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Abstract. We discuss conditions on a function f under which the commuta-
tor [P, f ] of a pseudodifferential operator P of order m with the operation of
multiplication by f is an operator of order m − r on various function spaces,
namely Hölder-Zygmund spaces and Lp-Sobolev spaces, given 0 < r < 1. We
also establish an endpoint case involving r = 1, and we extend the scope to all
r > 0 for a particularly significant case in 1 dimension.

1. Introduction

The fact that the commutator of a pseudodifferential operator P of order m
with the operation of multiplication by a smooth function f is an operator of order
m−1 is a central result, which has had important refinements. In particular, such a
result holds for f ∈ Lip1, for a certain range of m; cf. [4], [6], [10], [1], [17]. Here we
examine when a Hölder hypothesis on f , or some variant, implies [P, f ] has order
m− r, for some r ∈ (0, 1). Here is one sample result, when m = 0, 0 < r < 1:

(1.1) ‖[P, f ]u‖Cr ≤ C‖f‖Cr (‖u‖L∞ + ‖Pu‖L∞).

Such a result is useful in the regularity theory of vortex patches; cf. [2], [5]. A proof
when P is a classical singular integral operator of convolution type is given in [11],
pp. 355–356. The estimate (1.1) is valid more generally for P ∈ OPS0

1,δ, δ < 1,
and even more generally for P ∈ OPBS0

1,1, as we will see below. We recall that
P = p(x,D) belongs to OPSm

1,δ if and only if its symbol p(x, ξ) satisfies

(1.2) |Dβ
xDα

ξ p(x, ξ)| ≤ Cαβ(1 + |ξ|)m−|α|+δ|β|.

We say p(x, ξ) ∈ BSm
1,1 provided p(x, ξ) ∈ Sm

1,1 and the partial Fourier transform
p̂(η, ξ) has the property

(1.3) supp p̂ ⊂ {(η, ξ) : |η| ≤ ρ|ξ|},
for some ρ < 1. This class was introduced in [13]. We remark that OPBSm

1,1

contains OPSm
1,δ (modulo smoothing operators) for each δ < 1.
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The analogue of (1.1) for [P, f ] acting on Lp-Sobolev spaces Hr,p requires an
hypothesis on f slightly stronger than f ∈ Cr, namely f ∈ hr,∞, the bmo-Sobolev
space,

(1.4) hr,∞ = Λ−r bmo, Λ = (1−∆)1/2,

where bmo is the inhomogeneous variant of the John-Nirenberg space BMO (cf. [9]).
See Appendix A for a precise definition of the spaces hr,∞, and some of their basic
properties. Parallel to (1.1), we will show that

(1.5) ‖[P, f ]u‖Hr,p ≤ C‖f‖hr,∞‖u‖Lp ,

given P ∈ OPBS0
1,1, 0 < r < 1, 1 < p < ∞. We will establish the following further

estimates, complementing (1.1) and (1.5). See also Appendix A for a definition of
the spaces Cs

∗ arising in (1.7), and a description of some of their basic properties.

Proposition 1.1. Let P ∈ OPBSm
1,1. Assume 0 < r < 1 and

(1.6) −r < s < 0, s < m < r + s.

Then

(1.7) f ∈ Cr =⇒ [P, f ] : Cs
∗ → Cr+s−m

∗ .

Proposition 1.2. Let P ∈ OPBSm
1,1. Assume 0 < r < 1, 1 < p < ∞, and

(1.8) −r < s ≤ 0, s ≤ m ≤ r + s.

Then

(1.9) f ∈ hr,∞ =⇒ [P, f ] : Hs,p → Hr+s−m,p.

Note that Proposition 1.2 provides a strict extension of (1.5) (where m = 0),
while (with m = 0) the s = 0 limit of Proposition 1.1, given in (1.1), takes u, Pu ∈
L∞ rather than in C0

∗ .
In §2 we start the proofs of the results stated above, using paraproducts. Crucial

paraproduct estimates are established in §3, to complete the proofs of these results.
In §4 we supplement (1.9) with estimates on ‖[P, f ]u‖hr,∞ . We also get such an
estimate for f ∈ Lip1, supplementing estimates of Calderon-Coifman-Meyer type.
In §5 we extend the scope of such estimates to all r > 0 when P is a particularly
important singular integral integral operator on the circle (essentially the Hilbert
transform). We end with Appendix A, advertised above, which provides some
material on the spaces hr,∞ and Cs

∗ , appearing in Propositions 1.1 and 1.2.

