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Abstract

We develop the theory of layer potentials and related singular integral operators as a tool
to study a variety of elliptic boundary problems on a family of domains introduced by Semmes
[101]–[102] and Kenig and Toro [64]–[66], which we call regular Semmes-Kenig-Toro domains.
This extends the classic work of Fabes, Jodeit, and Rivière in several ways. For one, the class
of domains considered contains the class of VMO1 domains, which in turn contains the class
of C1 domains. In addition we study not only the Dirichlet and Neumann boundary problems,
but also a variety of others. Furthermore, we treat not only constant coefficient operators, but
also operators with variable coefficients, including operators on manifolds.
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1 Introduction

The original motivation behind the development of Fredholm theory was to use the compactness
of various double layer potential operators on smooth domains, arising in mathematical physics,
in order to solve boundary value problems via integral equation methods. Indeed, in his 1898
Ph.D. Thesis, Erik Ivar Fredholm himself pioneered the use of such an approach in the study of a
problem in elasticity theory. Shortly thereafter, in a paper based on his doctoral dissertation, which
appeared in 1900, Fredholm proved his famous theorems for the integral equations associated with
the Dirichlet problem for the Laplacian and, in 1906, he used potential theoretic methods in the
study of the first basic problem of elasticity theory (for which he utilized the so-called pseudo-stress
elastic double layer – cf. the discussion in §6.3). Through the work of Mikhlin and of Calderón and
Zygmund and others, integral operators have played a key role in the study of elliptic boundary
problems, first for smooth boundaries, and then more recently for rougher boundaries.

In the classical setting of a bounded domain Ω with smooth boundary, the source of compactness
for, say, the harmonic double layer

Kf(X) := lim
ε→0+

1

ωn

∫

Y ∈∂Ω

|X−Y |>ε

〈ν(Y ), Y − X〉
|X − Y |n+1

f(Y ) dσ(Y ), X ∈ ∂Ω, (1.0.1)
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on Lp(∂Ω, dσ), 1 < p < ∞, is the weak singularity of its integral kernel (itself, a consequence of
the special algebraic structure of the integral kernel in (1.0.1)). This holds when the boundary has
defining functions whose first derivatives have a Hölder, or even Dini, modulus of continuity, but
it fails for boundaries that are C1 or rougher. See also [9], [69], [80] and the references therein for
some related, early developments.

Calderón in [11] initiated a breakthrough, proving Lp-bounds for Cauchy integral operators on
Lipschitz curves with small Lipschitz constant. This was applied in [37] by Fabes, Jodeit, and
Rivière, who showed that K in (1.0.1) is compact on Lp(∂Ω, dσ) for each p ∈ (1,∞) whenever ∂Ω
is a C1 surface. Since then there have been further developments in a number of directions.

In one direction, Coifman, McIntosh, and Meyer [20] extended Calderón’s estimate on Cauchy
integrals to general Lipschitz curves, and applied this to such results as boundedness of K in
(1.0.1) on Lp(∂Ω, dσ) for each p ∈ (1,∞), whenever ∂Ω is a strongly Lipschitz surface. Generally,
compactness fails here, but other methods have led to invertibility of various layer potentials and
applications to the Dirichlet and Neumann problems, beginning in [116], and extended to other
settings and other boundary problems in various papers, including [38], [91], and others.

In another direction, Jerison and Kenig [56] showed that the Poisson kernel h of a bounded C1

domain, given by hX = dωX/dσ, the Radon-Nikodym derivative of harmonic measure with pole at
X with respect to surface measure, has the property

log hX ∈ VMO(∂Ω, dσ), ∀ X ∈ Ω. (1.0.2)

Then Kenig and Toro [65] demonstrated (1.0.2) for a much larger class of domains, namely for what
they called chord-arc domains with vanishing constant (which we call here regular Semmes-Kenig-
Toro domains, or, briefly, regular SKT domains), and in [66] they proved the converse.

In a third direction, Hofmann [50] established compactness of K when ∂Ω is a VMO1 domain.
The work of Kenig and Toro mentioned above leads one to speculate that such compactness might
hold on regular SKT domains, and indeed one of the central results of the current paper is that
this is true.

Yet another direction has led to Lp-boundedness of such singular integral operators as K on
surfaces more general than the boundaries of Lipschitz domains. Works of David [28], [29], [30], of
David-Jerison [31], and of David-Semmes [33], [34], and Semmes [100] yield such boundedness when
the surface Σ is Ahlfors regular and has “big pieces of Lipschitz surfaces,” in a uniform manner;
one calls Σ a uniformly rectifiable surface. (See §2 and §3 for definitions of these terms.) This
work has interfaced tightly with geometric measure theory, but until now it has not been applied
to problems in PDE.

Our aim here is to find the optimal geometric measure theoretic context in which Fredholm
theory can be successfully implemented, along the lines of its original development, for solving
boundary value problems with Lp data via the method of layer potentials. In the process, we forge
new links between the analysis of singular integral operators on uniformly rectifiable surfaces, and
in particular on regular SKT domains, and problems in PDE, notably boundary problems for the
Laplace operator and other second order elliptic operators, including systems. The following is the
structure of the rest of this paper.

