COMMUTATOR ESTIMATES FOR HÖLDER CONTINUOUS AND BMO-SOBOLEV MULTIPLIERS

MICHAEL E. TAYLOR

(Communicated by A. Iosevich)

Abstract

We discuss conditions on a function f under which the commutator $[P, f]$ of a pseudodifferential operator P of order m with the operation of multiplication by f is an operator of order $m-r$ on various function spaces, namely Hölder-Zygmund spaces and L^{p}-Sobolev spaces, given $0<r<1$. We also establish an endpoint case involving $r=1$, and we extend the scope to all $r>0$ for a particularly significant case in 1 dimension.

1. Introduction

The fact that the commutator of a pseudodifferential operator P of order m with the operation of multiplication by a smooth function f is an operator of order $m-1$ is a central result, which has had important refinements. In particular, such a result holds for $f \in \operatorname{Lip}^{1}$, for a certain range of m; cf. [4], [6], [10], [1], [17]. Here we examine when a Hölder hypothesis on f, or some variant, implies $[P, f]$ has order $m-r$, for some $r \in(0,1)$. Here is one sample result, when $m=0,0<r<1$:

$$
\begin{equation*}
\|[P, f] u\|_{C^{r}} \leq C\|f\|_{C^{r}}\left(\|u\|_{L^{\infty}}+\|P u\|_{L^{\infty}}\right) \tag{1.1}
\end{equation*}
$$

Such a result is useful in the regularity theory of vortex patches; cf. [2], [5]. A proof when P is a classical singular integral operator of convolution type is given in [11], pp. 355-356. The estimate (1.1) is valid more generally for $P \in O P S_{1, \delta}^{0}, \delta<1$, and even more generally for $P \in O P \mathcal{B} S_{1,1}^{0}$, as we will see below. We recall that $P=p(x, D)$ belongs to $O P S_{1, \delta}^{m}$ if and only if its symbol $p(x, \xi)$ satisfies

$$
\begin{equation*}
\left|D_{x}^{\beta} D_{\xi}^{\alpha} p(x, \xi)\right| \leq C_{\alpha \beta}(1+|\xi|)^{m-|\alpha|+\delta|\beta|} . \tag{1.2}
\end{equation*}
$$

We say $p(x, \xi) \in \mathcal{B} S_{1,1}^{m}$ provided $p(x, \xi) \in S_{1,1}^{m}$ and the partial Fourier transform $\hat{p}(\eta, \xi)$ has the property

$$
\begin{equation*}
\operatorname{supp} \hat{p} \subset\{(\eta, \xi):|\eta| \leq \rho|\xi|\} \tag{1.3}
\end{equation*}
$$

for some $\rho<1$. This class was introduced in [13]. We remark that $O P \mathcal{B} S_{1,1}^{m}$ contains $O P S_{1, \delta}^{m}$ (modulo smoothing operators) for each $\delta<1$.

[^0]The analogue of (1.1) for $[P, f]$ acting on L^{p}-Sobolev spaces $H^{r, p}$ requires an hypothesis on f slightly stronger than $f \in C^{r}$, namely $f \in \mathfrak{h}^{r, \infty}$, the bmo-Sobolev space,

$$
\begin{equation*}
\mathfrak{h}^{r, \infty}=\Lambda^{-r} \text { bmo, } \quad \Lambda=(1-\Delta)^{1 / 2} \tag{1.4}
\end{equation*}
$$

where bmo is the inhomogeneous variant of the John-Nirenberg space BMO (cf. [9]). See Appendix A for a precise definition of the spaces $\mathfrak{h}^{r, \infty}$, and some of their basic properties. Parallel to (1.1), we will show that

$$
\begin{equation*}
\|[P, f] u\|_{H^{r, p}} \leq C\|f\|_{\mathfrak{h}^{r, \infty}}\|u\|_{L^{p}} \tag{1.5}
\end{equation*}
$$

given $P \in O P \mathcal{B} S_{1,1}^{0}, \quad 0<r<1,1<p<\infty$. We will establish the following further estimates, complementing (1.1) and (1.5). See also Appendix A for a definition of the spaces C_{*}^{s} arising in (1.7), and a description of some of their basic properties.

Proposition 1.1. Let $P \in O P B S_{1,1}^{m}$. Assume $0<r<1$ and

$$
\begin{equation*}
-r<s<0, \quad s<m<r+s \tag{1.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
f \in C^{r} \Longrightarrow[P, f]: C_{*}^{s} \rightarrow C_{*}^{r+s-m} \tag{1.7}
\end{equation*}
$$

Proposition 1.2. Let $P \in O P \mathcal{B} S_{1,1}^{m}$. Assume $0<r<1,1<p<\infty$, and

$$
\begin{equation*}
-r<s \leq 0, \quad s \leq m \leq r+s \tag{1.8}
\end{equation*}
$$

Then

$$
\begin{equation*}
f \in \mathfrak{h}^{r, \infty} \Longrightarrow[P, f]: H^{s, p} \rightarrow H^{r+s-m, p} \tag{1.9}
\end{equation*}
$$

Note that Proposition 1.2 provides a strict extension of (1.5) (where $m=0$), while (with $m=0$) the $s=0$ limit of Proposition 1.1, given in (1.1), takes $u, P u \in$ L^{∞} rather than in C_{*}^{0}.

