The Gauss-Green Formula (And Elliptic Boundary Problems On Rough Domains)

JOINT WORK WITH STEVE HOFMANN AND MARIUS MITREA

Dirichlet Problem on Ω (open in a compact Riemannian manifold M), dimension n:

(1)
$$Lu = 0 \text{ on } \Omega, \quad u = f \text{ on } \partial\Omega.$$

 $L = \Delta - V, V \in L^{\infty}(M), V \ge 0, V > 0$ on a set of positive measure, on each connected component of $M \setminus \overline{\Omega}$. Assume $\partial \Omega$ is "rough".

Examples: C^1 , Lipschitz, bmo₁, vmo₁, vanishing chord-arc ("Semmes-Kenig-Toro domains").

Layer potential method: Look for solution as

(2)
$$u = \mathcal{D}g,$$

where \mathcal{D} is double layer potential:

(3)
$$\mathcal{D}g(x) = \int_{\partial\Omega} \partial_{\nu_y} E(x, y) g(y) \, d\sigma(y),$$

E(x,y) integral kernel for $L^{-1}: H^{-1}(M) \to H^1(M).$

(4)
$$g(x)^{1/2}E(x,y) = e_0(x,x-y) + e_1(x,y),$$

in local coordinates, where

(5)
$$e_0(x,z) = C_n \left(\sum g_{jk}(x) z_j z_k \right)^{-(n-2)/2},$$

 $e_1(x, y)$ somewhat tamer.

Layer Potential Estimates for various classes of Ω .

(6)
$$\|K^*g\|_{L^p(\partial\Omega)} \le C \|g\|_{L^p(\partial\Omega)}, \quad 1$$

$$K^*g(x) = \sup_{0 < \varepsilon < 1} |K_{\varepsilon}g(x)|,$$
$$K_{\varepsilon}g(x) = \int_{y \in \partial\Omega, |x-y| < \varepsilon} \partial_{\nu_y} E(x,y)g(y) \, d\sigma(y).$$

Nontangential maximal estimate:

(7)
$$\|\mathcal{ND}g\|_{L^p(\partial\Omega)} \le C \|g\|_{L^p(\partial\Omega)}, \quad 1$$

Boundary behavior,

(8)
$$\lim_{y \to x} \mathcal{D}g(y) = \left(\frac{1}{2}I + K\right)g(x), \quad \text{a.e. on } \partial\Omega,$$

as $y \to x$ nontangentially, from within Ω , where

(9)
$$Kg(x) = \lim_{\varepsilon \to 0} K_{\varepsilon}g(x).$$

Validity of these estimates and limits

"Elementary" if $\partial \Omega$ is smoother than C^1 .

 C^1 case: Fabes-Jodeit-Riviere (following Calderon)

Lipschitz case: (6)-(7) Coifman-McIntosh-Meyer, (8) Verchota ([MT] for variable coefficients)

More general case: Uniformly rectifiable boundary (UR domain). One assumes $\partial\Omega$ is Ahlfors regular, i.e., $\forall p \in \partial\Omega$,

$$C_1 r^{n-1} \le \mathcal{H}^{n-1}(B_r(p) \cap \partial \Omega) \le C_2 r^{n-1},$$

and one assumes $\partial \Omega$ contains "big pieces of Lipschitz surfaces" (uniformly, on all scales).

For UR domains, (6) is due to G. David, (7)-(8) to [HMT].

Solving Dirichlet Problem done by inverting $\frac{1}{2}I + K$. To show:

(10) Fredholm of index zero on
$$L^p(\partial\Omega)$$
,

(11) Adjoint injective on
$$L^p(\partial\Omega)$$
.

Done by Fabes-Jodeit-Riviere for $1 , for <math>C^1$ domains. Done by Verchota for $2 - \varepsilon , for Lipschitz domains. ([MT] for variable coefficients)$

Done by [HMT] for 1 , for regular Semmes-Kenig-Toro domains.