Section 2 discusses Ahlfors regular domains. There are several reasons to start here. For one,
Ahlfors regularity is the first part of the defining property of uniform rectifiability. For another, it
is a natural general setting in which weakly singular integral operators can be shown to be compact
(cf. §5.1). Also it is a setting in which the harmonic analysis of [23] applies, which is useful in several
respects. In addition, as shown in §2.3, it is a natural setting for a version of Green’s formula that
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will play an important role further on. In §2.4 we gather some results on analysis on spaces of
homogeneous type. In §2.5 we show that surfaces that are locally graphs of BMO1 functions are
Ahlfors regular.

In §3 we define uniformly rectifiable sets and UR domains. We discuss sufficient conditions for
a domain Ω to be a UR domain, such as conditions involving Ahlfors regularity and the NTA con-
dition, or the more general John condition. We recall basic singular integral estimates of David and
colleagues, and supplement them with nontangential maximal function estimates. The major effort
in this section is devoted to establishing nontangential convergence at the boundary of appropriate
classes of layer potentials applied to elements of Lp(∂Ω, dσ).

In §4 we define SKT domains (called chord arc domains in [101]–[102] and [64]–[66]) and regular
SKT domains, and recall some of their basic properties. We produce further equivalent charac-
terizations of regular SKT domains, based on a Poincaré inequality and a careful analysis of the
Semmes decomposition. One notable characterization is that the domain satisfies a two-sided John
condition (which is the case if the domain in question is two-sided NTA), is Ahlfors regular, and
its unit normal ν belongs to VMO(∂Ω, dσ). Making use of the Poincaré inequality of §4.2, we also
show that the Lp-Sobolev space Lp

1(∂Ω) is isomorphic to the space W p,1(∂Ω) defined for general
metric measure spaces by HajÃlasz [46], which will prove useful. From here we proceed to the main
goal in §4, which is the proof of compactness on Lp(∂Ω, dσ) of a class of operators including K in
(1.0.1) in case Ω is a regular SKT domain. We also establish the converse result, that if Ω is a UR
domain (satisfying a two-sided John condition) for which such a class of operators (together with a
natural class of commutators) is compact, then Ω must be a regular SKT domain, thus completing
this circle of compactness results.

In §4 we also define the class of ε-regular SKT domains, replacing the property that ν ∈
VMO(∂Ω, dσ) by the property

dist
(
ν, VMO (∂Ω, dσ)

)
< ε, (1.0.3)

where the distance is measured in the BMO-norm. The compactness results described above extend
to results of the sort that such operators as K have small norm modulo compacts if Ω is an ε-regular
SKT domain for small ε.

Sections 5–7 apply these results to boundary problems for second order elliptic PDE on ε-regular
SKT domains. Section 5 deals with the Dirichlet and Neumann problem for the Laplace operator.
We go beyond the constant coefficient case, and in the spirit of work developed in [91]–[93], work
on domains in a manifold, endowed with a Riemannian metric tensor whose components have a
certain Dini-type modulus of continuity. In §§6–7 we explore various systems, particularly the Lamé
system, the Stokes system, and the Maxwell system, and natural boundary problems that arise for
such systems. We present general results (on invertibility of boundary integral equations, etc.) in
§6 and concentrate on applications to these specific cases of boundary problems in §7.

2 Finite perimeter domains, Ahlfors regular domains, and BMO1

domains

As noted in the introduction, we are engaged in analysis on a domain Ω whose boundary ∂Ω
satisfies certain weak forms of regularity. One of the conditions is that ∂Ω be Ahlfors regular. In
§2.1, we define Ahlfors regularity and record a fundamental result on the Hardy-Littlewood maximal
function applied to functions on Ahlfors regular surfaces. We then define the nontangential maximal
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function Nu associated to a function u ∈ C0(Ω) and establish a basic result to the effect that
‖Nu‖Lp(∂Ω,dσ) depends only weakly on the choice of definition of nontangential approach region.

The next two subsections are devoted to versions of the Gauss-Green formula. This formula is
crucial in the study of layer potentials for two distinct reasons. One, pursued in §3, is to provide a
tool for proving jump relations for layer potentials. The other, pursued in §5 and §6, is to yield a
Green formula for certain functions given as layer potentials, which in turn implies injectivity (and
hence, in connection with other arguments, invertibility) of certain layer potential operators, key
to our attack on elliptic boundary problems. In §2.2 we discuss the validity of a Green formula of
the form

∫

Ω

div v dx =

∫

∂∗Ω

〈ν, v〉 dσ, (2.0.1)

for Ω having locally finite perimeter, valid for a compactly supported Lipschitz vector field v.
Results here are due to Federer and De Giorgi. These results are adequate for applications in §3.
For applications in §5 and §6, we need such an identity for a larger class of v. We establish such
an identity in §2.3, in the case when Ω is Ahlfors regular.

Section 2.4 discusses general results on spaces of homogeneous type, including Ahlfors regular
surfaces. This includes discussions of Hardy spaces and spaces BMO and VMO on such surfaces.
In §2.5 we introduce BMO1 domains and show they are Ahlfors regular.

