The Green Function on a Compact 2D Manifold

Michael Taylor

Let M be a compact 2D manifold, with a Riemannian metric tensor g. Say M has a coordinate system for which the components of this tensor are Hölder continuous, in C^{r}, for some $r>0$. Let Δ denote the Laplace-Beltrami operator, and \mathcal{G} the Green operator,

$$
\begin{align*}
\mathcal{G}= & \Delta^{-1} \tag{1}\\
& \text { on } V=\left\{u \in L^{2}(M): \int u(x) d V(x)=0\right\}, \\
& \text { on } V^{\perp} .
\end{align*}
$$

Let $G(x, y)$ denote the integral kernel of \mathcal{G}, so

$$
\begin{equation*}
\mathcal{G} u(x)=\int_{M} G(x, y) u(y) d V(y) . \tag{2}
\end{equation*}
$$

Here and above, $d V$ is the volume element on M associated to its metric tensor. One might think that if g were rough then G might be hard to analyze with any precision. Here we show that one can say a good bit about it, thanks to special structure in 2D. For simplicity we assume M is oriented, though we could remove that hypothesis.

First, note that g provides for M a canonical smooth structure. Indeed, under the hypotheses above, M has local isothermal coordinates (cf. [T], §III.9). These coordinates give M the structure of a Riemann surface, hence of a C^{∞} manifold. In these coordinates, the components of g have the same regularity as hypothesized above. Furthermore, there exist smooth metric tensors on M in the same conformal class as g (including "canonical" metrics, with constant curvature). Pick one and denote it g_{2}.

Call the original matric tensor g_{1} and its Laplace operator, Green operator, and Green function $\Delta_{1}, \mathcal{G}_{1}$, and $G_{1}(x, y)$, and denote the parallel objects associated to g_{2} by $\Delta_{2}, \mathcal{G}_{2}$, and $G_{2}(x, y)$, so

$$
\begin{equation*}
\mathcal{G}_{2} u(x)=\int_{M} G_{2}(x, y) u(y) d V_{2}(y) \tag{3}
\end{equation*}
$$

where $d V_{2}$ is the volume element on M associated to g_{2}. Now $G_{2}(x, y)$ is the integral kernel of a classical pseudodifferenetial operator of order -2 ; it is an object with transparent structure. It remains to compare $G_{1}(x, y)$ and $G_{2}(x, y)$.

Note that

$$
\begin{gather*}
\Delta_{j}=*_{j} d * d \tag{4}\\
1
\end{gather*}
$$

where $*$ is the Hodge star on 1-forms and $*_{j}$ takes 2-forms to 0 -forms. Thus

$$
\begin{equation*}
\Delta_{1}=A \Delta_{2}, \quad A=\frac{d V_{2}}{d V_{1}} \tag{5}
\end{equation*}
$$

If $\int_{M} u(y) d V_{1}(y)=0$, then $\int_{M} u(y) A(y)^{-1} d V_{2}(y)=0$, and

$$
\begin{equation*}
\mathcal{G}_{1} u(x)=\mathcal{G}_{2} A^{-1} u(x) \text { mod const. } \tag{6}
\end{equation*}
$$

Now

$$
\begin{align*}
\mathcal{G}_{2} A^{-1} u(x) & =\int_{M} G_{2}(x, y) A(y)^{-1} u(y) d V_{2}(y) \\
& =\int_{M} G_{2}(x, y) u(y) d V_{1}(y), \tag{7}
\end{align*}
$$

so
(8) $\quad \mathcal{G}_{1} u(x)=\int_{M} G_{2}(x, y) u(y) d V_{1}(y) \bmod$ const., if $\int_{M} u(y) d V_{1}(y)=0$.

Of course

$$
\begin{equation*}
\mathcal{G}_{1} u(x)=\int_{M} G_{1}(x, y) u(y) d V_{1}(y) . \tag{9}
\end{equation*}
$$

From here a brief calculation yields

$$
\begin{equation*}
G_{1}(x, y)=G_{2}(x, y)-\frac{\eta(x)+\eta(y)}{V_{1}(M)}+\frac{B}{V_{1}(M)}, \tag{10}
\end{equation*}
$$

where $V_{1}(M)=\int_{M} 1 d V_{1}(M)$ and

$$
\begin{equation*}
\eta(x)=\int_{M} G_{2}(x, y) d V_{1}(y)=\mathcal{G}_{2}\left(\frac{d V_{1}}{d V_{2}}\right)(x), \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
B=\frac{1}{V_{1}(M)} \int_{M} \eta(y) d V_{1}(y) . \tag{12}
\end{equation*}
$$

Recall we are trying to understand the behavior of $G_{1}(x, y)$, and as we have said the behavior of $G_{2}(x, y)$ is well understood. Now if the components of g_{1} are of class C^{r} in local isothermal coordinates, we have

$$
\begin{equation*}
\frac{d V_{1}}{d V_{2}} \in C^{r}(M) \tag{13}
\end{equation*}
$$

and hence, since the coefficients of Δ_{2} are smooth,

$$
\begin{equation*}
\eta \in C^{r+2}(M) . \tag{14}
\end{equation*}
$$

Now let's say we are in the following situation. In some (possibly poorly chosen) coordinate system, g_{1} has components that are Hölder continuous and have one derivative in L^{2}. Then the Gauss curvature K is a well defined distribution. Assume

$$
\begin{equation*}
K \in L^{4}(M) \tag{15}
\end{equation*}
$$

Now move to isothermal coordinates. Then the components of g_{1} belong to an L^{4}-Sobolev space:

$$
\begin{equation*}
H^{2,4} \subset C^{3 / 2} \tag{16}
\end{equation*}
$$

Hence, in isothermal coordinates, we have

$$
\begin{equation*}
\frac{d V_{1}}{d V_{2}} \in H^{2,4} \tag{17}
\end{equation*}
$$

and hence (10) holds, with

$$
\begin{equation*}
\eta \in H^{4,4}(M) \subset C^{7 / 2}(M) . \tag{18}
\end{equation*}
$$

This is the degree of regularity one has in isothermal coordinates. In bad coordinates the regularity might be less.

Example. Suppose $M \subset \mathbb{R}^{3}$ is a surface smooth of class $C^{1+r} \cap H^{2, p}, 0<r<$ $1,2<p<\infty$, i.e., M is locally the graph of functions with that regularity. One can use such "graph coordinates," in which the metric tensor induced from the Euclidean metric on \mathbb{R}^{3} has components in $C^{r} \cap H^{1, p}$. Hence local isothermal coordinates exist. Also the Gauss map is smooth of class $C^{r} \cap H^{1, p}$, so

$$
\begin{equation*}
K \in L^{q}, \quad q=\frac{p}{2} . \tag{19}
\end{equation*}
$$

Thus, in local isothermal coordinates the metric tensor has components in $H^{2, q}$, and we have (10) with $\eta \in H^{4, q}$, in isothermal coordinates. If $p=8$, then (18) holds. Isothermal coordinates and graph coordinates are related by diffeomorphisms smooth of class $C^{1+r} \cap H^{2, p}$. Hence, if $p=8$, one has $\eta \in C^{7 / 2}(M)$ in isothermal coordinates, but only $\eta \in C^{1+r}(M)$ in graph coordinates. Note that we have the same function η in both cases, just a finer differential structure on M in one case.

Reference

[T] M. Taylor, Tools for PDE, Math. Surveys and Monogr. \#81, AMS, Providence, RI, 2000.

