The Green Function on a Compact 2D Manifold

MICHAEL TAYLOR

Let M be a compact 2D manifold, with a Riemannian metric tensor g. Say M has a coordinate system for which the components of this tensor are Hölder continuous, in C^r , for some r > 0. Let Δ denote the Laplace-Beltrami operator, and \mathcal{G} the Green operator,

(1)
$$\mathcal{G} = \Delta^{-1} \text{ on } V = \{ u \in L^2(M) : \int u(x) \, dV(x) = 0 \}, \\ 0 \quad \text{on } V^{\perp}.$$

Let G(x, y) denote the integral kernel of \mathcal{G} , so

(2)
$$\mathcal{G}u(x) = \int_{M} G(x, y)u(y) \, dV(y).$$

Here and above, dV is the volume element on M associated to its metric tensor. One might think that if g were rough then G might be hard to analyze with any precision. Here we show that one can say a good bit about it, thanks to special structure in 2D. For simplicity we assume M is oriented, though we could remove that hypothesis.

First, note that g provides for M a canonical smooth structure. Indeed, under the hypotheses above, M has local isothermal coordinates (cf. [T], §III.9). These coordinates give M the structure of a Riemann surface, hence of a C^{∞} manifold. In these coordinates, the components of g have the same regularity as hypothesized above. Furthermore, there exist *smooth* metric tensors on M in the same conformal class as g (including "canonical" metrics, with constant curvature). Pick one and denote it g_2 .

Call the original matric tensor g_1 and its Laplace operator, Green operator, and Green function Δ_1, \mathcal{G}_1 , and $G_1(x, y)$, and denote the parallel objects associated to g_2 by Δ_2, \mathcal{G}_2 , and $G_2(x, y)$, so

(3)
$$\mathcal{G}_2 u(x) = \int_M G_2(x, y) u(y) \, dV_2(y),$$

where dV_2 is the volume element on M associated to g_2 . Now $G_2(x, y)$ is the integral kernel of a classical pseudodifferenetial operator of order -2; it is an object with transparent structure. It remains to compare $G_1(x, y)$ and $G_2(x, y)$.

Note that

(4)
$$\Delta_j = *_j d * d,$$

where * is the Hodge star on 1-forms and $*_j$ takes 2-forms to 0-forms. Thus

(5)
$$\Delta_1 = A \,\Delta_2, \quad A = \frac{dV_2}{dV_1}.$$

If $\int_M u(y) \, dV_1(y) = 0$, then $\int_M u(y) A(y)^{-1} \, dV_2(y) = 0$, and

(6)
$$\mathcal{G}_1 u(x) = \mathcal{G}_2 A^{-1} u(x) \mod \text{const.}$$

Now

(7)
$$\mathcal{G}_2 A^{-1} u(x) = \int_M G_2(x, y) A(y)^{-1} u(y) \, dV_2(y)$$
$$= \int_M G_2(x, y) u(y) \, dV_1(y),$$

 \mathbf{SO}

(8)
$$\mathcal{G}_1 u(x) = \int_M G_2(x, y) u(y) \, dV_1(y) \mod \text{const.}, \text{ if } \int_M u(y) \, dV_1(y) = 0.$$

Of course

(9)
$$\mathcal{G}_1 u(x) = \int_M G_1(x, y) u(y) \, dV_1(y).$$

From here a brief calculation yields

(10)
$$G_1(x,y) = G_2(x,y) - \frac{\eta(x) + \eta(y)}{V_1(M)} + \frac{B}{V_1(M)}$$

where $V_1(M) = \int_M 1 \, dV_1(M)$ and

(11)
$$\eta(x) = \int_{M} G_2(x, y) \, dV_1(y) = \mathcal{G}_2\left(\frac{dV_1}{dV_2}\right)(x),$$

and

(12)
$$B = \frac{1}{V_1(M)} \int_M \eta(y) \, dV_1(y).$$

Recall we are trying to understand the behavior of $G_1(x, y)$, and as we have said the behavior of $G_2(x, y)$ is well understood. Now if the components of g_1 are of class C^r in local isothermal coordinates, we have

(13)
$$\frac{dV_1}{dV_2} \in C^r(M),$$

and hence, since the coefficients of Δ_2 are smooth,

(14)
$$\eta \in C^{r+2}(M).$$

Now let's say we are in the following situation. In some (possibly poorly chosen) coordinate system, g_1 has components that are Hölder continuous and have one derivative in L^2 . Then the Gauss curvature K is a well defined distribution. Assume

(15)
$$K \in L^4(M).$$

Now move to isothermal coordinates. Then the components of g_1 belong to an L^4 -Sobolev space:

(16)
$$H^{2,4} \subset C^{3/2}$$

Hence, in isothermal coordinates, we have

(17)
$$\frac{dV_1}{dV_2} \in H^{2,4}$$

and hence (10) holds, with

(18)
$$\eta \in H^{4,4}(M) \subset C^{7/2}(M).$$

This is the degree of regularity one has in isothermal coordinates. In bad coordinates the regularity might be less.

EXAMPLE. Suppose $M \subset \mathbb{R}^3$ is a surface smooth of class $C^{1+r} \cap H^{2,p}$, 0 < r < 1, 2 , i.e., <math>M is locally the graph of functions with that regularity. One can use such "graph coordinates," in which the metric tensor induced from the Euclidean metric on \mathbb{R}^3 has components in $C^r \cap H^{1,p}$. Hence local isothermal coordinates exist. Also the Gauss map is smooth of class $C^r \cap H^{1,p}$, so

(19)
$$K \in L^q, \quad q = \frac{p}{2}.$$

Thus, in local isothermal coordinates the metric tensor has components in $H^{2,q}$, and we have (10) with $\eta \in H^{4,q}$, in isothermal coordinates. If p = 8, then (18) holds. Isothermal coordinates and graph coordinates are related by diffeomorphisms smooth of class $C^{1+r} \cap H^{2,p}$. Hence, if p = 8, one has $\eta \in C^{7/2}(M)$ in isothermal coordinates, but only $\eta \in C^{1+r}(M)$ in graph coordinates. Note that we have the same function η in both cases, just a finer differential structure on M in one case.

Reference

[T] M. Taylor, Tools for PDE, Math. Surveys and Monogr. #81, AMS, Providence, RI, 2000.