Definition. Ω is a regular SKT domain (vanishing chord-arc domain) provided it is Ahlfors regular, δ -Reifenberg flat for small δ , and

(12)
$$\lim_{r \to 0} \inf_{p \in \partial \Omega} \frac{\mathcal{H}^{n-1}(B_r(p) \cap \partial \Omega)}{\omega_{n-1}r^{n-1}} = \lim_{r \to 0} \sup_{p \in \partial \Omega} \frac{\mathcal{H}^{n-1}(B_r(p) \cap \partial \Omega)}{\omega_{n-1}r^{n-1}} = 1.$$

Example. Any VMO_1 domain.

Two ingredients to get (10)-(11).

Theorem 1 ([HMT]). If Ω is a regular SKT domain,

(13)
$$K: L^p(\partial\Omega) \longrightarrow L^p(\partial\Omega)$$
 is compact, $\forall p \in (1,\infty)$.

Theorem 2 ([HMT]). If Ω is a UR domain,

(14)
$$\frac{1}{2}I + K^* : L^p(\partial\Omega) \longrightarrow L^p(\partial\Omega) \text{ is injective, } \forall p \ge 2.$$

Corollary. If Ω is a regular SKT domain,

(15)
$$\frac{1}{2}I + K : L^p(\partial\Omega) \longrightarrow L^p(\partial\Omega)$$
 is bijective, $\forall p \in (1,\infty)$.

Proof. We have

(13) and (14)
$$\Rightarrow$$
 (15) for $p \in (1, 2]$
 $\Rightarrow \frac{1}{2}I + K$ injective on $L^p(\partial\Omega)$ for $p \in (1, \infty)$
 \Rightarrow (15) (again invoking (13)).

Proof of Theorem 2. Assume $f \in L^2(\partial \Omega)$ in Ker $\frac{1}{2}I + K^*$, and set

(16)
$$u = Sf(x) = \int_{\partial\Omega} E(x, y) f(y) \, d\sigma(y),$$

single layer potential. Counterparts to (7)-(8):

(17)
$$\|\mathcal{N}\nabla\mathcal{S}f\|_{L^{p}(\partial\Omega)} \leq C\|f\|_{L^{p}(\partial\Omega)},$$

(18)
$$\partial_{\nu} \mathcal{S}f|_{\partial\Omega^{\pm}} = \left(\mp \frac{1}{2}I + K^*\right)f, \quad \Omega^+ = \Omega, \ \Omega^- = M \setminus \overline{\Omega}.$$

Take $v = u \nabla u$, so

(19)
$$\operatorname{div} v = |\nabla u|^2 + u\Delta u = |\nabla u|^2 + Vu^2 \quad \text{on} \quad \Omega.$$

Apply Gauss-Green formula

(20)
$$\int_{\Omega} \operatorname{div} v \, dV = \int_{\partial \Omega} \nu \cdot v \, d\sigma,$$

with Ω replaced by Ω^- , to get

(21)
$$\int_{\Omega^{-}} \left(|\nabla u|^2 + V u^2 \right) dV = \int_{\partial \Omega} u \left(\frac{1}{2} I + K^* \right) f \, d\sigma = 0,$$

hence $|\nabla u| \equiv 0$ on Ω^- , hence $u \equiv 0$ on Ω^- . Hence u = 0 on $\partial\Omega$, so by a second application of (20) (on Ω),

(22)
$$\int_{\Omega} \left(|\nabla u|^2 + V u^2 \right) dV = \int_{\partial \Omega} u \left(-\frac{1}{2} I + K^* \right) f \, d\sigma = 0.$$

So u = const on Ω . Also u, given by (16), does not jump across $\partial\Omega$, so $u \equiv 0$ on M. Then (18) gives, for both choices of sign,

(23)
$$\left(\pm \frac{1}{2}I + K^*\right)f = 0, \text{ hence } f = 0.$$

The proof is done, modulo:

Need to justify applying the Gauss-Green formula (20). What is known:

(24)
$$f \in L^{2}(\partial \Omega) \Rightarrow \mathcal{N} \nabla u \in L^{2}(\partial \Omega)$$
$$\Rightarrow \mathcal{N} v \in L^{p}(\partial \Omega), \text{ some } p > 1,$$

whenever Ω is a UR domain, by (17), and as shown in [HMT],

(25)
$$f \in L^{2}(\partial \Omega) \Rightarrow |\nabla u|^{2} \in L^{q}(\Omega)$$
$$\Rightarrow \operatorname{div} v \in L^{q}(\Omega), \text{ some } q > 1,$$

whenever Ω is Ahlfors regular. Also u and v are continuous on the interior regions Ω and Ω^- .

