The Gauss-Green Formula (And Elliptic Boundary Problems On Rough Domains)

Joint Work with Steve Hofmann and Marius Mitrea

Dirichlet Problem on Ω (open in a compact Riemannian manifold M), dimension n :

$$
\begin{equation*}
L u=0 \text { on } \Omega, \quad u=f \text { on } \partial \Omega . \tag{1}
\end{equation*}
$$

$L=\Delta-V, V \in L^{\infty}(M), V \geq 0, V>0$ on a set of positive measure, on each connected component of $M \backslash \bar{\Omega}$. Assume $\partial \Omega$ is "rough".
Examples: C^{1}, Lipschitz, $\mathrm{bmo}_{1}, \mathrm{vmo}_{1}$, vanishing chord-arc ("Semmes-Kenig-Toro domains").
Layer potential method: Look for solution as

$$
\begin{equation*}
u=\mathcal{D} g \tag{2}
\end{equation*}
$$

where \mathcal{D} is double layer potential:

$$
\begin{equation*}
\mathcal{D} g(x)=\int_{\partial \Omega} \partial_{\nu_{y}} E(x, y) g(y) d \sigma(y) \tag{3}
\end{equation*}
$$

$E(x, y)$ integral kernel for $L^{-1}: H^{-1}(M) \rightarrow H^{1}(M)$.

$$
\begin{equation*}
g(x)^{1 / 2} E(x, y)=e_{0}(x, x-y)+e_{1}(x, y) \tag{4}
\end{equation*}
$$

in local coordinates, where

$$
\begin{equation*}
e_{0}(x, z)=C_{n}\left(\sum g_{j k}(x) z_{j} z_{k}\right)^{-(n-2) / 2} \tag{5}
\end{equation*}
$$

$e_{1}(x, y)$ somewhat tamer.

Layer Potential Estimates for various classes of Ω.

$$
\begin{equation*}
\left\|K^{*} g\right\|_{L^{p}(\partial \Omega)} \leq C\|g\|_{L^{p}(\partial \Omega)}, \quad 1<p<\infty \tag{6}
\end{equation*}
$$

$$
\begin{aligned}
K^{*} g(x) & =\sup _{0<\varepsilon<1}\left|K_{\varepsilon} g(x)\right|, \\
K_{\varepsilon} g(x) & =\int_{y \in \partial \Omega,|x-y|<\varepsilon} \partial_{\nu_{y}} E(x, y) g(y) d \sigma(y) .
\end{aligned}
$$

Nontangential maximal estimate:

$$
\begin{equation*}
\|\mathcal{N D} \mathcal{D}\|_{L^{p}(\partial \Omega)} \leq C\|g\|_{L^{p}(\partial \Omega)}, \quad 1<p<\infty \tag{7}
\end{equation*}
$$

Boundary behavior,

$$
\begin{equation*}
\lim _{y \rightarrow x} \mathcal{D} g(y)=\left(\frac{1}{2} I+K\right) g(x), \quad \text { a.e. on } \partial \Omega, \tag{8}
\end{equation*}
$$

as $y \rightarrow x$ nontangentially, from within Ω, where

$$
\begin{equation*}
K g(x)=\lim _{\varepsilon \rightarrow 0} K_{\varepsilon} g(x) . \tag{9}
\end{equation*}
$$

Validity of these estimates and limits

"Elementary" if $\partial \Omega$ is smoother than C^{1}.
C^{1} case: Fabes-Jodeit-Riviere (following Calderon)
Lipschitz case: (6)-(7) Coifman-McIntosh-Meyer, (8) Verchota ([MT] for variable coefficients)
More general case: Uniformly rectifiable boundary (UR domain).
One assumes $\partial \Omega$ is Ahlfors regular, i.e., $\forall p \in \partial \Omega$,

$$
C_{1} r^{n-1} \leq \mathcal{H}^{n-1}\left(B_{r}(p) \cap \partial \Omega\right) \leq C_{2} r^{n-1}
$$

and one assumes $\partial \Omega$ contains "big pieces of Lipschitz surfaces" (uniformly, on all scales).
For UR domains, (6) is due to G. David, (7)-(8) to [HMT].
Solving Dirichlet Problem done by inverting $\frac{1}{2} I+K$. To show:
Fredholm of index zero on $L^{p}(\partial \Omega)$,

Adjoint injective on $L^{p}(\partial \Omega)$.
Done by Fabes-Jodeit-Riviere for $1<p<\infty$, for C^{1} domains.
Done by Verchota for $2-\varepsilon<p<\infty$, for Lipschitz domains. ([MT] for variable coefficients)
Done by [HMT] for $1<p<\infty$, for regular Semmes-Kenig-Toro domains.

