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Let P be path space for Brownian motion on the line, with Wiener measure P .
It is known that there is an estimate

(1) |Xt(ω)−Xs(ω)| ≤ M1(ω)h(|t− s|),

valid for s, t ∈ [0, 1], with M1(ω) < ∞ for almost all ω ∈ P. Here

(2) h(δ) =
(
δ log

1
δ

)1/2

for 0 < δ ≤ 1/e, and we set h(δ) = h(1/e) = 1/
√

e for δ ≥ 1/e. Recently M. Pinsky
[P] produced a pleasant proof of this, using Ciesielski’s representation of Xt(ω) for
0 ≤ t ≤ 1 as a Haar series:

(3) Xt(ω) =
∞∑

N=1

ZN (ω)
∫ t

0

ϕN (s) ds,

where {ϕN : N ≥ 1} is the Haar orthonormal basis of L2([0, 1]). Path space over
0 ≤ t ≤ 1 is parametrized by

(4) Ω =
∏

N≥1

FN , FN =
(
R, (2π)−1/2e−x2/2 dx

)
,

and ZN : Ω → R is projection onto the Nth factor, identified with R.
The estimate (1) can be compared and contrasted with the Lévy estimate

(5) lim sup
0≤s,t≤1,|s−t|↘0

|Xt(ω)−Xs(ω)|
h(|t− s|) =

√
2,

valid for almost all ω ∈ P. For one, (5) implies (1), but with no effective bound on
M1(ω). In fact, M1(ω) cannot be essentially bounded on P; if it were, one would
have for some K < ∞ an estimate

(6) |Xt(ω)−Xs(ω)| ≤ Kh(|t− s|),

valid for almost every ω ∈ P, for all s, t ∈ [0, 1]. In fact, for fixed s < t ∈ (0, 1] the
Gaussian statistics for Xt(ω)−Xs(ω) guarantee that (6) is violated for a set of ωs
of positive measure.
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Maximal estimates on Gaussian processes, such as given in Theorem 1.3.3 of [F],
imply that once one has M1(ω) < ∞ almost everywhere in (1), then there is a
bound

(7) P
(
M1(ω) > λ

) ≤ Ce−aλ2
,

for some C < ∞, a > 0. There is even a sharp result on the optimal value of a in
(7).

In this note we show that the method of proof of (1) in [P] can be pushed a little
further to establish (7) directly (though without a sharp estimate for a). On the
other hand, the estimate we establish in Proposition 1 below is in some ways more
precise than (7).

To get started, we recall the ingredients of the proof of (1) in [P]. One ingredient
is the following set of estimates on the Haar functions:

(8) ‖ϕN‖L∞(I) ≤ CN1/2,

and

(9) ‖ϕN‖L1(I) ≤ CN−1/2,

(where I = [0, 1]) plus the fact that, over each range 2ν−1 < N ≤ 2ν , the functions

(10) ψN (t) =
∫ t

0

ϕN (s) ds

have disjoint supports. Another ingredient is a study of the function

(11) A(ω) = sup
N≥2

|ZN (ω)|√
log N

.

It is shown in Lemma 1 of [P] that A(ω) < ∞ for almost all ω ∈ Ω. Then the sum

(12) Xt(ω)−Xs(ω) =
∞∑

N=1

ZN (ω)[ψN (t)− ψN (s)]

is broken into two pieces and the estimate (1) is obtained, with M1(ω) ≤ 1+2A(ω).
Hence (7) will follow from an associated estimate on A(ω).

We find it of interest to consider more generally

(13) Aµ(ω) = sup
N≥µ

|ZN (ω)|√
log N

,

for µ ≥ 2. Now the nature of ZN as a Gaussian random variable gives

(14) P
(|ZN (ω)| ≥ x

) ≤ e−x2/2,
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hence

(15) SN,λ = {ω ∈ Ω : |ZN (ω)| ≥ λ
√

log N} =⇒ P (SN,λ) ≤ N−λ2/2.

Now

(16) {ω ∈ Ω : Aµ(ω) ≥ λ} =
⋃

N≥µ

SN,λ,

so

(17) P
(
Aµ(ω) ≥ λ

) ≤
∑

N≥µ

N−λ2/2.

The convexity of the function f(y) = y−s implies that, for s ≥ 2,

(18)
∑

N≥µ

N−s ≤ µ−s +
∫ ∞

µ+1/2

y−s dy ≤
(
µ +

3
2

)
µ−s,

so we have, for λ ≥ 2, µ ≥ 2,

(19) P
(
Aµ(ω) ≥ λ

) ≤
(
µ +

3
2

)
µ−λ2/2 ≤ Cµe−K(µ)λ2

,

with Cµ = µ + 3/2, K(µ) = (1/2) log µ.
The µ = 2 case of this estimate is already enough to establish (7), in view of the

estimate M1(ω) ≤ 1 + 2A2(ω) established in [P]. However, we will go further (in a
parallel fashion). Suppose µ = 2α + 1 and α ≥ 1. We will estimate

(20)
∑

2ν<N≤2ν+1

ZN (ω)[ψN (t)− ψN (s)] = Dν(t, s, ω)

for ν ≥ α. The observations in (8)–(10) imply the following two estimates:

(21)
|Dν(t, s, ω)| ≤ CAµ(ω)

√
ν2ν/2|t− s|,

|Dν(t, s, ω)| ≤ CAµ(ω)
√

ν2−ν/2.

Hence

(22)

∣∣∣
∑

M≥µ

ZN (ω)[ψN (t)− ψN (s)]
∣∣∣

≤
∑

ν≥α

|Dν(t, s, ω)|

≤ CAµ(ω)
[ ∑

α≤ν≤β

2ν/2ν1/2|t− s|+
∑

ν>β

2−ν/2ν1/2
]

≤ C2Aµ(ω)β1/2
[
2β/2|t− s|+ 2−β/2

]
.
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We can optimize this by picking β such that 2−β/2 ≈ |t−s|, as long as |t−s| ≤ 2−α/2,
say |t− s| ≤ µ−1/2. This gives

(23)
∣∣∣
∑

N≥µ

ZN (ω)[ψN (t)− ψN (s)]
∣∣∣ ≤ C3Aµ(ω)h(|t− s|),

with h(δ) as in (2). As for the rest of (12), we crudely have

(24)
∣∣∣
∑

N<µ

ZN (ω)[ψN (t)− ψN (s)]
∣∣∣ ≤ CBµ(ω)|t− s|, Bµ(ω) = µ1/2

∑

N<µ

|ZN (ω)|.

This establishes the following (with slight change in notation):

Proposition 1. Fix K ∈ (0,∞) and set δ = e−K . There exists a = a(K) > 0 and
Cj = Cj(K) such that, for t, s ∈ [0, 1], |t− s| ≤ δ,

(25) |Xt(ω)−Xs(ω)| ≤ AK(ω)h(|t− s|) + BK(ω)|t− s|,

with

(26) P
(
AK(ω) ≥ λ

) ≤ C1e
−Kλ2

, P
(
BK(ω) ≥ λ

) ≤ C2e
−aλ2

.

Returning to the context of the estimate (1), we make a concluding comment.
It similarly follows that there is for each k ∈ Z+ an estimate

(27) |Xt(ω)−Xs(ω)| ≤ Mk(ω)h(|t− s|), s, t ∈ [k − 1, k].

The functions Mk on P can be taken to be independent random variables that are
identically distributed.
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