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Let M be a compact 2D manifold, with a Riemannian metric tensor g. Say
M has a coordinate system for which the components of this tensor are Hölder
continuous, in Cr, for some r > 0. Let ∆ denote the Laplace-Beltrami operator,
and G the Green operator,

(1)
G = ∆−1 on V = {u ∈ L2(M) :

∫
u(x) dV (x) = 0},

0 on V ⊥.

Let G(x, y) denote the integral kernel of G, so

(2) Gu(x) =
∫

M

G(x, y)u(y) dV (y).

Here and above, dV is the volume element on M associated to its metric tensor.
One might think that if g were rough then G might be hard to analyze with any
precision. Here we show that one can say a good bit about it, thanks to special
structure in 2D. For simplicity we assume M is oriented, though we could remove
that hypothesis.

First, note that g provides for M a canonical smooth structure. Indeed, under
the hypotheses above, M has local isothermal coordinates (cf. [T], §III.9). These
coordinates give M the structure of a Riemann surface, hence of a C∞ manifold.
In these coordinates, the components of g have the same regularity as hypothesized
above. Furthermore, there exist smooth metric tensors on M in the same conformal
class as g (including “canonical” metrics, with constant curvature). Pick one and
denote it g2.

Call the original matric tensor g1 and its Laplace operator, Green operator, and
Green function ∆1,G1, and G1(x, y), and denote the parallel objects associated to
g2 by ∆2,G2, and G2(x, y), so

(3) G2u(x) =
∫

M

G2(x, y)u(y) dV2(y),

where dV2 is the volume element on M associated to g2. Now G2(x, y) is the integral
kernel of a classical pseudodifferenetial operator of order −2; it is an object with
transparent structure. It remains to compare G1(x, y) and G2(x, y).

Note that

(4) ∆j = ∗j d ∗ d,
1



2

where ∗ is the Hodge star on 1-forms and ∗j takes 2-forms to 0-forms. Thus

(5) ∆1 = A ∆2, A =
dV2

dV1
.

If
∫

M
u(y) dV1(y) = 0, then

∫
M

u(y)A(y)−1 dV2(y) = 0, and

(6) G1u(x) = G2 A−1u(x) mod const.

Now

(7)

G2 A−1u(x) =
∫

M

G2(x, y)A(y)−1u(y) dV2(y)

=
∫

M

G2(x, y)u(y) dV1(y),

so

(8) G1u(x) =
∫

M

G2(x, y)u(y) dV1(y) mod const., if
∫

M

u(y) dV1(y) = 0.

Of course

(9) G1u(x) =
∫

M

G1(x, y)u(y) dV1(y).

From here a brief calculation yields

(10) G1(x, y) = G2(x, y)− η(x) + η(y)
V1(M)

+
B

V1(M)
,

where V1(M) =
∫

M
1 dV1(M) and

(11) η(x) =
∫

M

G2(x, y) dV1(y) = G2

(dV1

dV2

)
(x),

and

(12) B =
1

V1(M)

∫

M

η(y) dV1(y).

Recall we are trying to understand the behavior of G1(x, y), and as we have said
the behavior of G2(x, y) is well understood. Now if the components of g1 are of
class Cr in local isothermal coordinates, we have

(13)
dV1

dV2
∈ Cr(M),
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and hence, since the coefficients of ∆2 are smooth,

(14) η ∈ Cr+2(M).

Now let’s say we are in the following situation. In some (possibly poorly chosen)
coordinate system, g1 has components that are Hölder continuous and have one
derivative in L2. Then the Gauss curvature K is a well defined distribution. Assume

(15) K ∈ L4(M).

Now move to isothermal coordinates. Then the components of g1 belong to an
L4-Sobolev space:

(16) H2,4 ⊂ C3/2.

Hence, in isothermal coordinates, we have

(17)
dV1

dV2
∈ H2,4

and hence (10) holds, with

(18) η ∈ H4,4(M) ⊂ C7/2(M).

This is the degree of regularity one has in isothermal coordinates. In bad coordi-
nates the regularity might be less.

Example. Suppose M ⊂ R3 is a surface smooth of class C1+r ∩ H2,p, 0 < r <
1, 2 < p < ∞, i.e., M is locally the graph of functions with that regularity. One
can use such “graph coordinates,” in which the metric tensor induced from the
Euclidean metric on R3 has components in Cr ∩ H1,p. Hence local isothermal
coordinates exist. Also the Gauss map is smooth of class Cr ∩H1,p, so

(19) K ∈ Lq, q =
p

2
.

Thus, in local isothermal coordinates the metric tensor has components in H2,q,
and we have (10) with η ∈ H4,q, in isothermal coordinates. If p = 8, then (18)
holds. Isothermal coordinates and graph coordinates are related by diffeomorphisms
smooth of class C1+r ∩H2,p. Hence, if p = 8, one has η ∈ C7/2(M) in isothermal
coordinates, but only η ∈ C1+r(M) in graph coordinates. Note that we have the
same function η in both cases, just a finer differential structure on M in one case.
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