

Ai

)−1

= c−1AAi,

so

(11.3.61) (ΦiT − ΦT )−1 = c−1ATAiT .
Recall that, on a conic neighborhood of ξn = 0, ATAiT : Hs −→ Hs. Now write
(11.3.59) as

(11.3.62) ΦiT − ΦT + B4 = [I + c−1B4ATAiT ](ΦiT − ΦT ).

Hence the inverse is given by

(11.3.63)

(ΦiT − ΦT + B4)−1 = c−1ATAiT [I + c−1B4ATAiT ]−1

= c−1ATAiT
∞∑

k=0

[
−c−1B4ATAiT

]k
.

Since

(11.3.64) B4ATAiT : Hs −→ Hs+1/3,

the terms in the Neumann expansion above are progressively smoother. This implies
that multiply reflected waves are very smooth, uniformly as one approaches gliding,
and in particular the gliding rays are “infinitely weak” in this case.

One special case of the transmission problem we have just considered is the
following. We suppose A = ∆ is the Laplace operator on Ω1 ∪ Ω2, with metric
tensor smooth across Γ, and consider solutions u1, u2 to

( ∂2

∂t2
−∆

)
uj = 0 in Ωj , u1 − u2 = 0 on Γ,

(∂u1

∂ν1
+
∂u2

∂ν2

)
= αu1 on Γ.

This transmission problem can be realized as the ideal limit of a sequence of Dirich-
let problems where Γ = R × Σ, and Σ is replaced by a sequence of boundaries Bk
consisting of a many of small balls with centers lying on Σ , with an appropriate
density. See Rauch and Taylor [RaT2]. In this case, the operator J defined by
(11.3.12) is the identity, and we can bypass Lemma 11.3.5 and Proposition 11.3.36.
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Chapter 12: First order systems

In this chapter we consider parametrices for a k × k first order system of differ-
ential equations of the form

(12.0.1) G(x,Dx)u = 0

in the half space Ω = R
n+1
+ = {xn+1 > 0}, with boundary condition at xn+1 = 0,

(12.0.2) B(x′, Dx′)u(0, x′) = f,

where x = (x′, xn+1). Here B ∈ OPS0 is a k × k′ matrix. The typical case to keep
in mind is a boundary value problem for a hyperbolic system, with the variable x1

representing time. We suppose p(x, ξ) = detG1(x, ξ) is real with simple character-
istics, G1 denoting the principal symbol of G, and more precisely we suppose

(12.0.3) p(x, ξ) = 0 =⇒ ∂

∂ξ1
p(x, ξ) 6= 0, (ξ 6= 0).

We also suppose the boundary ∂Ω to be non-characteristic for G.
We present our geometrical hypotheses in the next section and set down the para-

metrices, in analogy with the construction in Chapter 7. The eikonal equations for
the phase functions are treated in much the same fashion as before. The transport
equations involve a little bit of linear algebra; they are treated in §12.2. Then
we study respectively boundary problems of coercive type in §12.3 and boundary
problems of Neumann type in §12.4, making use of results on elliptic and hypoel-
liptic Airy operators developed in Chapters 9 and 10. In §12.5 we study Maxwell’s
equations in a region bounded by a perfect conductor. These present a mixture of
coercive and Neumann-type behavior.

§12.1: Ray geometry

Our goal is to construct a microlocal parametrix for solutions to (12.0.1), (12.0.2),
satisfying the “outgoing” condition that u is zero for x1 << 0, given f ∈ C−∞

c (Rn),
under the diffractive (grazing) or gliding hypothesis on ∂Ω with respect to p(x, ξ),
which we now make precise.

We suppose that over a point (x′0, ξ
′
0) ∈ T ∗(Rn) = T ∗(∂Ω), there pass ` transver-

sal rays and one tangential ray, i.e., null bicharacteristic strips of p(x, ξ). There
are then ` + 1 points ζν ∈ T ∗

(x′

0
,0)(R

n+1) belonging to the characteristic set of

p(x, ξ), such that if π : T ∗
(x′

0
,0)(R

n+1) is the natural projection, then π(ζν) = ξ′0,

ν = 1, . . . , `+ 1. Through these pass the null bicharacteristic strips γν , with γ`+1

glancing and the rest transversal to ∂Ω. We suppose the tangential ray γ`+1 makes
only second order contact with ∂Ω.
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The equations for the bicharacteristic strips of p are

ẋj =
∂p

∂ξ j
, ξ̇j = −∂p

∂x j
.

In particular ẋn+1 = ∂p/∂ξn+1, so if γ`+1 passes through (x′0, 0, ζ`+1) = (x, ξ), we
have

(12.1.1)
∂

∂ξn+1
p(x, ξ) = 0.

We suppose p(x, ξ) = 0. The diffractive/gliding assumption given above is equiva-
lent to

{p, {p, xn+1}} 6= 0 at (x, ξ).

As in Chapter 4, we make the further hypothesis to the effect that the hypersurfaces
Σp = {p = 0} and T ∗

∂Ω(Ω) have glancing intersection, so {xn+1, {xn+1, p}} 6= 0 at
(x, ξ), or

(12.1.2)
∂2

∂ξ2n+1

p(x, ξ) 6= 0 at (x, ξ) = (x′0, 0, ζ`+1).

The “glancing variety” is the subset of T ∗(∂Ω)\0 over which tangential null bichar-
acteristics of p pass, so p(x, ξ) = 0 and (∂/∂ξn+1)p(x, ξ) = 0. Since we assume
(12.1.2), we can locally define a root ξn+1 = a(x, ξ′) of

∂

∂ξn+1
p(x, ξ′, a) = 0.

Then the glancing variety Σ in T ∗(∂Ω) \ 0 is defined by

(12.1.3) A(x, ξ′) = p(x, ξ′, a(x, ξ′)) = 0 (x = (x′, 0)).

Note that

∂

∂ξ1
A(x, ξ′) =

∂

∂ξ1
p
(
x, ξ′, a(x, ξ′)

)
+
∂a

∂ξ1

∂

∂ξn+1
p
(
x, ξ′, a(x, ξ)

)
,

but the latter term vanishes, so by (12.0.3) we have

(12.1.4)
∂

∂ξ1
A(x, ξ′) =

∂

∂ξ1
p
(
x, ξ′, a(x, ξ′)

)
6= 0 at A(x, ξ′) = 0.

Thus, near (x′0, ξ
′
0) ∈ T ∗(∂Ω), the glancing variety is a smooth conic hypersurface

σ, and Σ ∩ T ∗
x′(∂Ω) is a hypersurface in each fiber, for x′ close to x′0.
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We shall begin our construction of parametrices with the construction of solutions
mod C∞ to (12.0.1) of the form (for xn+1 ≥ 0)

(12.1.5) u = AF =

∫ [
gA(ζ) + ihA′(ζ)

]
A(ζ0)−1eiθF̂ (ξ) dξ,

or

(12.1.6) u = BF =

∫ [
gAi(ζ) + ihAi′(ζ)

]
A(ζ0)eiθF̂ (ξ) dξ,

in the grazing and gliding cases, respectively. Here ξ ∈ Rn. The phase functions θ, ζ
are constructed as in Chapter 4, homogeneous of degree 1 and 2/3, respectively.
The amplitudes g, h will belong to S0 and S−1/3, as before, but this time they
will take values in Ck. These functions will be constructed as solutions to certain
eikonal and transport equations. Put

g ∼
∑

j

g(j), h ∼
∑

j

h(j),

with g(j) homogeneous of degree −j and h(j) homogeneous of degree −1/3 − j.
Applying G(x,Dx) to (12.1.5) or (12.1.6) and setting highest order terms equal to
zero yields

(12.1.7)

G1(x, dxθ)g
(0) +G1(x, ζdxζ)h

(0) = 0,

G1(x, dxζ)g
(0) +G1(x, dxθ)h

(0) = 0.

If we set

(12.1.8) φ± = θ ± 2

3
ζ3/2,

since G1(x, ξ) is linear in ξ, (12.1.7) is equivalent to

(12.1.9) G1(x, dxφ
±)(g(0) ± ζ1/2h(0)) = 0.

In particular, we get the characteristic equation

(12.1.10) p(x, dxφ
±) = 0.

This equation was treated in Chapter 4. We saw that functions θ, ζ could be
obtained, smooth on Ω̄, solving (12.1.10) for ξn ≤ 0 and solving it to infinite order
on ∂Ω for ξn ≥ 0, such that

(12.1.11) ζ
∣∣
∂Ω

= ξ
−1/3
1 ξn,

and such that θ|∂Ω×Rn is the generating function of a canonical transformation
taking the glancing variety to {ξn = 0} and taking the billiard ball map on ∂Ω
associated with Hp, near γ`+1, to standard form. Of course, in (12.1.6), we take
ξn 7→ ξn + iT , as usual.
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§12.2: Transport equations

For the next step in solving (12.1.7), we must construct the amplitudes g(0)
and h(0). We tackle this along the lines of the transport equations treated in
Chapter 4 also, but some linear algebra will be required. We retain the nota-
tion of Section 4, particularly as regards the Lagrangian manifold Ss ⊂ T ∗Ω,
whose projection π : Sv −→ Ω, recall, is a simple fold, with associated involu-
tion j : Sv −→ Sv. Note that, by the hypothesis that G has simple characteristics,
i.e., by (12.0.3), ker G1(x, ξ) is a smoothly varying family of one dimensional vector
spaces on {p = 0}. Since Sv is imbedded smoothly in {p = 0}, there is a smooth
Ck − valued function R on Sv, R(x, ξ) ∈ kerG1(x, ξ). Break up R into its even and
odd parts with respect to the involution j on Sv, to write (with π−1 : R

n+1 −→ Sv
double valued, domain π(Sv)),

(12.2.1) R ◦ π−1 = g̃ ± ζ1/2h̃ = R±.

Make g̃ homogeneous of degree 0 and h̃ homogeneous of degree −1/3; g̃, h̃ are
smooth on the closure of π(Sv). We extend g, h smoothly across the caustic set
∂π(Sv). To satisfy (12.1.8), we must find scalar functions σ± such that

(12.2.2) g(0) ± ζ1/2h(0) = σ±(g̃ ± ζ1/2h̃).

We will look for σ± in the form

(12.2.3) σ± = σ0 ± ζ1/2σ1,

with σ0 ∈ S0, σ1 ∈ S−1/3, homogeneous. Thus (12.2.2) becomes

(12.2.4) g(0) ± ζ1/2h(0) = σ0g̃ + ζσ1h̃± ζ1/2(σ1g̃ + σ0h̃).

To obtain the transport equations for σ0, σ1, we use the j = 1 equations from among
the continuation of (12.1.7) to higher transport equations:

(12.2.5)
G1(x, dθ)g(j) +G1(x, ζdζ)h(j) = −G(g(j−1)),

G1(x, dζ)g(j) +G1(x, dθ)h(j) = −G(h(j−1)).

In fact, let L ∈ ker Gt1, L± = L ◦ π−1, so

(12.2.6) L± = ˜̃g ± ζ1/2 ˜̃
h ∈ ker Gt1(x, dφ±),

be constructed as in (12.2.1). With

(12.2.7) E±
j = g(j) ± ζ1/2h(j),
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one gets from (12.2.5)

(12.2.8) G1(x, dφ±)E±
j = −G(g(j−1))∓ ζ1/2G(h(j−1)),

the right side being defined as 0 for j = 0 (so (12.1.9) is obtained). Equation
(12.2.8) determines E±

j up to a multiple of R±;

(12.2.9) E±
j = k±j + σ

(j)
± R±,

where one sees that kj can be written in the form

(12.2.10) k±j = k
(0)
j ± ζ1/2k

(1)
j ,

with k
(m)
j smooth, m = 0, 1, of degree 0,−1/3. The transport equations for σ± =

σ
(0)
± and the other σ

(j)
± = σ

(j)
0 ± ζ1/2σ

(j)
1 are obtained by taking the inner product

of (12.2.8)with L±:

(12.2.11) L± · [G(g(j−1))± ζ1/2G(h(j−1))] = 0.

Replacing j − 1 by j in (12.2.11) and then replacing g(j) by Ej ∓ ζ1/2h(j) , we get

(12.2.12) L± · [G(Ej)∓G(ζ1/2h(j))± ζ1/2G(h(j))] = 0,

which implies

(12.2.13) L± · [G(Ej)∓ 1
2ζ

−1/2G1(x, dζ1/2)(E+
j −E−

j )] = 0.

Using the fact that

(12.2.14) L± ·G1(x, dζ)R∓ =
1

2
ζ−1/2L± ·G1(x, dφ+ − dφ−)R∓ = 0,

we see that

(12.2.15)

L± ·G1(x, dζ1/2)(E+
j −E−

j )

= 2ζ1/2L± ·G1(x, dζ1/2)k
(1)
j ± L± ·G1(x, dζ1/2)σ

(j)
± (R± − R∓)

= 2ζ1/2L± ·G1(x, dζ1/2)k
(1)
j + 2σ

(j)
± ζ1/2L± ·G1(x, dζ1/2)h̃.

Consequently (12.2.12) can be written as

(12.2.16)
L± ·G(σ

(j)
± R±) + L± ·G(k±j )∓ L± ·G1(x, dζ1/2)k

(1)
j

∓ σ(j)
± L± ·G1(x, dζ1/2)h̃ = 0.
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This is a first order equation for σ
(j)
± . To analyze it, first note that

(12.2.17)
G(σ±R±) = G1(x, dσ±)R± + σ±G(R±)

= G1(x, dσ±)R± + σ±G(g̃)± σ±G(ζ1/2h)

= G1(x, dσ±)R± + σ±G(g̃)± ζ1/2σ±G(h̃)± σ±G1(x, dζ1/2)h̃.

Similarly,

(12.2.18)
G(k±j ) = G(k

(0)
j )±G(ζ1/2k

(1)
j )

= G(k
(0)
j )± ζ1/2G(k

(1)
j )±G1(x, dζ1/2)k

(1)
j .

Thus (12.2.16) is equivalent to

(12.2.19)
L± ·G1(x, dσ

(j)
± )R± + σ

(j)
± L± ·G(g̃)± ζ1/2σ

(j)
± L± ·G(h̃)

+ L± · [G(k
(0)
j )± ζ1/2G(k

(1)
j )] = 0.

We thus want to understand the vector field Z± defined by

(12.2.20) Z±σ± = L± ·G1(x, dσ±)R±.

To look into this, extend the 0-eigenvectors R± and L± off {p = 0}, to be C∞

eigenvectors of G1(x, ξ) and G1(x, ξ)t, respectively, associated with the eigenvalue
λ0(x, ξ) or G1(x, ξ) which is smooth and which vanishes on {p = 0}. Thus

(12.2.21)
G1(x, ξ)R(x, ξ) = λ0(x, ξ)R(x, ξ),

L(x, ξ)G1(x, ξ) = λ0(x, ξ)L(x, ξ).

We can arrange that L(x, ξ) ·R(x, ξ) 6= 0. Note that

(12.2.22)
L(x, ξ) ·G1(x, ξ)R(x, ξ) = λ0(x, ξ)L(x, ξ) ·R(x, ξ)

= a(x, ξ)p(x, ξ)

where a(x, ξ) is C∞ and non-vanishing. This follows from the assumption that the
zeros of p(x, ξ) are simple. Note that

(12.2.23) L(x, ξ) ·G1(x, ξ) = 0 = G1(x, ξ)R(x, ξ) on {p = 0}.

