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1. Introduction

Let M be a compact Riemannian manifold, with smooth metric tensor, and
Laplace-Beltrami operator A. Then (A — 1)7! is a pseudodifferential operator of
order —2, of classical type, whose integral kernel F1 (z,y) has a well known behavior.
Now let V' be a real valued function on M. Assume V € LP(M) with p > n/2.
Then the operator My of multiplication by V has the property

My : HY?(M) — H™%%(M),

and this map is compact, so A — V' is Fredholm, of index zero. We assume the null
space is zero, So

(1.1) (A-V)"t:H YA(M) — HY?(M).

We desire to compare the integral kernel Ey (z,y) of (A —V)~! with E(z,y), and
estimate the difference. Estimates of this nature were obtained in Appendix A of
[DHR), assuming V is Hélder continuous, and we aim to produce much stronger
estimates, namely the following:

Theorem 1.1. If M is a compact manifold of dimension n with a smooth metric
tensor, V.€ LP(M) is real valued and p € (n/2,00], and if A —V has zero null
space, then

(1.2 By (2,y) = Ea(a,y)| < C(d(e,y)* "7 +1)),
and
(1.3) VoEy(z,y) — Vo B (2,y)] < C’(d(a:, y)Bnnle 4 1).

In both cases, one replaces the power of d(x,y) by log C/d(z,y) if the exponent is
zero.

Here d(x,y) denotes the distance from x to y. Our proof starts with a sequence
of simple formulas relating Ey and E;. (As is common, we identify operators and
their intgral kernels.) From

(1.4) (A-V)Ey =1, (A-V)E;=1+(1-V)Eq,
we have (A —V)(Ey — E1) = (V —1)E;, and hence

(1.5) Ey = Fy, + Ey(V — 1)Ey.
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Iterating (1.5) produces

1.6 Ey=E +E(V-1)E +E(V-1E(V -1)E +---
' + Ey(V —=1)Ey - (V = 1)Ex,

where the last term has one factor of Ey, followed by k factors of (V — 1)Ej.
Alternatively (as one sees immediately by self-adjointness),

() Ev=E1+E(V-1)E,+E(V-1)E(V-1)E; +---
' +E(V-1)E;---(V—-1)Ey,

where the last term has k factors of Eq(V — 1), followed by one factor of Ey .
Since —FE; and —FEy are positivity-preserving, it is clear that the first £ — 1

terms after £ on the right side of (1.6) have the same integral kernel bounds as

pseudodifferential operators of order —4, —6, etc., if V€ L>°(M). Once one shows

that

(18) By : LP(M) — L*(M), p> 3,

which is rather easy if V'€ L°(M), it follows that the last term in (1.6) also has
such an integral kernel bound. This proves (1.2) when p = co. Having this, one can
apply V. to both sides of (1.7) and apply similar reasoning to get (1.3) for p = oc.

In §2 we will derive appropriate estimates on all the terms but the last on the
right side of (1.6) in case p € (n/2,00), and in §3 we show that (a stronger result
than) (1.8) holds when V € LP(M) and p > n/2, to finish the proof of Theorem
1.1.

The integral kernel estimates of §2 work not only for V' € LP(M), but more
generally for V' in the Morrey space MY(M) (provided p > n/2). Morrey spaces
are defined as follows. Assume 1 < ¢ < p < co. We say a function f € L'(M)
belongs to MP (M) if and only if for each ball Br C M of radius R,

(1.9) / |f(2)|?dV (z) < CR™~9/P).

Br

A simple consequence of Hélder’s inequality is that MY (M) C MP(M) C LP(M).
In §3 we also obtain an analogue of (1.8) with LP (M) replaced by MP (M), provided
that also ¢ > 1. This produces the following extension of Theorem 1.1:

Theorem 1.2. The results of Theorem 1.1 hold whenever V€ MP(M), with p >
n/2, q > 1, provided A —V has zero null space.

2. Composition estimates

Estimates on

(2.1) Ey(V = 1By Ey(V —1)By,
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consisting of k factors of E1(V — 1) followed by one factor of E;, will be derived
from the following general result. We work in a coordinate chart in R™. Assume

(2.2) pa(z,y)| < |z —y[*™", Vaz,yecR",

and that suppp, C {(z,y) : |z|, |y| < 1}. Take

(2.3) feLr®Y), p>Z, p>

|3

We aim to show that

(2.4 (@) = [ palr9) F0)ps(0.0) dy
satisfies (for |z| < 1/2) the estimate

|dap(2)| < Cla|*P7m="P it a+f—n—n/p <0,

(2.5) C’log|—1| if a+8—-—n—n/p=0,
x

C if a+8—-—n—n/p>0.