Applicable Gauss-Green Theorem

For $p \in [1, \infty)$, set

(26)
$$\mathfrak{L}^{p} = \{ v \in C(\Omega, TM) : \mathcal{N}v \in L^{p}(\partial\Omega), \text{and} \\ \exists \text{ nontangential limit } v_{b}, \ \sigma\text{-a.e.} \}.$$

Theorem 3 ([HMT]). Assume $\partial \Omega$ is Ahlfors regular and

(27)
$$\mathcal{H}^{n-1}(\partial \Omega \setminus \partial_* \Omega) = 0.$$

Assume that, for some p > 1,

(28)
$$v \in \mathfrak{L}^p$$
, and $\operatorname{div} v \in L^1(\Omega)$.

Then

(29)
$$\int_{\Omega} \operatorname{div} v \, dx = \int_{\partial \Omega} \nu \cdot v_b \, d\sigma.$$

The proof of Theorem 3 uses the results of De Giorgi and Federer that (29) holds for $v \in \text{Lip}(\overline{\Omega})$. (See below.) In addition, it looks at $\chi_{\delta} v$ when χ_{δ} is a family of cutoffs, and it uses the following results:

(30)
$$\frac{1}{\delta} \int_{\mathcal{O}_{\delta}} |v| \, dx \le C \|\mathcal{N}v\|_{L^{1}(\partial\Omega)}, \quad \forall v \in \mathfrak{L}^{1},$$

where

(31)
$$\mathcal{O}_{\delta} = \{ x \in \Omega : \operatorname{dist}(x, \partial \Omega) \le \delta \},\$$

and, for $p \in (1, \infty)$,

(32)
If
$$v \in \mathfrak{L}^p$$
, $\exists w \in \mathfrak{L}^1$, $w_b = v_b$,
and $\exists w_k \in \operatorname{Lip}(\overline{\Omega}), \|\mathcal{N}(w - w_k)\|_{L^1(\partial\Omega)} \to 0$.

The proof of (30) uses a covering argument. The proof of (32) uses an explicit operator resembling a Poisson kernel, acting on v_b . Hardy-Littlewood maximal function estimates make an appearance (which is partly why we need p > 1).

REMARK. For Ω Lipschitz, (29) is due to Verchota.

Finite Perimeter Domains. DeGiorgi-Federer Results Definition. Open $\Omega \subset \mathbb{R}^n$ has locally finite perimeter provided

(33)
$$\nabla \chi_{\Omega} = \mu_{1}$$

a locally finite \mathbb{R}^n -valued measure. Radon-Nikodym \Rightarrow

(34)
$$\mu = -\nu \,\sigma,$$

 σ locally finite positive measure, $\nu \in L^{\infty}(\partial\Omega, \sigma), |\nu(x)| = 1, \sigma$ -a.e. Besicovitch \Rightarrow

(35)
$$\lim_{r \to 0} \frac{1}{\sigma(B_r(x))} \int_{B_r(x)} \nu \, d\sigma = \nu(x),$$

for σ -a.e. x.

Distribution theory \Rightarrow given $v \in C_0^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ (vector field),

(36)
$$\langle \operatorname{div} v, \chi_{\Omega} \rangle = -\langle v, \nabla \chi_{\Omega} \rangle,$$

so (33)-(34) equivalent to

(37)
$$\int_{\Omega} \operatorname{div} v \, dx = \int_{\partial \Omega} \nu \cdot v \, d\sigma.$$

DeGiorgi-Federer results:

(38)
$$\sigma = \mathcal{H}^{n-1} \lfloor \partial^* \Omega,$$

where $\partial^* \Omega \subset \partial \Omega$ (reduced boundary) consists of $x \in \partial \Omega$ where (35) holds, with $|\nu(x)| = 1$.