2.1 Ahlfors regular domains and nontangential maximal functions

A closed set Σ ⊂ Rn+1 is said to be Ahlfors regular provided there exist 0 < a ≤ b < ∞ such that

a rn ≤ Hn
(
B(X, r) ∩ Σ

)
≤ b rn, (2.1.1)

for each X ∈ Σ, r ∈ (0,∞) (if Σ is unbounded), where Hn denotes n-dimensional Hausdorff measure
and B(X, r) := {Y ∈ Rn+1 : |X − Y | < r}. If Σ is compact, we require (2.1.1) only for r ∈ (0, 1].
Nonetheless, (2.1.1) continues to hold in this case (albeit with possibly different constants) for each
0 < r < diam Σ. It should be pointed out that Ahlfors regularity is not a regularity property per
se, but rather a scale-invariant way of expressing the fact that the set in question is n-dimensional.

An open set Ω ⊂ Rn+1 is said to be an Ahlfors regular domain provided ∂Ω is Ahlfors regular.
Most of our analysis will be done on Ahlfors regular domains. Note that if (2.1.1) holds then (cf.
Theorem 4 on p. 61 in [36]),

σ := Hn⌊Σ is a Radon, doubling measure. (2.1.2)

Hence fundamental results of [23] (cf. the discussion on p. 624) yield the following.

Proposition 2.1.1 An Ahlfors regular surface Σ ⊂ Rn+1 is a space of homogeneous type (in the
sense of Coifman-Weiss), when equipped with the Euclidean distance and the measure σ = Hn⌊Σ.
In particular, the associated Hardy-Littlewood maximal operator

Mf(X) := sup
r>0

∫
−

Y ∈Σ: |X−Y |<r
|f(Y )| dσ(Y ), X ∈ Σ, (2.1.3)
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is bounded on Lp(Σ, dσ) for each p ∈ (1,∞). Here and elsewhere, the barred integral denotes aver-
aging (with the convention that this is zero if the set in question has zero measure). Furthermore,
there exists C = C(Σ) ∈ (0,∞) such that

σ
(
{X ∈ Σ : Mf(X) > λ}

)
≤ C λ−1‖f‖L1(Σ,dσ), (2.1.4)

for every f ∈ L1(Σ, dσ) and λ > 0.

We will say more about spaces of homogeneous type in §2.4. We now turn to the notion of the
non-tangential maximal operator, applied to functions on an open set Ω ⊂ Rn+1. To define this,
fix α > 0 and for each boundary point Z ∈ ∂Ω introduce the non-tangential approach region

Γ(Z) := Γα(Z) := {X ∈ Ω : |X − Z| < (1 + α) dist (X, ∂Ω)}. (2.1.5)

It should be noted that, under the current hypotheses, it could happen that Γ(Z) = ∅ for points
Z ∈ ∂Ω. (This point will be discussed further in §2.3.)

Next, for u : Ω → R, we define the non-tangential maximal function of u by

Nu(Z) := Nαu(Z) := sup {|u(X)| : X ∈ Γα(Z)}, Z ∈ ∂Ω. (2.1.6)

Here and elsewhere in the sequel, we make the convention that Nu(Z) = 0 whenever Z ∈ ∂Ω is
such that Γ(Z) = ∅.

The following result implies that the choice of α plays a relatively minor role when measuring
the size of the nontangential maximal function in Lp(∂Ω, dσ).

Proposition 2.1.2 Assume Ω ⊂ Rn+1 is open and Ahlfors regular. Then for every α, β > 0 and
0 < p < ∞ there exist C0, C1 > 0 such that

C0‖Nαu‖Lp(∂Ω,dσ) ≤ ‖Nβu‖Lp(∂Ω,dσ) ≤ C1‖Nαu‖Lp(∂Ω,dσ), (2.1.7)

for each function u.

Proof. We adapt a well-known point-of-density argument of Fefferman and Stein [42] (cf. also
[108]). Specifically, fix λ > 0 and consider the open subset of ∂Ω given by

Oα :=
{

X ∈ ∂Ω : sup {|u(Y )| : Y ∈ Γα(X)} > λ
}

. (2.1.8)

As a consequence, A := ∂Ω \ Oα is closed. For each γ ∈ (0, 1) we then set

A∗
γ := {X ∈ ∂Ω : σ(A ∩ ∆(X, r)) ≥ γσ(∆(X, r)), ∀ r > 0}, (2.1.9)

where ∆(X, r) := B(X, r)∩ ∂Ω. That is, A∗
γ is the collection of points of (global) γ-density for the

set A.
We now claim that there exists γ ∈ (0, 1) such that

Oβ ⊆ ∂Ω \ A∗
γ . (2.1.10)
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To justify this inclusion, fix an arbitrary point X ∈ Oβ . Then there exists Y ∈ Γβ(X) such that
|u(Y )| > λ and we select Ȳ ∈ ∂Ω such that |Y − Ȳ | = dist (Y, ∂Ω). We now make two observations
of geometrical nature. First,

Z ∈ ∆(Ȳ , α|Y − Ȳ |) =⇒ Y ∈ Γα(Z). (2.1.11)

Indeed, if Z ∈ ∂Ω and |Z − Ȳ | < α|Y − Ȳ | then

|Z − Y | ≤ |Z − Ȳ | + |Ȳ − Y | < α|Y − Ȳ | + |Y − Ȳ | = (1 + α) dist (Y, ∂Ω), (2.1.12)

i.e., Y ∈ Γα(Z), as desired. Our second observation is that

∆(Ȳ , α|Y − Ȳ |) ⊆ ∆(X, (2 + α + β)|Y − Ȳ |). (2.1.13)

