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(And Elliptic Boundary Problems

On Rough Domains)

Joint Work with Steve Hofmann and Marius Mitrea

Dirichlet Problem on Ω (open in a compact Riemannian manifold M), dimension
n:

(1) Lu = 0 on Ω, u = f on ∂Ω.

L = ∆ − V, V ∈ L∞(M), V ≥ 0, V > 0 on a set of positive measure, on each
connected component of M \ Ω. Assume ∂Ω is “rough”.
Examples: C1, Lipschitz, bmo1, vmo1, vanishing chord-arc (“Semmes-Kenig-Toro
domains”).
Layer potential method: Look for solution as

(2) u = Dg,

where D is double layer potential:

(3) Dg(x) =
∫

∂Ω

∂νyE(x, y)g(y) dσ(y),

E(x, y) integral kernel for L−1 : H−1(M) → H1(M).

(4) g(x)1/2E(x, y) = e0(x, x− y) + e1(x, y),

in local coordinates, where

(5) e0(x, z) = Cn

(∑
gjk(x)zjzk

)−(n−2)/2

,

e1(x, y) somewhat tamer.

Layer Potential Estimates for various classes of Ω.

(6) ‖K∗g‖Lp(∂Ω) ≤ C‖g‖Lp(∂Ω), 1 < p < ∞.
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K∗g(x) = sup
0<ε<1

|Kεg(x)|,

Kεg(x) =
∫

y∈∂Ω,|x−y|<ε

∂νy
E(x, y)g(y) dσ(y).

Nontangential maximal estimate:

(7) ‖NDg‖Lp(∂Ω) ≤ C‖g‖Lp(∂Ω), 1 < p < ∞.

Boundary behavior,

(8) lim
y→x

Dg(y) =
(1

2
I + K

)
g(x), a.e. on ∂Ω,

as y → x nontangentially, from within Ω, where

(9) Kg(x) = lim
ε→0

Kεg(x).

Validity of these estimates and limits
“Elementary” if ∂Ω is smoother than C1.
C1 case: Fabes-Jodeit-Riviere (following Calderon)
Lipschitz case: (6)–(7) Coifman-McIntosh-Meyer, (8) Verchota ([MT] for variable
coefficients)
More general case: Uniformly rectifiable boundary (UR domain).
One assumes ∂Ω is Ahlfors regular, i.e., ∀ p ∈ ∂Ω,

C1r
n−1 ≤ Hn−1(Br(p) ∩ ∂Ω) ≤ C2r

n−1,

and one assumes ∂Ω contains “big pieces of Lipschitz surfaces” (uniformly, on all
scales).
For UR domains, (6) is due to G. David, (7)–(8) to [HMT].

Solving Dirichlet Problem done by inverting 1
2I + K. To show:

(10) Fredholm of index zero on Lp(∂Ω),

(11) Adjoint injective on Lp(∂Ω).

Done by Fabes-Jodeit-Riviere for 1 < p < ∞, for C1 domains.
Done by Verchota for 2 − ε < p < ∞, for Lipschitz domains. ([MT] for variable
coefficients)
Done by [HMT] for 1 < p < ∞, for regular Semmes-Kenig-Toro domains.
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Definition. Ω is a regular SKT domain (vanishing chord-arc domain) provided it
is Ahlfors regular, δ-Reifenberg flat for small δ, and

(12)
lim
r→0

inf
p∈∂Ω

Hn−1(Br(p) ∩ ∂Ω)
ωn−1rn−1

=

lim
r→0

sup
p∈∂Ω

Hn−1(Br(p) ∩ ∂Ω)
ωn−1rn−1

= 1.

Example. Any VMO1 domain.

Two ingredients to get (10)–(11).

Theorem 1 ([HMT]). If Ω is a regular SKT domain,

(13) K : Lp(∂Ω) −→ Lp(∂Ω) is compact, ∀ p ∈ (1,∞).

Theorem 2 ([HMT]). If Ω is a UR domain,

(14)
1
2
I + K∗ : Lp(∂Ω) −→ Lp(∂Ω) is injective, ∀ p ≥ 2.

Corollary. If Ω is a regular SKT domain,

(15)
1
2
I + K : Lp(∂Ω) −→ Lp(∂Ω) is bijective, ∀ p ∈ (1,∞).

Proof. We have

(13) and (14) ⇒ (15) for p ∈ (1, 2]

⇒ 1
2I + K injective on Lp(∂Ω) for p ∈ (1,∞)

⇒ (15) (again invoking (13)).

Proof of Theorem 2. Assume f ∈ L2(∂Ω) in Ker 1
2I + K∗, and set

(16) u = Sf(x) =
∫

∂Ω

E(x, y)f(y) dσ(y),

single layer potential. Counterparts to (7)–(8):

(17) ‖N∇Sf‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω),
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(18) ∂νSf
∣∣
∂Ω± =

(
∓1

2
I + K∗

)
f, Ω+ = Ω, Ω− = M \ Ω.