Also note that the Hamiltonian vector fields of p and L·G1R are parallel on {p = 0} :

(12.2.24) HL·G1R = aHp on {p = 0}.
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Since, for f = f(x), Hpf =
∑
j

∂ξj
p · ∂xj

f, we see that, for f = f(x), on {p = 0},

(12.2.25)

HL·G1Rf =
∑

j

∂ξj
(L ·G1R)∂xj

f(x)

=
∑

j

L ·
(
∂ξj

G1 · ∂xj
f(x)

)
R (by (12.2.24))

= L ·G1

(
x, df(x)

)
R,

using the linearity of G1(x, ξ) in ξ. Thus, by (12.2.24),

(12.2.26) L(x, ξ) ·G1

(
x, df(x)

)
R(x, ξ) = aHpf on {p = 0}.

Thus with

(12.2.27) σ(j) = σ
(j)
± ◦ π,

the transport equation (12.2.19) is equivalent to

(12.2.28) aHpσ
(j) + Aσ(j) = B,

where

(12.2.29)
A = L± · [G(g̃)± ζ1/2G(h̃)] ◦ π ∈ C∞(Sv),

B = L± · [G(k
(0)
j )± ζ1/2G(k

(1)
j )] ◦ π ∈ C∞(Sv).

Obtaining smooth non-vanishing solutions of (12.2.28) is routine, and the discussion
of the transport equations is easily completed, along the lines of Chapter 4.

Concerning the principal term g(0) of g, appearing in (12.1.5) or (12.1.6), we
remark that we can certainly arrange that the term g̃(x, ξ) be nonzero on ∂Ω at
ξn = 0, and hence that g(0) be nonzero there. Depending on G1, it may or may not
happen that h̃ is linearly independent of g̃ at some point and hence by (12.3.5) it
may or may not be the case that h(0) is linearly independent of g(0) at such a point.

§12.3: Coercive boundary conditions

We now have the amplitudes and phase functions for (12.1.5), (12.1.6). F is
a scalar distribution to be determined by the boundary condition (12.0.2). Next,
there are two more types of solutions of (12.0.1) to write down. The first comes
from the l families of non-glancing rays hitting ∂Ω near (x′0, ξ

′
0). These give rise to

solutions of (12.0.1) of the form

(12.3.1) uj = AjFj =

∫
aj(x, ξ)e

iφj(x,ξ)F̂j(ξ) dξ, 1 ≤ j ≤ l,
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determined by the usual methods of geometrical optics. The amplitudes aj(x, ξ)
take values in Ck and the Fj are scalar valued distributions. The final term is the
‘elliptic term,’ of the form

(12.3.2) u− = A−F− =

∫
a−(x, ξ)eix

′·ξF̂−(ξ) dξ,

where a−(x, ξ) is an amplitude of Poisson type, i.e.,

(12.3.3) xln+1D
j
n+1a−(x, ξ) bounded in Sj−l1,0 (Rn) for 0 ≤ xn+1 ≤ 1,

and F− takes values in Cµ, µ being the dimension of the sum of the generalized
eigenspaces of H(x, ξ′) with negative real part, for (x, ξ′) near (x′0, 0, ξ

′
0), where

G1(x, ξ) = ξn+1Gn+1 + G(x, ξ′) and H(x, ξ′) = (1/i)G−1
n+1G(x, ξ′). The amplitude

a−(x, ξ) takes values in L(Cµ,Ck).
Our goal is to construct a solution mod C∞ to (12.0.1), (12.0.2) which is smooth

along those rays going in the negative x1 direction. This choice fixes the choice
A = A+ or A− in (12.1.5), in the grazing case, and selects λ terms of the form
(12.3.1), say u1, . . . , uλ. We want to construct u, solving (12.0.1), (12.0.2), as a
superposition of solutions of the form (12.1.5) or (12.1.6), of the form (12.3.1),
1 ≤ j ≤ λ, and of the form (12.3.2). We get an equation for

(12.3.4) F ′ =
(
F, Fj(1 ≤ j ≤ λ), F−

)

as follows. We will give the details for the gliding case, where (12.1.6) occurs.
Restricting (12.1.6) to ∂Ω = {xn+1 = 0}, we get

(12.3.5)
BF

∣∣
∂Ω

=

∫ [
g + ihΦi(ζ0)

]
eiθAi(ζ0)A(ξ0)F̂ (ξ) dξ

= J(A#
1 +A#

2 ΦiT )AiTATF,

where J is an elliptic FIOP:

(12.3.6) Jf =

∫
eiθ f̂(ξ) dξ,

with A#
1 ∈ OPS0, A#

2 ∈ OPS−1/3, the symbols taking values in L(C,Ck). Restrict-
ing (12.3.1) to ∂Ω gives

(12.3.7) AjFj
∣∣
∂Ω

=

∫
aj(x

′, 0, ξ)eix
′·ξF̂j(ξ) dξ = AojFj (1 ≤ j ≤ λ),

provided we prescribe as initial data for the phase function φj that φj(x
′, 0, ξ) =

x′ · ξ. Thus Aoj ∈ OPS0, with symbol taking values in L(C,Ck). Finally

(12.3.8) A−F−

∣∣
∂Ω

=

∫
a−(x′, 0, ξ)eix

′·ξF̂−(ξ) dξ = Ao−F−.
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Here Ao− ∈ OPS0, with symbol taking values in L(Cµ,Ck). If

(12.3.9) u = BF +
∑

j

AjFj +A−F−,

then the boundary condition (12.0.2) is

(12.3.10) B(x′, Dx′)
(
J(A#

1 + A#
2 ΦiT )AiTATF +

∑

j

AojFj +Ao−F−

)
= f.

Here f takes values in Ck
′

. We shall assume

(12.3.11) k′ = 1 + λ+ µ,

so (12.3.10) is a determined system. Let

(12.3.12) B#(x′, Dx′) = J−1B(x′, Dx′)J,

so (12.3.10) becomes

(12.3.13)

B#(x′, Dx′)
(

(A#
1 +A#

2 ΦiT )AiTATF +
∑

j

J−1AojJJ
−1Fj

+ J−1Ao−JJ
−1F−

)
= J−1f.

Now if we define the C1+λ+µ -valued distribution G by

(12.3.14) G =
(
G0, Gj(1 ≤ j ≤ λ), G−

)
=

(
AiTATF, J−1Fj(1 ≤ j ≤ λ), J−1F−

)
,

then (12.3.13) becomes

(12.3.15) B#(x′, Dx′)
(

(A#
1 +A#

2 ΦiT )G0 +
∑

j

AbjGj +Ab−G−

)
= J−1f,

where the pseudodifferential operators Abj , A
b
− ∈ OPS0 are defined by

(12.3.16) Abj = J−1AojJ, Ab− = J−1Ao−J.

Set

(12.3.17) B0(x′, Dx′)G = B#(x′, Dx′)
(
A1G0 +

λ∑

j=1

AbjGj + Ab−G−

)
,
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so B0 ∈ OPS0, and (12.3.13) reads

(12.3.18)
[
B0(x′, Dx′) +BΦiT

]
G = J−1f,

where

(12.3.19) B = B#(x′, Dx′)A2π0 ∈ OPS−1/3,

and π0 ∈ OPS0 is defined by

(12.3.20) π0G = G0.

At J−1(x′0, ξ
′
0), the principal symbol of B0 is the product of the principal symbol

of B# and the map

(12.3.21) ∆(y, ξ) : C
1+µ −→ C

k

defined as follows. Say J (x′, η) = (y, ξ). Let eν denote the standard basis of
C1+λ+µ, 0 ≤ ν ≤ λ+µ, and imbed Cµ into C1+λ+µ as the last factor. Then ∆(y, ξ)
takes e0 to g(0)(x′, ξ), eν to aν(x′, ξ) for 1 ≤ ν ≤ j + λ, and it coincides with the
map a−(x′, ξ) on Cµ. Thus B0(x′, Dx′) is elliptic if and only if the composite map
B#∆ :

(12.3.22) C
k′ ∆−→ C

k B#

−−→ C
k′

is an isomorphism. As long as B0(x′, Dx′) is elliptic, Theorem 10.2.42 applies,
to express, mod C∞, the solution G of (12.3.18). Since the map (AiTAT )−1 is
elucidated in Chapter 5, we can then solve (12.3.14) for F ′, and hence obtain a
solution mod C∞ to the boundary condition (12.3.10), i.e., to (12.0.2).

In the grazing case, one obtains, in place of (12.3.18)

(12.3.23)
[
B0(x′, Dx′) + BΦ

]
G = J−1f,

with

(12.3.24)
G =

(
G0, Gj(l ≤ j ≤ λ), G−

)

=
(
F, J−1Fj(l ≤ j ≤ λ), J−1F−

)
.

Again ellipticity of B0(x′, Dx′) ∈ OPS0 implies solvability mod C∞ of (12.3.23); this
time, of course, the inverse operator [B0(x′, Dx′) +BΦ]−1 is a microlocal operator.
This grazing case was discussed by Taylor, in [Tay3], and in further detail in Section
7 of [Tay8]. In these papers, it was allowed that several grazing rays pass over a
point in T ∗∂Ω \ 0.

We have proved the following result.

Theorem 12.3.25. Consider the system (12.0.1), (12.0.2), with boundary ∂Ω being
either grazing or gliding, under hypothesis (12.1.2). Assume at most one tangential
ray passes over any point of T ∗∂Ω \ 0. If the composite map (12.3.22) is bijective,
then the construction (12.1.5), (12.1.6), (12.3.1), (12.3.2) produces a parametrix
whose singularities obey the laws of geometrical optics.
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§12.4: Neumann type boundary conditions

We next consider a class of boundary conditions for which the invertibility of
(12.3.22) is violated, a class related to the previous class as the Neumann boundary
condition is related to the Dirichlet condition. The hypotheses we make on this
new class of boundary conditions are the following

B#∆ annihilates e0 (i.e., B# annihilates g(0)) on {ξn = 0},(12.4.1)

B#∆̃ is invertible,(12.4.2)

where ∆̃ takes e0 to h(0) and coincides with ∆ on the complementary subspace. In
this case, let

(12.4.3) H =
(
H0, (Hj), H−

)
=

(
Ξ
−1/3
1 ΦiTG0, (Gj), G−

)
.

Then rewrite (12.3.15) as

(12.4.4) B#(x′, Dx′)
(

(B#
2 + B#

1 Φi−1
T )H0 +

∑

j

AbjHj + Ab−H−

)
= J−1f,

with

(12.4.5) B#
j = A#

j Ξ
1/3
1 ,

and if we set

(12.4.6) B1(x′, Dx′)h = B#(x′, Dx′)
(
B#

2 H0 +
λ∑

j=1

AbjHj +Ab−H−

)
,

the equation (12.4.4) becomes

(12.4.7)
(
B1(x′, Dx′) + B′Φi−1

T

)
H = J−1f

where

(12.4.8) B′ = B#(x′, Dx′)B#
1 π0 ∈ OPS1/3 .

The hypothesis (12.4.1) implies

(12.4.9) B′ has vanishing principal symbol on {ξn = 0}.
If we rewrite (12.4.7) as

(12.4.10)
(
B1(x′, Dx′)ΦiT +B′

)
Φi−1

T H = J−1f,

we see that, as long as B1(x′, Dx′) is elliptic in OPS0, then, in view of (12.4.9),
Theorem 10.3.11 applies to construct the inverse (mod C∞)

[B1(x′, Dx′)ΦiT +B′]−1.

On the other hand, the formula (12.4.6) makes it clear that (12.4.2) implies the
ellipticity of B1(x′, Dx′). We have hence proved the following result, parallel to
Theorem 12.3.25, at least in the gliding case, and the grazing case is handled
similarly.

Theorem 12.4.11. The results of Theorem 12.3.25 on parametrices for (12.0.1),
(12.0.2) continue to hold if the condition (12.3.22) on invertibility of B#∆ is re-
placed by hypotheses (12.4.1) and (12.4.2).
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§12.5: Maxwell’s equations

Before proceeding to the discussion of general boundary problems for first order
systems we consider the important special case of Maxwell’s equations in a vacuum
bounded by a perfect conductor. Let Ω be a region in R3 bounded and with smooth
boundary. In units in which the speed of light is 1, the equations of propagation
are

(12.5.1)

∂E

∂t
− curlE = 0, divE = 0

∂B

∂t
+ curlE = 0, divB = 0.

At the boundary of the perfect conductor, we have

(12.5.2) ν × E = 0, ν ·B = 0,

with ν as usual denoting the unit normal vector field pointing into Ω. From (12.5.1)
we can deduce that E and B each solve the scalar wave equation

(
∂2

∂t2
−∆

)
E = 0,(12.5.3)

(
∂2

∂t2
−∆

)
B = 0.(12.5.4)

The appropriate set of self-adjoint boundary conditions to impose on (12.5.3) and
(12.5.4), corresponding to a perfectly conducting boundary, is:

ν × E = 0, divE = 0 on ∂Ω,(12.5.5)

ν ·B = 0, ν × curlB = 0 on ∂Ω.(12.5.6)

We will construct a parametrix for the inhomogeneous boundary problem for the
electric field E

(
∂2

∂t2
−∆

)
E = 0,(12.5.7)

ν × E = f, divE = f0 on ∂Ω,(12.5.8)

where f, f0 ∈ C−∞
c (R× ∂Ω) are given, and we require

(12.5.9) E = 0 for t << 0,

and in particular describe the propagation of singularities under our standard as-
sumption that the boundary is either diffractive or gliding. We concentrate on the
gliding case here, noting the minor modifications needed to treat the somewhat
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simpler grazing case. Treatments of Maxwell’s equations in the grazing case have
been given in [Tay3], [Tay7], and [Yi].

In (12.5.8) f takes values in the complexified tangent bundle to ∂Ω, identified
as the annihilator of ν, ν · f ≡ 0 and f0 is complex-valued. A parallel treatment of
the magnetic field B is easily made; we omit the details.

To reduce the problem to the boundary we write the solution to (12.5.8) in terms
of the Dirichlet data for E

(12.5.10) E0 = E
∣∣
R×∂Ω

.

Thus the normal derivative is given by the Neumann operator applied component
by component to E0.

(12.5.11) ∂νE
∣∣
R×∂Ω

= N ·E0.

We use the parametrix for E :

(12.5.12) E =

∫ [
gAi(ζ) + ihAi′(ζ)

]
A(ζ0)eiθF̂ (ξ) dξ,

with F taking values in C3. We use the conditions

(12.5.13) ζ
∣∣
∂Ω

= ζ0,
∂

∂ν
θ
∣∣
∂Ω

= 0, h
∣∣
∂Ω

= 0.

Now, as in Chapter 7

(12.5.14) E0 =

∫
geiθAi(ζ0)A(ζ0)F̂ (ξ) dξ = J(AiTATF ).