To see this, we note that if Z ∈ ∂Ω and |Z − Ȳ | < α|Y − Ȳ | then

|X − Z| ≤ |X − Y | + |Y − Ȳ | + |Ȳ − Z|
≤ (1 + β) dist (Y, ∂Ω) + (1 + α)|Y − Ȳ | = (2 + α + β)|Y − Ȳ |. (2.1.14)

In concert, (2.1.11), (2.1.13) and the fact that |u(Y )| > λ yield

∆(Ȳ , α|Y − Ȳ |) ⊆ Oα ∩ ∆(X, (2 + α + β)|Y − Ȳ |), (2.1.15)

so that, thanks to the estimate (2.1.1) defining Ahlfors regularity,

σ
(
Oα ∩ ∆(X, (2 + α + β)|Y − Ȳ |)

)

σ
(
∆(X, (2 + α + β)|Y − Ȳ |)

) ≥
σ
(
∆(Ȳ , α|Y − Ȳ |)

)

σ
(
∆(X, (2 + α + β)|Y − Ȳ |)

)

≥ c

(
α

2 + α + β

)n

, (2.1.16)

where c is a small, positive constant which depends only on Ω and n. In particular, if we set
r := (2 + α + β)|Y − Ȳ |, then

σ
(
A ∩ ∆(X, r)

)

σ
(
∆(X, r)

) ≤ 1 − c

(
α

2 + α + β

)n

. (2.1.17)

Thus, if we select γ such that 1 − c( α
2+α+β )n < γ < 1, then (2.1.17) entails X /∈ A∗

γ . This proves
the claim (2.1.10).

Let M be the Hardy-Littlewood maximal operator associated as in (2.1.3) to Σ := ∂Ω. Then,
based on (2.1.10) and (2.1.4), we may write
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σ(Oβ) ≤ σ(∂Ω \ A∗
γ) = σ

(
{X ∈ ∂Ω : M(1∂Ω\A)(X) > 1 − γ}

)

≤ C

1 − γ
σ(∂Ω \ A) = C(Ω, γ)σ(Oα). (2.1.18)

Hence,

σ(Oβ) ≤ C(Ω, α, β)σ(Oα), (2.1.19)

and (2.1.7) readily follows from this. ¤

2.2 Finite perimeter domains and Green’s formula

Let Ω ⊂ Rm be open. We say Ω has locally finite perimeter provided

µ := ∇1Ω (2.2.1)

is a locally finite Rm-valued measure. It follows from the Radon-Nikodym theorem that µ = −ν σ,
where σ is a locally finite positive measure, supported on ∂Ω, and ν ∈ L∞(∂Ω, σ) is an Rm-valued
function, satisfying |ν(x)| = 1, σ-a.e. It then follows from the Besicovitch differentiation theorem
that

lim
r→0

1

σ(Br(x))

∫

Br(x)

ν dσ = ν(x) (2.2.2)

for σ-a.e. x.
Via distribution theory, we can restate (2.2.1) as follows. Take a vector field v ∈ C∞

0 (Rm, Rm).
Then

〈div v,1Ω〉 = −〈v,∇1Ω〉. (2.2.3)

Hence (2.2.1) is equivalent to

∫

Ω

div v dx =

∫

∂Ω

〈ν, v〉 dσ, ∀ v ∈ C∞
0 (Rm, Rm). (2.2.4)

Works of Federer and of De Giorgi produced the following results on the structure of σ, when
Ω has locally finite perimeter. First,

σ = Hm−1⌊∂∗Ω, (2.2.5)

where Hm−1 is (m − 1)-dimensional Hausdorff measure and ∂∗Ω ⊂ ∂Ω is the reduced boundary of
Ω, defined as
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∂∗Ω :=
{

x : (2.2.2) holds, with |ν(x)| = 1
}

. (2.2.6)

(It follows from the remarks leading up to (2.2.2) that σ is supported on ∂∗Ω.) Second, ∂∗Ω is
countably rectifiable; it is a countable disjoint union

∂∗Ω =
⋃

k

Mk ∪ N, (2.2.7)

where each Mk is a compact subset of an (m − 1)-dimensional C1 surface (to which ν is normal
in the usual sense), and Hm−1(N) = 0. Given (2.2.5), the identity (2.2.4) yields the Gauss-Green
formula

∫

Ω

div v dx =

∫

∂∗Ω

〈ν, v〉 dHm−1, (2.2.8)

for v ∈ C∞
0 (Rm, Rm). Third, there exist constants Cm ∈ (1,∞) such that

C−1
m ≤ lim inf

r→0+
r−(m−1)σ(Br(x)) ≤ lim sup

r→0+

r−(m−1)σ(Br(x)) ≤ Cm (2.2.9)

for each x ∈ ∂∗Ω (which, informally speaking, can be thought of as an infinitesimal Ahlfors regu-
larity conditions).