Remark. The case r = 0 of (1.5) is also valid. This was established in [7] for
a classical pseudodifferential operator of order zero, and in [1] for P ∈ OPBS0

1,1.
The case m = r + s, s = 0 of Proposition 1.2 was established in [14], for classical
pseudodifferential operators of convolution type, in dimension 1.

2. Paraproduct decompositions and preliminary estimates

An essential ingredient in our analysis is the paraproduct operation of J.-M. Bony:

(2.1) Tfu =
∑

k≥0

fk ψk(D)u,
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where {ψk} is a Littlewood-Paley partition of unity and fk =
∑

j≤k−3 ψj(D)f .
Along the lines of arguments used in [15] and [1], we write

(2.2)
P (fu) = PTfu + PTuf + PR(f, u),

f Pu = TfPu + TPuf + R(f, Pu).

Here

(2.3) R(f, u) =
∑

|j−k|≤2

ψj(D)f · ψk(D)u.

To begin, we have, for 0 < r < 1, P ∈ OPBSm
1,1, with ρ in (1.3) sufficiently

small,

(2.4) f ∈ Cr =⇒ [P, Tf ] ∈ OPBSm−r
1,1 .

Such a result follows from the paradifferential operator calculus initiated in [3] and
[13]; cf. also Proposition 7.3 in Chapter I of [16]. From (2.4) we have

(2.5) [P, Tf ] : Cs
∗ −→ Cr+s−m

∗ , [P, Tf ] : Hs,p −→ Hr+s−m,p,

for all s, m ∈ R, p ∈ (1,∞), given f ∈ Cr, 0 < r < 1.
To proceed, we have the following information on the operator Rfu = R(f, u):

(2.6) f ∈ Cr
∗ =⇒ Rf ∈ OPS−r

1,1 ;

this holds for all r ∈ R; cf. [15], (3.5.11). Hence, given P ∈ OPBSm
1,1,

(2.7) ‖PR(f, u)‖Cr+s−m
∗

≤ C‖f‖Cr∗‖u‖Cs∗ ,

provided r + s > 0, and

(2.8) ‖R(f, Pu)‖Cr+s−m
∗

≤ C‖f‖Cr∗‖u‖Cs∗ ,

provided r + s > m. Regarding Sobolev estimates, if 1 < p < ∞, we have

(2.9) ‖PR(f, u)‖Hr+s−m,p ≤ C‖f‖Cr∗‖u‖Hs,p ,

provided r + s > 0, and

(2.10) ‖R(f, Pu)‖Hr+s−m,p ≤ C‖f‖Cr∗‖u‖Hs,p ,

provided r + s > m.
To complete the proofs of the results stated in §1, it remains to estimate PTuf

and TPuf , and to supplement (2.10) by

(2.11) ‖R(f, Pu)‖Lp ≤ C‖f‖hr,∞‖u‖Hs,p , m = r + s, r ≥ 0.

We undertake these estimates in the next section.

3. Complementary paraproduct estimates

Here we complete the proof of the results stated in §1, via estimates on Tvf .
One basic estimate comes from

(3.1) v ∈ L∞ =⇒ Tv ∈ OPBS0
1,1.

In particular, given P ∈ OPBS0
1,1, r ∈ R,

(3.2) ‖PTuf‖Cr ≤ C‖u‖L∞‖f‖Cr , ‖TPuf‖Cr ≤ C‖Pu‖L∞‖f‖Cr ;

cf. [15], (3.5.5). This, together with estimates of §2, is enough to establish (1.1).
Another basic estimate comes from

(3.3) v ∈ C−s
∗ , s > 0 =⇒ Tv ∈ OPBSs

1,1;
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cf. [15], (3.5.7). Thus, given P ∈ OPBSm
1,1, 0 < r < 1,

(3.4) s < 0, u ∈ Cs
∗ , f ∈ Cr =⇒ PTuf ∈ C−m+s+r

∗ ,

and

(3.5) s−m < 0, u ∈ Cs
∗ , f ∈ Cr =⇒ TPuf ∈ C−m+s+r

∗ .