Meanwhile, we have

(12.5.15) ν ×E
∣∣
∂Ω

= ν × JAiTATF = ν × E0,

and

(12.5.16)

divE
∣∣
∂Ω

=

∫
(g∇ζ + i∇h) · eiθ(ΦiTAiTATF )̂(ξ) dξ

+

∫
(ig∇θ +∇g) · eiθ(AiTATF )̂(ξ) dξ.

By comparison with the Fourier integral operator

(12.5.17) Ju =

∫
geiθû(ξ) dξ,
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we have

(12.5.18)

∫
(g∇ζ + i∇h) · eiθû(ξ) dξ = D1Ju,

∫
(ig∇θ +∇g) · eiθû(ξ) dξ = D2Ju,

where D1 ∈ OPS2/3, D2 ∈ OPS1 . The symbols of D1 and D2 take values in the
vector space of linear maps of C3 to C. The principal symbol of D1 is ∇ζ·, and
that of D2 is i∇θ · . Note that ∇ζ is orthogonal to ∂Ω and ∇θ is parallel to ∂Ω. We
have, from (12.5.16),

divE
∣∣
∂Ω

= (D1JΦiTJ
−1 +D2)E0

= J(D̃1ΦiT + D̃2)J−1E0,

(12.5.19)

where

(12.5.20) D̃j = J−1DjJ.

Thus, our boundary conditions (12.5.8) give rise to the system

ν × E0 = f,(12.5.21)

J(D1ΦiT +D2)J−1E0 = f0.(12.5.22)

We can reduce this to a scalar equation, setting

(12.5.23) E0 = f1 + e0ν,

where ν is the unit normal to ∂Ω, and f1 is the tangential field satisfying ν×f1 = f.
This gives the following equation for the single unknown scalar e0 :

(12.5.24) J(D̃1ΦiT + D̃2)J−1(e0ν) = f0 − J(D̃1ΦiT + D̃2)J−1f1 = f2.

Note that the grazing ray problem gives rise to the analogous equation

(12.5.25) J(D̃1Φ + D̃2)J−1(e0ν) = f2.

In either case, since the principal symbol of D̃2 is i∇θ· and ∇θ · ν = 0, we see that
JD̃2J

−1ν ∈ OPS0 . This makes the solvability of (12.5.25) rather easy, since, with
ν̃ = J−1νJ

(12.5.26) Φν̃ = ν̃Φ + [Φ, ν̃],

and

(12.5.27) [Φ, ν̃] ∈ OPS−1/3,
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while

(12.5.28) S = D̃1ν̃ ∈ OPS2/3 is elliptic,

since the principal symbol of D̃1 is ∇ζ · . Thus we can solve (12.5.25), modulo C∞,
for e0, with WF(e0) = WF(f2).

Since (12.5.27) breaks down when Φ is replaced by ΦiT , the equation (12.5.24)
requires more work.

The equation (12.5.24) is a special case of an equation of the form

(12.5.29)
k∑

j=1

P#
j ΦiTPju = f,

where Pj , P
#
j ∈ OPS0 and

(12.5.30) P#
j = P ∗

j mod OPS−1,
∑

P#
j Pj elliptic.

Working microlocally, we can suppose P1 is elliptic. Multiplying ΣP#
j ΦiPj on the

left by (P#
1 )−1 and on the right by P−1

1 and renotating, we reduce our problem to
solving

(12.5.31)
(

Φi+

k∑

j=1

P#
j ΦiTPj

)
u = f.

We can estimate the Hs−1/3 norm of u in terms of the Hs norm of f, as follows.
Take the inner product of both sides of (12.5.31) with u, to get

(12.5.32) Im (Φi u, u) +
∑

Im (ΦiPju, P
′
ju) = Im (f, u),

where, by (12.5.30), P ′
j = Pj mod OPS−1 . Now as proved in Appendix A,

Im Φi(z) ≥ C(1 + |z|)| Im z|, z ∈ D;

see (A.4.26). Together with simple estimates for Re z ≥ 0, we get

(12.5.33) Im Φi(ζ) ≥ CT 〈ξ〉−1/3,

and hence

(12.5.34) Im (ΦiT v, v) ≥ CT ‖v‖2H1/6 .

Consequently (12.5.32) gives

(12.5.35) ‖u‖2H−1/6 ≤ C‖f‖2H1/6 + C ′‖u‖2H−M .
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From here, standard methods of functional analysis give a solution (modulo C∞)
to (12.5.31). We will obtain the solution by a different method, which will allow
for an analysis of the singularities of u.

Applying Φi−1 to (12.5.31), we have that equation equivalent to

(12.5.36)
(
I +

∑

j

Φi−1P#
j ΦiPj

)
u = Φi−1f = f1.

Now the Airy operator identity (10.4.65) implies

(12.5.37) Φi−1P#
j Φi = P bj +EjΦi− Φi−1Cj

where
(12.5.38)

Ej ∈ OPS−1/3; Cj ∈ OPS1/3 has principal symbol vanishing at ξn = 0,

and

(12.5.39) P bj = P#
j mod OPS−1 .

Thus (12.5.36) becomes

(12.5.40)
(
A+

∑

j

EjΦiPj − Φi−1C#
)
u = f1

where

(12.5.41) A = I +
∑

j

P bj Pj ∈ OPS0, elliptic,

and

(12.5.42) C# =
∑

j

CjPj

has the properties of Cj in (12.5.38).

If we denote a parametrix of A by B ∈ OPS0 and set Bj = BEj ∈ OPS−1/3, we
get

(12.5.43)
(
I +

∑
BjΦiTPj −BΦi−1

T C#
)
u = Bf1 = f2.

Now, as shown in Appendix A, we have the estimates

|Φi(ζ)| ≤ C(|ζ|1/2 + T−1ξ
1/3
1 ),
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and
|ζΦi(ζ)−1| ≤ C(|ζ|1/2 + T−1ξ

1/3
1 ).

Hence, if Bj, Pj, B, C
# are altered so their symbols are supported in a small conic

neighborhood of ξn = 0, and are further appropriately altered by smoothing oper-
ators, we get arbitrarily small operator norm on Hs for

S =
∑

j

BjΦiTPj −BΦi−1
T C#,

provided also T is taken sufficiently large. Hence, as in the analysis of (10.2.1), the
solution to (12.5.43) is given by the Neumann series expansion

u =

∞∑

k=0

(−S)kf2.

The argument given in Chapter 10 (see (10.2.18)–(10.2.31)) shows that if f is
smooth for xn < 0 then so is u. From there, the same commutator argument
as given in Chapter 10 (see (10.2.32)–(10.2.36)) shows that the wave front set of
u has the same sort of relation to WF(f) as in the other classes of Airy operator
equations we have encountered, involving Φi.
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Appendix A: Airy functions and Airy quotients

We collect below some of the basic properties of the functions Ai(z) and A±(z)
which are used extensively in this work, and also results on various quotients of
these functions and their derivatives. Most of the material on the Airy functions
proper is contained in Olver [Ol2] and Miller [Mil].

For s ∈ R, Ai(s) is defined by:

(A.0.1) Ai(s) =
1

2π

∫ ∞

−∞

ei(st+t
3/3) dt.

This integral is not absolutely convergent, but is well-defined as the Fourier trans-
form of a tempered distribution. It follows directly that Ai satisfies the second
order differential equation (Airy’s equation)

(A.0.2) Ai′′(s)− sAi(s) = 0.

From (A.0.2) it follows that Ai(z) extends to an entire holomorphic function on C.
Set

(A.0.3) A±(z) = Ai(e∓2πi/3z).

Thus, A±(z) also satisfy the differential equation (A.0.2). In fact we have

(A.0.4) Ai(z) = eπi/3A+(z) + e−πi/3A−(z),

as we proceed to show.
Note that Ai(z) is real for real z, so (A.0.3) implies that:

(A.0.5) A−(z) = A+(z̄).

Thus we must have

(A.0.6) Ai(z) = cA+(z) + c̄A−(z).

Evaluating Ai(0) and Ai′(0) in two ways each, using (A.0.6) and (A.0.3), gives

c+ c̄ = 1, cω−2 + c̄ω2 = 1,

where

(A.0.7) ω = eπi/3,

and this in turn implies that c = ω2/(1+ω2) = 1/(1−ω) = ω, which proves (A.0.4).
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§A.1: Asymptotic expansion

An integral formula for Ai(z) which is convergent for all z ∈ C can easily be
obtained. Replace t in (A.0.1) by iv and deform the contour so that for real z,

(A.1.1) Ai(z) =
1

2πi

∫

L

ev
3/3−zv dv,

where L is any contour that begins at a point at infinity in the sector −π/2 ≤
arg(v) ≤ −π/6, and ends at infinity in the sector π/6 ≤ arg(v) ≤ π/2. Since both
sides of (A.1.1) are entire analytic, we have the identity for all z ∈ C.

From (A.1.1) we can obtain a formula, valid in the region

(A.1.2) {z ∈ C; | arg(z)| ≤ (1− δ)π}, δ > 0,

i.e., in the complex plane C with a small conic neighborhood of the closed negative
real axis removed. Indeed, for z ∈ R+, set v = z1/2 + it1/2 on the upper half of the
path L in (A.1.1) and v = z1/2 − it1/2 on the lower half to obtain:

(A.1.3)
Ai(z) =

1

2π
e−(2/3)z3/2

∫ ∞

0

cos
(1

3
t3/2

)
exp(−tz1/2)t−1/2 dt

= Ψ(z) e−(2/3)z3/2

.

Since the right side is clearly holomorphic in the region (A.1.2), there is identity
in that region. Well-known asymptotic methods can now be applied, in particular
the method of steepest descents, to the integral defining Ψ(z), giving

(A.1.4) Ψ(z) ∼ z−1/4
∞∑

j=0

ajz
−3j/2, a0 =

1

4
π−3/2,

as |z| → ∞ within the region (A.1.2). Formal term by term differentiation yields
valid asymptotic expansions in this region for the derivatives of Ψ(z), see [Ol2].

The asymptotic expansion (A.1.3), (A.1.4) implies

(A.1.5) A±(z) = Ψ(ω∓2z) exp
(
∓2

3
i(−z)3/2

)

in the regions

(A.1.6)
{
z ∈ C;

∣∣∣arg(z)∓ 2

3
π
∣∣∣ ≤ (1− δ)π

}
, δ > 0,

and in these regions Ψ(ω∓2z) has the same sort of asymptotic expansion as (A.1.4).
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Another useful integral formula for Ai(s), s > 0, is obtained by writing the
integral (A.0.1) as

Ai(s) =
1

π

∫ ∞

0

cos
(
st+

1

3
t3

)
dt,

and making the change of variable t = 2s1/2 sinh(v/3). Since

4 sinh3
(v

3

)
+ 3 sinh

(v
3

)
= sinh v,

it follows that:

(A.1.7) Ai(z) =
2√
3π

(z
3

)1/2
∫ ∞

0

cos
(2

3
z3/2 sinh v

)
cosh

(1

3
v
)
dv.

The integral on the right is a modified Hankel function. Generally, if ξ > 0 and
0 < ν < 1,

(A.1.8)

Kν(ξ) =
1

cos(πν/2)

∫ ∞

0

cos(ξ sinh t) cosh(νt) dt

=

∫ ∞

0

e−ξ cosh t cosh(νt) dt,

the latter integral being convergent and holomorphic for Re(ξ) > 0; see Erdelyi et
al. [Er], Vol. 2, p. 82, or Lebedev, [Leb], pp. 119–140. Thus

(A.1.9) Ai(z) =
1

π

(z
3

)1/2

K1/3

(2

3
z3/2

)
, | arg(z)| < 1

3
π.

Since Kν(z) solves the modified Bessel equation

(A.1.10)
d2w

dz2
+

1

z

dw

dz
−

(
1 +

ν2

z2

)
w = 0,

it follows that Kν(z) is holomorphic in | arg(z)| < π, and (A.1.9) therefore holds in
the larger region | arg(z)| < 2π/3. In fact Kν(z) can be continued to the logarithmic
plane covering C\0, and then (A.1.9) is valid globally.

The formula (A.1.8) implies that, for fixed ν > 0, as ξ → 0, | arg ξ| < π,

(A.1.11) Kν(ξ) ∼ 1

2

∫ ∞

0

e−(1/2)ξet

eνt dt ∼ 1

2

∫ ∞

1

e−ξs/2 sν−1 ds ∼ 1

2
Γ(ν)

(2

ξ

)ν
,

and hence the identity (A.1.9) implies

(A.1.12) Ai(0) =
1

2π
3−1/6 Γ

(1

3

)
=

3−2/3

Γ(2/3)
,
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Figure A.1

the last identity in (A.1.12) following from Γ(1/3)Γ(2/3) = π/(sinπ/3) = 2π/
√

3.
Further computation (cf. (A.2.12)) gives

(A.1.13) Ai′(0) = − 1

2π
31/6 Γ

(2

3

)
= − 3−1/3

Γ(1/3)
.

Figure A.1 is a graph of y = Ai(s), s ∈ R, produced by numerically integrating
(A.0.2), using the initial data (A.1.12)–(A.1.13).

§A.2: Zeroes of Ai

The formulæ (A.1.3), (A.1.4) show that for any δ > 0, there is some finite R(δ)
such that Ai(z) has no zeroes in (A.1.2) for |z| > R(δ). In this section we show that
all the zeroes of Ai(z) and all those of Ai′(z) are real and negative. First we give
a proof of an important special case of this.

Proposition A.2.1. A±(s), A′
±(s) are not zero for any s ∈ R.

Proof. This is a simple consequence of the Wronskian relation:

(A.2.2) A′
+(z)A−(z)−A+(z)A′

−(z) = c0i =
1

2πi
.

By (A.0.5) and the same equation for the derivatives, the real zeroes of A+ and
A−, or of their derivatives, must coincide. The existence of one such common zero
would imply c0 = 0 in (A.2.2). Disregarding our explicit computation of c0, we
see that this would imply A+(z) = c′A−(z). This is not possible, since it would
contradict (A.1.5).

The next result implies that

(A.2.3) Ai(z) 6= 0, | arg(z)| ≤ 1

3
π.
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Proposition A.2.4. Kν(z) 6= 0 for | arg(z)| ≤ π/2, if ν ∈ R+.

Proof. By (A.1.8) Kν(z) is real for real z, so it is enough to consider z in the
fourth quadrant. We use the argument principle, and compute the change in the
argument of Kν(z) along a closed curve ABCD as pictured in Fig. A.2. Along
the piece AB the change in argument can be computed approximately from the
asymptotic expansion:

Kν(z) ∼
( π

2z

)1/2

e−z
∞∑

k=0

ak(ν)z−k, |z| → ∞,

which can be obtained from (A.1.8). Thus:

(A.2.5) arg(Kν(B))− arg(Kν(A)) = −1

4
π − iA+ o(1) as |A| = |B| → ∞.

On BC there is no change of argument since Kν(z) is real and positive, by (A.1.8).
On CD, we use the asymptotic expansion (A.1.11) for Kν(z), as z → 0, and con-
clude

(A.2.6) arg(Kν(D))− arg(Kν(C)) =
1

2
νπ + o(1), |C| = |D| → 0.