It is also useful to record some results on sets ∂∗Ω ⊃ ∂0Ω ⊃ ∂∗Ω, which will be formally
introduced shortly (cf. (2.2.14) and (2.2.12) below). Good references for this material, as well as
the results stated above, are [41], [36], and [118]. First, given a unit vector νE and x ∈ ∂Ω, set

H±
νE

(x) = {y ∈ Rm : ±〈νE , y − x〉 ≥ 0}. (2.2.10)

Then (cf. [36], p. 203), for x ∈ ∂∗Ω, Ω+ := Ω, Ω− := Rm \ Ω, one has

lim
r→0

r−mLm
(
Br(x) ∩ Ω± ∩ H±

νE
(x)

)
= 0, (2.2.11)

when νE = ν(x) is given by (2.2.2). Here Lm denotes the Lebesgue measure on Rm. More generally,
a unit vector νE for which (2.2.11) holds is called the measure-theoretic outer normal to Ω at x.
It is easy to show that if such νE exists it is unique. With νE(x) denoting the measure-theoretic
outer normal, if we now define

∂0Ω := {x ∈ ∂Ω : (2.2.11) holds}, (2.2.12)

we may then conclude that

∂0Ω ⊃ ∂∗Ω and νE(x) = ν(x) on ∂∗Ω. (2.2.13)
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Next, we define the measure-theoretic boundary of Ω by

∂∗Ω :=
{

x ∈ ∂Ω : lim sup
r→0

r−mLm
(
Br(x) ∩ Ω±)

> 0
}

. (2.2.14)

It is clear that ∂∗Ω ⊃ ∂0Ω. Furthermore (cf. [36], p. 208) one has

Hm−1(∂∗Ω \ ∂∗Ω) = 0. (2.2.15)

Consequently the Green formula (2.2.8) can be rewritten

∫

Ω

div v dx =

∫

∂∗Ω

〈ν, v〉 dHm−1, (2.2.16)

for v ∈ C∞
0 (Rm, Rm). The advantage of (2.2.16) is that the definition of ∂∗Ω is more straightforward

and geometrical than is that of ∂∗Ω. Note that ∂∗Ω is well defined whether or not Ω has locally
finite perimeter. It is known that

Ω has locally finite perimeter ⇐⇒ Hm−1(∂∗Ω ∩ K) < ∞, ∀K ⊂ Rm compact. (2.2.17)

Cf. [36], p. 222. In general ∂Ω \ ∂∗Ω can be quite large. It is of interest to know conditions under
which Hm−1(∂Ω \ ∂∗Ω) = 0. We will comment further on this later on.

We next discuss an important class of domains with locally finite perimeter. Let Ω ⊂ Rm be
the region over the graph of a function A : Rm−1 → R:

Ω = {x ∈ Rm : xm > A(x′)}, (2.2.18)

where x = (x′, xm). We have:

Proposition 2.2.1 Given a function

A ∈ C0(Rm−1), ∇A ∈ L1
loc(R

m−1), (2.2.19)

then Ω defined as in (2.2.18) has locally finite perimeter.

For the reader’s convenience we include a proof of this result, which is more than sufficient for
use on BMO1 domains. A more elaborate result, treating graphs of BV functions, is given in [41],
§4.5.9.

Proof. Pick ψ ∈ C∞
0 (Rm−1) such that

∫
ψ(x′) dx′ = 1, define ψk(x

′) = km−1ψ(kx′), k ∈ N, and set
Ak = ψk ∗ A,

Ωk = {x ∈ Rm : xm > Ak(x
′)}. (2.2.20)

Clearly
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Ak −→ A, locally, uniformly, (2.2.21)

so

1Ωk
−→ 1Ω in L1

loc(R
m). (2.2.22)

Hence ∇1Ωk
→ ∇1Ω in D′(Rm). Also

∇1Ωk
= −νk σk, (2.2.23)

where σk is surface area on

Σk = {x ∈ Rm : xm = Ak(x
′)}, (2.2.24)

given in x′-coordinates by

dσk(x
′) =

√
1 + |∇Ak(x′)|2 dx′, (2.2.25)

and νk is the downward-pointing unit normal to the surface Σk. The hypothesis (2.2.19) implies
that {νkσk : k ≥ 1} is a bounded set of Rm-valued measures on each set BR = {x ∈ Rm : |x| ≤ R},
so passing to the limit gives

∇1Ω = µ (2.2.26)

where µ is a locally finite Rm-valued measure. This proves the proposition. ¤

The measure µ in (2.2.26) has the form µ = −ν σ, as described after (2.2.1). To obtain a more
explicit formula, we invoke (2.2.4),

∫

Ω

div v dx =

∫

∂Ω

〈ν, v〉 dσ, (2.2.27)

together with the elementary identity

∫

Ωk

div v dx =

∫

Rm−1

〈(∇Ak(x
′),−1), v(x′, Ak(x

′))〉 dx′, (2.2.28)

valid for each v ∈ C∞
0 (Rm, Rm) and k ∈ N. As k → ∞, the left side of (2.2.28) converges to the

left side of (2.2.27), while the right side of (2.2.28) converges to

∫

Rm−1

〈(∇A(x′),−1), v(x′, A(x′))〉 dx′. (2.2.29)
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Hence

∫

∂Ω

〈ν, v〉 dσ =

∫

Rm−1

〈ν̃(x′), v(x′, A(x′))〉 dσ(x′), (2.2.30)

where

ν̃(x′) :=
(∇A(x′),−1)√
1 + |∇A(x′)|2

, dσ(x′) :=
√

1 + |∇A(x′)|2 dx′. (2.2.31)