In $\S 2$ we start the proofs of the results stated above, using paraproducts. Crucial paraproduct estimates are established in $\S 3$, to complete the proofs of these results. In §4 we supplement (1.9) with estimates on $\|[P, f] u\|_{\mathfrak{h}^{r, \infty}}$. We also get such an estimate for $f \in \operatorname{Lip}^{1}$, supplementing estimates of Calderon-Coifman-Meyer type. In $\S 5$ we extend the scope of such estimates to all $r>0$ when P is a particularly important singular integral integral operator on the circle (essentially the Hilbert transform). We end with Appendix A, advertised above, which provides some material on the spaces $\mathfrak{h}^{r, \infty}$ and C_{*}^{s}, appearing in Propositions 1.1 and 1.2.

Remark. The case $r=0$ of (1.5) is also valid. This was established in [7] for a classical pseudodifferential operator of order zero, and in [1] for $P \in O P \mathcal{B} S_{1,1}^{0}$. The case $m=r+s, s=0$ of Proposition 1.2 was established in [14], for classical pseudodifferential operators of convolution type, in dimension 1.

2. Paraproduct decompositions and preliminary estimates

An essential ingredient in our analysis is the paraproduct operation of J.-M. Bony:

$$
\begin{equation*}
T_{f} u=\sum_{k \geq 0} f_{k} \psi_{k}(D) u \tag{2.1}
\end{equation*}
$$

where $\left\{\psi_{k}\right\}$ is a Littlewood-Paley partition of unity and $f_{k}=\sum_{j \leq k-3} \psi_{j}(D) f$. Along the lines of arguments used in [15] and [1], we write

$$
\begin{align*}
P(f u) & =P T_{f} u+P T_{u} f+P R(f, u), \\
f P u & =T_{f} P u+T_{P u} f+R(f, P u) \tag{2.2}
\end{align*}
$$

Here

$$
\begin{equation*}
R(f, u)=\sum_{|j-k| \leq 2} \psi_{j}(D) f \cdot \psi_{k}(D) u \tag{2.3}
\end{equation*}
$$

To begin, we have, for $0<r<1, P \in O P \mathcal{B} S_{1,1}^{m}$, with ρ in (1.3) sufficiently small,

$$
\begin{equation*}
f \in C^{r} \Longrightarrow\left[P, T_{f}\right] \in O P \mathcal{B} S_{1,1}^{m-r} \tag{2.4}
\end{equation*}
$$

Such a result follows from the paradifferential operator calculus initiated in [3] and [13]; cf. also Proposition 7.3 in Chapter I of [16]. From (2.4) we have

$$
\begin{equation*}
\left[P, T_{f}\right]: C_{*}^{s} \longrightarrow C_{*}^{r+s-m}, \quad\left[P, T_{f}\right]: H^{s, p} \longrightarrow H^{r+s-m, p}, \tag{2.5}
\end{equation*}
$$

for all $s, m \in \mathbb{R}, p \in(1, \infty)$, given $f \in C^{r}, 0<r<1$.
To proceed, we have the following information on the operator $R_{f} u=R(f, u)$:

$$
\begin{equation*}
f \in C_{*}^{r} \Longrightarrow R_{f} \in O P S_{1,1}^{-r} ; \tag{2.6}
\end{equation*}
$$

this holds for all $r \in \mathbb{R}$; cf. [15], (3.5.11). Hence, given $P \in O P \mathcal{B} S_{1,1}^{m}$,

$$
\begin{equation*}
\|P R(f, u)\|_{C_{*}^{r+s-m}} \leq C\|f\|_{C_{*}^{r}}\|u\|_{C_{*}^{s}} \tag{2.7}
\end{equation*}
$$

provided $r+s>0$, and

$$
\begin{equation*}
\|R(f, P u)\|_{C_{*}^{r+s-m}} \leq C\|f\|_{C_{*}^{r}}\|u\|_{C_{*}^{s}}, \tag{2.8}
\end{equation*}
$$

provided $r+s>m$. Regarding Sobolev estimates, if $1<p<\infty$, we have

$$
\begin{equation*}
\|P R(f, u)\|_{H^{r+s-m, p}} \leq C\|f\|_{C_{*}^{r}}\|u\|_{H^{s, p}} \tag{2.9}
\end{equation*}
$$

provided $r+s>0$, and

$$
\begin{equation*}
\|R(f, P u)\|_{H^{r+s-m, p}} \leq C\|f\|_{C_{*}^{r}}\|u\|_{H^{s, p}} \tag{2.10}
\end{equation*}
$$

provided $r+s>m$.
To complete the proofs of the results stated in $\S 1$, it remains to estimate $P T_{u} f$ and $T_{P u} f$, and to supplement (2.10) by

$$
\begin{equation*}
\|R(f, P u)\|_{L^{p}} \leq C\|f\|_{\mathfrak{h}^{r, \infty}}\|u\|_{H^{s, p}}, \quad m=r+s, r \geq 0 \tag{2.11}
\end{equation*}
$$

We undertake these estimates in the next section.

