Proof of the Lipschitz-Hankel integral formula

MICHAEL TAYLOR

We desire to prove the identity
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due to Lipschitz and Hankel, of great use for analysis on cones (cf. [CT]). We derive
(1) from the identity
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for which an elementary proof is given in (8.45) of [T2]|. Here
(3) L(y) = e ™2 J,(iy), y>0.

To work on (2), we use the subordination identity
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cf. [T1], (5.31) for a proof. Plugging this into the left side of (1), and using (2), we
have
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The change of variable s = ryry/2t gives
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Thus the asserted identity (1) follows from the identity
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As for the validity of (7), we mention two identities. First, we have
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A simple proof of this is given in (8.42) of [T2]. Next, there is the classical repre-

sentation of the Legendre function @, _;,2(2) as a hypergeometric function:
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cf. [Leb], (7.3.7). If we apply (8) with A =4, pu=1/2, then (7) follows.

REMARK. Formulas (1) and (2) are proven in the opposite order in [W].
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