Take v = u∇u, so

(19) div v = |∇u|2 + u∆u = |∇u|2 + V u2 on Ω.

Apply Gauss-Green formula

(20)
∫

Ω

div v dV =
∫

∂Ω

ν · v dσ,

with Ω replaced by Ω−, to get

(21)
∫

Ω−

(|∇u|2 + V u2
)
dV =

∫

∂Ω

u
(1

2
I + K∗

)
f dσ = 0,

hence |∇u| ≡ 0 on Ω−, hence u ≡ 0 on Ω−. Hence u = 0 on ∂Ω, so by a second
application of (20) (on Ω),

(22)
∫

Ω

(|∇u|2 + V u2
)
dV =

∫

∂Ω

u
(
−1

2
I + K∗

)
f dσ = 0.

So u = const on Ω. Also u, given by (16), does not jump across ∂Ω, so u ≡ 0 on
M . Then (18) gives, for both choices of sign,

(23)
(
±1

2
I + K∗

)
f = 0, hence f = 0.

The proof is done, modulo:

Need to justify applying the Gauss-Green formula (20).
What is known:

(24)
f ∈ L2(∂Ω) ⇒ N∇u ∈ L2(∂Ω)

⇒ N v ∈ Lp(∂Ω), some p > 1,

whenever Ω is a UR domain, by (17), and as shown in [HMT],

(25)
f ∈ L2(∂Ω) ⇒ |∇u|2 ∈ Lq(Ω)

⇒ div v ∈ Lq(Ω), some q > 1,

whenever Ω is Ahlfors regular. Also u and v are continuous on the interior regions
Ω and Ω−.
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Applicable Gauss-Green Theorem
For p ∈ [1,∞), set

(26)
Lp = {v ∈ C(Ω, TM) : N v ∈ Lp(∂Ω), and

∃ nontangential limit vb, σ-a.e.}.

Theorem 3 ([HMT]). Assume ∂Ω is Ahlfors regular and

(27) Hn−1(∂Ω \ ∂∗Ω) = 0.

Assume that, for some p > 1,

(28) v ∈ Lp, and div v ∈ L1(Ω).

Then

(29)
∫

Ω

div v dx =
∫

∂Ω

ν · vb dσ.

The proof of Theorem 3 uses the results of De Giorgi and Federer that (29)
holds for v ∈ Lip(Ω). (See below.) In addition, it looks at χδv when χδ is a family
of cutoffs, and it uses the following results:

(30)
1
δ

∫

Oδ

|v| dx ≤ C‖N v‖L1(∂Ω), ∀ v ∈ L1,

where

(31) Oδ = {x ∈ Ω : dist(x, ∂Ω) ≤ δ},

and, for p ∈ (1,∞),

(32)
If v ∈ Lp, ∃w ∈ L1, wb = vb,

and ∃wk ∈ Lip(Ω), ‖N (w − wk)‖L1(∂Ω) → 0.

The proof of (30) uses a covering argument. The proof of (32) uses an explicit
operator resembling a Poisson kernel, acting on vb. Hardy-Littlewood maximal
function estimates make an appearance (which is partly why we need p > 1).

Remark. For Ω Lipschitz, (29) is due to Verchota.
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Finite Perimeter Domains. DeGiorgi-Federer Results
Definition. Open Ω ⊂ Rn has locally finite perimeter provided

(33) ∇χΩ = µ,

a locally finite Rn-valued measure. Radon-Nikodym ⇒

(34) µ = −ν σ,

σ locally finite positive measure, ν ∈ L∞(∂Ω, σ), |ν(x)| = 1, σ-a.e. Besicovitch ⇒

(35) lim
r→0

1
σ(Br(x))

∫

Br(x)

ν dσ = ν(x),

for σ-a.e. x.
Distribution theory ⇒ given v ∈ C∞0 (Rn,Rn) (vector field),

(36) 〈div v, χΩ〉 = −〈v,∇χΩ〉,

so (33)–(34) equivalent to

(37)
∫

Ω

div v dx =
∫

∂Ω

ν · v dσ.

DeGiorgi-Federer results:

(38) σ = Hn−1b∂∗Ω,

where ∂∗Ω ⊂ ∂Ω (reduced boundary) consists of x ∈ ∂Ω where (35) holds, with
|ν(x)| = 1.
Also ∂∗Ω is countably rectifiable:

(39) ∂∗Ω =
⋃

k

Mk ∪N,

Mk compact subset of C1 hypersurface, Hn−1(N) = 0.
Measure-theoretic boundary ∂∗Ω ⊂ ∂Ω:

(40) x ∈ ∂∗Ω ⇔ lim sup
r→0

r−nLn(Br(x) ∩ Ω±) > 0,

where Ω+ = Ω, Ω− = Rn \ Ω. Federer proved that ∂∗Ω ⊂ ∂∗Ω and

(42) Hn−1(∂∗Ω \ ∂∗Ω) = 0,
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so (37) can be written

(43)
∫

Ω

div v dx =
∫

∂∗Ω

ν · v dHn−1.