3. Complementary paraproduct estimates

Here we complete the proof of the results stated in $\S 1$, via estimates on $T_{v} f$. One basic estimate comes from

$$
\begin{equation*}
v \in L^{\infty} \Longrightarrow T_{v} \in O P \mathcal{B} S_{1,1}^{0} \tag{3.1}
\end{equation*}
$$

In particular, given $P \in O P \mathcal{B} S_{1,1}^{0}, r \in \mathbb{R}$,
(3.2) $\quad\left\|P T_{u} f\right\|_{C^{r}} \leq C\|u\|_{L^{\infty}}\|f\|_{C^{r}}, \quad\left\|T_{P u} f\right\|_{C^{r}} \leq C\|P u\|_{L^{\infty}}\|f\|_{C^{r}} ;$
cf. [15], (3.5.5). This, together with estimates of $\S 2$, is enough to establish (1.1).
Another basic estimate comes from

$$
\begin{equation*}
v \in C_{*}^{-s}, \quad s>0 \Longrightarrow T_{v} \in O P B S_{1,1}^{s} \tag{3.3}
\end{equation*}
$$

cf. [15], (3.5.7). Thus, given $P \in O P \mathcal{B} S_{1,1}^{m}, 0<r<1$,

$$
\begin{equation*}
s<0, \quad u \in C_{*}^{s}, \quad f \in C^{r} \Longrightarrow P T_{u} f \in C_{*}^{-m+s+r} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
s-m<0, \quad u \in C_{*}^{s}, \quad f \in C^{r} \Longrightarrow T_{P u} f \in C_{*}^{-m+s+r} . \tag{3.5}
\end{equation*}
$$

These results complete the proof of Proposition 1.1.
To obtain paraproduct estimates to establish (1.5) and Proposition 1.2, we start with the Coifman-Meyer estimate (cf. [6])

$$
\begin{equation*}
\|\tau(f, v)\|_{L^{p}} \leq C\|f\|_{\mathrm{BMO}}\|v\|_{L^{p}} \tag{3.6}
\end{equation*}
$$

valid for $p \in(1, \infty)$, for a number of paraproduct operators, including

$$
\begin{equation*}
\tau(f, v)=T_{v} f, \quad \tau(f, v)=R(f, v) \tag{3.7}
\end{equation*}
$$

The following consequence of (3.6) was demonstrated in Proposition 3.5.F of [15].
Lemma 3.1. For $\tau(f, v)$ as in (3.7), we have, for each $p \in(1, \infty), r \in \mathbb{Z}^{+}$,

$$
\begin{equation*}
\|\tau(f, v)\|_{H^{s, p}} \leq C\|f\|_{\mathfrak{h}^{r, \infty}}\|v\|_{H^{s-r, p}}, \quad 0 \leq s \leq r \tag{3.8}
\end{equation*}
$$

We produce further extensions of this result. To rephrase (3.8) in case $s=r=k$, if we set $\tau_{v} f=\tau(f, v)$, then, for $p \in(1, \infty)$,

$$
\begin{equation*}
v \in L^{p} \Longrightarrow \tau_{v}: \mathfrak{h}^{k, \infty} \rightarrow H^{k, p}, \quad k \in \mathbb{Z}^{+} . \tag{3.9}
\end{equation*}
$$

Interpolation (cf. [20], Proposition 5.3) gives

$$
\begin{equation*}
v \in L^{p} \Longrightarrow \tau_{v}: \mathfrak{h}^{r, \infty} \rightarrow H^{r, p}, \quad r \in[0, \infty) \tag{3.10}
\end{equation*}
$$

In case $\tau_{v} f=T_{v} f$, we deduce that for $P \in O P \mathcal{B} S_{1,1}^{0}, r>0, p \in(1, \infty)$,

$$
\begin{equation*}
\left\|P T_{u} f\right\|_{H^{r, p}} \leq C\|f\|_{\mathfrak{h}^{r, \infty}}\|u\|_{L^{p}}, \quad\left\|T_{P u} f\right\|_{H^{r, p}} \leq C\|f\|_{\mathfrak{h}^{r, \infty}}\|u\|_{L^{p}} . \tag{3.11}
\end{equation*}
$$

This, together with estimates of $\S 2$, establishes (1.5).
To complete the proof of Proposition 1.2, we will establish the following extension of Lemma 3.1.

Proposition 3.2. Given τ as in Lemma 3.1 and $p \in(1, \infty)$, the conclusion of Lemma 3.1 holds for all $r \in[0, \infty)$.