The formula (2.2.30) is valid for all v ∈ C∞
0 (Rm, Rm), hence for all v ∈ C0

0 (Rm, Rm).
Formulas (2.2.30)-(2.2.31) identify the integral of a class of functions (of the form 〈ν, v〉) against

dσ. Given that v can be any vector field in C0
0 (Rm, Rm), they amount to an identity of two vector

measures, namely

ν dσ = ν ′ dσ′ (2.2.32)

where ν ′(X) = (∇A(x′),−1)/
√

1 + |∇A(x′)|2 if X = (x′, A(x′)) ∈ ∂Ω, and we have temporarily
denoted by σ′ the push-forward of

√
1 + |∇A|2 dx′ to the boundary of Ω via the mapping x′ 7→

(x′, A(x′)). Since the total variation measure of the left side of (2.2.32) is σ and the total variation
measure of the right side is σ′, one arrives at

σ = σ′, and ν = ν ′ σ-a.e. (2.2.33)

In particular,

σ({(x′, A(x′)) : x′ ∈ O}) =

∫

O

√
1 + |∇A(x′)|2 dx′, for every Borel set O ⊆ Rm−1. (2.2.34)

Remark. At this point we can invoke (2.2.5), to get

∫

∂∗Ω

〈ν, v〉 dHm−1 =

∫

Rm−1

〈ν̃(x′), v(x′, A(x′))〉 dσ(x′), (2.2.35)

for each v ∈ C0
0 (Rm, Rm).

It is also of interest to see how the decomposition (2.2.7), asserting countable rectifiability, arises
in the context of (2.2.18)–(2.2.19). For simplicity, assume A has compact support. Then set

f := |A| + |∇A|, g := Mf, (2.2.36)

the latter being the Hardy-Littlewood maximal function in Rm−1, and for λ > 0 take

Rλ := {x ∈ Rm−1 : g(x) ≤ λ}. (2.2.37)
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Then Lm−1(Rm−1 \ Rλ) ≤ Cλ−1‖f‖L1 , and an argument involving the Poincaré inequality yields

x, y ∈ Rλ =⇒ |A(x)| ≤ λ and |A(x) − A(y)| ≤ Cλ|x − y|. (2.2.38)

Using this one writes ∂Ω = ∪kLk ∪ Ñ , where each Lk is a Lipschitz graph and σ(Ñ) = 0. Passing
to (2.2.7) is then done by decomposing each Lipschitz graph into a countable union of C1 graphs
plus a negligible remainder, via Rademacher’s theorem and Whitney’s theorem. See §6.6 of [36] for
details.

Regarding the issue of ∂Ω versus ∂∗Ω, it is clear that ∂Ω = ∂∗Ω whenever A is locally Lipschitz.
For more general A satisfying (2.2.19), we have the following, which is a consequence of the main
results of [114] and [40].

Proposition 2.2.2 If Ω is the region in Rm over the graph of a function A satisfying (2.2.19),
then

Hm−1(∂Ω \ ∂∗Ω) = 0. (2.2.39)

Proof. Given a “rectangle” Q = I1 × · · · × Im−1 ⊂ Rm−1, a product of compact intervals, set
KQ = Q × R. Given the formula (2.2.31) for σ, it follows from Theorem 3.17 of [114] that

σ(∂Ω ∩ KQ) = Im−1(∂Ω ∩ KQ), (2.2.40)

where Im−1 denotes (m − 1)-dimensional integral-geometric measure. Furthermore, it is shown in
[40] that

Hm−1(∂Ω ∩ KQ) = Im−1(∂Ω ∩ KQ). (2.2.41)

On the other hand, we have from (2.2.5) that σ(∂Ω∩KQ) = Hm−1(∂∗Ω∩KQ), so (2.2.39) follows.
¤

It is useful to note explicitly the following consequence of the preceding arguments.

Proposition 2.2.3 Assume that Ω and A are as in (2.2.18)–(2.2.19), that O ⊂ Rm−1 is a Borel
set and that M := {(x′, A(x′)) : x′ ∈ O}. Then

Hm−1(M) =

∫

O

√
1 + |∇A(x′)|2 dx′. (2.2.42)

Proof. It follows from (2.2.34) that the right side of (2.2.42) is equal to σ(M). That σ(M) =
Hm−1(M) follows from the proof of Proposition 2.2.2, namely from (2.2.40)–(2.2.41). ¤

So far we have discussed the Green formula for v ∈ C∞
0 (Rm, Rm). A simple limiting argument

extends (2.2.4), and hence (2.2.8) and (2.2.16), to v ∈ C1
0 (Rm, Rm); [41] emphasizes that (2.2.8)

is true for compactly supported Lipschitz v. The smooth case will be adequate for use in proving
jump relations in Section 3 but for other purposes, such as establishing invertibility of certain layer
potentials in Sections 5 and 6, further extensions are desirable. We present some preliminary results
here, prior to pursuing the matter much further in §2.3. Here is one easy extension.

