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1. Introduction

Let M be a compact Riemannian manifold, with smooth metric tensor, and
Laplace-Beltrami operator ∆. Then (∆ − 1)−1 is a pseudodifferential operator of
order −2, of classical type, whose integral kernel E1(x, y) has a well known behavior.
Now let V be a real valued function on M . Assume V ∈ Lp(M) with p > n/2.
Then the operator MV of multiplication by V has the property

MV : H1,2(M) −→ H−1,2(M),

and this map is compact, so ∆−V is Fredholm, of index zero. We assume the null
space is zero, so

(1.1) (∆− V )−1 : H−1,2(M) −→ H1,2(M).

We desire to compare the integral kernel EV (x, y) of (∆− V )−1 with E1(x, y), and
estimate the difference. Estimates of this nature were obtained in Appendix A of
[DHR], assuming V is Hölder continuous, and we aim to produce much stronger
estimates, namely the following:

Theorem 1.1. If M is a compact manifold of dimension n with a smooth metric
tensor, V ∈ Lp(M) is real valued and p ∈ (n/2,∞], and if ∆ − V has zero null
space, then

(1.2) |EV (x, y)− E1(x, y)| ≤ C
(
d(x, y)4−n−n/p + 1

)
,

and

(1.3) |∇xEV (x, y)−∇xE1(x, y)| ≤ C
(
d(x, y)3−n−n/p + 1

)
.

In both cases, one replaces the power of d(x, y) by log C/d(x, y) if the exponent is
zero.

Here d(x, y) denotes the distance from x to y. Our proof starts with a sequence
of simple formulas relating EV and E1. (As is common, we identify operators and
their intgral kernels.) From

(1.4) (∆− V )EV = I, (∆− V )E1 = I + (1− V )E1,

we have (∆− V )(EV − E1) = (V − 1)E1, and hence

(1.5) EV = E1 + EV (V − 1)E1.
1
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Iterating (1.5) produces

(1.6)
EV = E1 + E1(V − 1)E1 + E1(V − 1)E1(V − 1)E1 + · · ·

+ EV (V − 1)E1 · · · (V − 1)E1,

where the last term has one factor of EV , followed by k factors of (V − 1)E1.
Alternatively (as one sees immediately by self-adjointness),

(1.7)
EV = E1 + E1(V − 1)E1 + E1(V − 1)E1(V − 1)E1 + · · ·

+ E1(V − 1)E1 · · · (V − 1)EV ,

where the last term has k factors of E1(V − 1), followed by one factor of EV .
Since −E1 and −EV are positivity-preserving, it is clear that the first k − 1

terms after E1 on the right side of (1.6) have the same integral kernel bounds as
pseudodifferential operators of order −4, −6, etc., if V ∈ L∞(M). Once one shows
that

(1.8) EV : Lp(M) −→ L∞(M), p >
n

2
,

which is rather easy if V ∈ L∞(M), it follows that the last term in (1.6) also has
such an integral kernel bound. This proves (1.2) when p = ∞. Having this, one can
apply ∇x to both sides of (1.7) and apply similar reasoning to get (1.3) for p = ∞.

In §2 we will derive appropriate estimates on all the terms but the last on the
right side of (1.6) in case p ∈ (n/2,∞), and in §3 we show that (a stronger result
than) (1.8) holds when V ∈ Lp(M) and p > n/2, to finish the proof of Theorem
1.1.

The integral kernel estimates of §2 work not only for V ∈ Lp(M), but more
generally for V in the Morrey space Mp

1 (M) (provided p > n/2). Morrey spaces
are defined as follows. Assume 1 ≤ q ≤ p < ∞. We say a function f ∈ L1(M)
belongs to Mp

q (M) if and only if for each ball BR ⊂ M of radius R,

(1.9)
∫

BR

|f(x)|q dV (x) ≤ CRn(1−q/p).