Proof. We find it convenient to change notation slightly, and show that

$$
\begin{equation*}
s, \sigma \geq 0, f \in \mathfrak{h}^{s+\sigma, \infty}, v \in H^{-\sigma, p} \Longrightarrow \tau(f, v) \in H^{s, p} . \tag{3.12}
\end{equation*}
$$

For $\sigma=0$, this follows from (3.10). We next claim it holds for each $s \in[0, \infty)$ and $\sigma=k \in \mathbb{Z}^{+}$. The proof is inductive. If (3.12) is valid for $\sigma=k \leq \ell$ and if $v \in H^{-\ell-1, p}$, with $v=\partial_{j} v_{j}, v_{j} \in H^{-\ell, p}$, while $f \in \mathfrak{h}^{s+\ell+1, \infty}$, use

$$
\begin{equation*}
\tau(f, v)=\partial_{j} \tau\left(f, v_{j}\right)-\tau\left(\partial_{j} f, v_{j}\right) \tag{3.13}
\end{equation*}
$$

to get (3.12) for $\sigma=\ell+1$.
To finish the proof of Proposition 3.2, let us rephrase the result (3.12) as

$$
\begin{equation*}
\left\|\tau\left(\Lambda^{-\sigma} g, \Lambda^{\sigma} u\right)\right\|_{H^{s, p}} \leq C\|g\|_{\mathfrak{h}^{s, \infty}}\|u\|_{L^{p}}, \quad s, \sigma \geq 0 . \tag{3.14}
\end{equation*}
$$

So far we have this for $\sigma=k \in \mathbb{Z}^{+}$. Let us set

$$
\begin{equation*}
\Phi(z)=\tau\left(\Lambda^{-z} g, \Lambda^{z} u\right), \quad \operatorname{Re} z \geq 0 \tag{3.15}
\end{equation*}
$$

Then, for $k \in \mathbb{Z}^{+}, y \in \mathbb{R}$,

$$
\begin{equation*}
\Phi(k+i y)=\tau\left(\Lambda^{-k-i y} g, \Lambda^{k+i y} u\right) \in H^{s, p} \tag{3.16}
\end{equation*}
$$

with mild bounds as $|y| \rightarrow \infty$. Hence a maximum principle argument for vectorvalued holomorphic functions yields (3.14) and completes the proof of Proposition 3.2 .

Applying (3.8) with $\tau(f, v)=T_{v} f$ to $P T_{u} f$ and $T_{P u} f$, we have the following. Assume $P \in O P \mathcal{B} S_{1,1}^{m}$. Change notation in (3.8), replacing s by $-s$. then we have

$$
\begin{equation*}
r>0, s \leq 0, s+r \geq 0 \Longrightarrow\left\|P T_{u} f\right\|_{H^{s+r-m, p}} \leq C\|f\|_{\mathfrak{h}^{r, \infty}}\|u\|_{H^{s, p}} \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
r>0, s \leq m, s+r \geq m \Longrightarrow\left\|T_{P u} f\right\|_{H^{s+r-m, p}} \leq C\|f\|_{\mathfrak{h}^{r, \infty},}\|u\|_{H^{s, p}} \tag{3.18}
\end{equation*}
$$

On the other hand, using $\tau(f, v)=R(f, v)$ and taking $s=0$, we have

$$
\begin{equation*}
\|R(f, v)\|_{L^{p}} \leq C\|f\|_{\mathfrak{h}^{r, \infty}}\|v\|_{H^{-r, p}} \tag{3.19}
\end{equation*}
$$

whenever $r \geq 0, p \in(1, \infty)$, which implies (2.11). This completes the proof of Proposition 1.2.

Remark. The $s=r$ case of (3.8) also gives an endpoint case of (3.11) in [17].

4. BMO-Sobolev Space estimates

Here we estimate $[P, f] u$ in the $\mathfrak{h}^{r, \infty}{ }_{-}$-norm, providing a $p=\infty$ endpoint case of (1.9). For simplicity we take the order m of P to be zero. We establish the following.

Proposition 4.1. Let $P \in O P B S_{1,1}^{0}$. Then

$$
\begin{gather*}
\|[P, f] u\|_{\mathfrak{h}^{r, \infty}} \leq C_{r}\|f\|_{\mathfrak{h}^{r, \infty}}\left(\|u\|_{L^{\infty}}+\|P u\|_{L^{\infty}}\right), \quad \text { for } 0<r<1, \tag{4.1}\\
\|[P, f] u\|_{\mathfrak{h}^{1, \infty}} \leq C\|f\|_{\operatorname{Lip}^{1}}\left(\|u\|_{L^{\infty}}+\|P u\|_{L^{\infty}}\right) . \tag{4.2}
\end{gather*}
$$

The estimate (4.2) is an endpoint case of an estimate of Calderon-Coifman-Meyer type:

$$
\begin{equation*}
\|[P, f] u\|_{H^{1, p}} \leq C\|f\|_{\operatorname{Lip}^{1}}\|u\|_{L^{p}}, \quad 1<p<\infty \tag{4.3}
\end{equation*}
$$

To perform these estimates, we again use (2.2). We also make use of the fact that

$$
\begin{equation*}
P \in O P S_{1,1}^{m}, s-m>0 \Longrightarrow P: \mathfrak{h}^{s, \infty} \rightarrow \mathfrak{h}^{s-m, \infty} \tag{4.4}
\end{equation*}
$$

which is the endpoint case of the well known behavior on L^{p}-Sobolev spaces. This result is the case $p=\infty, q=2$ of Theorem I of [21]. In light of this, (2.4) yields

$$
\begin{equation*}
\left\|\left[P, T_{f}\right] u\right\|_{\mathfrak{h}^{r, \infty}} \leq C\|f\|_{C^{r}}\|u\|_{\mathrm{bmo}}, \quad 0<r<1 \tag{4.5}
\end{equation*}
$$