Also $\partial^* \Omega$ is countably rectifiable:

(39)
$$\partial^* \Omega = \bigcup_k M_k \cup N,$$

 M_k compact subset of C^1 hypersurface, $\mathcal{H}^{n-1}(N) = 0$. Measure-theoretic boundary $\partial_*\Omega \subset \partial\Omega$:

(40)
$$x \in \partial_*\Omega \Leftrightarrow \limsup_{r \to 0} r^{-n} \mathcal{L}^n(B_r(x) \cap \Omega^{\pm}) > 0,$$

where $\Omega^+ = \Omega$, $\Omega^- = \mathbb{R}^n \setminus \Omega$. Federer proved that $\partial^* \Omega \subset \partial_* \Omega$ and

(42)
$$\mathcal{H}^{n-1}(\partial_*\Omega \setminus \partial^*\Omega) = 0,$$

so (37) can be written

(43)
$$\int_{\Omega} \operatorname{div} v \, dx = \int_{\partial_*\Omega} \nu \cdot v \, d\mathcal{H}^{n-1}$$

So far, we have (37) and (43) for $v \in C_0^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$. Want such identities for more general v. Easy extension to $v \in C_0^1(\mathbb{R}^n, \mathbb{R}^n)$, even to Lipschitz v.

Better extension (still easy). If Ω has locally finite perimeter, then (37) holds for v in

(44)
$$\mathcal{D} = \{ v \in C_0^0(\mathbb{R}^n, \mathbb{R}^n) : \operatorname{div} v \in L^1(\mathbb{R}^n) \}.$$

PROOF. Apply (37) to mollifications $v_k = \varphi_k * v \in C_0^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$ and pass to the limit. We have div $v_k \to \text{div } v$ in $L^1(\mathbb{R}^n)$ and $\nu \cdot v_k \to \nu \cdot v$ uniformly on $\partial\Omega$.

Drawback. Want to treat functions defined on Ω , not on a neighborhood of $\overline{\Omega}$.

Still better extension (though not implying Theorem 3) We say Ω has a **tame interior approximation** $\{\Omega_k : k \in \mathbb{N}\}$ provided open $\Omega_k \subset \overline{\Omega}_k \subset \Omega_{k+1} \nearrow \Omega$ with

(45)
$$\|\nabla \chi_{\Omega_k}\|_{\mathrm{TV}(B_R)} \le C(R) < \infty, \quad \forall \, k.$$

For such Ω , (37) holds for v in

(46)
$$\widetilde{\mathcal{D}} = \{ v \in C_0^0(\overline{\Omega}, \mathbb{R}^n) : \operatorname{div} v \in L^1(\Omega) \}.$$

PROOF. Use previous extension to get

(47)
$$\int_{\Omega_k} \operatorname{div} v \, dx = -\langle v, \nabla \chi_{\Omega_k} \rangle,$$

and examine limit as $k \to \infty$, using bounds (45).

Result of Federer (1952). If Ω is bounded and $\mathcal{H}^{n-1}(\partial\Omega) < \infty$, then (37) holds provided $v \in C(\overline{\Omega})$ and each term $\partial_j v_j$ in div v belongs to $L^1(\Omega)$.

Examples of locally finite perimeter sets. Assume

(48)
$$A \in C(\mathbb{R}^{n-1}), \quad \nabla A \in L^1_{\text{loc}}(\mathbb{R}^{n-1}).$$

With
$$x = (x', x_n)$$
, set
(49)
$$\Omega = \{x \in \mathbb{R}^n : x_n > A(x')\}.$$

Proposition A. Such Ω has locally finite perimeter.

Given this, we can consider

(50)
$$\left\{ x \in \mathbb{R}^n : x_n > A(x') + \frac{1}{k} \right\}$$

and deduce:

Corollary B. Such Ω has a tame interior approximation.

