The Green Function for $\Delta-V$ with a Rough Potential

Michael Taylor

1. Introduction

Let M be a compact Riemannian manifold, with smooth metric tensor, and Laplace-Beltrami operator Δ. Then $(\Delta-1)^{-1}$ is a pseudodifferential operator of order -2 , of classical type, whose integral kernel $E_{1}(x, y)$ has a well known behavior. Now let V be a real valued function on M. Assume $V \in L^{p}(M)$ with $p>n / 2$. Then the operator M_{V} of multiplication by V has the property

$$
M_{V}: H^{1,2}(M) \longrightarrow H^{-1,2}(M)
$$

and this map is compact, so $\Delta-V$ is Fredholm, of index zero. We assume the null space is zero, so

$$
\begin{equation*}
(\Delta-V)^{-1}: H^{-1,2}(M) \longrightarrow H^{1,2}(M) \tag{1.1}
\end{equation*}
$$

We desire to compare the integral kernel $E_{V}(x, y)$ of $(\Delta-V)^{-1}$ with $E_{1}(x, y)$, and estimate the difference. Estimates of this nature were obtained in Appendix A of [DHR], assuming V is Hölder continuous, and we aim to produce much stronger estimates, namely the following:

Theorem 1.1. If M is a compact manifold of dimension n with a smooth metric tensor, $V \in L^{p}(M)$ is real valued and $p \in(n / 2, \infty]$, and if $\Delta-V$ has zero null space, then

$$
\begin{equation*}
\left|E_{V}(x, y)-E_{1}(x, y)\right| \leq C\left(d(x, y)^{4-n-n / p}+1\right) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\nabla_{x} E_{V}(x, y)-\nabla_{x} E_{1}(x, y)\right| \leq C\left(d(x, y)^{3-n-n / p}+1\right) . \tag{1.3}
\end{equation*}
$$

In both cases, one replaces the power of $d(x, y)$ by $\log C / d(x, y)$ if the exponent is zero.

Here $d(x, y)$ denotes the distance from x to y. Our proof starts with a sequence of simple formulas relating E_{V} and E_{1}. (As is common, we identify operators and their intgral kernels.) From

$$
\begin{equation*}
(\Delta-V) E_{V}=I, \quad(\Delta-V) E_{1}=I+(1-V) E_{1} \tag{1.4}
\end{equation*}
$$

we have $(\Delta-V)\left(E_{V}-E_{1}\right)=(V-1) E_{1}$, and hence

$$
\begin{gather*}
E_{V}=E_{1}+E_{V}(V-1) E_{1} . \tag{1.5}
\end{gather*}
$$

Iterating (1.5) produces

$$
\begin{align*}
E_{V}=E_{1}+E_{1}(V-1) E_{1} & +E_{1}(V-1) E_{1}(V-1) E_{1}+\cdots \tag{1.6}\\
& +E_{V}(V-1) E_{1} \cdots(V-1) E_{1}
\end{align*}
$$

where the last term has one factor of E_{V}, followed by k factors of $(V-1) E_{1}$. Alternatively (as one sees immediately by self-adjointness),

$$
\begin{align*}
E_{V}=E_{1}+E_{1}(V-1) E_{1} & +E_{1}(V-1) E_{1}(V-1) E_{1}+\cdots \\
& +E_{1}(V-1) E_{1} \cdots(V-1) E_{V} \tag{1.7}
\end{align*}
$$

where the last term has k factors of $E_{1}(V-1)$, followed by one factor of E_{V}.
Since $-E_{1}$ and $-E_{V}$ are positivity-preserving, it is clear that the first $k-1$ terms after E_{1} on the right side of (1.6) have the same integral kernel bounds as pseudodifferential operators of order $-4,-6$, etc., if $V \in L^{\infty}(M)$. Once one shows that

$$
\begin{equation*}
E_{V}: L^{p}(M) \longrightarrow L^{\infty}(M), \quad p>\frac{n}{2} \tag{1.8}
\end{equation*}
$$

which is rather easy if $V \in L^{\infty}(M)$, it follows that the last term in (1.6) also has such an integral kernel bound. This proves (1.2) when $p=\infty$. Having this, one can apply ∇_{x} to both sides of (1.7) and apply similar reasoning to get (1.3) for $p=\infty$.

In $\S 2$ we will derive appropriate estimates on all the terms but the last on the right side of (1.6) in case $p \in(n / 2, \infty)$, and in $\S 3$ we show that (a stronger result than) (1.8) holds when $V \in L^{p}(M)$ and $p>n / 2$, to finish the proof of Theorem 1.1.