Furthermore, complementary to (2.4), we have

$$
\begin{equation*}
f \in \operatorname{Lip}^{1} \Longrightarrow\left[T_{f}, P\right] \in O P \mathcal{B} S_{1,1}^{-1} \tag{4.6}
\end{equation*}
$$

cf. [1], Proposition 4.2, or [16], Proposition 7.4 of Chapter I. Hence

$$
\begin{equation*}
\left\|\left[P, T_{f}\right] u\right\|_{\mathfrak{h}^{1, \infty}} \leq C\|f\|_{\operatorname{Lip}^{1}}\|u\|_{\mathrm{bmo}} . \tag{4.7}
\end{equation*}
$$

Also we can use (2.6) to obtain

$$
\begin{equation*}
f \in C_{*}^{r} \Longrightarrow R_{f}: \operatorname{bmo} \rightarrow \mathfrak{h}^{r, \infty}, \quad r>0 . \tag{4.8}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\|P R(f, u)\|_{\mathfrak{h}^{r}, \infty},\|R(f, P u)\|_{\mathfrak{h}^{r, \infty}} \leq C\|f\|_{C_{*}^{r}}\|u\|_{\mathrm{bmo}}, \quad r>0 . \tag{4.9}
\end{equation*}
$$

Finally an application of (3.1) gives

$$
\begin{equation*}
\left\|P T_{u} f\right\|_{\mathfrak{h}^{r, \infty}} \leq C\|f\|_{\mathfrak{h}^{r, \infty}}\|u\|_{L^{\infty}}, \quad r \in \mathbb{R} \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|T_{P u} f\right\|_{\mathfrak{h}^{r, \infty}} \leq C\|f\|_{\mathfrak{h}^{r, \infty},}\|P u\|_{L^{\infty}}, \quad r \in \mathbb{R} \tag{4.11}
\end{equation*}
$$

These estimates together establish (4.1)-(4.2).

5. Special estimates in one dimension

Estimates given in Propositions 1.1-1.2 and in Proposition 4.1 hold for a wider range of r when P is a particularly important singular integral operator on the circle S^{1}, namely

$$
\begin{equation*}
P_{+} \sum_{\nu \in \mathbb{Z}} a_{\nu} e^{i \nu \theta}=\sum_{\nu \geq 0} a_{\nu} e^{i \nu \theta} \tag{5.1}
\end{equation*}
$$

What is special about this operator is that its symbol is constant on each connected component of $T^{*} S^{1} \backslash 0$. Thus, standard symbol asymptotics give, for any $\delta<1$,

$$
\begin{equation*}
A \in O P S_{1, \delta}^{m}\left(S^{1}\right) \Longrightarrow\left[A, P_{+}\right] \in O P S^{-\infty} \tag{5.2}
\end{equation*}
$$

The following related result was established in (15.14), Chapter I, of [16]:

$$
\begin{equation*}
f \in L^{\infty}\left(S^{1}\right) \Longrightarrow\left[T_{f}, P_{+}\right] \in O P S^{-\infty} \tag{5.3}
\end{equation*}
$$

For use in Proposition 5.2, we mention that this argument in [16] extends, and we can take $f \in \mathcal{D}^{\prime}\left(S^{1}\right)$ in (5.3). Using (5.3), we will prove the following.

Proposition 5.1. With P_{+}given by (5.1), the following commutator estimates hold:

$$
\begin{gather*}
\left\|\left[P_{+}, f\right] u\right\|_{C_{*}^{r}} \leq C\|f\|_{C_{*}^{r}}\left(\|u\|_{L^{\infty}}+\left\|P_{+} u\right\|_{L^{\infty}}\right), \quad r>0 \tag{5.4}\\
\left\|\left[P_{+}, f\right] u\right\|_{H^{r, p}} \leq C\|f\|_{\mathfrak{h}^{r, \infty}}\|u\|_{L^{p}}, \quad r>0,1<p<\infty \tag{5.5}\\
\left\|\left[P_{+}, f\right] u\right\|_{\mathfrak{h}^{r, \infty}} \leq C\|f\|_{\mathfrak{h}^{r, \infty}}\left(\|u\|_{L^{\infty}}+\left\|P_{+} u\right\|_{L^{\infty}}\right), \quad r>0 . \tag{5.6}
\end{gather*}
$$

Proof. Going back to (2.2), we see that adequate estimates on $P_{+} R(f, u)$ and $R\left(f, P_{+} u\right)$ already follow from (2.7)-(2.10) and (4.8), while adequate estimates on $P_{+} T_{u} f$ and $T_{P_{+} u} f$ follow from (3.2), (3.11), and (4.10)-(4.11). This just leaves estimates on $\left[T_{f}, P_{+}\right]$, which follow immediately from (5.3).