Proposition 2.2.4 If Ω ⊂ Rm has locally finite perimeter, then formula (2.2.4) holds for v in

D := {v ∈ C0
0 (Rm, Rm) : div v ∈ L1(Rm)}. (2.2.43)
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Proof. Given v ∈ D, take ϕ ∈ C∞
0 (Rm) such that

∫
ϕ dx = 1, set ϕk(x) := kmϕ(kx), and define

vk := ϕk ∗ v ∈ C∞
0 (Rm). Then (2.2.4) applies to vk, i.e.,

∫

Ω

div vk dx =

∫

∂Ω

〈ν, vk〉 dσ. (2.2.44)

Meanwhile, div vk = ϕk ∗ (div v) implies div vk → div v in L1(Rm), and 〈ν, vk〉 → 〈ν, v〉 uniformly
on ∂Ω, so as k → ∞, the left side of (2.2.44) converges to the left side of (2.2.4), while the right
side of (2.2.44) converges to the right side of (2.2.4). ¤

In many cases one deals with functions defined only on Ω, and one would like to avoid assuming
they have extensions to Rm with nice properties. To obtain a result for such functions, we will
introduce the following concept. Let open sets Ωk satisfy Ωk ⊂ Ω, Ωk ⊂ Ωk+1, and Ωk ր Ω. We
say {Ωk : k ≥ 1} is a tame interior approximation to Ω if in addition there exists C(R) < ∞ such
that, for R ∈ (0,∞),

‖∇1Ωk
‖TV(BR) ≤ C(R), ∀ k ≥ 1. (2.2.45)

Here TV stands for the total variation norm of a vector measure.
To give an example, take A : Rm−1 → R, satisfying (2.2.19), and let Ω be given by (2.2.18). We

have seen that Ω has locally finite perimeter. The arguments proving Proposition 2.2.1 also imply
that

Ωk = {(x′, xm) ∈ Rm : xm > A(x′) + k−1} (2.2.46)

is a tame interior approximation to Ω. The following is a partial extension of Proposition 2.2.4.

Proposition 2.2.5 Assume Ω ⊂ Rm has locally finite perimeter and a tame interior approxima-
tion. Then (2.2.4) holds for v in

D̃ := {v ∈ C0
0 (Ω, Rm) : div v ∈ L1(Ω)}. (2.2.47)

Proof. Let {Ωk}k denote a tame interior approximation. Pick ϕk ∈ C∞
0 (Ω) to be ≡ 1 on a

neighborhood of Ωk ∩ supp v, set vk = ϕkv, and apply Proposition 2.2.1 with Ω replaced by Ωk and
v by vk, noting that div vk = ϕkdiv v + 〈∇ϕk, v〉. We have

∫

Ωk

div v dx = −〈v,∇1Ωk
〉. (2.2.48)

As k → ∞, the left side of (2.2.48) converges to the left side of (2.2.4). Meanwhile, we can take
w ∈ C0

0 (Rm, Rm), equal to v on Ω, and the right side of (2.2.48) is equal to −〈w,∇1Ωk
〉. Now

1Ωk
→ 1Ω in L1

loc(R
m), so ∇1Ωk

→ ∇1Ω in D′(Rm), and hence

〈w,∇1Ωk
〉 −→ 〈w,∇1Ω〉 (2.2.49)
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for each w ∈ C∞
0 (Rm, Rm). The bounds (2.2.45) then imply that (2.2.49) holds for each w ∈

C0
0 (Rm, Rm). Hence the right side of (2.2.48) converges to

−〈w,∇1Ω〉 =

∫

∂Ω

〈ν, v〉 dσ, (2.2.50)

which is the right side of (2.2.4). ¤

Remark. Proposition 2.2.5 can be compared with the following result, given in [39], p. 314. Let
Ω ⊂ Rm be a bounded open set such that Hm−1(∂Ω) < ∞. Fix j ∈ {1, . . . , m} and take f such
that

f ∈ C(Ω), ∂jf ∈ L1(Ω). (2.2.51)

Then

∫

Ω

∂jf dx =

∫

∂0Ω

〈ej , ν〉 f dHm−1, (2.2.52)

where ∂0Ω has been introduced in (2.2.12), and ej is the jth standard basis vector of Rm. In light
of (2.2.15) one could replace ∂0Ω by ∂∗Ω or by ∂∗Ω in (2.2.52). This leads to the identity (2.2.16)
for a vector field v ∈ C(Ω) provided each term ∂jvj in div v belongs to L1(Ω). However, the vector
fields arising in the applications of Green’s formula needed in §5–§6 need not have this additional
structure, so (2.2.52) is not applicable.

We also mention results given in §2 of [16], dealing with a vector field v ∈ Lp(O) such that div v
is a measure on O, and Ω ⊂ O. These results also extend Proposition 2.2.4, but they do not imply
Proposition 2.2.5, nor the results given in the next subsection.

Further results related to the last two propositions can be found in [95].

We next recall a Green formula for

∫

Ω∩Br

div v dx, (2.2.53)

where Ω has locally finite perimeter and Br := {x ∈ Rm : |x| < r}. This classical result will be of
direct use in our proof of jump relations for layer potentials.

Assume v ∈ C0,1
0 (Rm, Rm). Given ε ∈ (0, r), set

ψε(x) :=





1 for |x| ≤ r − ε,

1 − 1
ε (|x| − r + ε) for r − ε ≤ |x| ≤ r,

0 for |x| ≥ r.