A simple consequence of Hölder’s inequality is that Mp
1 (M) ⊂ Mp

q (M) ⊂ Lp(M).
In §3 we also obtain an analogue of (1.8) with Lp(M) replaced by Mp

q (M), provided
that also q > 1. This produces the following extension of Theorem 1.1:

Theorem 1.2. The results of Theorem 1.1 hold whenever V ∈ Mp
q (M), with p >

n/2, q > 1, provided ∆− V has zero null space.

2. Composition estimates

Estimates on

(2.1) E1(V − 1)E1 · · ·E1(V − 1)E1,
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consisting of k factors of E1(V − 1) followed by one factor of E1, will be derived
from the following general result. We work in a coordinate chart in Rn. Assume

(2.2) |pα(x, y)| ≤ |x− y|α−n, ∀ x, y ∈ Rn,

and that supp pα ⊂ {(x, y) : |x|, |y| ≤ 1}. Take

(2.3) f ∈ Lp(Rn), p >
n

α
, p >

n

β
.

We aim to show that

(2.4) qαβ(x) =
∫

pα(x, y)f(y)pβ(y, 0) dy

satisfies (for |x| ≤ 1/2) the estimate

(2.5)

|qαβ(x)| ≤ C|x|α+β−n−n/p if α + β − n− n/p < 0,

C log
1
|x| if α + β − n− n/p = 0,

C if α + β − n− n/p > 0.

To prove this, take |x| = ε = 2−µ and estimate

(2.6)
∫

X

|pα(x, y)f(y)pβ(y, 0) dy|

over sets of the form

(2.7) X = Ck, Eµ, Ak, Bk,

where

(2.8)

Ck is a shell 2k−1 ≤ |y| ≤ 2−k, −1 ≤ k ≤ µ− 1,

Eµ is the ball |y| ≤ 2ε = 2−µ+1,

with some neighborhoods of 0 and |x| excised.

Ak is a shell around 0 where |y| ≈ 2−k, k ≥ µ + 1,

Bk is a shell around x where |x− y| ≈ 2−k, k ≥ µ + 1.

We have ∫

Ck

|pα(x, y)f(y)pβ(y, 0) dy| ≤ C2−k(α+β−2n)

∫

Ck

|f(y)| dy.

Now ∫

Ck

|f(y)| dy ≤ C2−kn/p′‖f‖Mp
1
,
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where Mp
1 (Rn) is the Morrey space, defined by the property that (1.9) holds for

all balls of radius R ≤ 1. A well known consequence of Hölder’s inequality is that
Lp(Rn) ⊂ Mp

1 (Rn). The two estimates above yield

(2.9)
∫

Ck

|pα(x, y)f(y)pβ(y, 0)| dy ≤ C2−k(α+β−n−n/p)‖f‖Mp
1
.

It follows that (for ε ≤ 1/2)

(2.10)

µ−1∑

k=−1

∫

Ck

|pα(x, y)f(y)pβ(y, 0)| dy

≤ Cεα+β−n−n/p‖f‖Mp
1
, if α + β − n− n/p < 0,

C log
1
ε
‖f‖Mp

1
, if α + β − n− n/p = 0,

C, if α + β − n− n/p > 0.

Next we have

(2.11)

∫

Eµ

|pα(x, y)f(y)pβ(y, 0)| dy ≤ Cεα+β−2n

∫

Eµ

|f(y)| dy

≤ Cεα+β−2nεn/p′‖f‖Mp
1

= Cεα+β−n−n/p‖f‖Mp
1
.

Next,

(2.12)

∫

Ak

|pα(x, y)f(y)pβ(y, 0)| dy ≤ Cεα−n

∫

Ak

|f(y)pβ(y, 0)| dy

≤ Cεα−n2−k(β−n)2−kn/p′‖f‖Mp
1
,

and hence (given β > n/p)

(2.13)

∞∑

k=µ+1

∫

Ak

|pα(x, y)f(y)pβ(y, 0)| dy ≤ Cεα−n
∞∑

k=µ+1

2−k(β−n/p)‖f‖Mp
1

≤ Cεα+β−n−n/p‖f‖Mp
1
.