Definition. Ω is a regular SKT domain (vanishing chord-arc domain) provided it is Ahlfors regular, δ-Reifenberg flat for small δ, and

$$
\begin{align*}
& \lim _{r \rightarrow 0} \inf _{p \in \partial \Omega} \frac{\mathcal{H}^{n-1}\left(B_{r}(p) \cap \partial \Omega\right)}{\omega_{n-1} r^{n-1}}= \\
& \lim _{r \rightarrow 0} \sup _{p \in \partial \Omega} \frac{\mathcal{H}^{n-1}\left(B_{r}(p) \cap \partial \Omega\right)}{\omega_{n-1} r^{n-1}}=1 . \tag{12}
\end{align*}
$$

Example. Any VMO_{1} domain.
Two ingredients to get (10)-(11).
Theorem 1 ([HMT]). If Ω is a regular SKT domain,

$$
\begin{equation*}
K: L^{p}(\partial \Omega) \longrightarrow L^{p}(\partial \Omega) \text { is compact, } \forall p \in(1, \infty) \tag{13}
\end{equation*}
$$

Theorem 2 ([HMT]). If Ω is a UR domain,

$$
\begin{equation*}
\frac{1}{2} I+K^{*}: L^{p}(\partial \Omega) \longrightarrow L^{p}(\partial \Omega) \text { is injective, } \forall p \geq 2 \tag{14}
\end{equation*}
$$

Corollary. If Ω is a regular SKT domain,

$$
\begin{equation*}
\frac{1}{2} I+K: L^{p}(\partial \Omega) \longrightarrow L^{p}(\partial \Omega) \text { is bijective, } \forall p \in(1, \infty) \tag{15}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
(13) \text { and }(14) & \Rightarrow(15) \text { for } p \in(1,2] \\
& \Rightarrow \frac{1}{2} I+K \text { injective on } L^{p}(\partial \Omega) \text { for } p \in(1, \infty) \\
& \Rightarrow(15) \quad(\text { again invoking }(13)) .
\end{aligned}
$$

Proof of Theorem 2. Assume $f \in L^{2}(\partial \Omega)$ in $\operatorname{Ker} \frac{1}{2} I+K^{*}$, and set

$$
\begin{equation*}
u=\mathcal{S} f(x)=\int_{\partial \Omega} E(x, y) f(y) d \sigma(y) \tag{16}
\end{equation*}
$$

single layer potential. Counterparts to (7)-(8):

$$
\begin{equation*}
\|\mathcal{N} \nabla \mathcal{S} f\|_{L^{p}(\partial \Omega)} \leq C\|f\|_{L^{p}(\partial \Omega)} \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\left.\partial_{\nu} \mathcal{S} f\right|_{\partial \Omega^{ \pm}}=\left(\mp \frac{1}{2} I+K^{*}\right) f, \quad \Omega^{+}=\Omega, \Omega^{-}=M \backslash \bar{\Omega} . \tag{18}
\end{equation*}
$$

Take $v=u \nabla u$, so

$$
\begin{equation*}
\operatorname{div} v=|\nabla u|^{2}+u \Delta u=|\nabla u|^{2}+V u^{2} \text { on } \Omega \text {. } \tag{19}
\end{equation*}
$$