Proposition 5.1 has an application to loop group factorization, given in [18]. The following commutator estimate also has an application there.
Proposition 5.2. For $1<p<\infty$,

$$
\begin{equation*}
\left\|\left[P_{+}, f\right] u\right\|_{H^{r, p}} \leq C\|f\|_{H^{r, p}}\left(\|u\|_{L^{\infty}}+\left\|P_{+} u\right\|_{L^{\infty}}\right), \quad r>0 \tag{5.7}
\end{equation*}
$$

Proof. This follows from estimates of $P_{+} T_{u} f$ and $T_{P_{+} u} f$ in $H^{r, p}$, estimates of $P_{+} R(f, u)$ and $R\left(f, P_{+} u\right)$ in $H^{r, p}$, and of $\left[T_{f}, P_{+}\right] u$ (using (5.3), strengthened to allow $f \in \mathcal{D}^{\prime}\left(S^{1}\right)$), in a similar fashion to the arguments given above. We merely replace information on R_{f} in (2.6) by the implication $u \in L^{\infty} \Rightarrow R_{u} \in O P S_{1,1}^{0}$.

We mention a version of Proposition 5.1 that holds when S^{1} is replaced by \mathbb{R}. Namely, take

$$
\begin{equation*}
q \in C^{\infty}(\mathbb{R}), \quad q(\xi)=0 \text { for } \xi \leq-1, \quad q(\xi)=0 \text { for } \xi \geq 1 \tag{5.8}
\end{equation*}
$$

and set

$$
\begin{equation*}
Q_{+}=q(D), \quad Q_{+} \in O P S^{0}(\mathbb{R}) \tag{5.9}
\end{equation*}
$$

Parallel to (5.2), we have, for $\delta<1$,

$$
\begin{equation*}
A \in O P S_{1, \delta}^{m}(\mathbb{R}) \Longrightarrow\left[A, Q_{+}\right] \in O P S^{-\infty}(\mathbb{R}) \tag{5.10}
\end{equation*}
$$

Also, parallel to (5.3),

$$
\begin{equation*}
f \in L^{\infty}(\mathbb{R}) \Longrightarrow\left[T_{f}, Q_{+}\right] \in O P S^{-\infty}(\mathbb{R}) \tag{5.11}
\end{equation*}
$$

In fact, the proof of (15.14) in Chapter 1 of [16] just relies on Proposition 6.1 in Chapter 1 of [16], which works in the setting of \mathbb{R}^{n}. Consequently, analogues of the estimates (5.4)-(5.6) hold for $\left[Q_{+}, f\right] u$, with f and u defined on \mathbb{R}.

Appendix A. The spaces C_{*}^{r} and $\mathfrak{h}^{r, \infty}$

The spaces $C_{*}^{r}\left(\mathbb{R}^{n}\right)$, sometimes called Zygmund spaces, extend to all $r \in \mathbb{R}$ the family of spaces $C^{r}\left(\mathbb{R}^{n}\right)$, defined for $r \in(0, \infty) \backslash \mathbb{Z}^{+}$as follows. If $0<r<1$, $C^{r}\left(\mathbb{R}^{n}\right)$ consists of Hölder continuous functions with exponent r. If $r=k+s, k \in$ $\mathbb{Z}^{+}, 0<s<1$, then $u \in C^{r}\left(\mathbb{R}^{n}\right)$ if and only if $\partial^{\alpha} u \in C^{s}\left(\mathbb{R}^{n}\right)$ whenever $|\alpha| \leq k$. The spaces $C_{*}^{r}\left(\mathbb{R}^{n}\right)$ are conveniently defined using a Littlewood-Paley partition of unity, $\left\{\psi_{k}: k \geq 0\right\}$. Take $\psi_{0} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), \psi_{0}(\xi)=1$ for $|\xi| \leq 1,0$ for $|\xi| \geq 2$, set $\varphi_{k}(\xi)=\psi_{0}\left(2^{-k} \xi\right)$, and set $\psi_{k}(\xi)=\varphi_{k}(\xi)-\varphi_{k-1}(\xi)$ for $k \geq 1$. Then, given a tempered distribution u on \mathbb{R}^{n},

$$
\begin{equation*}
u \in C_{*}^{r}\left(\mathbb{R}^{n}\right) \Longleftrightarrow \sup _{k \geq 0}\left\|\psi_{k}(D) u\right\|_{L^{\infty}}<\infty \tag{A.1}
\end{equation*}
$$

One has (cf. [15], pp. 183-184) that $C_{*}^{r}\left(\mathbb{R}^{n}\right)=C^{r}\left(\mathbb{R}^{n}\right)$ whenever $r \in(0, \infty) \backslash \mathbb{Z}^{+}$.
One also has

$$
\begin{equation*}
P \in O P S_{1,1}^{m}\left(\mathbb{R}^{n}\right) \Longrightarrow P: C_{*}^{r}\left(\mathbb{R}^{n}\right) \rightarrow C_{*}^{r-m}\left(\mathbb{R}^{n}\right), \quad \text { if } r-m>0 \tag{A.2}
\end{equation*}
$$

and

$$
\begin{equation*}
O \in O P \mathcal{B} S_{1,1}^{m}\left(\mathbb{R}^{n}\right) \Longrightarrow P: C_{*}^{r}\left(\mathbb{R}^{n}\right) \rightarrow C_{*}^{r-m}\left(\mathbb{R}^{n}\right), \quad \forall m, r \in \mathbb{R} . \tag{A.3}
\end{equation*}
$$