The integral kernel estimates of $\S 2$ work not only for $V \in L^{p}(M)$, but more generally for V in the Morrey space $M_{1}^{p}(M)$ (provided $\left.p>n / 2\right)$. Morrey spaces are defined as follows. Assume $1 \leq q \leq p<\infty$. We say a function $f \in L^{1}(M)$ belongs to $M_{q}^{p}(M)$ if and only if for each ball $B_{R} \subset M$ of radius R,

$$
\begin{equation*}
\int_{B_{R}}|f(x)|^{q} d V(x) \leq C R^{n(1-q / p)} \tag{1.9}
\end{equation*}
$$

A simple consequence of Hölder's inequality is that $M_{1}^{p}(M) \subset M_{q}^{p}(M) \subset L^{p}(M)$. In $\S 3$ we also obtain an analogue of (1.8) with $L^{p}(M)$ replaced by $M_{q}^{p}(M)$, provided that also $q>1$. This produces the following extension of Theorem 1.1:

Theorem 1.2. The results of Theorem 1.1 hold whenever $V \in M_{q}^{p}(M)$, with $p>$ $n / 2, q>1$, provided $\Delta-V$ has zero null space.

2. Composition estimates

Estimates on

$$
\begin{equation*}
E_{1}(V-1) E_{1} \cdots E_{1}(V-1) E_{1}, \tag{2.1}
\end{equation*}
$$

consisting of k factors of $E_{1}(V-1)$ followed by one factor of E_{1}, will be derived from the following general result. We work in a coordinate chart in \mathbb{R}^{n}. Assume

$$
\begin{equation*}
\left|p_{\alpha}(x, y)\right| \leq|x-y|^{\alpha-n}, \quad \forall x, y \in \mathbb{R}^{n}, \tag{2.2}
\end{equation*}
$$

and that $\operatorname{supp} p_{\alpha} \subset\{(x, y):|x|,|y| \leq 1\}$. Take

$$
\begin{equation*}
f \in L^{p}\left(\mathbb{R}^{n}\right), \quad p>\frac{n}{\alpha}, p>\frac{n}{\beta} . \tag{2.3}
\end{equation*}
$$

We aim to show that

$$
\begin{equation*}
q_{\alpha \beta}(x)=\int p_{\alpha}(x, y) f(y) p_{\beta}(y, 0) d y \tag{2.4}
\end{equation*}
$$

satisfies (for $|x| \leq 1 / 2$) the estimate

$$
\begin{array}{cl}
\left|q_{\alpha \beta}(x)\right| \leq C|x|^{\alpha+\beta-n-n / p} & \text { if } \alpha+\beta-n-n / p<0, \\
C \log \frac{1}{|x|} & \text { if } \alpha+\beta-n-n / p=0, \tag{2.5}\\
C & \text { if } \alpha+\beta-n-n / p>0 .
\end{array}
$$

To prove this, take $|x|=\varepsilon=2^{-\mu}$ and estimate

$$
\begin{equation*}
\int_{X}\left|p_{\alpha}(x, y) f(y) p_{\beta}(y, 0) d y\right| \tag{2.6}
\end{equation*}
$$

over sets of the form

$$
\begin{equation*}
X=C_{k}, E_{\mu}, A_{k}, B_{k}, \tag{2.7}
\end{equation*}
$$

where
C_{k} is a shell $2^{k-1} \leq|y| \leq 2^{-k},-1 \leq k \leq \mu-1$, E_{μ} is the ball $|y| \leq 2 \varepsilon=2^{-\mu+1}$, with some neighborhoods of 0 and $|x|$ excised.
A_{k} is a shell around 0 where $|y| \approx 2^{-k}, k \geq \mu+1$, B_{k} is a shell around x where $|x-y| \approx 2^{-k}, k \geq \mu+1$.

We have

$$
\int_{C_{k}}\left|p_{\alpha}(x, y) f(y) p_{\beta}(y, 0) d y\right| \leq C 2^{-k(\alpha+\beta-2 n)} \int_{C_{k}}|f(y)| d y .
$$

Now

$$
\int_{C_{k}}|f(y)| d y \leq C 2^{-k n / p^{\prime}}\|f\|_{M_{1}^{p}},
$$

where $M_{1}^{p}\left(\mathbb{R}^{n}\right)$ is the Morrey space, defined by the property that (1.9) holds for all balls of radius $R \leq 1$. A well known consequence of Hölder's inequality is that $L^{p}\left(\mathbb{R}^{n}\right) \subset M_{1}^{p}\left(\mathbb{R}^{n}\right)$. The two estimates above yield

$$
\begin{equation*}
\int_{C_{k}}\left|p_{\alpha}(x, y) f(y) p_{\beta}(y, 0)\right| d y \leq C 2^{-k(\alpha+\beta-n-n / p)}\|f\|_{M_{1}^{p}} \tag{2.9}
\end{equation*}
$$