Apply Gauss-Green formula

$$
\begin{equation*}
\int_{\Omega} \operatorname{div} v d V=\int_{\partial \Omega} \nu \cdot v d \sigma \tag{20}
\end{equation*}
$$

with Ω replaced by Ω^{-}, to get

$$
\begin{equation*}
\int_{\Omega^{-}}\left(|\nabla u|^{2}+V u^{2}\right) d V=\int_{\partial \Omega} u\left(\frac{1}{2} I+K^{*}\right) f d \sigma=0, \tag{21}
\end{equation*}
$$

hence $|\nabla u| \equiv 0$ on Ω^{-}, hence $u \equiv 0$ on Ω^{-}. Hence $u=0$ on $\partial \Omega$, so by a second application of (20) (on Ω),

$$
\begin{equation*}
\int_{\Omega}\left(|\nabla u|^{2}+V u^{2}\right) d V=\int_{\partial \Omega} u\left(-\frac{1}{2} I+K^{*}\right) f d \sigma=0 . \tag{22}
\end{equation*}
$$

So $u=$ const on Ω. Also u, given by (16), does not jump across $\partial \Omega$, so $u \equiv 0$ on M. Then (18) gives, for both choices of sign,

$$
\begin{equation*}
\left(\pm \frac{1}{2} I+K^{*}\right) f=0, \quad \text { hence } f=0 \tag{23}
\end{equation*}
$$

The proof is done, modulo:
Need to justify applying the Gauss-Green formula (20).
What is known:

$$
\begin{align*}
f \in L^{2}(\partial \Omega) & \Rightarrow \mathcal{N} \nabla u \in L^{2}(\partial \Omega) \tag{24}\\
& \Rightarrow \mathcal{N} v \in L^{p}(\partial \Omega), \text { some } p>1,
\end{align*}
$$

whenever Ω is a UR domain, by (17), and as shown in [HMT],

$$
\begin{align*}
f \in L^{2}(\partial \Omega) & \Rightarrow|\nabla u|^{2} \in L^{q}(\Omega) \\
& \Rightarrow \operatorname{div} v \in L^{q}(\Omega), \text { some } q>1, \tag{25}
\end{align*}
$$

whenever Ω is Ahlfors regular. Also u and v are continuous on the interior regions Ω and Ω^{-}.

Applicable Gauss-Green Theorem

For $p \in[1, \infty)$, set

$$
\begin{align*}
\mathfrak{L}^{p}= & \left\{v \in C(\Omega, T M): \mathcal{N} v \in L^{p}(\partial \Omega),\right. \text { and } \\
& \left.\exists \text { nontangential limit } v_{b}, \sigma \text {-a.e. }\right\} . \tag{26}
\end{align*}
$$

Theorem 3 ([HMT]). Assume $\partial \Omega$ is Ahlfors regular and

$$
\begin{equation*}
\mathcal{H}^{n-1}\left(\partial \Omega \backslash \partial_{*} \Omega\right)=0 \tag{27}
\end{equation*}
$$

Assume that, for some $p>1$,

$$
\begin{equation*}
v \in \mathfrak{L}^{p}, \quad \text { and } \operatorname{div} v \in L^{1}(\Omega) . \tag{28}
\end{equation*}
$$

Then

$$
\begin{equation*}
\int_{\Omega} \operatorname{div} v d x=\int_{\partial \Omega} \nu \cdot v_{b} d \sigma . \tag{29}
\end{equation*}
$$

The proof of Theorem 3 uses the results of De Giorgi and Federer that (29) holds for $v \in \operatorname{Lip}(\bar{\Omega})$. (See below.) In addition, it looks at $\chi_{\delta} v$ when χ_{δ} is a family of cutoffs, and it uses the following results:

$$
\begin{equation*}
\frac{1}{\delta} \int_{\mathcal{O}_{\delta}}|v| d x \leq C\|\mathcal{N} v\|_{L^{1}(\partial \Omega)}, \quad \forall v \in \mathfrak{L}^{1}, \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{O}_{\delta}=\{x \in \Omega: \operatorname{dist}(x, \partial \Omega) \leq \delta\}, \tag{31}
\end{equation*}
$$

and, for $p \in(1, \infty)$,

$$
\begin{align*}
& \text { If } v \in \mathfrak{L}^{p}, \exists w \in \mathfrak{L}^{1}, w_{b}=v_{b}, \\
& \text { and } \exists w_{k} \in \operatorname{Lip}(\bar{\Omega}),\left\|\mathcal{N}\left(w-w_{k}\right)\right\|_{L^{1}(\partial \Omega)} \rightarrow 0 . \tag{32}
\end{align*}
$$

The proof of (30) uses a covering argument. The proof of (32) uses an explicit operator resembling a Poisson kernel, acting on v_{b}. Hardy-Littlewood maximal function estimates make an appearance (which is partly why we need $p>1$).

