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1. Introduction

Let M be a connected, noncompact, complete, n-dimensional Riemannian man-
ifold, with nonempty, smooth, compact boundary ∂M . We seek conditions guar-
anteeing unique solvability of the Dirichlet problem

(1.1) u
∣∣
∂M

= f, ∆u = 0 on M, lim
x→∞

u(x) = 0,

given f on ∂M , in various spaces, including f ∈ C(∂M), Lp(∂M), and D′(∂M).
We will show that such a Dirichlet problem can be solved under the following
assumption, which we call “Hypothesis H.”

Hypothesis H. The Riemannian manifold M is as above and there is a compact
X ⊂ M , with complement U = M \X, and H ∈ C∞(U) satisfying

(1.2) H > 0, ∆H ≤ 0, lim
x→∞

H(x) = 0.

We will demonstrate the following.

Theorem 1.1. If M satisfies Hypothesis H, then
(A) for each f ∈ C(∂M), (1.1) has a unique solution.
More generally,
(B) for each f ∈ D′(∂M), (1.1) has a unique solution.

Regarding the behavior of such a solution near ∂M , standard local regular-
ity results apply. In particular, take N to be a smoothly bounded, compact,
n-dimensional submanifold of M , containing a neighborhood of ∂M , set ∂N =
∂M ∪ Σ, and consider the unique solution v to

(1.3) ∆v = 0 on N, v
∣∣
∂M

= f, v
∣∣
Σ

= 0.

Then

(1.4) u
∣∣
N
− v ∈ C∞(N).

We proceed as follows. In §2 we prove part (A) of Theorem 1.1. Our strategy for
establishing part (B) will be to take v satisfying (1.3), take χ ∈ C∞0 (M) supported
in N , equal to 1 on a neighborhood of ∂M and to 0 on a neighborhood of Σ, and
find u in the form

(1.5) u = χv + w,

where w satisfies

(1.6) ∆w = g on M, w
∣∣
∂M

= 0, lim
x→∞

w(x) = 0.
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For this treatment, g = −∆(χv) ∈ C∞0 (M). (Here M = M \ ∂M is the interior
of M .) In §3 we examine (1.6), making use of part (A) of Theorem 1.1. Then we
establish part (B) of Theorem 1.1 in §4, and make some comments on the behavior
of the solution when f ∈ Lp(∂M), or more generally f ∈ Hs,p(∂M). In §5 we show
that whenever M is asymptotically Euclidean and has dimension n ≥ 3, Hypothesis
H holds and hence Theorem 1.1 applies.

2. Continuous boundary values

Here we prove part (A) of Theorem 1.1. Let us fix a sequence Mk of compact,
connected manifolds with smooth boundary, such that

(2.1) ∂M ⊂ M1 ⊂ · · · ⊂ Mk ↗ M,

the convergence to M meaning that for each compact K ⊂ M , we have K ⊂ Mk for
k sufficiently large. Let X ⊂ M be as in Hypothesis H. We can assume X ⊂ M1\Σ1,
where ∂Mk = ∂M ∪ Σk.

It suffices to prove part (A) when

(2.2) f ∈ C(∂M), 0 ≤ f ≤ 1,

and this is what we assume below. Define uk ∈ C(Mk) ∩ C∞(Mk) by

(2.3) uk

∣∣
∂M

= f, uk

∣∣
Σk

= 0, ∆uk = 0 on Mk.

Hence Mk = Mk \ ∂Mk and ∂Mk = ∂M ∪ Σk. If (2.2) holds, we have 0 ≤ uk ≤ 1
on Mk. We extend uk to be 0 on M \Mk. The maximum principle gives uk ↗, so
there is a unique limit:

(2.4) uk ↗ u on M.

Clearly 0 ≤ u ≤ 1, u
∣∣
∂M

= f , and ∆u = 0 on M . It remains to verify that

(2.5) u(x) → 0 as x →∞.

It is here that we bring in H. Take

(2.6) A = inf
x∈Σ1

H(x), A > 0.

Another application of the maximum principle gives

(2.7) uk(x) ≤ 1
A

H(x), on M \M1, ∀ k ≥ 2,

which yields (2.5).

3. The equation ∆w = g

As indicated in §1, we can go from part (A) of Theorem 1.1 to part (B) if we
establish the following.
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Proposition 3.1. If M satisfies Hypothesis H and g ∈ C∞0 (M), there exists a
unique w ∈ C∞(M) satisfying

(3.1) ∆w = g, w
∣∣
∂M

= 0, lim
x→∞

w(x) = 0.

In order to prove this, it is convenient to establish the following.

Lemma 3.2. Assume M satisfies Hypothesis H and K ⊂ M is compact. Then
there exists U ∈ C(M) satisfying

(3.2) U > 0 on M, U
∣∣
∂M

= 0, lim
x→∞

U(x) = 0.

and also

(3.3) ∆U ≤ 0 on M, ∆U ≤ −1 on K.

(Here ∆U ≤ 0 means −∆U is a positive measure.)

