The Gauss-Green Formula
(And Elliptic Boundary Problems
On Rough Domains)

JOINT WORK WITH STEVE HOFMANN AND MARIUS MITREA

Dirichlet Problem on 2 (open in a compact Riemannian manifold M), dimension
n:

(1) Lu=0on Q, u=f on 0.
L=A-V,VeL®M),V >0 V>0 on a set of positive measure, on each
connected component of M \ Q. Assume 0 is “rough”.

Examples: C!, Lipschitz, bmo;, vmoy, vanishing chord-arc (“Semmes-Kenig-Toro
domains”).

Layer potential method: Look for solution as

(2) u = Dy,

where D is double layer potential:

(3) Dg(z) = / Ov, E(z,y)g(y) do(y),
oN

E(z,y) integral kernel for L= : H=Y(M) — H*(M).

(4) 9(2) 2 E(z,y) = eo(z,2 — y) + e1(z,y),

in local coordinates, where

)

(5) eo(z,z) = Cy (Z gjk(x)zjzk> S

e1(z,y) somewhat tamer.

Layer Potential Estimates for various classes of (2.

(6) K9l zra0) < Cllgllrran)y, 1<p<oo.
1



K*g(xz) = sup |K.g(z)|,
0<e<1

K.g(x) = / By, Bz, y)g(y) do(y).
yeEIN,|z—y|<e

Nontangential maximal estimate:
(7) INDgllzr0) < Cllgllran)y, 1<p < oo

Boundary behavior,

(8) lim Dg(y) = (11—1— K)g(m), a.e. on 012,

y—x 2

as y — x nontangentially, from within 2, where

9) Kg(z) = lim K.g(x).

e—0

Validity of these estimates and limits

“Elementary” if 9 is smoother than C!.

C! case: Fabes-Jodeit-Riviere (following Calderon)

Lipschitz case: (6)—(7) Coifman-McIntosh-Meyer, (8) Verchota ([MT] for variable
coefficients)

More general case: Uniformly rectifiable boundary (UR domain).

One assumes 012 is Ahlfors regular, i.e., Vp € 09,

Cir" ' <H"Y(B,.(p) N 9N) < Cor™ 1,
and one assumes Jf) contains “big pieces of Lipschitz surfaces” (uniformly, on all
scales).
For UR domains, (6) is due to G. David, (7)—(8) to [HMT].

Solving Dirichlet Problem done by inverting %I + K. To show:

(10) Fredholm of index zero on LP(952),

(11) Adjoint injective on LP(012).

Done by Fabes-Jodeit-Riviere for 1 < p < oo, for C' domains.

Done by Verchota for 2 — ¢ < p < oo, for Lipschitz domains. ([MT] for variable
coefficients)

Done by [HMT] for 1 < p < oo, for regular Semmes-Kenig-Toro domains.



Definition. (Q is a regular SKT domain (vanishing chord-arc domain) provided it
is Ahlfors regular, d-Reifenberg flat for small §, and

H"H(Br(p) N OQ)

lim inf i =
(12) r—0 pedf Wn—1T""

: H"Y(B,(p) N 0N)

lim sup o =1

=0 peon Wn—1T
Example. Any VMO; domain.
Two ingredients to get (10)—(11).
Theorem 1 ([HMT]). If Q is a regular SKT domain,
(13) K : LP(0Q)) — LP(0Q) 1is compact, Vp € (1,00).
Theorem 2 ([HMT]). If Q is a UR domain,

1
(14) 5] + K* : LP(0Q2) — LP(0Q) is injective, Vp > 2.
Corollary. If 2 is a regular SKT domain,
1

(15) 5] + K : LP(092) — LP(09) is bijective, Vp € (1, 00).

Proof. We have

(13) and (14) = (15) for p € (1, 2]
= 21+ K injective on LP(092) for p € (1,00)
= (15) (again invoking (13)).