Remark. For Ω Lipschitz, (29) is due to Verchota.

Finite Perimeter Domains. DeGiorgi-Federer Results
Definition. Open $\Omega \subset \mathbb{R}^{n}$ has locally finite perimeter provided

$$
\begin{equation*}
\nabla \chi_{\Omega}=\mu, \tag{33}
\end{equation*}
$$

a locally finite \mathbb{R}^{n}-valued measure. Radon-Nikodym \Rightarrow

$$
\begin{equation*}
\mu=-\nu \sigma \tag{34}
\end{equation*}
$$

σ locally finite positive measure, $\nu \in L^{\infty}(\partial \Omega, \sigma),|\nu(x)|=1, \sigma$-a.e. Besicovitch \Rightarrow

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{1}{\sigma\left(B_{r}(x)\right)} \int_{B_{r}(x)} \nu d \sigma=\nu(x) \tag{35}
\end{equation*}
$$

for σ-a.e. x.
Distribution theory \Rightarrow given $v \in C_{0}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ (vector field),

$$
\begin{equation*}
\left\langle\operatorname{div} v, \chi_{\Omega}\right\rangle=-\left\langle v, \nabla \chi_{\Omega}\right\rangle \tag{36}
\end{equation*}
$$

so (33)-(34) equivalent to

$$
\begin{equation*}
\int_{\Omega} \operatorname{div} v d x=\int_{\partial \Omega} \nu \cdot v d \sigma \tag{37}
\end{equation*}
$$

DeGiorgi-Federer results:

$$
\begin{equation*}
\sigma=\mathcal{H}^{n-1}\left\lfloor\partial^{*} \Omega\right. \tag{38}
\end{equation*}
$$

where $\partial^{*} \Omega \subset \partial \Omega$ (reduced boundary) consists of $x \in \partial \Omega$ where (35) holds, with $|\nu(x)|=1$.
Also $\partial^{*} \Omega$ is countably rectifiable:

$$
\begin{equation*}
\partial^{*} \Omega=\bigcup_{k} M_{k} \cup N \tag{39}
\end{equation*}
$$

M_{k} compact subset of C^{1} hypersurface, $\mathcal{H}^{n-1}(N)=0$.
Measure-theoretic boundary $\partial_{*} \Omega \subset \partial \Omega$:

$$
\begin{equation*}
x \in \partial_{*} \Omega \Leftrightarrow \limsup _{r \rightarrow 0} r^{-n} \mathcal{L}^{n}\left(B_{r}(x) \cap \Omega^{ \pm}\right)>0 \tag{40}
\end{equation*}
$$

where $\Omega^{+}=\Omega, \Omega^{-}=\mathbb{R}^{n} \backslash \Omega$. Federer proved that $\partial^{*} \Omega \subset \partial_{*} \Omega$ and

$$
\begin{equation*}
\mathcal{H}^{n-1}\left(\partial_{*} \Omega \backslash \partial^{*} \Omega\right)=0 \tag{42}
\end{equation*}
$$

so (37) can be written

$$
\begin{equation*}
\int_{\Omega} \operatorname{div} v d x=\int_{\partial_{*} \Omega} \nu \cdot v d \mathcal{H}^{n-1} \tag{43}
\end{equation*}
$$

So far, we have (37) and (43) for $v \in C_{0}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$.
Want such identities for more general v.
Easy extension to $v \in C_{0}^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$, even to Lipschitz v.
Better extension (still easy). If Ω has locally finite perimeter, then (37) holds for v in

$$
\begin{equation*}
\mathcal{D}=\left\{v \in C_{0}^{0}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right): \operatorname{div} v \in L^{1}\left(\mathbb{R}^{n}\right)\right\} \tag{44}
\end{equation*}
$$

Proof. Apply (37) to mollifications $v_{k}=\varphi_{k} * v \in C_{0}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and pass to the limit. We have $\operatorname{div} v_{k} \rightarrow \operatorname{div} v$ in $L^{1}\left(\mathbb{R}^{n}\right)$ and $\nu \cdot v_{k} \rightarrow \nu \cdot v$ uniformly on $\partial \Omega$.