To prove this, take x| = ¢ = 27# and estimate
(2.6 [ ot 0) F)ps(0.0)
X

over sets of the form
(27) X :Ck7 E,u7 Aka Bk7
where

Cy isashell 271 <|y|<27F —1<k<pu-—1,

., is the ball |y| < 2e =27+

(2.8) with some neighborhoods of 0 and |z| excised.
Ay is a shell around 0 where |y| ~27%, k> p+1,
By, is a shell around z where |z —y| ~27%, k> p+1.

We have
/ 1P, ) f (9)p3(y, 0) dy| < C2~H(@+=20) / @) dy.
Ck

Ck

Now

[ 156y < 2 g,
Ck
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where M7 (R™) is the Morrey space, defined by the property that (1.9) holds for
all balls of radius R < 1. A well known consequence of Holder’s inequality is that
LP(R™) € MP(R™). The two estimates above yield

(2.9) /Ipa(m,y)f(y)m(y, 0)| dy < C27FeAB=n=n/D)|| ]| .
Ck
It follows that (for € < 1/2)

> / pa (2, y) f(y)ps(y,0)| dy

(2.10) < Ce*m P fll e, i o B—n—n/p <0,
1

Clogg||f||M{’, if a+B—-—n—-n/p=0,

C, if a+8—-—n—n/p>0.

Next we have

/ 1Pa(, ) f (9)pp(y,0)| dy < CeoFi=2n / )] dy

E
(2.11) "
< ceoti—2ngn | f||
= Ce I f e
Next,
/ 1Pa(@, 9)f (9)p3 (9, 0)] dy < C=o / £ ()ps(y,0)| dy
(2.12) i, A

< Ce> R B g=hn Y £\,

and hence (given > n/p)

oo

/\pa(x,y)f(y)pﬂ(y,O)!dySCsa‘" > 2O £y
(2.13) k=n+1y k=p+1

< CetBn=no| o
Similarly
(2.14) 3 / Do, 9) F ()P (3,0)| dy < CeHP=n=n/P | fl| 1
k:“+1Bk

Collecting these estimates, we have (2.5), under the hypotheses (2.2)-(2.3), with
(2.3) generalized to

(2.15) feMI®Y), p>=, p> g.



The general estimate (2.5) applies to
(2.16) p1=E(V = 1)Er, - pera(z,y) = E1(V — 1)py.

Again we identify integral kernels and operators, and use operator products. We
have, given V.€ MY, p > n/2,

(217) pr(@,y)| < O — =7 41),
with a log1/|x — y| included if 4 — n — n/p = 0. Iterating gives
(2.18) pi(e,y)] < C (o — y2HHEIn 4 1),

with a log1/|x — y| included if 2 + k(2 — n/p) — n = 0.

3. Mapping property of (A —V)~!

Our first goal in this section is to prove the following.

Proposition 3.1. Let M be a compact Riemannian manifold of dimension n, with
smooth metric tensor. Assume V € LP(M), p > n/2. Then

(3.1) A -V :H**(M) — LP(M) is Fredholm, of index 0.
If the null space of A —V is zero, then

(3.2) (A-V)™t: LP(M) — H*?P(M) C C(M).

Proof. First, since p > n/2 = H*P(M) — C(M), compactly embedded, we clearly
have

(3.3) My : H*?(M) — LP?(M), compact.

Thus A — V is a compact perturbation of A —1: H?P(M) — LP(M), which is an
isomorphism, so we have (3.1). If the null space of A —V is zero, then A —V is an
isomorphism in (3.1), and we have (3.2).

REMARK. Clearly the restriction of (A — V)~! in (1.1) to LP(M) agrees with
(A —-V)~lin (3.2).

As noted in §1, Proposition 3.1 completes the proof of Theorem 1.1. We now
prove Theorem 1.2. By the estimates of §2, it remains to prove that

(3.4) Ve MP(M), p> g g>1= (A—V)™": MP(M) — L®(M).

In order to do this, via a result parallel to Proposition 3.1, we bring in Morrey
scales. We define MP* (M) for k € Z* by

(3.5) u € MP*(M) < Lu € MP(M), V L € Diff*(M),
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where Diff*(M) denotes the space of differential operators on M, with smooth
coefficients, of order < k. Many analytical results on such spaces are discussed in
[T]. We mention a few here. First, Morrey’s embedding theorem, which is sharper
than Sobolev’s embedding theorem, implies

(3.6) qk >n = M%*(M) — C(M), compactly.
Next,
(3.7) 1<g<p<oo=>A—1:MPP*M)— MP(M), isomorphically.

We can now establish:

Proposition 3.2. Let M be as in Proposition 3.1. Assume V. € MP(M), with
g>1, p>n/2. Then

(3.8) A-V: Mé”Q(M) — MY (M) s Fredholm, of index 0.
If the null space of A —V is zero, then

(3.9) (A=V)~h: MP(M) — MP*(M) C C(M).

Proof. Parallel to (3.3), we have
P2
(3.10) My : MP=(M) — MF(M), compact,

via (3.6). This and (3.7) yield (3.8), and (3.9) follows.

We now have (3.4), and Theorem 1.2 is proven.
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