Proof. Pick p ∈ K. Part (A) of Theorem 1.1 applies to M \Br(p), for small r > 0,
to produce Up, harmonic on M \Br(p), satisfying

(3.4) Up ≥ 0, Up

∣∣
∂Br(p)

= 1, Up

∣∣
∂M

= 0, lim
x→∞

Up(x) = 0.

If we extend Up as 1 on Br(p), the extended function is subharmonic. That is,
∆Up ≤ 0; in fact it is a negative measure supported on ∂Br(p). Now we take a > 0
and set

(3.5)
Vp(x) = Up(x), x ∈ M \Br(p),

1 + a− a

r2
ρp(x)2, x ∈ Br(p),

where ρp(x) = dist(x, p).
Note that ∆ρp(x)2 = 2n at x = p. Hence, given p ∈ K, there exists r = rp > 0

such that ∆ρ2
p ≥ 1 on Br(p). Having picked such r, we then find a = ap > 0 such

that Vp, defined by (3.5), satisfies

(3.6) ∆Vp ≤ − a

r2
χBr(p) on M.

Since K ⊂ M is compact, one can cover it by a finite number of such balls Br(p),
and let U be an appropriate positive linear combination of such Vp, to satisfy (3.2)–
(3.3). This proves Lemma 3.2.

We now take up the proof of Proposition 3.1. It suffices to treat the case where
g ∈ C∞0 (M) is ≤ 0. Say supp g ⊂ K. We take Mk ↗ M as in §2, and we arrange
that K ⊂ M1 \ Σ1. Define wk on Mk by

(3.7) ∆wk = g on Mk, wk

∣∣
∂Mk

= 0.

Since g ≤ 0, we have wk ≥ 0 on Mk. We also have wk+1 ≥ 0 on ∂Mk, and hence
wk ↗. On the other hand, if we take U as in Lemma 3.2, the maximum principle
yields

(3.8) wk ≤ ‖g‖L∞U on Mk, ∀ k.
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Hence wk ↗ w, a limit satisfying (3.1).
We can use a similar argument to construct a Green function Gp, with pole at

p ∈ M , satisfying Gp ∈ D′(M) ∩ C∞(M \ p), Gp > 0 on M \ p, and

(3.9) ∆Gp = −δp, Gp

∣∣
∂M

= 0, lim
x→∞

Gp(x) = 0.

4. Other spaces of boundary data

As already noted, the proof of part (B) of Theorem 1.1 is an immediate con-
sequence of Proposition 3.1 and the construction involving (1.5)–(1.6). Here we
record some further properties of the solution u to (1.1), when f belongs to various
spaces of functions (or distributions). These results follow from the nature of a
parametrix for the solution to (1.3) (hence for (1.1)) constructed, e.g., as in pages
199–200 of [T]. Taking a diffeomorphism mapping a collar neighborhood N of ∂M
onto [0, 1]× ∂M , we then take y ∈ [0, 1], x ∈ ∂M , and write

(4.1) u(y, x) = P (y, x, Dx)f(x), mod C∞(N),

where P (y, x, Dx) is a bounded family of pseudodifferential operators on ∂M , with
symbols given as in (2.11)–(2.15) of [T]. Here is one consequence.

Proposition 4.1. Given s ∈ R, p ∈ (1,∞), and f ∈ Hs,p(∂M) (the Lp-Sobolev
space), the solution u to (1.1) satisfies

(4.2) u ∈ C([0, 1],Hs,p(∂M))

near ∂M .

There are many other well known local regularity results, which can be found in
the large literature on the subject.

5. Asymptotically Euclidean spaces

If M is asymptotically Euclidean, then there is a compact X ⊂ M whose com-
plement U = M \X is diffeomorphic to (R,∞)× S, for some (n− 1)-dimensional
S, and the metric tensor takes the form

(5.1) ds2 = dr2 + r2gS(r).

Here gS(r) is a family of metric tensors on S, depending smoothly on r−1 ∈ [0, 1/R),
hence having an asymptotic expansion

(5.2) gS(r) ∼ g0 + r−1g1 + · · · ,

where g0 is a metric tensor on S and, for k ≥ 1, gk are smooth symmetric second
order tensors on S. The Laplace operator on U takes the form

(5.3) ∆ = ∂2
r + M(r)∂r + r−2∆S(r),
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where ∆S(r) is the Laplace operator on S(r) = {(r, x) : x ∈ S}, with metric tensor
gS(r), and M(r) is (n− 1 times) the mean curvature of S(r) ⊂ M . One has

(5.4) M(r) ∼ n− 1
r

+
α

r2
+ · · · .

Consequently, if n ≥ 3 and δ ∈ (0, 1),

(5.5)
∆r−(n−2−δ) = (n− 2− δ)(n− 1− δ)r−n+δ − (n− 2− δ)M(r)r−n+1+δ

= −δr−n+δ + O(r−n−1+δ).

Hence, if R0 is large enough, H = r−(n−2−δ) satisfies the condition (1.2) on
[R0,∞)× S. This proves:

Proposition 5.1. If M is asymptotically Euclidean, of dimension ≥ 3, then Hy-
pothesis H holds. Hence Theorem 1.1 applies.
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