Drawback. Want to treat functions defined on Ω, not on a neighborhood of $\bar{\Omega}$.
Still better extension (though not implying Theorem 3)
We say Ω has a tame interior approximation $\left\{\Omega_{k}: k \in \mathbb{N}\right\}$ provided open $\Omega_{k} \subset \bar{\Omega}_{k} \subset \Omega_{k+1} \nearrow \Omega$ with

$$
\begin{equation*}
\left\|\nabla \chi_{\Omega_{k}}\right\|_{\mathrm{TV}\left(B_{R}\right)} \leq C(R)<\infty, \quad \forall k . \tag{45}
\end{equation*}
$$

For such Ω, (37) holds for v in

$$
\begin{equation*}
\widetilde{\mathcal{D}}=\left\{v \in C_{0}^{0}\left(\bar{\Omega}, \mathbb{R}^{n}\right): \operatorname{div} v \in L^{1}(\Omega)\right\} \tag{46}
\end{equation*}
$$

Proof. Use previous extension to get

$$
\begin{equation*}
\int_{\Omega_{k}} \operatorname{div} v d x=-\left\langle v, \nabla \chi_{\Omega_{k}}\right\rangle, \tag{47}
\end{equation*}
$$

and examine limit as $k \rightarrow \infty$, using bounds (45).
Result of Federer (1952). If Ω is bounded and $\mathcal{H}^{n-1}(\partial \Omega)<\infty$, then (37) holds provided $v \in C(\bar{\Omega})$ and each term $\partial_{j} v_{j}$ in $\operatorname{div} v$ belongs to $L^{1}(\Omega)$.

Examples of locally finite perimeter sets. Assume

$$
\begin{equation*}
A \in C\left(\mathbb{R}^{n-1}\right), \quad \nabla A \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n-1}\right) \tag{48}
\end{equation*}
$$

With $x=\left(x^{\prime}, x_{n}\right)$, set

$$
\begin{equation*}
\Omega=\left\{x \in \mathbb{R}^{n}: x_{n}>A\left(x^{\prime}\right)\right\} . \tag{49}
\end{equation*}
$$

Proposition A. Such Ω has locally finite perimeter.
Given this, we can consider

$$
\begin{equation*}
\left\{x \in \mathbb{R}^{n}: x_{n}>A\left(x^{\prime}\right)+\frac{1}{k}\right\} \tag{50}
\end{equation*}
$$

and deduce:
Corollary B. Such Ω has a tame interior approximation.
Proof of Prop. A. Use a mollifier to produce $A_{k} \in C^{\infty}\left(\mathbb{R}^{n-1}\right)$ such that

$$
\begin{equation*}
A_{k} \rightarrow A \text { in } C\left(\mathbb{R}^{n-1}\right), \quad \nabla A_{k} \rightarrow \nabla A \text { in } L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n-1}\right) \tag{51}
\end{equation*}
$$

Set

$$
\begin{equation*}
\Omega_{k}=\left\{x \in \mathbb{R}^{n}: x_{n}>A_{k}\left(x^{\prime}\right)\right\} . \tag{52}
\end{equation*}
$$

Then

$$
\begin{align*}
\chi_{\Omega_{k}} & \rightarrow \chi_{\Omega} \text { in } L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right), \text { so } \\
\nabla \chi_{\Omega_{k}} & \rightarrow \nabla \chi_{\Omega} \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right) . \tag{53}
\end{align*}
$$

For Ω_{k}, Gauss-Green formula is elementary:

$$
\begin{equation*}
\nabla \chi_{\Omega_{k}}=-\nu_{k} \sigma_{k}, \tag{54}
\end{equation*}
$$

σ_{k} surface area on graph of A_{k}, given in x^{\prime}-coordinates by

$$
\begin{equation*}
d \sigma_{k}\left(x^{\prime}\right)=\sqrt{1+\left|\nabla A_{k}\left(x^{\prime}\right)\right|^{2}} d x^{\prime} \tag{55}
\end{equation*}
$$