Figure A.2

To find the change in argument from D to A we need to study Kν(z) further.
Consider the identity:

(A.2.7) Kν(−it) =
πi

2
eπνi/2

[
Jν(t) + iYν(t)

]
,
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which can be obtained from (A.1.8) by transformation of the integrals (see Olver
[Ol2]). The Bessel functions Jν(t) and Yν(t) satisfy Bessel’s equation:

(A.2.8)
d2w

dt2
+

1

t

dw

dt
+

(
1− ν2

t2

)
w = 0.

Both are real for t > 0 real. Hence their positive real zeroes intertwine:

0 < yν,1 < jν,1 < yν,2 < jν,2 < . . . .

Now we need to show that the kth positive zero of Jν(t) is given by:

(A.2.9) jν,k = π(k + 1
2
ν − 1

4
) + o(1) as k →∞ (ν fixed).

In fact the asymptotic expansion:

(A.2.10)

Jν(t) ∼
(

2

πt

)1/2 [
cos

(
z − 1

2
πν − 1

4
π
) ∞∑

l=0

al(ν)t−2l

− sin
(
z − 1

2
πν − 1

4
π
) ∞∑

l=0

bl(ν)t−2l−1
]
, t→∞,

which is readily obtained from an integral formula such as:

(A.2.11) Jν(z) =
(z/2)ν

Γ(1/2)Γ(ν + 1/2)

∫ 1

−1

(1− t2)ν−1/2 cos(zt) dt, | arg(z)| < π,

shows that Jν(t) does have zeroes with the asymptotic behaviour (A.2.9), for large
k. That the appropriate one is exactly the kth can be decided easily. For ν =
1/2, J1/2(t) =

√
(2/πt) sin t, so (A.2.9) holds exactly in that case. For general

ν, (A.2.9) follows from the analyticity in ν and and the argument principle, there
being no zeroes near t = 0.

Returning to the analysis ofKν(z) on DA, we see from (A.2.9) that, if A = −iyν,k
then the change of argument of Kν(z) on DA cancels out the change along the rest
of the curve, up to a term which is o(1) as |A|, |B| → ∞, |C|, |D| → 0. This
proves Proposition A.2.4 and hence (A.2.3), since the change of argument must be
an integer, hence zero.

In a fashion similar to (A.1.9) it can be shown that:

(A.2.12) Ai′(z) = − z√
3π

K2/3

(2

3
z3/2

)
,

so Proposition A.2.4 also implies that:

(A.2.13) Ai′(z) 6= 0, | arg(z)| ≤ 1

3
π.
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In order to show that all the zeroes of Ai(z) and of Ai′(z) are real it remains to
demonstrate that

(A.2.14) Ai(z), Ai′(z) 6= 0, |π − arg(z)| < 2

3
π, z /∈ R

−.

To do this we follow the method of Lommel, as described by Olver [Ol2].
Pick a, b ∈ C, a3 6= b3. From the identity:

d

dz

[
bAi(az)Ai′(bz)− aAi(bz)Ai′(az)

]
= z(b3 − a3)Ai(az)Ai(bz),

we conclude that:

∫ 1

0

tAi(at)Ai(bt) dt

=
1

a3 − b3
[
bAi(a)Ai′(b)− aAi(b)Ai′(a)

]
− b− a
a3 − b3Ai(0)Ai′(0).

Similarly,

∫ 1

0

Ai′(at)Ai′(bt) dt

=
1

a3 − b3
[
a2Ai(a)Ai′(b)− b2Ai(b)Ai′(a)

]
− a2 − b2
a3 − b3Ai(0)Ai′(0).

Suppose that a = reiθ is a nonreal zero of Ai(z) or of Ai′(z). Then so is b = re−iθ

and from these formulæ, we get:

(A.2.15)

∫ 1

0

tAi(at)Ai(bt) dt = −r−2 sin θ

sin 3θ
Ai(0)Ai′(0),

(A.2.16)

∫ 1

0

Ai′(at)Ai′(bt) dt = −r−1 sin 2θ

sin 3θ
Ai(0)Ai′(0).

The integrals on the left are positive and Ai(0)Ai′(0) is negative. This implies that
both sin θ/ sin 3θ and sin 2θ/ sin 3θ must be positive and finite. This is not possible
in the range |π− arg(a)| < 2π/3, a /∈ R−, so (A.2.14) holds. Together with (A.2.3)
this gives:

Theorem A.2.17. All the zeroes of Ai(z) and Ai′(z) are real and negative.

Given that all the zeroes of Ai(z) are real and negative, say:

(A.2.18) Ai(sj) = 0, 0 > s0 > s1 · · · → −∞,
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Figure A.3

we can write:

(A.2.19) χ(z) = (1/2i) log

(
A+(z)

A−(z)

)

for z in the plane C slit along the two rays starting from e±2πi/3s0; see Figure A.3.
Also we shall denote by K the region:

K =
{
z ∈ C; Re(z) ≤ 1

2
Re(e2πi/3s0)

}
.

Now, with

(A.2.20) F (z) = [A+(z)A−(z)]1/2,

we have

(A.2.21) A±(z) = F (z)e±iχ(z)

The asymptotic expansion (A.1.4), (A.1.5) gives:

(A.2.22) F (z) ∼ (−z)−1/4
∞∑

j=0

fj(−z)−3j/2, z ∈ K, |z| → ∞, f0 =
1

2
√
π

and also for z ∈ K,

(A.2.23) χ(z) ∼ 2

3
(−z)3/2

∞∑

j=0

ej(−z)−3j/2, e0 = 1.
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Thus (A.2.21), (A.2.22), (A.2.23) can be thought of as an asymptotic expansion
for A±(z) which is in many ways more convenient than (A.1.4), (A.1.5). Note that
(A.0.5) implies that

(A.2.24) F (z) and χ(z) are real for z ∈ R ∩ K.

The definition (A.2.19) is equivalent to:

(A.2.25)
A+(z)

A−(z)
= e2iχ(z).

Differentiating and using the Wronskian relation (A.2.2) gives

(A.2.26) 2χ′(z) =
c0

F (z)2
.

In terms of (A.2.21) a very convenient formula can be obtained for Ai(z) for
z ∈ K from (A.0.4). Namely,

(A.2.27) Ai(z) = 2F (z) cos
(
χ(z)− 1

3
π
)

= 2F (z) sin
(
χ(z) +

1

6
π
)
.

Since F is non-vanishing in K the zeroes of Ai(z) must occur at the points where
χ(sj) + π/6 is an integral multiple of π. In view of (A.2.23) and (A.2.24) this
gives good asymptotic control over the behaviour of the zeroes of Ai(z). Also, the
asymptotic behaviour of Ai(z) as |z| → ∞ is elucidated by (A.2.27).

§A.3: Airy quotients

Next we record certain identities for Airy quotients. Formula (A.2.21) gives

(A.3.1)

Φ±(z) =
A′

±(z)

A±(z)
=
F ′(z)

F (z)
± iχ′(z)

=
F ′(z)

F (z)
± i

2

c0
F (z)2

.

where the first equation is the definition of Φ±(z). By (A.2.24) for real z this
decomposes Φ±(z) into its real and imaginary parts. Differentiating (A.2.27) leads
to:

(A.3.2)

Φi(z) =
Ai′(z)

Ai(z)
=
F ′(z)

F (z)
+ χ′(z) cot

(
χ(z) +

1

6
π
)

=
F ′(z)

F (z)
+

1

2

c0
F (z)2

cot
(
χ(z) +

1

6
π
)
.
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Using the Wronskian relation

(A.3.3) A′
±(z)Ai(z)− Ai′(z)A±(z) = c±,

one obtains

(A.3.4) Φ±(z)− Φi(z) = c±[A±(z)Ai(z)]−1.

From the formulæ above

(A.3.5)
A±(z)Ai(z) = ω∓1F (z)2

[
e±2iχ(z) + ω±2

]

= ω±1F (z)2
[
e±2i(χ(z)−π/3) + 1

]
.

Directly from Airy’s equation the Airy quotients satisfy a nonlinear differential
equation of first order:

(A.3.6) Φ′(z) = z − Φ(z)2,

for Φ(z) = Φi(z) or Φ±(z). Note that

(A.3.7) Φ±(z) = ω∓2Φi(ω∓2z).

The poles of Φ+(z) lie on the ray e−iπ/3[−s0,∞) which is contained in the fourth
quadrant. The poles of Φ−(z) lie on the ray eiπ/3[−s0,∞) in the first quadrant.
Outside any conic neighborhood of the respective rays there are asymptotic expan-
sions:

(A.3.8) Φ±(z) ∼ z1/2
∞∑

j=0

b±j z
−3j/2, |z| → ∞.

In particular, (A.3.8) holds for Φ+(z) for z in the upper half plane {Im z ≥ 0}, and
a similar expansion holds for Φ−(z) in the lower half plane since

(A.3.9) Φ+(z) = Φ−(z).

The first constant is:

(A.3.10) b±0 = 1.

We wish to consider the manner in which Φ+(z) maps the upper half plane into
itself. The asymptotic expansion (A.3.8) shows that for |z| large, and Im z ≥
0, Φ+(z) lies in an arbitrarily small conic neighborhood of the first quadrant,
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Re Φ+ ≥ 0, Im Φ+ ≥ 0. In fact examination of (A.3.1) shows that for |z| large,
Im z ≥ 0, Re Φ+, Im Φ+ > 0. Indeed as |z| → ∞ in a conic neighborhood of R−,

(A.3.11)
F ′(z)

F (z)
∼ z−1

∞∑

j=0

αjz
−3j/2, F (z)−2 ∼ (−z)1/2

∞∑

j=0

gjz
−3j/2,

and as |z| → ∞ in a conic neighborhood of R+,
(A.3.12)

F ′(z)

F (z)
∼ z1/2

∞∑

j=0

α̃jz
−3j/2, F (z)−2 ∼ z−1/2 exp

(
−4

3
z3/2

) ∞∑

j=0

g̃jz
−3j/2,

where all the coefficients are real.
Next it will be shown that the closed upper half plane

C
+ = {z ∈ C; Im(z) ≥ 0}

is mapped by Φ+ into the open first quadrant

Q1 = {0 < arg(Φ) <
1

2
π; |Φ| > 0}.

Since F (s) is real for real s, (A.3.1) implies that Im Φ+(s) > 0 for s ∈ R. Thus,
Im(Φ+(z)) is positive for z ∈ R and near infinity in C+. Hence it must be strictly
positive for z ∈ C+ by the maximum principle, i.e.,

(A.3.13) Im Φ+(z) > 0, z ∈ C
+.

Next consider the real part of Φ+(z). Certainly Re Φ+(z) > 0 outside a compact
subset K ⊂ C+. Let z0 = x0 + iy0 be a point with maximal imaginary part at
which Re Φ+(z) vanishes. From the differential equation (A.3.6), Im Φ′

+(z0) = y0,
so if y0 > 0,

Re Φ+(z0 + it) = −y0t+ O(t2) < 0,

if t > 0 is small. This contradicts the maximality of y0, so the only possibility left
is y0 = 0. At such a point, Φ′

+(z0) would be real, by (A.3.6) but since were have
already shown Re Φ+(z) ≥ 0 this implies that Φ′

+(z0) = 0. Near such a zero of
order two or higher the image of a half disc in C+ cannot satisfy Re Φ+(z) ≥ 0, so
this possibility is eliminated; we have proved that:

(A.3.14) Re Φ+(z) > 0, z ∈ C
+.

One consequence of (A.3.14) and (A.3.1) is:

(A.3.15) F ′(s) > 0, s ∈ R,
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which is equivalent to

(A.3.16) A+(s)A−(s) = |A(s)|2 is monotone increasing for s ∈ R.

From (A.2.26) it is clear that χ(s) is monotone for s ∈ R. Again by (A.3.1)

(A.3.17)
d Im Φ+(s)

ds
< 0, s ∈ R,

so

(A.3.18) Im Φ+(s) is monotone decreasing for s ∈ R.

This shows that the curve R 3 s −→ Φ+(s), has no self-intersections and that its
image in the Riemann sphere has winding number one about an interior point of
Φ+(C+). This completes the proof of:

Theorem A.3.19. Φ+ : C+ −→ Q1 is a biholomorphism onto its image, which is
contained in the open first quadrant.

Assertions (A.3.13) and (A.3.14) were proved in [MeS2]. The fact that Re Φ+(s) >
0, Im Φ+(s) > 0 for s ∈ R was used by Imai and Shirota [ImSh], who show that
this is equivalent to the monotonicity (A.3.16) of |A+(s)|2 and refer to Miller [Mil]
for this result. Since |A+(s)|2 = Ai(s)2 + Bi(s)2, the graph on [Mi1], page B16
is consistent with (A.3.16) but an explicit proof does not seem to be given there.
We present here a graph of the curve Φ+(s) in C, as s runs over R. See Fig. A.4.
This graph was produced by numerically integrating the ODE (A.3.6) for Φ+, with
initial data

Φ+(0) = −e−2πi/3 31/3 Γ(2/3)

Γ(1/3)
= −e−2πi/3

√
π22/331/3

Γ(1/6)
.

Note how rapidly the curve approaches the x-axis, which is to be expected, given
(A.3.1) and the behavior (A.3.12) of F (s)−2 = |A+(s)|−2 as s → +∞. Of course,
these formulas make it clear that Φ+(s) has positive imaginary part for s ∈ R; this
is the simplest part of Theorem A.3.19.

We next consider how close Φ+(z) is to z1/2 by examining the difference between
Φ+(z)2 and z. From (A.3.6)

(A.3.20) Φ+(z)2 = z − Φ′
+(z),

so

(A.3.21) Φ+(z)2 ∼ z +
∞∑

j=0

γjz
−1/2−3j/2, as |z| → ∞.

Combining (A.3.13), (A.3.14) with this and Theorem A.3.19 we have:
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Figure A.4

Corollary A.3.22. Φ2
+ is biholomorphic from C

+ to its image, which is contained
in the interior of C+.

Note from (A.3.12) that for some positive constant C,

Im Φ+(s)2 ≥
{
C(1 + |s|)−3/2, s ≤ 0,

C exp(−(4/3)s3/2), s ≥ 0.

Together with Corollary (A.3.22) this implies:

(A.3.23) Im Φi(x+ iy)2 ≥
{
C(1 + |x|)−3/2 + Cy, y ≥ 0, x ≤ 0,

C exp(−(4/3)x3/2) + Cy, y ≥ 0, x ≥ 0.

Since Re Φi(x+ iy)2 = x+ O((1 + |x|2 + |y|2)−1/4) we therefore have:

(A.3.24) Re Φ+(x+ iy) ≥ C(1 + |x|)−1/2
(
y + (1 + |x|)−3/2

)
, if y ≥ 0, x ≤ 0,

and

(A.3.25) Im Φ+(x+ iy) ≥ C(1 + |x|)−1/2
(
y + exp(−(4/3)x3/2)

)
if y ≥ 0, x ≥ 0.

We next turn to the examination of Φi(z) = Ai′(z)/Ai(z). Note that Φi(s) is
real for real s. In fact, Φi(s) > 0 for s > σ0, where

(A.3.26) {σj ; j = 0, 1, 2, . . .} = {σ;Ai′(σ) = 0}.
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Thus, Φi(σj) = 0 and Φi(z) has a simple pole at each of the zeroes, z = sj, of
Ai(z). Note that

(A.3.27) 0 > σ0 > s0 > σ1 > s1 > · · · .