In particular, if $0 \leq \delta<1$,

$$
\begin{equation*}
P \in O P S_{1, \delta}^{m}\left(\mathbb{R}^{n}\right) \Longrightarrow P: C_{*}^{r}\left(\mathbb{R}^{n}\right) \rightarrow C_{*}^{r-m}\left(\mathbb{R}^{n}\right), \quad \forall m, r \in \mathbb{R} \tag{A.4}
\end{equation*}
$$

It follows that, for $\Lambda=(1-\Delta)^{1 / 2}$, i.e., $\widehat{\Lambda u}(\xi)=\left(1+|\xi|^{2}\right)^{1 / 2} \hat{u}(\xi)$,

$$
\begin{equation*}
\Lambda^{m}: C_{*}^{r}\left(\mathbb{R}^{n}\right) \xrightarrow{\approx} C_{*}^{r-m}\left(\mathbb{R}^{n}\right), \quad \forall r, m \in \mathbb{R} \tag{A.5}
\end{equation*}
$$

See [15], Chapter 2, for more operator results. The characterization (A.1) also presents $C_{*}^{r}\left(\mathbb{R}^{n}\right)$ as a Besov space:

$$
\begin{equation*}
C_{*}^{r}\left(\mathbb{R}^{n}\right)=B_{\infty, \infty}^{r}\left(\mathbb{R}^{n}\right), \quad \forall r \in \mathbb{R} \tag{A.6}
\end{equation*}
$$

For more on this perspective, see [22], pp. 89-91.
We turn to the spaces $\mathfrak{h}^{r, \infty}\left(\mathbb{R}^{n}\right)$, defined in terms of $\operatorname{bmo}\left(\mathbb{R}^{n}\right)$. To start, we recall the John-Nirenberg space

$$
\begin{equation*}
\operatorname{BMO}\left(\mathbb{R}^{n}\right)=\left\{u \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right): u^{\#} \in L^{\infty}\left(\mathbb{R}^{n}\right)\right\} \tag{A.7}
\end{equation*}
$$

where

$$
\begin{equation*}
u^{\#}(x)=\sup _{B \in \mathcal{B}(x)} \frac{1}{V(B)} \int_{B}\left|u(y)-u_{B}\right| d y \tag{A.8}
\end{equation*}
$$

with $\mathcal{B}(x)=\left\{B_{r}(x): 0<r<\infty\right\}, B_{r}(x)$ being the ball centered at x of radius r, and u_{B} the mean value of u on B. There are variants, giving the same space. For example, one could use cubes containing x instead of balls centered at x, and one could replace u_{B} in (A.8) by c_{B}, chosen to minimize the integral. We set $\|u\|_{\mathrm{BMO}}=\left\|u^{\#}\right\|_{L^{\infty}}$. This is not a norm, since $\|c\|_{\mathrm{BMO}}=0$ if c is a constant; it is a seminorm. The space $\operatorname{bmo}\left(\mathbb{R}^{n}\right)$, introduced in [9], is defined by

$$
\begin{equation*}
\operatorname{bmo}\left(\mathbb{R}^{n}\right)=\left\{u \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right):{ }^{\#} u \in L^{\infty}\left(\mathbb{R}^{n}\right)\right\} \tag{A.9}
\end{equation*}
$$

where

$$
\begin{equation*}
{ }^{\#} u(x)=\sup _{B \in \mathcal{B}_{1}(x)} \frac{1}{V(B)} \int_{B}\left|u(y)-u_{B}\right| d y+\frac{1}{V\left(B_{1}(x)\right)} \int_{B_{1}(x)}|u(y)| d y \tag{A.10}
\end{equation*}
$$

with $\mathcal{B}_{1}(x)=\left\{B_{r}(x): 0<r \leq 1\right\}$. We set $\|u\|_{\text {bmo }}=\|\# u\|_{L^{\infty}}$. This is a norm, and it has good localization properties. For example,
(A.11) $\quad f \in C^{r}\left(\mathbb{R}^{n}\right), u \in \operatorname{bmo}\left(\mathbb{R}^{n}\right), r>0 \Longrightarrow f u \in \operatorname{bmo}\left(\mathbb{R}^{n}\right)$.

Also (cf. [16], p. 30),

$$
\begin{equation*}
P \in O P \mathcal{B} S_{1,1}^{0}\left(\mathbb{R}^{n}\right) \Longrightarrow P: \operatorname{bmo}\left(\mathbb{R}^{n}\right) \rightarrow \operatorname{bmo}\left(\mathbb{R}^{n}\right) \tag{A.12}
\end{equation*}
$$

so in particular, if $0 \leq \delta<1$,

$$
\begin{equation*}
P \in O P S_{1, \delta}^{0}\left(\mathbb{R}^{n}\right) \Longrightarrow P: \operatorname{bmo}\left(\mathbb{R}^{n}\right) \rightarrow \operatorname{bmo}\left(\mathbb{R}^{n}\right) \tag{A.13}
\end{equation*}
$$