Proof of Theorem 2. Assume f € L?(99) in Ker 31 + K*, and set

(16) w=58f(z) = / E(z,y)f(y) do(y),
o0

single layer potential. Counterparts to (7)—(8):

(17) INVS fllLea0) < CllfllLe00),



(18) 0,5 p0s = (%H K*)f, Ot =0, 0" =M\
Take v = uVu, so
(19) dive = |Vul* + uAu = |[Vu|> + Vu? on Q.
Apply Gauss-Green formula
(20) /divvdV:/y-vda,
Q 0
with Q replaced by 7, to get
(21) /(|Vu|2+Vu2) dV = /u(%IJrK*)fda:O,
Q- o

hence |Vu| =0 on Q7, hence u = 0 on Q7. Hence u = 0 on 052, so by a second
application of (20) (on ),

1
(22) [vue svadyav = [u(-3r+ ) a0 =0
Q oQ
So u = const on . Also u, given by (16), does not jump across 952, so u = 0 on

M. Then (18) gives, for both choices of sign,

(23) <i%] + K*)f —0, hence f=0.

The proof is done, modulo:

Need to justify applying the Gauss-Green formula (20).
What is known:
f e L*00) = NVu e L*(09)

24
(24) = Nv e LP(09), some p>1,

whenever ) is a UR domain, by (17), and as shown in [HMT],

f e L*00) = |Vul® € LY(Q)

(25) :
= divv € LY(Q)), some ¢ > 1,

whenever 2 is Ahlfors regular. Also v and v are continuous on the interior regions
Q and Q.



Applicable Gauss-Green Theorem
For p € [1,00), set

L ={veC(Q,TM): Nve LP(09Q),and

3 nontangential limit vy, o-a.e.}.

(26)

Theorem 3 ([HMT]). Assume 052 is Ahlfors regular and
(27) HL(OQ )\ 0.9Q) = 0.

Assume that, for some p > 1,

(28) ve P, and dive € L'(Q).
Then
(29) /divvdarz /V"Ude'.

Q o)

The proof of Theorem 3 uses the results of De Giorgi and Federer that (29)

holds for v € Lip(Q2). (See below.) In addition, it looks at ysv when y; is a family
of cutoffs, and it uses the following results:

1
(30) - / o] de < CIN VLo, Yo e £,
Os
where
(31) Os = {z € Q : dist(z,00) < 6},

and, for p € (1,00),

Ifve P, Jwe g, wy,=w,
(32) .=
and Jwy € Lip(Q), [N (w —wi)||1(00) — O.

The proof of (30) uses a covering argument. The proof of (32) uses an explicit
operator resembling a Poisson kernel, acting on v,. Hardy-Littlewood maximal

function estimates make an appearance (which is partly why we need p > 1).

REMARK. For € Lipschitz, (29) is due to Verchota.



Finite Perimeter Domains. DeGiorgi-Federer Results
Definition. Open €2 C R" has locally finite perimeter provided

(33) Vxa = p,

a locally finite R"-valued measure. Radon-Nikodym =

(34) p=—vo,

o locally finite positive measure, v € L>®(09Q,0), |v(x)| =1, o-a.e. Besicovitch =

i 1 =v(x
(35) hmw / vdo = v(z),

r—0 o(B,
B,.(x)

for o-a.e. x.
Distribution theory = given v € C§°(R™,R"™) (vector field),

(36) (divv, xa) = —(v, Vxa),
s0 (33)—(34) equivalent to
(37) /divvdx:/y-vda
Q o0
DeGiorgi-Federer results:
(38) o=H"10"Q,
where 0*Q2 C 02 (reduced boundary) consists of z € 92 where (35) holds, with

v(z)| = 1.
Also 0*€) is countably rectifiable:

(39) a*QZUMkUN,
k

M, compact subset of C* hypersurface, H" () = 0.
Measure-theoretic boundary 0,2 C 909:

(40) z € 9,Q < limsup r "L"(B,(z) N QF) > 0,

r—0

where QT = Q, Q7 =R"™\ Q. Federer proved that 9*Q C 9. and

(42) H 0.0\ 0%Q) = 0,



so (37) can be written

(43) /divvdas: / v-vdH" L
Q 082

So far, we have (37) and (43) for v € C§°(R",R™).