Proof of Prop. A. Use a mollifier to produce $A_k \in C^{\infty}(\mathbb{R}^{n-1})$ such that

(51)
$$A_k \to A \text{ in } C(\mathbb{R}^{n-1}), \quad \nabla A_k \to \nabla A \text{ in } L^1_{\text{loc}}(\mathbb{R}^{n-1}).$$

Set

(52)
$$\Omega_k = \{ x \in \mathbb{R}^n : x_n > A_k(x') \}.$$

Then

(53)
$$\begin{aligned} \chi_{\Omega_k} \to \chi_{\Omega} \quad \text{in} \quad L^1_{\text{loc}}(\mathbb{R}^n), \quad \text{so} \\ \nabla\chi_{\Omega_k} \to \nabla\chi_{\Omega} \quad \text{in} \quad \mathcal{D}'(\mathbb{R}^n). \end{aligned}$$

For Ω_k , Gauss-Green formula is elementary:

(54)
$$\nabla \chi_{\Omega_k} = -\nu_k \, \sigma_k$$

 σ_k surface area on graph of A_k , given in x'-coordinates by

(55)
$$d\sigma_k(x') = \sqrt{1 + |\nabla A_k(x')|^2} \, dx'.$$

Hypothesis (48) $\Rightarrow \{\nu_k \sigma_k : k \in \mathbb{N}\}$ bounded set of \mathbb{R}^n -valued measures, on each set $B_R = \{x \in \mathbb{R}^n : |x| \leq R\}.$ So passing to limit in (53) gives

(55) $\nabla \chi_{\Omega} = \mu,$

locally finite \mathbb{R}^n -valued measure. Hence (37) holds, i.e., for $v \in C_0^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$,

(56)
$$\int_{\Omega} \operatorname{div} v \, dx = \int_{\partial \Omega} \nu \cdot v \, d\sigma.$$

Going further, the Gauss-Green formula for Ω_k gives

(57)
$$\int_{\Omega_k} \operatorname{div} v \, dx = \int_{\mathbb{R}^{n-1}} \left(\nabla A_k(x'), -1 \right) \cdot v(x', A_k(x')) \, dx',$$

valid for $v \in C_0^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$. As $k \to \infty$,

(58) LHS (57)
$$\rightarrow$$
 LHS (56)
RHS (57) $\rightarrow \int_{\mathbb{R}^{n-1}} (\nabla A(x'), -1) \cdot v(x', A(x')) dx'.$

Hence

(59)
$$\int \nu \cdot v \, d\sigma = \int_{\mathbb{R}^{n-1}} \tilde{\nu}(x') \cdot v(x', A(x')) \, d\sigma(x'),$$

with

(60)
$$\tilde{\nu}(x') = \frac{(\nabla A(x'), -1)}{\sqrt{1 + |\nabla A(x')|^2}}, \\ d\sigma(x') = \sqrt{1 + |\nabla A(x')|^2} \, dx'.$$

REMARK. If A is Lipschitz, one easily has $\partial_*\Omega = \partial\Omega$. More generally:

Proposition C. For Ω given by (48)–(49),

(61)
$$\mathcal{H}^{n-1}(\partial\Omega\setminus\partial^*\Omega)=0.$$

Proof. Uses results of Tompson (1954) and Federer (1960). Given $K \subset \mathbb{R}^{n-1}$, set

(62)
$$\Sigma_K = \{ (x', A(x')) : x' \in K \}.$$

Tompson proved the first identity in

(63)
$$\mathcal{I}^{n-1}(\Sigma_K) = \int_K \sqrt{1 + |\nabla A(x')|^2} \, dx' = \sigma(\Sigma_K),$$

the second identity holding by (59)-(60). Federer proved

(64)
$$\mathcal{H}^{n-1}(\Sigma_K) = \mathcal{I}^{n-1}(\Sigma_K).$$

 So

(65)
$$\mathcal{H}^{n-1}(\Sigma_K) = \sigma(\Sigma_K) = \mathcal{H}^{n-1}(\Sigma_K \cap \partial^* \Omega),$$

the last identity by (38). This gives (61).