These results complete the proof of Proposition 1.1.
To obtain paraproduct estimates to establish (1.5) and Proposition 1.2, we start

with the Coifman-Meyer estimate (cf. [6])

(3.6) ‖τ(f, v)‖Lp ≤ C‖f‖BMO‖v‖Lp ,

valid for p ∈ (1,∞), for a number of paraproduct operators, including

(3.7) τ(f, v) = Tvf, τ(f, v) = R(f, v).

The following consequence of (3.6) was demonstrated in Proposition 3.5.F of [15].

Lemma 3.1. For τ(f, v) as in (3.7), we have, for each p ∈ (1,∞), r ∈ Z+,

(3.8) ‖τ(f, v)‖Hs,p ≤ C‖f‖hr,∞‖v‖Hs−r,p , 0 ≤ s ≤ r.

We produce further extensions of this result. To rephrase (3.8) in case s = r = k,
if we set τvf = τ(f, v), then, for p ∈ (1,∞),

(3.9) v ∈ Lp =⇒ τv : hk,∞ → Hk,p, k ∈ Z+.

Interpolation (cf. [20], Proposition 5.3) gives

(3.10) v ∈ Lp =⇒ τv : hr,∞ → Hr,p, r ∈ [0,∞).

In case τvf = Tvf , we deduce that for P ∈ OPBS0
1,1, r > 0, p ∈ (1,∞),

(3.11) ‖PTuf‖Hr,p ≤ C‖f‖hr,∞‖u‖Lp , ‖TPuf‖Hr,p ≤ C‖f‖hr,∞‖u‖Lp .

This, together with estimates of §2, establishes (1.5).
To complete the proof of Proposition 1.2, we will establish the following extension

of Lemma 3.1.

Proposition 3.2. Given τ as in Lemma 3.1 and p ∈ (1,∞), the conclusion of
Lemma 3.1 holds for all r ∈ [0,∞).

Proof. We find it convenient to change notation slightly, and show that

(3.12) s, σ ≥ 0, f ∈ hs+σ,∞, v ∈ H−σ,p =⇒ τ(f, v) ∈ Hs,p.

For σ = 0, this follows from (3.10). We next claim it holds for each s ∈ [0,∞)
and σ = k ∈ Z+. The proof is inductive. If (3.12) is valid for σ = k ≤ ` and if
v ∈ H−`−1,p, with v = ∂jvj , vj ∈ H−`,p, while f ∈ hs+`+1,∞, use

(3.13) τ(f, v) = ∂jτ(f, vj)− τ(∂jf, vj)

to get (3.12) for σ = ` + 1.
To finish the proof of Proposition 3.2, let us rephrase the result (3.12) as

(3.14) ‖τ(Λ−σg, Λσu)‖Hs,p ≤ C‖g‖hs,∞‖u‖Lp , s, σ ≥ 0.

So far we have this for σ = k ∈ Z+. Let us set

(3.15) Φ(z) = τ(Λ−zg, Λzu), Re z ≥ 0.

Then, for k ∈ Z+, y ∈ R,

(3.16) Φ(k + iy) = τ(Λ−k−iyg, Λk+iyu) ∈ Hs,p,
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with mild bounds as |y| → ∞. Hence a maximum principle argument for vector-
valued holomorphic functions yields (3.14) and completes the proof of Proposition
3.2. ¤

Applying (3.8) with τ(f, v) = Tvf to PTuf and TPuf , we have the following.
Assume P ∈ OPBSm

1,1. Change notation in (3.8), replacing s by −s. then we have

(3.17) r > 0, s ≤ 0, s + r ≥ 0 =⇒ ‖PTuf‖Hs+r−m,p ≤ C‖f‖hr,∞‖u‖Hs,p ,

and

(3.18) r > 0, s ≤ m, s + r ≥ m =⇒ ‖TPuf‖Hs+r−m,p ≤ C‖f‖hr,∞‖u‖Hs,p .