For any fixed δ > 0, the behaviour of Φi(z) on the set

(A.3.28) Aδ = {z ∈ C; | arg(z)| ≤ π − δ}

is rather obvious. From the expansion (A.1.3), (A.1.4)

(A.3.29) Φi(z) ∼ z1/2
∞∑

j=0

γjz
−3j/2, |z| → ∞ in Aδ .

Since Φi(s) is real and positive for s ∈ R+, all the γj in (A.3.29) are real with
γ0 > 0. From (A.3.7) and Theorem A.3.19 we obtain:

Proposition A.3.30. Φi maps Aπ/3 biholomorphically onto a domain in {| arg(z)| <
π/3}.

§A.4: Behaviour of Φi near (−∞, 0]

It remains to examine Φi(z) in detail in a conic neighborhood of the negative
real axis. To do so it is useful to obtain formulae parallel to (A.2.21) and (A.2.27),
using the functions:

(A.4.1) G(z) = [A′
+(z)A′

−(z)]1/2, ψ(z) =
1

2i
log

[
A′

+(z)

A′
−(z)

]
,

for z in the complex plane slit along two rays connecting, respectively, the zeroes
of A′

+(z) and those of A′
−(z); cf. Figure A.3. Then

(A.4.2) A′
±(z) = G(z)e±iψ(z),

and

(A.4.3) Ai′(z) = 2G(z) sin
(
ψ(z) +

1

6
π
)
.

Since A′
+(z) = A′

−

(
z
)
,

(A.4.4) G, ψ : R −→ R.

Differentiating the asymptotic expansion (A.1.3), (A.1.4), rotated to apply to
A′

±(z) we deduce that:

(A.4.5) G(z) ∼ (−z)1/4
∞∑

j=0

gj(−z)−3j/2
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and

(A.4.6) ψ(z) ∼ 2

3
(−z)3/2

∞∑

j=0

ej(−z)−3j/2

as |z| → ∞ in Re z ≤ 0; cf. (A.2.22), (A.2.23).
In place of (A.2.26) we obtain

(A.4.7) 2ψ′(z) = −c0
z

G(z)2
.

Unlike χ(s), which is monotonic on the real line, ψ(s) is monotonic increasing for
s < 0 and monotonic decreasing for s > 0. In fact in s < 0, ψ(s) is closely related to
χ(s). From (A.2.27) and (A.4.3) and noting that the zeroes of Ai(s) and Ai′(s) are
interlaced, it follows that χ(s)+π/6 and ψ(s)+π/6 alternately assume values which
are integer multiples of π, so the difference must be bounded. In fact, (A.2.23),
(A.4.6) together give:

(A.4.8) χ(z)− ψ(z) ∼ 1

2
π −

∞∑

j=1

σjz
−3j/2,

as |z| → ∞ in {Re z ≤ 0}.
Differentiating (A.4.2) and proceeding as in the derivation of (A.3.1) yields

(A.4.9) Φ±(z)−1 =
1

z

G′(z)

G(z)
∓ c0i

2
G(z)2.

Then, (A.3.14) and (A.3.15) imply that Φ−1
+ (s) lies in the first quadrant, so:

(A.4.10) G′(s) has the same sign as s, s ∈ R.

Comparison of (A.3.1) and (A.4.9) also gives

(A.4.11) G2 =
(

1
2c0

)2
F−2 + (F ′)2.

To resume the discussion of the behaviour of Φi(z) for z in a conic neighborhood
of R−, consider (A.2.27) and (A.4.3), which show:

(A.4.12) Φi(z) =
G sin(ψ + π/6)

F sin(χ+ π/6)
.

From the definitions of F and G,

(A.4.13)
G

F
(z) = [Φ+(z)Φ−(z)]1/2.
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Figure A.5

The formula (A.4.12) can be used to describe Φi(z) in the set

(A.4.14) D =
{
z ∈ C; Re(z) ≤ −C, 0 ≤ Im(z) ≤ C(1 + |z|)−1/2

}
.

Divide D as follows. Pick the half-way points between the zeroes and the poles
of Φi(z),

αj =
1

2
(σj + sj), βj =

1

2
(sj + σj+1), j ≥ 0.

Then consider the parts:

(A.4.15)
Ej = {z ∈ D; βj ≤ Re z ≤ αj}, j ≥ 0,

Fj = {z ∈ D;αj ≤ Re z ≤ αj−1}, j ≥ 1,

as illustrated in Figure A.5.
The lower boundary of Ej is roughly centered at sj , that of Fj at σj . Note that

sj − sj+1 ∼ σj − σj+1 ∼ c(−sj)−1/2.

By (A.2.27) and (A.4.3), χ + π/6 maps [sj+1, sj] to [−(j + 1)π,−jπ]. Thus the
map:

χj = χ+
1

6
π + jπ

maps sj to the origin. From the asymptotic expansion for χ, it follows that

χj(Ej) ⊂ R,



210

where R is a rectangle in the upper half plane with base on the real axis centered at
the origin. In fact for large j each χj has inverse, κj , holomorphic in a neighborhood
of R with range containing Ej. Set

(A.4.16) vj(z) = j−1/3Φi
(
κj(z)

)
.

From (A.4.12), (A.4.13), the asymptotic expansions (A.4.6) and (A.4.8), it follows
that as j →∞, for some constant v,

(A.4.17) vj(z)→ v tan(z)

uniformly on R. Similar arguments apply to the function ψ defined on Fj , their
normalizations ψ + (1/6 + j)π with inverses λj so that the functions:

(A.4.18) wj(z) =
j1/3

Φi
(
λj(z)

) → w tan(z),

uniformly on R for some constant w.
From (A.4.16) it follows that, for large j,

(A.4.19) |Φi(z)| ≤ cj1/3 ≤ C(1 + |z|)1/2, z ∈ Fj ,

and

(A.4.20) Im Φi(z) ≥ cj1/3 Im(j1/3z) ≥ C(1 + |z|) Im z, z ∈ Fj,

with the constants positive and independent of j. Simlarly from (A.4.17),

(A.4.21) |Φi(z)|−1 ≤ cj−1/3 ≤ C(1 + |z|)−1/2, z ∈ Ej

and

(A.4.22) Im Φi(z)−1 ≥ cj−1/3 Im(j1/3z) = C Im z, z ∈ Ej .

These last inequalities give in particular:

(A.4.23) |Φi(z)| ≤ C| Im(z)|−1, z ∈ Ej,

and

(A.4.24) Im Φi(z) ≥ Cj1/3 ≥ C(1 + |z|)1/2, z ∈ Ej.

These inequalities have been proved uniformly for large j, but of course are simple
to demonstrate for any finite value of j so hold uniformly, with different constants,
for all j.
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Combining (A.4.19) and (A.4.23) gives

(A.4.25) |Φi(z)| ≤ C| Im(z)|−1, z ∈ D,

and combining (A.4.20) and (A.4.24) gives:

(A.4.26) Im Φi(z) ≥ C
(
1 + |z|

)
| Im(z)|, z ∈ D.

Note also that

(A.4.27) Im{Φi(z)−1} ≥ C Im z, z ∈ D.

It is useful to get similar bounds for the Airy function Ai(z) and its derivative
Ai′(z), for z ∈ D. Indeed, starting from (A.2.27) and using reasoning similar to
that in the derivation of (A.4.25) and (A.14.26) one finds that:

(A.4.28) ImAi(z) ≥ C(1 + |z|)1/4 Im z, z ∈ D,

and

(A.4.29) |Ai(z)−1| ≤ C(1 + |z|)−1/4| Im(z)|−1, z ∈ D.

Further estimation of the same type leads to

(A.4.30) ImAi′(z) ≥ C(1 + |z|)3/4 Im z, z ∈ D,

and

(A.4.31) |Ai′(z)−1| ≤ C(1 + |z|)−3/4| Im(z)|−1, z ∈ D.

The region D used above is particularly convenient for such estimates but there
is in fact no difficulty in extending the same type of argument to a larger region
such as:

(A.4.32) D# = {z ∈ C; Re z ≤ 0, 0 ≤ Im z ≤ C}.

We leave to the reader the details, and only note that the estimate Im z ≤ C(1 +
|z|)−1/2 valid in D can no longer be used, so one arrives at estimates such as:

(A.4.33) |Φi(z)| ≤ C
(
| Im(z)|−1 + |z|1/2

)
, z ∈ D#.

Finally, we mention estimates of Φi(z) and Φi(z)−1 on

(A.4.34) U
# = {z ∈ C : Im z ≥ B},

given B > 0, which follow from (A.3.29) for z ∈ U# ∩ Aδ and from (A.4.12) and
the analysis of its ingredients, via (A.4.13) and (A.4.6)–(A.4.8), for z ∈ U# \ Aδ.
We have

(A.4.35) |Φi(z)| ≤ C|z|1/2, |Φi(z)−1| ≤ C|z|−1/2, z ∈ U
#.
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Appendix B: Scattering of waves by a sphere,

and harmonic analysis on spheres

In this appendix we will examine a very classical boundary problem for the wave
equation for u(t, x),

(B.0.1)

(
∂2

∂t2
−∆

)
u = 0,

namely that (B.0.1) hold for t ∈ R, x ∈ Rn\B1, B1 being the unit ball in Rn

centered at the origin, and that the Dirichlet boundary condition

(B.0.2) u
∣∣
R×Sn−1 = f ∈ E ′(R× Sn−1).

hold at the boundary. Thus we are considering the problem of scattering of waves
by the unit sphere Sn−1. We impose the usual outgoing condition

(B.0.3) u = 0 for t << 0.

There is a large literature on this problem, including the paper of Watson [Wat2],
and much more recent papers, such as Nussensweig [Nus], and the book of Bowman,
Senior, and Uslenghi [BoSU], where the reader can find many more references. We
will restrict our attention to odd n, the main physical example being scattering of
waves in R

3 by the two dimensional sphere.
Here as in these other places, we use separation of variables, writing the Laplacian

∆ on Rn in polar coordinates

(B.0.4) ∆v = r−2

[
r2
∂2

∂r2
+ (n− 1)r

∂

∂r
+ ∆S

]
v,

where ∆S denotes the Laplace operator on the unit sphere Sn−1.
We will reduce the boundary problem (B.0.1)–(B.0.3) to a problem in harmonic

analysis on the boundary R× Sn−1, by the traditional use of Bessel functions. We
combine this use of classical analysis with a more contemporary approach to such
harmonic analysis, largely avoiding the use of special function theory in examining
the properties of eigenfunction expansions in terms of spherical harmonics. We
will use some basic properties of solutions to hyperbolic equations as a tool in this
harmonic analysis. Such an approach to scattering by a sphere has been discussed
by Taylor [Tay5], Cheeger and Taylor [CT], and Melrose and Taylor [MeT1].

§B.1: Analysis via Bessel’s equation

If we take the partial Fourier tansform with respect to t,

(B.1.1) v(x, λ) =

∫ ∞

−∞

u(t, x)eiλt dt, g(x, λ) =

∫ ∞

−∞

f(t, x)eiλt dt,
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the system (B.0.1)–(B.0.2) becomes the reduced wave equation

(∆ + λ2)v = 0 for |x| > 1,(B.1.2)

v
∣∣
Sn−1 = g(x, λ).(B.1.3)

The outgoing condition (B.0.3) could be translated to a condition on g(λ) for Imλ ≥
0, via the Paley-Wiener theorem. Also it could be characterized by the Sommerfeld
radiation condition:

(B.1.4) r(n−1)/2
(∂v
∂r
− iλv

)
−→ 0 as r →∞,

Now, by (B.0.4), the reduced wave equation (B.1.2) in polar coordinates is

(B.1.5) r2
∂2v

∂r2
+ (n− 1)r

∂v

∂r
+ (λ2r2 + ∆S)v = 0.

This can be transformed into Bessel’s equation

(B.1.6) y′′(t) +
1

t
y′(t) +

(
1− ν2

t2

)
y(t) = 0

by the change of variable

v(r) = rαy(λr), α = −n− 2

2
.

The outgoing condition requires that we use the Hankel function H
(1)
ν (z). We get

(B.1.7) v(x, λ) = r−(n−2)/2 H
(1)
ν (λr)

H
(1)
ν (λ)

g(x, λ).

Here we have set

(B.1.8) ν =
(
−∆S +

(n− 2)2

4

)1/2

.

Thus ν is a self adjoint operator on functions on the sphere Sn−1; it is an elliptic
operator in OPS1. Thus in (B.1.7) on the right side we have a family of operators,
operating on a family of distributions on Sn−1, parametrized by λ. If we take the
inverse Fourier transform in λ, still using polar coordinates x = rω, ω ∈ Sn−1, we
have for the solution u of (B.0.1)–(B.0.3),

(B.1.9) u(t, rω) = r−(n−2)/2 H
(1)
ν (rDt)

H
(1)
ν (Dt)

f(t, ω).
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§B.2: The Neumann operator and Hankel quotients

Before we attack the formula (B.1.9) directly, we will use the representation for
the solution to (B.0.1)–(B.0.3) given by Kirchhoff’s formula:

(B.2.1) u(t, x) =

∫

R×Sn−1

[
u(s, y)

∂G

∂ν
(t−s, x−y)− ∂u

∂ν
(s, y)G(t−s, x−y)

]
ds dS(y),

where G(t, x) is the free space fundamental solution to the wave equation. Recall
that, in case n = 3, we have

(B.2.2) G(t, x) = (4πt)−1δ(|x| − t).

As emphasized in Chapter 8 for the wave equation with general convex or concave
boundary, this formula induces us to study the Neumann operator N, defined on
f ∈ E ′(R× Sn−1) by

(B.2.3) Nf =
∂u

∂ν

∣∣∣
R×Sn−1

,

where u satisfies (B.0.1)–(B.0.3). Given a good analysis of N , the formula (B.2.1)
is an effective tool in providing an analysis of the solution u. Now, in our case here
of a spherical boundary, the formula (B.1.9) gives

(B.2.4) N = Dt
H

(1)′
ν (Dt)

H
(1)
ν (Dt)

− n− 2

2
.

Thus we are required to study the operator F (ν,Dt), where

(B.2.5) F (µ, λ) = λ
H

(1)′
µ (λ)

H
(1)
µ (λ)

− n− 2

2
.

In particular we want to understand the Hankel quotient

(B.2.6) Q(µ, λ) =
H

(1)′
µ (λ)

H
(1)
µ (λ)

.

We begin by listing a few elementary properties of Hankel functions, which can
be found in the book of Watson [Wat2]; see also Lebedev [Leb], or Olver [Ol1]. The

Hankel function H
(1)
µ (λ) is a solution to Bessel’s equation

(B.2.7) y′′(λ) +
1

λ
y′(λ) +

(
1− µ2

λ2

)
y(λ) = 0
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and is given λ in the upper half plane, 0 < arg λ < π, by the integral formula

(B.2.8) H(1)
µ (λ) =

2e−πiµ

i
√
πΓ(µ+ 1/2)

(λ
2

)µ ∫ ∞

1

eiλt(t2 − 1)µ−1/2 dt,

if Re µ > −1/2. In our case µ takes only positive values, but one can analytically
continue to arbitrary µ by the identity

(B.2.9) H(1)
µ (λ) = e−πiµH

(1)
−µ(λ).

