Remarks on M. Pinsky's Derivation of the Modulus of Continuity for Brownian Paths

Michael Taylor

Let \mathfrak{P} be path space for Brownian motion on the line, with Wiener measure P. It is known that there is an estimate

$$
\begin{equation*}
\left|X_{t}(\omega)-X_{s}(\omega)\right| \leq M_{1}(\omega) h(|t-s|) \tag{1}
\end{equation*}
$$

valid for $s, t \in[0,1]$, with $M_{1}(\omega)<\infty$ for almost all $\omega \in \mathfrak{P}$. Here

$$
\begin{equation*}
h(\delta)=\left(\delta \log \frac{1}{\delta}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

for $0<\delta \leq 1 / e$, and we set $h(\delta)=h(1 / e)=1 / \sqrt{e}$ for $\delta \geq 1 / e$. Recently M. Pinsky $[\mathrm{P}]$ produced a pleasant proof of this, using Ciesielski's representation of $X_{t}(\omega)$ for $0 \leq t \leq 1$ as a Haar series:

$$
\begin{equation*}
X_{t}(\omega)=\sum_{N=1}^{\infty} Z_{N}(\omega) \int_{0}^{t} \varphi_{N}(s) d s \tag{3}
\end{equation*}
$$

where $\left\{\varphi_{N}: N \geq 1\right\}$ is the Haar orthonormal basis of $L^{2}([0,1])$. Path space over $0 \leq t \leq 1$ is parametrized by

$$
\begin{equation*}
\Omega=\prod_{N \geq 1} F_{N}, \quad F_{N}=\left(\mathbb{R},(2 \pi)^{-1 / 2} e^{-x^{2} / 2} d x\right) \tag{4}
\end{equation*}
$$

and $Z_{N}: \Omega \rightarrow \mathbb{R}$ is projection onto the N th factor, identified with \mathbb{R}.
The estimate (1) can be compared and contrasted with the Lévy estimate

$$
\begin{equation*}
\limsup _{0 \leq s, t \leq 1,|s-t| \backslash 0} \frac{\left|X_{t}(\omega)-X_{s}(\omega)\right|}{h(|t-s|)}=\sqrt{2}, \tag{5}
\end{equation*}
$$

valid for almost all $\omega \in \mathfrak{P}$. For one, (5) implies (1), but with no effective bound on $M_{1}(\omega)$. In fact, $M_{1}(\omega)$ cannot be essentially bounded on \mathfrak{P}; if it were, one would have for some $K<\infty$ an estimate

$$
\begin{equation*}
\left|X_{t}(\omega)-X_{s}(\omega)\right| \leq K h(|t-s|) \tag{6}
\end{equation*}
$$

valid for almost every $\omega \in \mathfrak{P}$, for all $s, t \in[0,1]$. In fact, for fixed $s<t \in(0,1]$ the Gaussian statistics for $X_{t}(\omega)-X_{s}(\omega)$ guarantee that (6) is violated for a set of $\omega \mathrm{s}$ of positive measure.

Maximal estimates on Gaussian processes, such as given in Theorem 1.3.3 of [F], imply that once one has $M_{1}(\omega)<\infty$ almost everywhere in (1), then there is a bound

$$
\begin{equation*}
P\left(M_{1}(\omega)>\lambda\right) \leq C e^{-a \lambda^{2}}, \tag{7}
\end{equation*}
$$

for some $C<\infty, a>0$. There is even a sharp result on the optimal value of a in (7).

In this note we show that the method of proof of (1) in $[\mathrm{P}]$ can be pushed a little further to establish (7) directly (though without a sharp estimate for a). On the other hand, the estimate we establish in Proposition 1 below is in some ways more precise than (7).