On the other hand, using τ(f, v) = R(f, v) and taking s = 0, we have

(3.19) ‖R(f, v)‖Lp ≤ C‖f‖hr,∞‖v‖H−r,p ,

whenever r ≥ 0, p ∈ (1,∞), which implies (2.11). This completes the proof of
Proposition 1.2.

Remark. The s = r case of (3.8) also gives an endpoint case of (3.11) in [17].

4. bmo-Sobolev space estimates

Here we estimate [P, f ]u in the hr,∞-norm, providing a p = ∞ endpoint case
of (1.9). For simplicity we take the order m of P to be zero. We establish the
following.

Proposition 4.1. Let P ∈ OPBS0
1,1. Then

(4.1) ‖[P, f ]u‖hr,∞ ≤ Cr‖f‖hr,∞
(‖u‖L∞ + ‖Pu‖L∞

)
, for 0 < r < 1,

(4.2) ‖[P, f ]u‖h1,∞ ≤ C‖f‖Lip1

(‖u‖L∞ + ‖Pu‖L∞
)
.

The estimate (4.2) is an endpoint case of an estimate of Calderon-Coifman-Meyer
type:

(4.3) ‖[P, f ]u‖H1,p ≤ C‖f‖Lip1‖u‖Lp , 1 < p < ∞.

To perform these estimates, we again use (2.2). We also make use of the fact
that

(4.4) P ∈ OPSm
1,1, s−m > 0 =⇒ P : hs,∞ → hs−m,∞,

which is the endpoint case of the well known behavior on Lp-Sobolev spaces. This
result is the case p = ∞, q = 2 of Theorem I of [21]. In light of this, (2.4) yields

(4.5) ‖[P, Tf ]u‖hr,∞ ≤ C‖f‖Cr‖u‖bmo, 0 < r < 1.

Furthermore, complementary to (2.4), we have

(4.6) f ∈ Lip1 =⇒ [Tf , P ] ∈ OPBS−1
1,1 ;

cf. [1], Proposition 4.2, or [16], Proposition 7.4 of Chapter I. Hence

(4.7) ‖[P, Tf ]u‖h1,∞ ≤ C‖f‖Lip1‖u‖bmo.

Also we can use (2.6) to obtain

(4.8) f ∈ Cr
∗ =⇒ Rf : bmo → hr,∞, r > 0.

Hence

(4.9) ‖PR(f, u)‖hr,∞ , ‖R(f, Pu)‖hr,∞ ≤ C‖f‖Cr∗‖u‖bmo, r > 0.
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Finally an application of (3.1) gives

(4.10) ‖PTuf‖hr,∞ ≤ C‖f‖hr,∞‖u‖L∞ , r ∈ R,

and

(4.11) ‖TPuf‖hr,∞ ≤ C‖f‖hr,∞‖Pu‖L∞ , r ∈ R.

These estimates together establish (4.1)–(4.2).

5. Special estimates in one dimension

Estimates given in Propositions 1.1–1.2 and in Proposition 4.1 hold for a wider
range of r when P is a particularly important singular integral operator on the
circle S1, namely

(5.1) P+

∑

ν∈Z
aνeiνθ =

∑

ν≥0

aνeiνθ.

What is special about this operator is that its symbol is constant on each connected
component of T ∗S1 \ 0. Thus, standard symbol asymptotics give, for any δ < 1,

(5.2) A ∈ OPSm
1,δ(S

1) =⇒ [A,P+] ∈ OPS−∞.

The following related result was established in (15.14), Chapter I, of [16]:

(5.3) f ∈ L∞(S1) =⇒ [Tf , P+] ∈ OPS−∞.

For use in Proposition 5.2, we mention that this argument in [16] extends, and we
can take f ∈ D′(S1) in (5.3). Using (5.3), we will prove the following.