Since H
(1)
µ solves (B.2.7), it is holomorphic in λ on the logarithmic covering surface

A of C \ 0. For the principal value, it is traditional to cut the complex plane along
the negative imaginary axis, so −π/2 < arg λ < 3π/2. An expansion about λ = 0
is given as follows. Another solution to (B.2.7) is the Bessel function Jµ(λ), with
expansion

(B.2.10) Jµ(λ) =

∞∑

k=0

(−1)k

Γ(k + 1)Γ(k + µ+ 1)

(λ
2

)µ+2k

.

When µ is not an integer, we have the identity

(B.2.11) H(1)
µ (λ) =

J−µ(λ)− e−πiµJµ(λ)

i sinπµ
.

Thus, for µ /∈ Z, H
(1)
µ (λ) has an expansion about λ = 0 of the form

(B.2.12) H(1)
µ (λ) = λ−µ

∞∑

k=0

ak(µ)λ2k + λµ
∞∑

k=0

bk(λ)λ2k.

For m ∈ Z, one can let µ→ m in (B.2.11) and obtain
(B.2.13)

H(1)
m (λ) = λ−m

∞∑

k=0

αk(m)λ2k + (log λ)λm
∞∑

k=0

βk(m)λ2k + λm
∞∑

k=0

γk(m)λ2k.

Note that, precisely when µ = m + 1/2, m ∈ Z, all the exponents in (B.2.12)
differ by integers, so, only in that case, we have

(B.2.14) H
(1)
m+1/2(λ) = λ−m−1/2

∞∑

k=0

ck(m)λk.

In fact, these Hankel functions have a simpler structure, and with the notation

(B.2.15) hm(λ) =
(πλ

2

)1/2

H
(1)
m+1/2(λ),
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one has

(B.2.16)

hm(λ) = −i(−1)m
( d

λdλ

)m(eiλ
λ

)

= (iλ)−m−1 eiλ
∞∑

k=0

(k +m)!

k!(m− k)!

( i
2

)k
λm−k

= λ−m−1eiλ pm(λ),

where pm(λ) is a polynomial of order m in λ. Since all the eigenvalues of the

operator ν =
(
−∆S + 1

4
(n−2)2

)1/2
on an even dimensional sphere are half integers,

special properties of H
(1)
m+1/2(λ) have special implications for scattering of waves in

R
n by a sphere, when n is odd, as we will see.
To understand the Hankel quotient (B.2.6), we need to understand the zeros of

H
(1)
µ (λ). For µ ∈ R, H

(1)
µ (λ) has no zeros in the upper half plane 0 ≤ arg λ ≤ π.

In fact, by virtue of the identity

(B.2.17) H(1)
µ (λ) =

2

πi
e−πiµ/2Kµ(−iλ),

this fact follows from a result we proved in Appendix A, Proposition A.2.4. It is
also known (see Watson) that, on the region

(B.2.18) Ao =
{
λ ∈ C \ 0 : −π

2
≤ arg λ <

3π

2

}
,

the plane slit along the negative imaginary axis, for µ > 0, the number of zeros of

H
(1)
µ (λ) is the even integer closest to µ−1/2, unless µ = m+1/2, when the number

of zeros (by formulas (B.2.15) and (B.2.16)) is m. To reiterate, all these zeros in Ao

of H
(1)
µ (λ) lie in the lower half plane.

Now the Hankel quotient (B.2.6) is seen to be meromorphic on (µ, λ) ∈ C×A, and
its restriction to R×Ao is holomorphic for λ in the upper half plane, 0 ≤ arg λ ≤ π.
Q(µ, λ) has poles where H

(1)
µ (λ) = 0, all simple since (∂/∂λ)H

(1)
µ (λ) 6= 0 at a zero.

For µ = m+ 1/2, the restriction of Q(m+ 1/2, λ) to λ ∈ Ao actually extends to a
meromorphic function on λ ∈ C, and (B.2.15), (B.2.16) give

(B.2.19) Q
(
m+

1

2
, λ

)
= −

(
m+

1

2

)
λ−1 + i+

p′m(λ)

pm(λ)
,

where pm(λ) is the polynomial of degree m defined by (B.2.16). Thus

(B.2.20) λQ
(
m+

1

2
, λ

)
= iλ−

(
m+

1

2

)
+ λ

p′m(λ)

pm(λ)

is holomorphic in the upper half plane Imλ ≥ 0 and also in a horizontal strip about
the real axis. As we see from (B.2.12) and (B.2.13), if µ 6= m+ 1/2 for any integer
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m,Q(µ, λ) cannot be continued as a single valued meromorphic function across the
branch cut {−ir : r ≥ 0}, not even in any neighborhood of λ = 0.

If ζml, . . . ζmm denote the zeros of H
(1)
m+1/2(λ) in Ao, which are hence the poles

of λQ(m+ 1/2, λ), we have

(B.2.21) λQ
(
m+

1

2
, λ

)
= iλ−

(
m+

1

2

)
+ λ

m∑

j=1

(λ− ζmj)−1.

Now it is known that, not only is Im ζmj always negative, but there is a constant
C > 0, independent of m, such that

(B.2.22) Im ζmj ≤ −2C(m+ 1)1/3,

while one also has

(B.2.23) C1m ≤ |ζmj| ≤ C2m, m ≥ 1.

Indeed, the asymptotic behavior of ζmj for large m has been evaluated. See
Abramowitz and Stegun [AbSt], p. 441, and references given there.

The fact that λQ(m + 1/2, λ), given by (B.2.21), is holomorphic in the strip
|Imλ| ≤ C implies the familiar and important principle that there is local exponen-
tial decay of solutions to (B.0.1)–(B.0.3) for odd n. In fact, we claim that, given a
delta function δo,ωo

on R× Sn−1, n− 1 even,

(B.2.24) Nδo,ωo
(t, x) = DtQ(ν,Dt)δo,ωo

− n− 2

2
δo,ωo

is exponentially decreasing as t −→ ∞, together with all derivatives. The partial
Fourier transform with respect to t is given by

∫ ∞

−∞

eiλtNδωo
(t, x)dt = λQ(ν, λ)δωo

− n− 2

2
δωo

.

On Sn−1 for n− 1 even, all the eigenvalues of ν are half integers (we will include
a demonstration of this fact near the end of the appendix), so the results (B.2.19),
(B.2.20) on λQ(m + 1/2) apply. To get such asserted decay of (B.2.24) , we need

to estimate the derivatives Dj
λλQ(m+ 1/2, λ) for |Imλ| ≤ B. By (B.2.21)–(B.2.23),

we have, for j ≥ 2,

(B.2.25)

∣∣∣Dj
λ λQ

(
m+

1

2
, λ

)∣∣∣ ≤ Cj
(
1 + |λ|

) m∑

j=1

(
|λ− Re ζmj |+ (m+ 1)1/3

)−j

≤ C ′
jm

(
1 + |λ|

)(
|λ|+m+ 1

)−j/3
, (???)

for |Imλ| ≤ B. From this inequality, the asserted exponential decay of (B.2.24) and
all its derivatives is a simple consequence. Local exponential decay of solutions to
(B.0.1)–(B.0.3) for n odd follows from this fact and the Kirchhoff formula (B.2.1).
It also follows from (B.2.25) that Nδo,ωo

(t, x) is C∞ for t 6= 0. Later we will see that
it is C∞ except at t = 0, x = ωo, and in fact N will be seen to be a pseudodifferential
operator. Of course, this property of N is a special case of the general results proved
in Section 8.
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§B.3: Microlocal study of the Neumann operator

We can use the exponential decay as t → ∞, established above, to transfer our
analysis from the operator N on R × Sn−1 to such an operator on the compact
manifold S1 × Sn−1, as follows. Suppose, in (B.0.1)–(B.0.3), f has support on
|t| < T . Then, by local exponential decay, the sum

(B.3.1)
∞∑

j=−∞

u(t+ 2jT, x)

is convergent, and its normal derivative, on R× Sn−1, is periodic of period 2T , so
it can be considered as a distribution on S1 × Sn−1, with S1 = R/2TZ. Thus we
have defined the operator

(B.3.2) N : D′(S1 × Sn−1) −→ D′(S1 × Sn−1)

with the formula (B.2.4), (B.2.5), where now Dt : D′(S1)→ D′(S1).
We next intend to reduce the analysis of the Neumann operator N to the study

of the Hankel quotient Q(µ, λ) on some conic neighborhood of |λ| = |µ|. In order to
accomplish this, we will use an elementary property of the operator N, applied to
f ∈ E ′(R × Sn−1). Namely, if WF (f) is disjoint from the subset of T ∗(R × Sn−1)
where |τ | = |ξ|, the set over which grazing rays for (B.0.1) pass, then the solution
u to (B.0.1)–(B.0.3) is given by the ordinary constructions of geometrical optics
for that part of f with wave front set in |τ | > |ξ| and by a Poisson integral for
that part of f with wave front set in |τ | < |ξ|. Thus Nf is easily analyzed as a
classical pseudodifferential operator in OPS1 applied to f , for WF (f) disjoint from
|τ | = |ξ|.

Consequently it remains only to analyze NF when WF (f) is contained in a
small conic neighborhood of |τ | = |ξ|. We claim that, for f ∈ D′(S1 × Sn−1) with
WF (f) contained in a small conic neighborhood of |τ | = |ξ|, the spectrum of f
with respect to Dt and ν = (−∆S + 1

4 (n − 2)2)1/2 is concentrated near |µ| = |λ|,
in the sense that, if Vµ,λ denotes the joint eigenspace for Dt, ν with eigenvalues
λ, µ, respectively, and P is the orthogonal projection onto any direct sum of Vµ,λ
with (µ, λ) outside a conic neighborhood of |µ| = |λ|, then Pf ∈ C∞(S1 × Sn−1).
Actually, we will take a function p(µ, λ) which belongs to S0(R2), is even in µ, and
vanishes on some conic neighborhood of |µ| = |λ|, and let

(B.3.3) Po = p(ν,Dt).

We claim that Po is a pseudodifferential operator on S1 × Sn−1 with symbol of
order −∞ on a conic neighborhood of |τ | = |ξ|. It follows from this claim that

Pof ∈ C∞(S1 × Sn−1),
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if WF (f) is contained in a sufficiently small conic neighborhood of |τ | = |x|. This
of course implies the spectrum of f is concentrated near |µ| = |λ| in the sense given
above.

We thus are motivated to make a brief study of operators of the form (B.3.3)
under the hypotheses

(B.3.4) p(µ, λ) = p(−µ, λ),

(B.3.5) p(µ, λ) ∈ Smρ,0(R2), ρ > 0.

The analysis we give here extends to a larger class of elliptic self adjoint operators
on compact manifolds. See Chapter 12 of Taylor [Tay7] for more on this, and
implications for the study of harmonic analysis on compact manifolds. Note that,
for f ∈ D′(S1 × Sn−1),

(B.3.6) p(ν,Dt)f =

∫
p̂(σ, τ)eiσν+iτDtf dσ dτ,

by the Fourier inversion formula applied to the spectral representation of the com-
muting self adjoint operators ν and Dt. By (B.3.4), p̂(σ, τ) = p̂(−σ, τ), so, using
eiσν+iτDt = eiσνeiτDt , we can rewrite (B.3.6) as

(B.3.7) p(ν,Dt)f =

∫
p̂(σ, τ) cosσν eiτDtf dσ dτ.

As is well known, if p(ν, λ) satisfies (B.3.5), then p̂(σ, τ) is C∞ away from σ =
τ = 0, and all its derivatives are rapidly decreasing as |σ| + |τ | goes to ∞. Thus,
for any ε > 0, we can write

(B.3.8) p̂(σ, τ) = p̂1(σ, τ) + p̂2(σ, τ)

with

(B.3.9) supp p̂1 ⊂ {|σ|2 + |τ |2 < ε2}, p̂2 ∈ S(R2).

Now
(B.3.10)

p2(ν,Dt) = (−1)k
(
1 + ν2 +D2

t

)−k
∫ (

1 +D2
σ +D2

τ

)k
p̂2(σ, τ)eiσν+iτDt dσ dτ,

so p2(ν,Dt) is a smoothing operator:

(B.3.11) p2(ν,Dt) : D′(S1 × Sn−1) −→ C∞(S1 × Sn−1).
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Meanwhile, since cosσν and eiτDt both enjoy finite propagation speed, we have

(B.3.12) supp (cosσν eiτDtf) ⊂ {p ∈ S1 × Sn−1 : dist (p, supp f) ≤ |σ|+ |τ |}.

It follows from (B.3.11) and (B.3.12) that

(B.3.13) sing supp p(ν,Dt)f ⊂ sing supp f.

The assumption (B.3.4) that p(µ, λ) is even in µ is necessary to derive (B.3.13).
Indeed, the operator ν itself does not satisfy this property; νδo,ωo

(t, x) is singular
on the entire surface t = 0. Note that ν is not a pseudodifferential operator on
the product manifold S1 × Sn−1; its symbol is singular on |ξ| = 0. Of course,
ν2 = −∆S + (n− 2)2/4 is a differential operator, with regular symbol.

We now show that, if p(µ, λ) satisfies (B.3.4), (B.3.5) with 1/2 < ρ ≤ 1, then we
have p(ν,Dt) ∈ OPSmρ,1−ρ. We employ the observation that

(B.3.14) p(µ, λ) = p#
(√

µ2 + λ2, λ
)
,

with

(B.3.15) p#(η, λ) ∈ Smρ,0(R2 \ 0).

Thus,

(B.3.16) p(ν,Dt) = p#(A,Dt)

with

(B.3.17) A =
(
ν2 +D2

t

)1/2
.

The advantage of (B.3.17) is that A, being the square root of an elliptic differ-
ential operator, is an elliptic pseudodifferential operator on S1 × Sn−1, belonging
to OPS1. Now we have

(B.3.18) p#(A,Dt)f =

∫
p̂#(σ, τ)eiσA+iτDtf dσ dτ.