To get started, we recall the ingredients of the proof of (1) in $[\mathrm{P}]$. One ingredient is the following set of estimates on the Haar functions:

$$
\begin{equation*}
\left\|\varphi_{N}\right\|_{L^{\infty}(I)} \leq C N^{1 / 2} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\varphi_{N}\right\|_{L^{1}(I)} \leq C N^{-1 / 2} \tag{9}
\end{equation*}
$$

(where $I=[0,1]$) plus the fact that, over each range $2^{\nu-1}<N \leq 2^{\nu}$, the functions

$$
\begin{equation*}
\psi_{N}(t)=\int_{0}^{t} \varphi_{N}(s) d s \tag{10}
\end{equation*}
$$

have disjoint supports. Another ingredient is a study of the function

$$
\begin{equation*}
A(\omega)=\sup _{N \geq 2} \frac{\left|Z_{N}(\omega)\right|}{\sqrt{\log N}} \tag{11}
\end{equation*}
$$

It is shown in Lemma 1 of $[\mathrm{P}]$ that $A(\omega)<\infty$ for almost all $\omega \in \Omega$. Then the sum

$$
\begin{equation*}
X_{t}(\omega)-X_{s}(\omega)=\sum_{N=1}^{\infty} Z_{N}(\omega)\left[\psi_{N}(t)-\psi_{N}(s)\right] \tag{12}
\end{equation*}
$$

is broken into two pieces and the estimate (1) is obtained, with $M_{1}(\omega) \leq 1+2 A(\omega)$. Hence (7) will follow from an associated estimate on $A(\omega)$.

We find it of interest to consider more generally

$$
\begin{equation*}
A_{\mu}(\omega)=\sup _{N \geq \mu} \frac{\left|Z_{N}(\omega)\right|}{\sqrt{\log N}} \tag{13}
\end{equation*}
$$

for $\mu \geq 2$. Now the nature of Z_{N} as a Gaussian random variable gives

$$
\begin{equation*}
P\left(\left|Z_{N}(\omega)\right| \geq x\right) \leq e^{-x^{2} / 2} \tag{14}
\end{equation*}
$$

hence

$$
\begin{equation*}
\mathcal{S}_{N, \lambda}=\left\{\omega \in \Omega:\left|Z_{N}(\omega)\right| \geq \lambda \sqrt{\log N}\right\} \Longrightarrow P\left(\mathcal{S}_{N, \lambda}\right) \leq N^{-\lambda^{2} / 2} \tag{15}
\end{equation*}
$$

Now

$$
\begin{equation*}
\left\{\omega \in \Omega: A_{\mu}(\omega) \geq \lambda\right\}=\bigcup_{N \geq \mu} \mathcal{S}_{N, \lambda}, \tag{16}
\end{equation*}
$$

so

$$
\begin{equation*}
P\left(A_{\mu}(\omega) \geq \lambda\right) \leq \sum_{N \geq \mu} N^{-\lambda^{2} / 2} \tag{17}
\end{equation*}
$$

The convexity of the function $f(y)=y^{-s}$ implies that, for $s \geq 2$,

$$
\begin{equation*}
\sum_{N \geq \mu} N^{-s} \leq \mu^{-s}+\int_{\mu+1 / 2}^{\infty} y^{-s} d y \leq\left(\mu+\frac{3}{2}\right) \mu^{-s} \tag{18}
\end{equation*}
$$

so we have, for $\lambda \geq 2, \mu \geq 2$,

$$
\begin{equation*}
P\left(A_{\mu}(\omega) \geq \lambda\right) \leq\left(\mu+\frac{3}{2}\right) \mu^{-\lambda^{2} / 2} \leq C_{\mu} e^{-K(\mu) \lambda^{2}} \tag{19}
\end{equation*}
$$

with $C_{\mu}=\mu+3 / 2, K(\mu)=(1 / 2) \log \mu$.
The $\mu=2$ case of this estimate is already enough to establish (7), in view of the estimate $M_{1}(\omega) \leq 1+2 A_{2}(\omega)$ established in [P]. However, we will go further (in a parallel fashion). Suppose $\mu=2^{\alpha}+1$ and $\alpha \geq 1$. We will estimate

$$
\begin{equation*}
\sum_{2^{\nu}<N \leq 2^{\nu+1}} Z_{N}(\omega)\left[\psi_{N}(t)-\psi_{N}(s)\right]=D_{\nu}(t, s, \omega) \tag{20}
\end{equation*}
$$

for $\nu \geq \alpha$. The observations in (8)-(10) imply the following two estimates:

$$
\begin{align*}
& \left|D_{\nu}(t, s, \omega)\right| \leq C A_{\mu}(\omega) \sqrt{\nu} 2^{\nu / 2}|t-s|, \tag{21}\\
& \left|D_{\nu}(t, s, \omega)\right| \leq C A_{\mu}(\omega) \sqrt{\nu} 2^{-\nu / 2}
\end{align*}
$$