Want such identities for more general v.

Easy extension to v € C§(R™,R"), even to Lipschitz v.

Better extension (still easy). If Q has locally finite perimeter, then (37) holds
for v in

(44) D = {v € CJ(R™,R"™) : divw € L*(R"™)}.

PRrROOF. Apply (37) to mollifications vy = @i *x v € C§°(R™,R™) and pass to the
limit. We have divvy, — dive in L*(R™) and v - vx — v - v uniformly on 99).

Drawback. Want to treat functions defined on €2, not on a neighborhood of €.
Still better extension (though not implying Theorem 3)

We say Q has a tame interior approximation {Q : k£ € N} provided open
O C ﬁk C Qg11  Q with

(45) IVxaillrv(sg) < C(R) <o, Vk.

For such €, (37) holds for v in

(46) D= {veC)QR") :divve L'(Q)}.

PrROOF. Use previous extension to get

(47) /divvdx = —(v, Vxa,),
Qp

and examine limit as k — oo, using bounds (45).

Result of Federer (1952). If  is bounded and H"1(09) < oo, then (37) holds
provided v € C() and each term 9d;v; in divv belongs to L' ().

Examples of locally finite perimeter sets. Assume

(48) AeCR" M), VAeL. (R"M.
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With z = (2/, z,,), set

(49) Q={zeR":z, > Ax)}.

Proposition A. Such () has locally finite perimeter.
Given this, we can consider

n / 1
(50) {xER :xn>A(x)+E}
and deduce:
Corollary B. Such (2 has a tame interior approximation.

Proof of Prop. A. Use a mollifier to produce A, € C>°(R"~1) such that

(51) A — A in C(R"™Y), VA, — VA in L} (R™1).
Set

(52) Qp ={z e R": 2, > Ar(2")}.

Then

(53) xa, — xa in Li.(R™), so
Vxa, — Vxa in D'(R").
For ., Gauss-Green formula is elementary:

(54) VXQk = — Vi Ok,

oy, surface area on graph of Ay, given in z’-coordinates by

(55) do(2') = /1 + [V AL (2')]? da’.

Hypothesis (48) = {vioy : k € N} bounded set of R™-valued measures, on each set
Br ={z e R": |z| < R}.
So passing to limit in (53) gives

locally finite R™-valued measure.
Hence (37) holds, i.e., for v € C§°(R™,R™),

(56) /divvd:v:/y-vda.

Q o2



Going further, the Gauss-Green formula for 2, gives

(57) /divvdx = / (VAg(z"),—1) - v(a', Ag(2)) da’,
Qe Rn—1

valid for v € C§°(R™,R™). As k — oo,
LHS (57) — LHS (56)

(58) RHS (57) — / (VA(z'"), =1) - v(z’, A(z')) da'.
Rn—l
Hence
(59) /V cvdo = / v(x') v, A(x")) do(x'),
Rn—1
with
ID(CL'/) — (VA($/)7 _1)
(60) VI+IVA@)?

do(z') = \/1+ |[VA(z')|]2dz’.
REMARK. If A is Lipschitz, one easily has 0, = 0Q2. More generally:

Proposition C. For Q given by (48)—(49),
(61) HHOQ\ 0" Q) = 0.

Proof. Uses results of Tompson (1954) and Federer (1960).
Given K C R"7!, set

(62) Y ={(2, A(x")) : 2’ € K}.

Tompson proved the first identity in

713 ) :/\/14— VA2 da!
K

(63)
= o(Xk),
the second identity holding by (59)—(60). Federer proved
(64) H" (k) =T" 1 (Zk).
So
(65) H'" 1 (Bk) = 0(Bx) = H" (S N9*Q),

the last identity by (38). This gives (61).