So far, we have (37) and (43) for v ∈ C∞0 (Rn,Rn).
Want such identities for more general v.
Easy extension to v ∈ C1

0 (Rn,Rn), even to Lipschitz v.

Better extension (still easy). If Ω has locally finite perimeter, then (37) holds
for v in

(44) D = {v ∈ C0
0 (Rn,Rn) : div v ∈ L1(Rn)}.

Proof. Apply (37) to mollifications vk = ϕk ∗ v ∈ C∞0 (Rn,Rn) and pass to the
limit. We have div vk → div v in L1(Rn) and ν · vk → ν · v uniformly on ∂Ω.

Drawback. Want to treat functions defined on Ω, not on a neighborhood of Ω.

Still better extension (though not implying Theorem 3)
We say Ω has a tame interior approximation {Ωk : k ∈ N} provided open
Ωk ⊂ Ωk ⊂ Ωk+1 ↗ Ω with

(45) ‖∇χΩk
‖TV(BR) ≤ C(R) < ∞, ∀ k.

For such Ω, (37) holds for v in

(46) D̃ = {v ∈ C0
0 (Ω,Rn) : div v ∈ L1(Ω)}.

Proof. Use previous extension to get

(47)
∫

Ωk

div v dx = −〈v,∇χΩk
〉,

and examine limit as k →∞, using bounds (45).

Result of Federer (1952). If Ω is bounded and Hn−1(∂Ω) < ∞, then (37) holds
provided v ∈ C(Ω) and each term ∂jvj in div v belongs to L1(Ω).

Examples of locally finite perimeter sets. Assume

(48) A ∈ C(Rn−1), ∇A ∈ L1
loc(Rn−1).
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With x = (x′, xn), set

(49) Ω = {x ∈ Rn : xn > A(x′)}.

Proposition A. Such Ω has locally finite perimeter.

Given this, we can consider

(50)
{

x ∈ Rn : xn > A(x′) +
1
k

}

and deduce:

Corollary B. Such Ω has a tame interior approximation.

Proof of Prop. A. Use a mollifier to produce Ak ∈ C∞(Rn−1) such that

(51) Ak → A in C(Rn−1), ∇Ak → ∇A in L1
loc(Rn−1).

Set

(52) Ωk = {x ∈ Rn : xn > Ak(x′)}.
Then

(53)
χΩk

→ χΩ in L1
loc(Rn), so

∇χΩk
→ ∇χΩ in D′(Rn).

For Ωk, Gauss-Green formula is elementary:

(54) ∇χΩk
= −νk σk,

σk surface area on graph of Ak, given in x′-coordinates by

(55) dσk(x′) =
√

1 + |∇Ak(x′)|2 dx′.

Hypothesis (48) ⇒ {νkσk : k ∈ N} bounded set of Rn-valued measures, on each set
BR = {x ∈ Rn : |x| ≤ R}.
So passing to limit in (53) gives

(55) ∇χΩ = µ,

locally finite Rn-valued measure.
Hence (37) holds, i.e., for v ∈ C∞0 (Rn,Rn),

(56)
∫

Ω

div v dx =
∫

∂Ω

ν · v dσ.
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Going further, the Gauss-Green formula for Ωk gives

(57)
∫

Ωk

div v dx =
∫

Rn−1

(∇Ak(x′),−1) · v(x′, Ak(x′)) dx′,

valid for v ∈ C∞0 (Rn,Rn). As k →∞,

(58)

LHS (57) → LHS (56)

RHS (57) →
∫

Rn−1

(∇A(x′),−1) · v(x′, A(x′)) dx′.

Hence

(59)
∫

ν · v dσ =
∫

Rn−1

ν̃(x′) · v(x′, A(x′)) dσ(x′),

with

(60)
ν̃(x′) =

(∇A(x′),−1)√
1 + |∇A(x′)|2 ,

dσ(x′) =
√

1 + |∇A(x′)|2 dx′.

Remark. If A is Lipschitz, one easily has ∂∗Ω = ∂Ω. More generally:

Proposition C. For Ω given by (48)–(49),

(61) Hn−1(∂Ω \ ∂∗Ω) = 0.

Proof. Uses results of Tompson (1954) and Federer (1960).
Given K ⊂ Rn−1, set

(62) ΣK = {(x′, A(x′)) : x′ ∈ K}.
Tompson proved the first identity in

(63)
In−1(ΣK) =

∫

K

√
1 + |∇A(x′)|2 dx′

= σ(ΣK),

the second identity holding by (59)–(60). Federer proved

(64) Hn−1(ΣK) = In−1(ΣK).

So

(65) Hn−1(ΣK) = σ(ΣK) = Hn−1(ΣK ∩ ∂∗Ω),

the last identity by (38). This gives (61).