Now, given $r \in \mathbb{R}$, we define

$$
\begin{equation*}
\mathfrak{h}^{r, \infty}\left(\mathbb{R}^{n}\right)=\left\{\Lambda^{-r} u: u \in \operatorname{bmo}\left(\mathbb{R}^{n}\right)\right\} \tag{A.14}
\end{equation*}
$$

with Λ as in (A.5). Thus $\mathfrak{h}^{0, \infty}\left(\mathbb{R}^{n}\right)=\operatorname{bmo}\left(\mathbb{R}^{n}\right)$. It follows from (A.12)-(A.13) and pseudodifferential operator calculus that, given $r, m \in \mathbb{R}, 0 \leq \delta<1$,

$$
\begin{align*}
& P \in O P B S_{1,1}^{m}\left(\mathbb{R}^{n}\right) \Longrightarrow P: \mathfrak{h}^{r, \infty}\left(\mathbb{R}^{n}\right) \rightarrow \mathfrak{h}^{r-m, \infty}\left(\mathbb{R}^{n}\right), \tag{A.15}\\
& P \in O P S_{1, \delta}^{m}\left(\mathbb{R}^{n}\right) \Longrightarrow P: \mathfrak{h}^{r, \infty}\left(\mathbb{R}^{n}\right) \rightarrow \mathfrak{h}^{r-m, \infty}\left(\mathbb{R}^{n}\right) .
\end{align*}
$$

We briefly indicate how to define these spaces on a compact Riemannian manifold M. The spaces $C_{*}^{r}(M)$ can be defined via a partition of unity and local coordinate charts, leading to elements of $C_{*}^{r}\left(\mathbb{R}^{n}\right)$. In case $r \in(0, \infty) \backslash \mathbb{Z}^{+}$, one clearly has $C_{*}^{r}(M)=C^{r}(M)$, classically defined. Also, one can deduce from (A.4) that
(A.16) $\quad P \in O P S_{1,0}^{m}(M) \Longrightarrow P: C_{*}^{r}(M) \rightarrow C_{*}^{r-m}(M), \quad \forall r, m \in \mathbb{R}$.

The spaces $\mathfrak{h}^{r, \infty}(M)$ can also be defined via a partition of unity and local coordinate charts. We refer to [19] for details, worked out there for the more general class of complete Riemannian manifolds with bounded geometry. Parallel to (A.16), we have

$$
\begin{equation*}
P \in O P S_{1,0}^{m}(M) \Longrightarrow P: \mathfrak{h}^{r, \infty}(M) \rightarrow \mathfrak{h}^{r-m, \infty}(M), \quad \forall r, m \in \mathbb{R} \tag{A.17}
\end{equation*}
$$

References

[1] P. Auscher and M. Taylor, Paradifferential operators and commutator estimates, Comm. PDE 20 (1995), 1743-1775.
[2] A. Bertozzi and P. Constantin, Global regularity for vortex patches, Commun. Math. Phys. 152 (1993), 19-28.
[3] J.-M. Bony, Calcul symbolique et propagation des singularitiés pour les équations aux dérivées nonlinéaires, Ann. Sci. Ecole Norm. Sup. 14 (1981), 209-246.
[4] A. Calderon, Commutators of singular integral operators, Proc. NAS, USA 53 (1965), 10921099.
[5] J.-Y. Chemin, Persistance de structures geometriques dans les fluides incompressibles bidimensionnels, Ann. Ecole Norm. Sup. 26 (1993), 1-16.
[6] R. Coifman and Y. Meyer, Au dela des opérateurs pseudodifferentiels, Asterisque \#57, Soc. Math. de France, 1978.
[7] R. Coifman, R. Rochberg, and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635.
[8] C. Fefferman and E. Stein, H^{p} functions of several variables, Acta Math. 129 (1972), 137193.
[9] D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), 27-42.
[10] T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, CPAM 41 (1988), 891-907.
[11] A. Majda and A. Bertozzi, Vorticity and Incompressible Flow, Cambridge Univ. Press, 2002.
[12] J. Marschall, Pseudodifferential operators with coefficients in Sobolev spaces, Trans. AMS 307 (1988), 335-361.
[13] Y. Meyer, Remarques sur un théorème de J.M. Bony, Rend. del Circolo mat. di Palermo (suppl. II:1) (1981), 1-20.
[14] M. Murray, Commutators with fractional differentiation and BMO Sobolev spaces, Indiana Univ. Math. J. 34 (1985), 205-215.
[15] M. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhauser, Boston, 1991.
[16] M. Taylor, Tools for PDE, Math. Surveys and Monogr., \#81, AMS, Providence, R.I., 2000.
[17] M. Taylor, Commutator estimates, Proc. AMS 131 (2003), 1501-1507.
[18] M. Taylor, Regularity of loop group factorization, Proc. AMS 133 (2005), 627-631.
[19] M. Taylor, Hardy spaces and bmo on manifolds with bounded geometry, J. Geometric Anal. 19 (2009), 137-190.
[20] M. Taylor, Variations on complex interpolation, Preprint, available at http://www.unc.edu/math/Faculty/met/cpxint.pdf.
[21] R. Torres, Continuity properties of pseudodifferential operators of type 1,1, Comm. PDE 15 (1990), 1313-1328.
[22] H. Triebel, Theory of Function Spaces, Birkhauser, Basel, 1983.

[^0]: 2010 Mathematics Subject Classification. Primary 42B20, 42B25, 42B35, 35S05, 35S50.
 Key words and phrases. Commutator, pseudodifferential operator, paraproducts, bounded mean oscillation.

 Work supported by NSF grant DMS-1161620.