Proposition 5.1. With P+ given by (5.1), the following commutator estimates
hold:

(5.4) ‖[P+, f ]u‖Cr∗ ≤ C‖f‖Cr∗

(‖u‖L∞ + ‖P+u‖L∞
)
, r > 0,

(5.5) ‖[P+, f ]u‖Hr,p ≤ C‖f‖hr,∞‖u‖Lp , r > 0, 1 < p < ∞,

(5.6) ‖[P+, f ]u‖hr,∞ ≤ C‖f‖hr,∞
(‖u‖L∞ + ‖P+u‖L∞

)
, r > 0.

Proof. Going back to (2.2), we see that adequate estimates on P+R(f, u) and
R(f, P+u) already follow from (2.7)–(2.10) and (4.8), while adequate estimates on
P+Tuf and TP+uf follow from (3.2), (3.11), and (4.10)–(4.11). This just leaves
estimates on [Tf , P+], which follow immediately from (5.3). ¤

Proposition 5.1 has an application to loop group factorization, given in [18]. The
following commutator estimate also has an application there.

Proposition 5.2. For 1 < p < ∞,

(5.7) ‖[P+, f ]u‖Hr,p ≤ C‖f‖Hr,p

(‖u‖L∞ + ‖P+u‖L∞
)
, r > 0.

Proof. This follows from estimates of P+Tuf and TP+uf in Hr,p, estimates of
P+R(f, u) and R(f, P+u) in Hr,p, and of [Tf , P+]u (using (5.3), strengthened to
allow f ∈ D′(S1)), in a similar fashion to the arguments given above. We merely
replace information on Rf in (2.6) by the implication u ∈ L∞ ⇒ Ru ∈ OPS0

1,1. ¤
We mention a version of Proposition 5.1 that holds when S1 is replaced by R.

Namely, take

(5.8) q ∈ C∞(R), q(ξ) = 0 for ξ ≤ −1, q(ξ) = 0 for ξ ≥ 1,
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and set

(5.9) Q+ = q(D), Q+ ∈ OPS0(R).

Parallel to (5.2), we have, for δ < 1,

(5.10) A ∈ OPSm
1,δ(R) =⇒ [A,Q+] ∈ OPS−∞(R).

Also, parallel to (5.3),

(5.11) f ∈ L∞(R) =⇒ [Tf , Q+] ∈ OPS−∞(R).

In fact, the proof of (15.14) in Chapter 1 of [16] just relies on Proposition 6.1 in
Chapter 1 of [16], which works in the setting of Rn. Consequently, analogues of the
estimates (5.4)–(5.6) hold for [Q+, f ]u, with f and u defined on R.

Appendix A. The spaces Cr
∗ and hr,∞

The spaces Cr
∗(Rn), sometimes called Zygmund spaces, extend to all r ∈ R the

family of spaces Cr(Rn), defined for r ∈ (0,∞) \ Z+ as follows. If 0 < r < 1,
Cr(Rn) consists of Hölder continuous functions with exponent r. If r = k + s, k ∈
Z+, 0 < s < 1, then u ∈ Cr(Rn) if and only if ∂αu ∈ Cs(Rn) whenever |α| ≤ k.
The spaces Cr

∗(Rn) are conveniently defined using a Littlewood-Paley partition of
unity, {ψk : k ≥ 0}. Take ψ0 ∈ C∞0 (Rn), ψ0(ξ) = 1 for |ξ| ≤ 1, 0 for |ξ| ≥ 2,
set ϕk(ξ) = ψ0(2−kξ), and set ψk(ξ) = ϕk(ξ) − ϕk−1(ξ) for k ≥ 1. Then, given a
tempered distribution u on Rn,

(A.1) u ∈ Cr
∗(Rn) ⇐⇒ sup

k≥0
‖ψk(D)u‖L∞ < ∞.

One has (cf. [15], pp. 183–184) that Cr
∗(Rn) = Cr(Rn) whenever r ∈ (0,∞) \ Z+.

One also has

(A.2) P ∈ OPSm
1,1(Rn) =⇒ P : Cr

∗(Rn) → Cr−m
∗ (Rn), if r −m > 0,

and

(A.3) O ∈ OPBSm
1,1(Rn) =⇒ P : Cr

∗(Rn) → Cr−m
∗ (Rn), ∀m, r ∈ R.