It follows that (for $\varepsilon \leq 1 / 2$)

$$
\sum_{k=-1}^{\mu-1} \int_{C_{k}}\left|p_{\alpha}(x, y) f(y) p_{\beta}(y, 0)\right| d y
$$

$$
\begin{align*}
& \leq C \varepsilon^{\alpha+\beta-n-n / p}\|f\|_{M_{1}^{p}}, \quad \text { if } \alpha+\beta-n-n / p<0, \tag{2.10}\\
& C \log \frac{1}{\varepsilon}\|f\|_{M_{1}^{p}}, \quad \text { if } \alpha+\beta-n-n / p=0, \\
& C \text {, } \\
& \text { if } \alpha+\beta-n-n / p>0 \text {. }
\end{align*}
$$

Next we have

$$
\begin{align*}
\int_{E_{\mu}}\left|p_{\alpha}(x, y) f(y) p_{\beta}(y, 0)\right| d y & \leq C \varepsilon^{\alpha+\beta-2 n} \int_{E_{\mu}}|f(y)| d y \tag{2.11}\\
& \leq C \varepsilon^{\alpha+\beta-2 n} \varepsilon^{n / p^{\prime}}\|f\|_{M_{1}^{p}} \\
& =C \varepsilon^{\alpha+\beta-n-n / p}\|f\|_{M_{1}^{p}} .
\end{align*}
$$

Next,

$$
\begin{align*}
\int_{A_{k}}\left|p_{\alpha}(x, y) f(y) p_{\beta}(y, 0)\right| d y & \leq C \varepsilon^{\alpha-n} \int_{A_{k}}\left|f(y) p_{\beta}(y, 0)\right| d y \tag{2.12}\\
& \leq C \varepsilon^{\alpha-n} 2^{-k(\beta-n)} 2^{-k n / p^{\prime}}\|f\|_{M_{1}^{p}},
\end{align*}
$$

and hence (given $\beta>n / p$)

$$
\begin{align*}
\sum_{k=\mu+1}^{\infty} \int_{A_{k}}\left|p_{\alpha}(x, y) f(y) p_{\beta}(y, 0)\right| d y & \leq C \varepsilon^{\alpha-n} \sum_{k=\mu+1}^{\infty} 2^{-k(\beta-n / p)}\|f\|_{M_{1}^{p}} \tag{2.13}\\
& \leq C \varepsilon^{\alpha+\beta-n-n / p}\|f\|_{M_{1}^{p}}
\end{align*}
$$

Similarly

$$
\begin{equation*}
\sum_{k=\mu+1}^{\infty} \int_{B_{k}}\left|p_{\alpha}(x, y) f(y) p_{\beta}(y, 0)\right| d y \leq C \varepsilon^{\alpha+\beta-n-n / p}\|f\|_{M_{1}^{p}} \tag{2.14}
\end{equation*}
$$

Collecting these estimates, we have (2.5), under the hypotheses (2.2)-(2.3), with
(2.3) generalized to

$$
\begin{equation*}
f \in M_{1}^{p}\left(\mathbb{R}^{n}\right), \quad p>\frac{n}{\alpha}, p>\frac{n}{\beta} . \tag{2.15}
\end{equation*}
$$

The general estimate (2.5) applies to

$$
\begin{equation*}
p_{1}=E_{1}(V-1) E_{1}, \cdots, p_{k+1}(x, y)=E_{1}(V-1) p_{k} \tag{2.16}
\end{equation*}
$$

Again we identify integral kernels and operators, and use operator products. We have, given $V \in M_{1}^{p}, p>n / 2$,

$$
\begin{equation*}
\left|p_{1}(x, y)\right| \leq C\left(|x-y|^{4-n-n / p}+1\right) \tag{2.17}
\end{equation*}
$$

with a $\log 1 /|x-y|$ included if $4-n-n / p=0$. Iterating gives

$$
\begin{equation*}
\left|p_{k}(x, y)\right| \leq C\left(|x-y|^{2+k(2-n / p)-n}+1\right) \tag{2.18}
\end{equation*}
$$

with a $\log 1 /|x-y|$ included if $2+k(2-n / p)-n=0$.