If we write p̂# = p̂#
1 + p̂#

2 as before, we get p#(A,Dt) as a sum of a smoothing
operator and an operator which moves around the wave front set of f an arbitrarily
small amount. Hence

(B.3.19) WF p#(A,Dt)f ⊂WF f,

which refines (B.3.13). If ρ > 1/2, we can analyze (B.3.18) as a pseudodifferential
operator, as follows. For |σ| and |τ | small enough, in local coordinates on S1×Sn−1,
we can write

(B.3.20) eiσA+iτDtf(t, x) =

∫
a(σ, τ, t, x, λ, ξ)eiφf̂(λ, ξ) dλ dξ
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where a is a symbol in Smρ,1−ρ, with phase variables λ, ξ, and φ(σ, τ, t, x, λ, ξ) is
homogeneous of degree 1 in (λ, ξ), determined by the usual methods of geometrical
optics. Applying (B.3.18) gives

(B.3.21)

p#(A,Dt)f =

∫
p#(Dσ, Dτ )(aeiφ)|σ=τ=0f̂(λ, ξ) dλ dξ

=

∫
b(t, x, λ, ξ)ei(tλ+x·ξ)f̂(λ, ξ) dλ dξ,

with b(t, x, λ, ξ) ∈ Smρ,1−ρ, determined by the fundamental asymptotic expansion

lemma for pseudodifferential operators. The principal symbol of b is p#
(
a1(t, x, λ, ξ), λ

)
,

where a1 is the principal symbol of A. Note also that, if p#(η, λ) has order −∞ on
a conic neighborhood of η = αλ (α a constant) then p#(A,Dt) has order −∞ on a
conic neighborhood of the set of (t, x, λ, ξ) where a1(t, x, λ, ξ) = αλ. This is particu-
lar establishes our original claim about (B.3.3). In particular, if WFf is contained
in a small conic neighborhood of the grazing set |τ | = |ξ|, and if R(µ, λ) ∈ S0

1,0 is
supported in a conic neighborhood of |µ| = |λ|, but equal to 1 on an appropriate
conic neighborhood of |µ| = |λ|, then

(B.3.22) Nf =
[
DtQ(ν,Dt)−

1

2
(n− 2)

]
R(ν,Dt)f mod C∞.

This formula shows that we need only analyze the behavior of the Hankel quotient

Q(µ, λ) =
H

(1)′
µ (λ)

H
(1)
µ (λ)

,

for (µ, λ) in a conic neighborhood of |µ| = |λ|. Note that

(B.3.23) Q(−µ, λ) = Q(µ, λ),

and

(B.3.24) Q(µ,−λ) = Q
(
µ, λ̄

)
.

Thus it suffices to analyze Q(µ, λ) on a conic neighborhood in R2 of the ray
µ = λ > 0. This analysis proceeds from the following uniform asymptotic expansion

of the Hankel function H
(1)
µ (λ) and its derivative, valid for |µ− λ| ≤ C0|λ|. In fact,

for z in a neighborhood of 1, we have

(B.3.25)

H(1)
µ (µz) ∼ 2e−πi/3

( 4ζ

1− z2

)1/4{
A+(µ2/3ζ)µ1/3

∞∑

k=0

ak(ζ)µ−2k

+A′
+(µ2/3ζ)µ5/3

∞∑

k=0

bk(ζ)µ−2k
}
,
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(B.3.26)

H(1)′
µ (µ) ∼ 4

z
e2πi/3

(1− z2

4ζ

)1/4{
A′

+(µ2/3ζ)µ−2/3
∞∑

k=0

dk(ζ)µ
−2k

+A+(µ2/3ζ)µ4/3
∞∑

k=0

ck(ζ)µ−2k
}
.

Here A+(s) is the Airy function used in the main text. The function ζ is defined
by

(B.3.27)
2

3
ζ3/2 =

∫ 1

z

√
1− t2 dt

t
= log

[
(1 +

√
1− z2)/z

]
−

√
1− z2.

We remark that ζ is analytic in z, even at z = 1, and dζ/dz < 0 there; also, at

z = 1, ζ = 0 and (1 − z2)−1ζ = 2−
2
3 . The uniform expansions (B.3.25), (B.3.26),

and related expansions for Jµ(µz) and other Bessel functions, are among the deep-
est and most important results in the theory of Bessel functions. These results
unfortunately do not appear in the treatise of Watson, having been established
after Watson’s second edition was published. See Olver [Ol2], and references given
there, and also Abramowitz and Stegun [AbSt]. From (B.3.25) and (B.3.26) we
deduce that, for z in a neighborhood of 1,

(B.3.28) Q(µ, µz) ∼ α(z)µ1/3Φ+(µ2/3ζ)
d(z, µ) + µ−2/3Φ+(µ2/3ζ)−1c(z, µ)

a(z, µ) + µ−4/3Φ+(µ2/3ζ)b(z, µ)
,

where, as in the text,

Φ+(s) =
A′

+

A+
(s).

The amplitudes a(z, µ), . . . , d(z, µ) belong to S0
1,0(R× R), with a and d elliptic.

In particular, (B.3.28) shows that

(B.3.29) λQ(µ, λ) ∈ S1
1/3,0 on a conic neighborhood of λ = µ.

In conjunction with (B.3.22) and the discussion of the classical behavior of the
Neumann operator on distributions with wave front set disjoint from the grazing set,
this implies that N is microlocal : WF (Nf) ⊂WF (f). We can now show directly
that, microlocally near the grazing set |ξ| = |τ |, N is the sort of Airy operator
discussed in Chapter 8. One way is to note that there is an elliptic Fourier integral
operator J1 which microlocally conjugates ν to D1 = Dx1

and Dt to D2 = Dx2
,

and then, microlocally,

(B.3.30) N = J1

[
D2Q(D1, D2)− 1

2
(n− 2)

]
J−1

1 .
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By (B.3.28), microlocally D2Q(D1, D2) ∈ OPS1
1/3,0 with asymptotic expansion in

terms of the Airy quotient. We can make N look more like the Airy operators of
Chapter 8 by choosing an elliptic Fourier integral operator J2 which microlocally
conjugates ν to D1 and conjugates ζ(ν−1Dt) to D−1

1 D2. Then, microlocally, by
(B.3.28), we have

(B.3.31) N ∼ J2

[
AΦ+(D

−1/3
1 D2) + · · ·

]
J−1

2 ,

a form like that given in Chapter 8 for the Neumann operator in general, in the
diffractive case.

§B.4: The grazing ray parametrix

We can also transform the solution operator (B.1.9) for the boundary problem
(B.0.1)–(B.0.3) to the sort of Fourier-Airy integral operator which was constructed
as a parametrix in the general diffractive case, as follows. Applying the uniform

expansion (B.3.25) with µ = ν, µz = rDt, setting σ(z) = 2e−πi/3
[
ζ(z)/(1− z2)

]1/4
,

and
a(z, µ) ∼ σ(z)

∑

k≥0

ak(ζ)µ−2k, b(z, µ) ∼ σ(z)
∑

k≥0

bk(ζ)µ−2k,

we see that if WF (f) is contained in a small conic neighborhood of the grazing set,
then, on a neighborhood of the boundary we have, mod C∞,

(B.4.1)
u =

[
a(rν−1Dt, ν)A+

(
ν2/3ζ(rν−1Dt)

)

+ b(rν−1Dt, ν)A′
+

(
ν2/3ζ(rν−1Dt)

)]
A+

(
ν2/3ζ(ν−1Dt)

)−1
F1,

with
F1 = A+

(
ν2/3ζ(ν−1Dt)

)
H(1)
ν (Dt)

−1f = Lf.

Applying the expansion (B.3.25) again, with r = 1, allows us to analyze L as an
Airy operator. Indeed, we have, mod OPS−∞,

(B.4.2) L−1 = a(ν−1Dt, ν) + b(ν−1Dt, ν)Φ+

(
ν2/3ζ(ν−1Dt)

)
,

and, microlocally near the grazing set,

(B.4.3) A = a(ν−1Dt, ν) ∈ OPS−1/3, elliptic ;B = b(ν−1Dt, ν) ∈ OPS−5/3.

Thus

(B.4.4) L−1 = A+ BJ2Φ+(D
−1/3
1 D2)J−1

2 ,

or

(B.4.5) J−1
2 L−1J2 = Ã+ B̃Φ+, elliptic in OPS

−1/3
1/3,0.
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Consequently L is an Airy operator such as studied in Chapter 9. Meanwhile
the operator in (B.4.1) can be rewritten as follows. If J2 conjugates ν to D1 and
ζ(ν−1Dt) to D−1

1 D2, say it conjugates ζ(rν−1Dt) to ρ(r,D), and ν−1Dt to β(D).
Then (B.4.1) becomes

(B.4.6)
u = J2

[
a(rβ(D), D1)A+

(
D

2/3
1 ρ(r,D)

)

+ b(rβ(D), D1)A′
+

(
D

2/3
1 ρ(r,D)

)]
A+(D

−1/3
1 D2)−1J−1

2 F1,

and with

(B.4.7) F = J−1
2 F1 = J−1

2 Lf,

if

(B.4.8) J2g(x) =

∫
c(x, ξ)eiφ(x,ξ)ĝ(ξ) dξ, x ∈ Sn−1,

we have
(B.4.9)

u =

∫
eiφ(x,ξ)c(x, ξ)

[
a
(
rβ(ξ), ξ1

)
A+

(
ξ
2/3
1 ρ(r, ξ)

)

+ b
(
rβ(ξ), ξ1

)
A′

+

(
ξ
2/3
1 ρ(r, ξ)

)]
A+(ξ

−1/3
1 ξ2)−1F̂ (ξ) dξ,

which is the sort of Fourier-Airy integral operator analyzed in Chapter 5.

§B.5: The reduced Neumann operator

Going back to the partial Fourier transform with respect to t, the normal deriv-
ative at Sn−1 of the outgoing solution to the reduced wave equation

(∆ + λ2)v = 0 for |x| > 1, v
∣∣
Sn−1 = g(x),

defines what we might call the reduced Neumann operator:

(B.5.1) N(λ) : D′(Sn−1) −→ D′(Sn−1), N(λ)g =
∂u

∂ν
,

and, by (B.1.7), we have

(B.5.2) N(λ) = λQ(ν, λ)− n− 2

2
= λ

H
(1)′
ν (λ)

H
(1)
ν (λ)

− n− 2

2
.

To study families of functions of the operator ν on D′(Sn−1), we can make use
of the following analogue of (B.3.6):

(B.5.3) pλ(ν)f =

∫ ∞

−∞

p̂λ(σ)eiσνf dσ.

For many classes of functions pλ(µ), this can be analyzed qualitatively by replacing
the solution operator eiσν to the wave equation on Sn−1 by its geometrical optics
approximation, parallel to (B.3.20). However, it is also useful to know that a simple
closed form of the solution operator eiσν can be obtained. We turn to a construction
of such a formula, which was used in §2 of Cheeger and Taylor [CT].
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§B.6: Harmonic analysis on spheres

Using the representation (B.0.4) for the Laplace operator in polar coordinates,
one can write the kernel K(x1, x2) for the operator ∆−1 on Rn in polar coordinates
as

(B.6.1) (r1r2)−(n−2)/2(2ν)−1(r1/r2)ν , if r1 < r2,

where we identify operators on D′(Sn−1) with distributions in D′(Sn−1 × Sn−1).
On the other hand, we also have the explicit formula

(B.6.2)
[(n− 2)Vn−1]−1

∥∥x1 − x2

∥∥2−n

= [(n− 2)Vn−1]−1
(
r21 + r22 − 2r1r2 cos θ

)−(n−2)/2

for this kernel, using the notation xj = rjωj and θ denoting the spherical geodesic
distance between ω1 and ω2, so cos θ = ω1 · ω2. Vn−1 is the volume of Sn−1. Thus
these two expressions must be equal, for r1 < r2. Setting r1 = e−tr2, we get the
formula

(B.6.3) ν−1e−tν = 2[(n− 2)Vn−1]−1(2 cosh t− 2 cos θ)−(n−2)/2, t > 0,

for the kernel kt(ω1, ω2) of ν−1e−tν , t > 0.
Differentiating with respect to t gives the formula

(B.6.4) e−tν = V −1
n−1(2 sinh t)(2 cosh t− 2 cos θ)−n/2,

for the Poisson kernel. Now we can analytically continue these identities toRe t > 0,
and pass to the limit as Re t ↓ 0, obtaining
(B.6.5)

ν−1eitν = lim
ε↘0

2[(n− 2)Vn−1]−1
(
2 cosh ε cos t+ 2i sinh ε sin t− cos θ

)−(n−2)/2
,

and

(B.6.6) eitν = lim
ε↘0

V −1
n−12i sin t(2 cosh ε cos t+ 2i sinh ε sin t− cos θ)−n/2.

Taking real and imaginary parts yields formulas for ν−1 cos tν, ν−1 sin tν, and
also for cos tν, sin tν. From these formulas we can read off basic qualitative prop-
erties of the wave kernel on Sn−1, such as the fact that if n − 1 is odd the strict
Huygens principle holds: ν−1 sin tν and cos tν are supported on |θ| = |t|. Note that
(B.6.5) and (B.6.6) are periodic in t, of period 2π if n− 1 is odd and of period 4π if
n−1 is even, reflecting the well known fact that all the eigenvalues of ν are integers
if n − 1 is odd and half integers if n − 1 is even, a fact that can also be seen by
noting that (B.6.1) must be smooth at x1 = 0, if r2 > 0.
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We also note that the formula (B.6.4) is related to the solution operator for the
Dirichlet problem on the unit ball

(B.6.7) ∆v = 0, v = f for |x| = 1.

Indeed, with x = rω, ω ∈ Sn−1, we have, for n ≥ 2,

(B.6.8) v(x) = r−(n−2)/2+ν f(ω), r ≤ 1,

so if n ≥ 3, (B.6.4) is equivalent to the Poisson kernel for the solution to (B.6.7).
We finally remark that one can use (B.6.6) to analyze

(B.6.9) Ek = T−1

∫ T

0

e−ikT eitν dt,

with T = 2π or 4π, k an integer or half-integer, depending on whether n − 1 is
odd or even. One thus obtains formulas for the orthogonal projections onto the
various eigenspaces of ν (hence of ∆S). These formulas then lead one back to the
classical theory of spherical harmonics. For example, on S2, formula (B.6.6) applied
to (B.6.9) gives

(B.6.10) Ek+1/2 =
k + 1/2

2π2

∫ ∞

−∞

(2 cos t− 2 cos θ)−1/2ei(k+1/2)t dt,

which is equivalent to Mehler’s formula

(B.6.11) Pk(cos θ) =
1

π

∫ θ

−θ

(2 cos t− 2 cos θ)−1/2ei(k+1/2)t dt

for the Legendre polynomials. In this case, the formula (B.6.3) is equivalent to the
generating function identity

(B.6.12)
(
1 + r2 − 2r cos θ

)−1/2
=

∞∑

k=0

rkPk(cos θ), r < 1.

For more on this approach to harmonic analysis on spheres, see Chapter 4 of the
monograph [Tay11], or Chapter 8 of [Tay13].
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C: Wave front sets on bounded regions

Here we present a rough and ready definition of the wave front set of a distribu-
tion u on a bounded region Ω, as a subset of

(C.0.1) bT ∗Ω \ 0 = (T ∗Ω \ 0) ∪ (T ∗∂Ω \ 0),

where Ω is the interior of Ω and ∂Ω its boundary. The ‘wave front set’ of u will be
denoted WFb u:

(C.0.2) WFb u ⊂ bT ∗Ω \ 0.

We define this object not for all u ∈ C−∞(Ω), but for a subspace, consisting of

(C.0.3) u ∈ C∞(I, C−∞(∂Ω)),

where, locally near ∂Ω, we write Ω as a product I × ∂Ω, I = [0, 1). First we define

(C.0.4) (WFb u) ∩ (T ∗Ω \ 0) = WF u,

the usual wave front set of u on Ω. It remains to define (WFb u) ∩ (T ∗∂Ω \ 0). We
do the following. Pick (y0, η0) ∈ T ∗∂Ω \ 0. Then we say

(C.0.5) (y0, η0) /∈WFb u

provided there exists A = A(y,Dy) ∈ OPS0(∂Ω) that is elliptic at (y0, η0), such
that

(C.0.5) A(y,Dy)u ∈ C∞(Ω).