Hence

$$
\begin{align*}
& \left|\sum_{M \geq \mu} Z_{N}(\omega)\left[\psi_{N}(t)-\psi_{N}(s)\right]\right| \\
& \quad \leq \sum_{\nu \geq \alpha}\left|D_{\nu}(t, s, \omega)\right| \tag{22}\\
& \quad \leq C A_{\mu}(\omega)\left[\sum_{\alpha \leq \nu \leq \beta} 2^{\nu / 2} \nu^{1 / 2}|t-s|+\sum_{\nu>\beta} 2^{-\nu / 2} \nu^{1 / 2}\right] \\
& \quad \leq C_{2} A_{\mu}(\omega) \beta^{1 / 2}\left[2^{\beta / 2}|t-s|+2^{-\beta / 2}\right] .
\end{align*}
$$

We can optimize this by picking β such that $2^{-\beta / 2} \approx|t-s|$, as long as $|t-s| \leq 2^{-\alpha / 2}$, say $|t-s| \leq \mu^{-1 / 2}$. This gives

$$
\begin{equation*}
\left|\sum_{N \geq \mu} Z_{N}(\omega)\left[\psi_{N}(t)-\psi_{N}(s)\right]\right| \leq C_{3} A_{\mu}(\omega) h(|t-s|), \tag{23}
\end{equation*}
$$

with $h(\delta)$ as in (2). As for the rest of (12), we crudely have

$$
\begin{equation*}
\left|\sum_{N<\mu} Z_{N}(\omega)\left[\psi_{N}(t)-\psi_{N}(s)\right]\right| \leq C B_{\mu}(\omega)|t-s|, \quad B_{\mu}(\omega)=\mu^{1 / 2} \sum_{N<\mu}\left|Z_{N}(\omega)\right| . \tag{24}
\end{equation*}
$$

This establishes the following (with slight change in notation):
Proposition 1. Fix $K \in(0, \infty)$ and set $\delta=e^{-K}$. There exists $a=a(K)>0$ and $C_{j}=C_{j}(K)$ such that, for $t, s \in[0,1],|t-s| \leq \delta$,

$$
\begin{equation*}
\left|X_{t}(\omega)-X_{s}(\omega)\right| \leq A_{K}(\omega) h(|t-s|)+B_{K}(\omega)|t-s| \tag{25}
\end{equation*}
$$

with

$$
\begin{equation*}
P\left(A_{K}(\omega) \geq \lambda\right) \leq C_{1} e^{-K \lambda^{2}}, \quad P\left(B_{K}(\omega) \geq \lambda\right) \leq C_{2} e^{-a \lambda^{2}} \tag{26}
\end{equation*}
$$

Returning to the context of the estimate (1), we make a concluding comment. It similarly follows that there is for each $k \in \mathbb{Z}^{+}$an estimate

$$
\begin{equation*}
\left|X_{t}(\omega)-X_{s}(\omega)\right| \leq M_{k}(\omega) h(|t-s|), \quad s, t \in[k-1, k] . \tag{27}
\end{equation*}
$$

The functions M_{k} on \mathfrak{P} can be taken to be independent random variables that are identically distributed.

References

[F] X. Fernique, Regularite des trajectoires des fonctions aleatoires Gaussiennes, pp. 1-96 in LNM \#480, Springer-Verlag, New York, 1975.
[P] M. Pinsky, Brownian continuity modulus via series expansions, Jour. of Theoretical Probability, to appear.