Hypothesis (48) $\Rightarrow\left\{\nu_{k} \sigma_{k}: k \in \mathbb{N}\right\}$ bounded set of \mathbb{R}^{n}-valued measures, on each set $B_{R}=\left\{x \in \mathbb{R}^{n}:|x| \leq R\right\}$.
So passing to limit in (53) gives

$$
\begin{equation*}
\nabla \chi_{\Omega}=\mu, \tag{55}
\end{equation*}
$$

locally finite \mathbb{R}^{n}-valued measure.
Hence (37) holds, i.e., for $v \in C_{0}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$,

$$
\begin{equation*}
\int_{\Omega} \operatorname{div} v d x=\int_{\partial \Omega} \nu \cdot v d \sigma . \tag{56}
\end{equation*}
$$

Going further, the Gauss-Green formula for Ω_{k} gives

$$
\begin{equation*}
\int_{\Omega_{k}} \operatorname{div} v d x=\int_{\mathbb{R}^{n-1}}\left(\nabla A_{k}\left(x^{\prime}\right),-1\right) \cdot v\left(x^{\prime}, A_{k}\left(x^{\prime}\right)\right) d x^{\prime} \tag{57}
\end{equation*}
$$

valid for $v \in C_{0}^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$. As $k \rightarrow \infty$,

$$
\text { LHS (57) } \rightarrow \text { LHS }(56)
$$

$$
\begin{equation*}
\operatorname{RHS}(57) \rightarrow \int_{\mathbb{R}^{n-1}}\left(\nabla A\left(x^{\prime}\right),-1\right) \cdot v\left(x^{\prime}, A\left(x^{\prime}\right)\right) d x^{\prime} \tag{58}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\int \nu \cdot v d \sigma=\int_{\mathbb{R}^{n-1}} \tilde{\nu}\left(x^{\prime}\right) \cdot v\left(x^{\prime}, A\left(x^{\prime}\right)\right) d \sigma\left(x^{\prime}\right), \tag{59}
\end{equation*}
$$

with

$$
\begin{align*}
\tilde{\nu}\left(x^{\prime}\right) & =\frac{\left(\nabla A\left(x^{\prime}\right),-1\right)}{\sqrt{1+\left|\nabla A\left(x^{\prime}\right)\right|^{2}}} \tag{60}\\
d \sigma\left(x^{\prime}\right) & =\sqrt{1+\left|\nabla A\left(x^{\prime}\right)\right|^{2}} d x^{\prime}
\end{align*}
$$

Remark. If A is Lipschitz, one easily has $\partial_{*} \Omega=\partial \Omega$. More generally:
Proposition C. For Ω given by (48)-(49),

$$
\begin{equation*}
\mathcal{H}^{n-1}\left(\partial \Omega \backslash \partial^{*} \Omega\right)=0 \tag{61}
\end{equation*}
$$

Proof. Uses results of Tompson (1954) and Federer (1960).
Given $K \subset \mathbb{R}^{n-1}$, set

$$
\begin{equation*}
\Sigma_{K}=\left\{\left(x^{\prime}, A\left(x^{\prime}\right)\right): x^{\prime} \in K\right\} . \tag{62}
\end{equation*}
$$

Tompson proved the first identity in

$$
\begin{align*}
\mathcal{I}^{n-1}\left(\Sigma_{K}\right) & =\int_{K} \sqrt{1+\left|\nabla A\left(x^{\prime}\right)\right|^{2}} d x^{\prime} \tag{63}\\
& =\sigma\left(\Sigma_{K}\right),
\end{align*}
$$

the second identity holding by (59)-(60). Federer proved

$$
\begin{equation*}
\mathcal{H}^{n-1}\left(\Sigma_{K}\right)=\mathcal{I}^{n-1}\left(\Sigma_{K}\right) \tag{64}
\end{equation*}
$$

So

$$
\begin{equation*}
\mathcal{H}^{n-1}\left(\Sigma_{K}\right)=\sigma\left(\Sigma_{K}\right)=\mathcal{H}^{n-1}\left(\Sigma_{K} \cap \partial^{*} \Omega\right), \tag{65}
\end{equation*}
$$

the last identity by (38). This gives (61).