3. Mapping property of $(\Delta-V)^{-1}$

Our first goal in this section is to prove the following.
Proposition 3.1. Let M be a compact Riemannian manifold of dimension n, with smooth metric tensor. Assume $V \in L^{p}(M), p>n / 2$. Then

$$
\begin{equation*}
\Delta-V: H^{2, p}(M) \longrightarrow L^{p}(M) \text { is Fredholm, of index } 0 . \tag{3.1}
\end{equation*}
$$

If the null space of $\Delta-V$ is zero, then

$$
\begin{equation*}
(\Delta-V)^{-1}: L^{p}(M) \rightarrow H^{2, p}(M) \subset C(M) . \tag{3.2}
\end{equation*}
$$

Proof. First, since $p>n / 2 \Rightarrow H^{2, p}(M) \hookrightarrow C(M)$, compactly embedded, we clearly have

$$
\begin{equation*}
M_{V}: H^{2, p}(M) \longrightarrow L^{p}(M), \quad \text { compact. } \tag{3.3}
\end{equation*}
$$

Thus $\Delta-V$ is a compact perturbation of $\Delta-1: H^{2, p}(M) \rightarrow L^{p}(M)$, which is an isomorphism, so we have (3.1). If the null space of $\Delta-V$ is zero, then $\Delta-V$ is an isomorphism in (3.1), and we have (3.2).

Remark. Clearly the restriction of $(\Delta-V)^{-1}$ in (1.1) to $L^{p}(M)$ agrees with $(\Delta-V)^{-1}$ in (3.2).

As noted in $\S 1$, Proposition 3.1 completes the proof of Theorem 1.1. We now prove Theorem 1.2. By the estimates of $\S 2$, it remains to prove that

$$
\begin{equation*}
V \in M_{q}^{p}(M), p>\frac{n}{2}, q>1 \Longrightarrow(\Delta-V)^{-1}: M_{q}^{p}(M) \rightarrow L^{\infty}(M) \tag{3.4}
\end{equation*}
$$

In order to do this, via a result parallel to Proposition 3.1, we bring in Morrey scales. We define $M_{q}^{p, k}(M)$ for $k \in \mathbb{Z}^{+}$by

$$
\begin{equation*}
u \in M_{q}^{p, k}(M) \Longleftrightarrow L u \in M_{q}^{p}(M), \forall L \in \operatorname{Diff}^{k}(M) \tag{3.5}
\end{equation*}
$$

where $\operatorname{Diff}^{k}(M)$ denotes the space of differential operators on M, with smooth coefficients, of order $\leq k$. Many analytical results on such spaces are discussed in [T]. We mention a few here. First, Morrey's embedding theorem, which is sharper than Sobolev's embedding theorem, implies

$$
\begin{equation*}
q k>n \Longrightarrow M_{r}^{q, k}(M) \hookrightarrow C(M), \text { compactly. } \tag{3.6}
\end{equation*}
$$

Next,

$$
\begin{equation*}
1<q \leq p<\infty \Longrightarrow \Delta-1: M_{q}^{p, 2}(M) \rightarrow M_{q}^{p}(M), \text { isomorphically } . \tag{3.7}
\end{equation*}
$$

We can now establish:
Proposition 3.2. Let M be as in Proposition 3.1. Assume $V \in M_{q}^{p}(M)$, with $q>1, p>n / 2$. Then

$$
\begin{equation*}
\Delta-V: M_{q}^{p, 2}(M) \longrightarrow M_{q}^{p}(M) \text { is Fredholm, of index } 0 . \tag{3.8}
\end{equation*}
$$

If the null space of $\Delta-V$ is zero, then

$$
\begin{equation*}
(\Delta-V)^{-1}: M_{q}^{p}(M) \longrightarrow M_{q}^{p, 2}(M) \subset C(M) . \tag{3.9}
\end{equation*}
$$

Proof. Parallel to (3.3), we have

$$
\begin{equation*}
M_{V}: M_{q}^{p, 2}(M) \longrightarrow M_{q}^{p}(M), \quad \text { compact }, \tag{3.10}
\end{equation*}
$$

via (3.6). This and (3.7) yield (3.8), and (3.9) follows.
We now have (3.4), and Theorem 1.2 is proven.

References

[DHR] O. Druet, E. Hebey, and F. Robert, Blow-up Theory for Elliptic PDEs in Riemannian Geometry, Princeton Univ. Press, Princeton, NJ, 2004.
[T] M. Taylor, Microlocal analysis on Morrey spaces, pp. 97-135 in Singularities and Oscillations (J. Rauch and M. Taylor, eds.) IMA Vol. 91, SpringerVerlag, New York, 1997.