Similarly

(2.14)
∞∑

k=µ+1

∫

Bk

|pα(x, y)f(y)pβ(y, 0)| dy ≤ Cεα+β−n−n/p‖f‖Mp
1
.

Collecting these estimates, we have (2.5), under the hypotheses (2.2)–(2.3), with
(2.3) generalized to

(2.15) f ∈ Mp
1 (Rn), p >

n

α
, p >

n

β
.
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The general estimate (2.5) applies to

(2.16) p1 = E1(V − 1)E1, · · · , pk+1(x, y) = E1(V − 1)pk.

Again we identify integral kernels and operators, and use operator products. We
have, given V ∈ Mp

1 , p > n/2,

(2.17) |p1(x, y)| ≤ C
(
|x− y|4−n−n/p + 1

)
,

with a log 1/|x− y| included if 4− n− n/p = 0. Iterating gives

(2.18) |pk(x, y)| ≤ C
(
|x− y|2+k(2−n/p)−n + 1

)
,

with a log 1/|x− y| included if 2 + k(2− n/p)− n = 0.

3. Mapping property of (∆− V )−1

Our first goal in this section is to prove the following.

Proposition 3.1. Let M be a compact Riemannian manifold of dimension n, with
smooth metric tensor. Assume V ∈ Lp(M), p > n/2. Then

(3.1) ∆− V : H2,p(M) −→ Lp(M) is Fredholm, of index 0.

If the null space of ∆− V is zero, then

(3.2) (∆− V )−1 : Lp(M) → H2,p(M) ⊂ C(M).

Proof. First, since p > n/2 ⇒ H2,p(M) ↪→ C(M), compactly embedded, we clearly
have

(3.3) MV : H2,p(M) −→ Lp(M), compact.

Thus ∆− V is a compact perturbation of ∆− 1 : H2,p(M) → Lp(M), which is an
isomorphism, so we have (3.1). If the null space of ∆− V is zero, then ∆− V is an
isomorphism in (3.1), and we have (3.2).

Remark. Clearly the restriction of (∆ − V )−1 in (1.1) to Lp(M) agrees with
(∆− V )−1 in (3.2).

As noted in §1, Proposition 3.1 completes the proof of Theorem 1.1. We now
prove Theorem 1.2. By the estimates of §2, it remains to prove that

(3.4) V ∈ Mp
q (M), p >

n

2
, q > 1 =⇒ (∆− V )−1 : Mp

q (M) → L∞(M).

In order to do this, via a result parallel to Proposition 3.1, we bring in Morrey
scales. We define Mp,k

q (M) for k ∈ Z+ by

(3.5) u ∈ Mp,k
q (M) ⇐⇒ Lu ∈ Mp

q (M), ∀ L ∈ Diffk(M),
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where Diffk(M) denotes the space of differential operators on M , with smooth
coefficients, of order ≤ k. Many analytical results on such spaces are discussed in
[T]. We mention a few here. First, Morrey’s embedding theorem, which is sharper
than Sobolev’s embedding theorem, implies

(3.6) qk > n =⇒ Mq,k
r (M) ↪→ C(M), compactly.

Next,

(3.7) 1 < q ≤ p < ∞ =⇒ ∆− 1 : Mp,2
q (M) → Mp

q (M), isomorphically.

We can now establish:

Proposition 3.2. Let M be as in Proposition 3.1. Assume V ∈ Mp
q (M), with

q > 1, p > n/2. Then

(3.8) ∆− V : Mp,2
q (M) −→ Mp

q (M) is Fredholm, of index 0.

If the null space of ∆− V is zero, then

(3.9) (∆− V )−1 : Mp
q (M) −→ Mp,2

q (M) ⊂ C(M).

Proof. Parallel to (3.3), we have

(3.10) MV : Mp,2
q (M) −→ Mp

q (M), compact,

via (3.6). This and (3.7) yield (3.8), and (3.9) follows.

We now have (3.4), and Theorem 1.2 is proven.
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