This definition appears to depend on the chioce of local splitting I × ∂Ω near
∂Ω. The following comments are in order. Suppose P is a differential operator with
coefficients in C∞(Ω) and assume ∂Ω is non-characteristic for P at each point. Then
if u ∈ C−∞(Ω) and Pu ∈ C∞(Ω), it follows that u satisfies (C.0.3) and that the
characterization (C.0.5)–(C.0.6) of (WFb u)∩ (T ∗∂Ω \ 0) is independent of choices.
For more details on this, and also more intrinsic characterizations, see [Me7] or
[Me10].
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D: Fourier integral operators with

singular phase functions

In Chapters 5 and 6 we encountered Fourier integral operators with singular
phase, of the form

(D.0.1) Au(x) =

∫
a(x, ξ)eiϕ(x,ξ)û(ξ) dξ,

where ϕ is singular, in a fashion to be discussed below. We want to derive basic
properties of these operators here.

§D.1: General set-up

We suppose that the amplitude a(x, ξ) has support in an open cone Γ with
smooth boundary; say Γ is given (locally) by γ(x, ξ) > 0, γ(x, ξ) smooth and
homogeneous of degree 0 in ξ, ∇x,ξγ(x, ξ) 6= 0 on ∂Γ. As usual we suppose ϕ(x, ξ)
is real valued and homogeneous of degree 1 in ξ, bit instead of supposing ϕ ∈
C∞(Γ \ 0), we make the following hypothesis:

(D.1.1) ϕ(x, ξ) = θ(x, ξ) + γ(x, ξ)1+aβ(x, ξ) on Γ \ 0,

where θ, β are smooth and homogeneous of degree 1 in ξ, and a ∈ (0, 1). Typically,
a = 1/2. We also assume

(D.1.2) |∇xϕ(x, ξ)| ≥ C|ξ| on Γ \ 0.

As for the amplitude in (D.1), we assume

(D.1.3) a(x, ξ) ∈ Smρ,δ is supported on γ(x, ξ) ≥ C0|ξ|−b (C0 > 0).

We can rewrite (D.0.1) in the form

(D.1.4) Au(x) =

∫
a(x, ξ)eiψ(x,ξ)û(ξ) dξ,

where ψ(x, ξ) ∈ C∞(Γ \ 0) is an inhomogeneous phase function, as follows. Let

(D.1.5) ψ(x, ξ) = θ(x, ξ) + f
(
|ξ|bγ(x, ξ)

)
|ξ|−(1+a)bβ(x, ξ),

where f ∈ C∞ and

(D.1.6) f(s) = s1+a for s ≥ C0

2
.
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Thus ψ = ϕ on the support of a(x, ξ). We see that ψ satisfies the following condi-
tions:

ψ(x, ξ), ∇xψ(x, ξ) ∈ S1
1−b,b(Γ \ 0), real valued,(D.1.7)

∇ξψ(x, ξ) ∈ S0
1−b,b(Γ \ 0),(D.1.8)

|∇xψ(x, ξ)| ≥ C|ξ| on Γ \ 0,(D.1.9)

the last condition holding at least on a conic neighborhood of ∂Γ. Note that

(D.1.10)
∇xψ(x, ξ) = ∇xθ(x, ξ) + f

(
|ξ|bγ(x, ξ)

)
|ξ|−(1+a)b∇xβ(x, ξ)

+ f ′
(
|ξ|bγ(x, ξ)

)
|ξ|−abβ(x, ξ)∇xγ(x, ξ).

The decomposition of Fourier-Airy operators naturally gives rise to operators of
the form (D.1.4) if we use the asymptotic expansion

(D.1.11) A±(z) = F (z) e±iχ(x), Re z ≤ 0,

instead of

(D.1.12) A±(z) = Ψ±(z)e∓3i(−z)3/2/2, Re z ≤ 0.

In such a case the phase function in (D.1.4) is the sum of a smooth term and the

real part of χ(ξ
−1/3
1 (ξn + iT )).

§D.2: Action on distributions

The study of operators of the form (D.1.4) with inhomogeneous phase functions
satisfying hypotheses (D.1.7)–(D.1.9) is accomplished in almost exact parallel with
the study of operators with smooth homogeneous phase functions, as we will now
see.

We show that (D.1.4) is well defined for u ∈ E ′(Rn). Let

(D.2.1) L = i−1|∇xψ|−2∇xψ · ∇x.

Then L is a first order differential operator in x with coefficients that belong to the
symbol class S−1

1−b,b, and

(D.2.2) Leiψ = eiψ.

Thus, for u ∈ E ′, v ∈ C∞
0 , we have, formally,

(D.2.3) 〈Au, v〉 =

∫∫
(Lt)k

(
v(x)a(x, ξ)

)
eiψû(ξ) dξ dx.
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Note that

(D.2.4)

Lt = −i−1|∇xψ|−2∇xψ · ∇x + i−1∇x · (|∇xψ|−2∇xψ)

=
∑

|α|=1

aα(x, ξ)Dα
x + b(x, ξ),

with

(D.2.5) aα(x, ξ) ∈ S−1
1−b,b, b(x, ξ) ∈ S−(1−b)

1−b,b .

It follows that

(D.2.6) (Lt)k =
∑

|σ|≤k

Akσ(x, ξ)Dσ
x ,

with

(D.2.7) Akσ(x, ξ) ∈ S−k(1−b)−|σ|b
1−b,b .

This makes it clear that (D.2.3) is an absolutely convergent integral if k is large
enough, provided δ < 1 in (D.1.3) and, with α(ξ) ∈ C∞

0 (Rn),

(D.2.8) Au = lim
ε→0

∫
α(εξ)a(x, ξ)eiψ(x,ξ) dξ,

so A is independent of the choice of k in (D.2.3).
This argument shows that differential operators can be brought under the inte-

gral sign:

(D.2.9)
∂

∂xj
Au =

∫ [
i
∂ψ

∂xj
a+

∂a

∂xj

]
eiψû(ξ) dξ,

etc., as is the case with ordinary Fourier integral operators.

§D.3: Wave front relation

We can also analyze the relation between WF (Au) and WF (u) along the same
lines as for ordinary Fourier integral operators. Recall that (x0, ξ0) /∈ WF (Au) if
and only if for some χ ∈ C∞

0 , χ(x) = 1 near x0,

(D.3.1) |〈χ(x)e−ix·θ, Au〉| ≤ CN |θ|−N , θ ∈ Σ,

where Σ is some conic neighborhood of ξ0. Now we have

(D.3.2)

〈χ(x)e−ix·θ, Au〉

=

∫∫∫
u(y)χ(x)a(x, ξ)eiψ(x,ξ)−iy·ξ−ix·θ dy dx dξ.
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Before we proceed with an analysis of (D.3.2), let us make some preliminary obser-
vations that will simplify the analysis. Suppose WF (u) is contained in some small
conic neighborhood U × Ω of (y0, η0). We can assume u(y) is supported near y0.
Also, since Au defined by (D.1.4) would only be altered by a smooth function, we
may as well suppose that a(x, ξ) is supported for ξ is a small conic neighborhood
of η0, and that a(x, ξ) = 0 for |ξ| < 1. Finally, without loss of generality we can
suppose u(y) is continuous. Indeed, any u ∈ E ′ can be smoothed out by a finite
degree by applying some negative power of the Laplace operator, which would be
compensated in (D.1.4) if a(x, ξ) had its order increased.

With these hypotheses, we are going to show that (D.3.1) holds on any cone Σ
with the property that, for θ ∈ Σ, ξ ∈ Ω, the phase function

(D.3.3) Φ(x, y, ξ, θ) = ψ(x, ξ)− y · ξ = x · θ

satisfies

(D.3.4) |∇xΦ|+ (|ξ|+ |θ|)|∇ξΦ| ≥ C(|ξ|+ |θ|),

that is,

(D.3.5) |∇xψ − θ|+ (|ξ|+ |θ|)|∇ξψ − y| ≥ C(|ξ|+ |θ|).

Let

(D.3.6) M =
[
|∇xΦ|2 + (|ξ|2 + |θ|2)|∇ξΦ|2

]−1[∇xΦ · ∇x + (|ξ|2 + |θ|2)∇ξΦ · ∇ξ
]
.

It follows that

(D.3.7) MeiΦ = ieiΦ.

We see that the coefficients of ∇x in M belong to S−1
1−b,b;1,0(Γ × Σ), and those of

∇ξ in M belong to S0
1−b,b;1,0(Γ× Σ), where we say

(D.3.8) a(x, y, ξ, θ) ∈ Smρ,δ,ρ′,δ′(Γ× Σ)

if and only if

(D.3.9) |Dβ
xD

α
ξD

γ
yD

σ
θ a(x, y, ξ, θ)| ≤ C(1 + |ξ|+ |θ|)m−ρ|α|−ρ′|σ|+δ|β|+δ′|γ|,

for (x, ξ) ∈ Γ, θ ∈ Σ. Integration by parts gives

(D.3.10) 〈χ(x)e−ix·θ, Au〉 =

∫∫∫
u(y)[(M t)k(χa)(x, ξ)]eiΦ dy dx dξ.
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For notational convenience we replace χa by a below. Note that if we write

(D.3.11) M = A · ∇x + B · ∇ξ,
we have

(D.3.12)
M t = −A · ∇x − B · ∇ξ + (∇x ·A) + (∇ξ ·B)

= −A · ∇x − B · ∇ξ + C.

Recall that

(D.3.13) A ∈ S−1
1−b,b;1,0, B ∈ S0

1−b,b;1,0.

Thus

(D.3.14) C ∈ S−(1−b)
1−b,b;1,0.

It follows that

(D.3.15) (M t)k =
∑

|α|+|β|≤k

(|θ|+ |ξ|)|α|bαβk(x, y, ξ, θ)Dβ
xD

α
ξ ,

with

(D.3.16) bαβk(x, y, ξ, θ) ∈ S−k(1−b)−(|α|+|β|)b
1−b,b;1,0 ,

or, with eαβk(x, y, ξ, θ) = (|θ|+ |ξ|)|α|bαβk(x, y, ξ, θ),
(D.3.17) eαβk(x, y, ξ, θ) ∈ S−k(1−b)+(1−b)|α|−b|β|

1−b,b;1,0 .

Thus

(D.3.18) (M t)ka(x, ξ) =
∑

|α|+β|≤k

eαβk(x, y, ξ, θ)Dβ
xD

α
ξ a(x, ξ),

with

(D.3.19) eαβk(x, y, ξ, θ)Dβ
xD

α
ξ a(x, ξ) ∈ Sm−k(1−b)−ρ|α|+(1−b)|α|+δ|β|−b|β|

ρ0,δ0;1,0
,

where
ρ0 = min(ρ, 1− b), δ0 = max(δ, b).

Since |α|+ |β| ≤ k in (D.3.18), we see that (D.3.19) is contained in

S
m−(k−|α|−|β|)(1−b)−ρ|α|−(1−δ)|β|
ρ0,δ0;1,0

,

and hence

(D.3.20) Ak(x, y, ξ, θ) = (M t)ka(x, ξ) ∈ Sm−ρ1k
ρ0,δ0;1,0

,

where

(D.3.21) ρ1 = min(ρ, 1− δ, 1− b).
We apply (D.3.20) to the analysis of (D.3.10). We have

(D.3.22) 〈χ(x)e−ix·θ, Au〉 =

∫∫∫
u(y)Ak(x, y, ξ, θ)e

iΦ dy dx dξ.

Thus, if we pick k so large that ρ1k > m+ n, we get

(D.3.23) |〈χ(x)e−ix·θ, Au〉| ≤ Ck(1 + |θ|)m+n−ρ1k.

Since any u ∈ E ′ may be decomposed into a finite sum
∑
uj , each term having

small wave front set, the argument above establishes the following.
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Theorem D.3.24. If A is given by (D.1.4), under the hypotheses above, WF (Au)
is contained in the set of points not bounded away from the cones generated by

{(x, ξ) : (∇ξψ, ξ) ∈WF (u) for some (x, ξ) ∈ supp a(x, ξ) with

∇xψ(x, ξ) = θ, |ξ| ≥ R},

as R→∞.

In the case where ψ arises from (D.1.1), we have:

Corollary D.3.25. If A is given by (D.0.1), we have

WF (Au) ⊂ {(x, θ) : (∇ξϕ, ξ) ∈WF (u) for some

(x, ξ) ∈ conic supp a(x, ξ),∇xϕ(x, ξ) = θ}.

Thus in this case the wave front relation is

(D.3.26) (∇ξϕ, ξ) 7→ (x,∇xϕ),

just as it is for smooth phase functions.

We note the following generalization of the development of operators of the form
(D.1.4). Namely, granted condition (D.1.3) on the amplitude a(x, ξ), the hypotheses
(D.1.7)–(D.1.9) on the phase function ψ(x, ξ), or more precisely the estimates to
which these hypotheses are equivalent, need only hold on the support of a(x, ξ),
not on the entire cone Γ \ 0. In particular, such a weaker hypothesis immediately
applies to operators of the form (D.0.1) where ϕ(x, ξ) is homogeneous of degree 1
in ξ and where hypothesis (D.1.1) is weakened to

ϕ(x, ξ) ∈ C1(Γ \ 0),

(D.3.27)

|Dβ
xD

α
ξ∇xϕ(x, ξ)| ≤ C|ξ|1−|α|γ(x, ξ)a−|α|−|β|, if |α|+ |β| ≥ 1,

(D.3.28)

|Dβ
xD

α
ξ∇ξϕ(x, ξ)| ≤ C|ξ|−|α|γ(x, ξ)a−|α|−|β|, if |α|+ |β| ≥ 1.

(D.3.29)
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Airy function
Airy multiplier
Airy operator
Airy quotient
amplitude
asymptotic expansion of a symbol

B

Bessel function
billiard ball map

C

canonical transformation
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coercive boundary condition
commutator
cotangent bundle

D

Darboux’ theorem
diffractive set
Dirichlet boundary problem

E

Egorov’s theorem
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elliptic operator
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F
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folding canonical relation
Fourier integral operator
Fourier transform
Fourier-Airy operator

G

G̊arding’s inequality
glancing hypersurfaces
glancing set
gliding ray
grazing ray
Green’s formula

H

Hamiltonian vector field
Hamilton-Jacobi theory
Hankel function
hyperbolic equation
hypoelliptic operator

I

involutions

L

Laplace operator

M

Maxwell’s equations
microlocal regularity

N

Neumann boundary condition
Neumann operator
normal derivative

P

parametrix
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Poisson integral
principal symbol
pseudodifferential operator
pseudolocal

R

reflection
refraction
regular elliptic boundary problem
regularity (of solutions to elliptic PDE)

S

scattering
Schwartz kernel
self adjoint
singular support
Sobolev spaces
strictly hyperbolic equation
symbol of a pseudodifferential operator
symmetric hyperbolic equation
symplectic form

T

transmission problem
transport equation

U

W

wave front set
Weyl calculus

Z

zeros of the Airy function