In particular, if 0 ≤ δ < 1,

(A.4) P ∈ OPSm
1,δ(Rn) =⇒ P : Cr

∗(Rn) → Cr−m
∗ (Rn), ∀m, r ∈ R.

It follows that, for Λ = (1−∆)1/2, i.e., Λ̂u(ξ) = (1 + |ξ|2)1/2û(ξ),

(A.5) Λm : Cr
∗(Rn) ≈−→ Cr−m

∗ (Rn), ∀ r,m ∈ R.

See [15], Chapter 2, for more operator results. The characterization (A.1) also
presents Cr

∗(Rn) as a Besov space:

(A.6) Cr
∗(Rn) = Br

∞,∞(Rn), ∀ r ∈ R.

For more on this perspective, see [22], pp. 89–91.
We turn to the spaces hr,∞(Rn), defined in terms of bmo(Rn). To start, we recall

the John-Nirenberg space

(A.7) BMO(Rn) = {u ∈ L1
loc(Rn) : u# ∈ L∞(Rn)}

where

(A.8) u#(x) = sup
B∈B(x)

1
V (B)

∫

B

|u(y)− uB | dy,
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with B(x) = {Br(x) : 0 < r < ∞}, Br(x) being the ball centered at x of radius
r, and uB the mean value of u on B. There are variants, giving the same space.
For example, one could use cubes containing x instead of balls centered at x, and
one could replace uB in (A.8) by cB , chosen to minimize the integral. We set
‖u‖BMO = ‖u#‖L∞ . This is not a norm, since ‖c‖BMO = 0 if c is a constant; it is
a seminorm. The space bmo(Rn), introduced in [9], is defined by

(A.9) bmo(Rn) = {u ∈ L1
loc(Rn) : #u ∈ L∞(Rn)},

where

(A.10) #u(x) = sup
B∈B1(x)

1
V (B)

∫

B

|u(y)− uB | dy +
1

V (B1(x))

∫

B1(x)

|u(y)| dy,

with B1(x) = {Br(x) : 0 < r ≤ 1}. We set ‖u‖bmo = ‖#u‖L∞ . This is a norm, and
it has good localization properties. For example,

(A.11) f ∈ Cr(Rn), u ∈ bmo(Rn), r > 0 =⇒ fu ∈ bmo(Rn).

Also (cf. [16], p. 30),

(A.12) P ∈ OPBS0
1,1(Rn) =⇒ P : bmo(Rn) → bmo(Rn),

so in particular, if 0 ≤ δ < 1,

(A.13) P ∈ OPS0
1,δ(Rn) =⇒ P : bmo(Rn) → bmo(Rn).

Now, given r ∈ R, we define

(A.14) hr,∞(Rn) = {Λ−ru : u ∈ bmo(Rn)},
with Λ as in (A.5). Thus h0,∞(Rn) = bmo(Rn). It follows from (A.12)–(A.13) and
pseudodifferential operator calculus that, given r,m ∈ R, 0 ≤ δ < 1,

(A.15)
P ∈ OPBSm

1,1(Rn) =⇒ P : hr,∞(Rn) → hr−m,∞(Rn),

P ∈ OPSm
1,δ(Rn) =⇒ P : hr,∞(Rn) → hr−m,∞(Rn).

We briefly indicate how to define these spaces on a compact Riemannian manifold
M . The spaces Cr

∗(M) can be defined via a partition of unity and local coordinate
charts, leading to elements of Cr

∗(Rn). In case r ∈ (0,∞) \ Z+, one clearly has
Cr
∗(M) = Cr(M), classically defined. Also, one can deduce from (A.4) that

(A.16) P ∈ OPSm
1,0(M) =⇒ P : Cr

∗(M) → Cr−m
∗ (M), ∀ r,m ∈ R.

The spaces hr,∞(M) can also be defined via a partition of unity and local coordinate
charts. We refer to [19] for details, worked out there for the more general class of
complete Riemannian manifolds with bounded geometry. Parallel to (A.16), we
have

(A.17) P ∈ OPSm
1,0(M) =⇒ P : hr,∞(M) → hr−m,∞(M), ∀ r,m ∈ R.
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