(2.2.54)

Then, with ∇1Ω = −ν σ, we have
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∫

Ω∩Br

div v dx = lim
εց0

∫

Ω

ψεdiv v dx

= lim
εց0

∫

Ω

[div ψεv − 〈v,∇ψε〉] dx

= lim
εց0

(∫
〈ν, ψεv〉 dσ −

∫

Ω

〈v,∇ψε〉 dx
)

=

∫

Br

〈ν, v〉 dσ + lim
εց0

1

ε

∫

Ω∩Sε

〈n, v〉 dx, (2.2.55)

where n is the outward unit normal to Br and

Sε := Br \ Br−ε. (2.2.56)

Consequently,

∫

Ω∩Br

div v dx =

∫

Br

〈ν, v〉 dσ + D−
r Φ(r), (2.2.57)

where D−
r indicates differentiation from the left with respect to r, and

Φ(r) :=

∫

Ω∩Br

〈n, v〉 dx. (2.2.58)

Note that, by the change of variable formula and Fubini’s theorem,

Φ(r) =

∫ r

0

∫

Ω∩∂Bs

〈n, v〉 dHm−1 ds, (2.2.59)

so

D−
r Φ(r) =

∫

Ω∩∂Br

〈n, v〉 dHm−1, for L1-a.e. r > 0. (2.2.60)

It is of interest to note that D−
r Φ(r) exists for all r ∈ (0,∞) (under our standing hypothesis on

Ω), though the identity (2.2.60) is valid perhaps not for each r, but just for a.e. r.

Remark. Having (2.2.57), one can bring in (2.2.5) and write

∫

Ω∩Br

div v dx =

∫

Br∩∂∗Ω

〈ν, v〉 dHm−1 + D−
r Φ(r). (2.2.61)
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It is useful to note that (2.2.5) is not needed to prove (2.2.57), since (2.2.57) plays a role in proofs
of (2.2.5). (Cf. [36].) It is also useful to put together (2.2.60)–(2.2.61), to write

∫

Ω∩Br

div v dx =

∫

Br∩∂∗Ω

〈ν, v〉 dσ +

∫

Ω∩∂Br

〈n, v〉 dHm−1, for L1-a.e. r > 0. (2.2.62)

While the result (2.2.62) is well known (cf. Lemma 1 on p. 195 of [36]), we think it useful to include
a proof, not only for the reader’s convenience, but also to emphasize two points: first that one does
not need the relatively advanced co-area formula in the proof, and second that the formulation
(2.2.57) of the result actually holds for all r, not merely almost all r.

2.3 Green’s formula on Ahlfors regular domains

Assume that Ω ⊂ Rn+1 is a bounded open set whose boundary is Ahlfors regular and satisfies

Hn(∂Ω \ ∂∗Ω) = 0. (2.3.1)

Note that, by (2.2.17), these conditions entail that Ω is of finite perimeter. In keeping with earlier
conventions, we denote by ν the measure theoretic outward unit normal to ∂Ω and set σ := Hn⌊∂Ω.
We wish to study the validity of a version of Green’s formula, i.e.,

∫

Ω

div v dX =

∫

∂Ω

〈ν, v
∣∣
∂Ω

〉 dσ, (2.3.2)

for vector fields v ∈ C0(Ω) for which

div v ∈ L1(Ω), N v ∈ Lp(∂Ω, dσ) for some p ∈ [1,∞]

and the pointwise nontangential trace v
∣∣
∂Ω

exists σ-a.e.
(2.3.3)

In the case when Ω is Lipschitz, a convenient approach is to approximate it by a nested family
of nice domains Ωj ր Ω, write Green’s formula in each Ωj and then obtain (2.3.2) by passing to
the limit in j. See [116]. For Reifenberg flat domains, an approximation result of this nature has
been proved by C. Kenig and T. Toro in Appendix A.1 of [66]. This is not entirely satisfactory since
one needs to impose a “flatness” condition on Ω, which is not natural in this context. Our goal is
to present a new approach to proving (2.3.2), which does not require this condition.

Our main result in this regard is the following.

Theorem 2.3.1 Let Ω ⊂ Rn+1 be a bounded open set whose boundary is Ahlfors regular and
satisfies (2.3.1) (hence, in particular, is of finite perimeter). As usual, set σ := Hn⌊∂Ω and denote
by ν the measure theoretic outward unit normal to ∂Ω. Then Green’s formula (2.3.2) holds for each
vector field v ∈ C0(Ω) that satisfies the conditions in (2.3.3), with p ∈ (1,∞).

One clarification is in order here. Generally speaking, given a domain Ω ⊂ Rn+1, α > 0 and a
function u : Ω → R, we set

u
∣∣∣
∂Ω

(Z) := lim
X→Z

X∈Γα(Z)

u(X), Z ∈ ∂Ω, (2.3.4)
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whenever the limit exists. For this definition to be pointwise σ-a.e. meaningful, it is necessary that

Z ∈ Γα(Z) for σ-a.e. Z ∈ ∂Ω. (2.3.5)

We shall call a domain Ω satisfying (2.3.5) above weakly accessible and our first order of business
is to show that any domain as in the statement of Theorem 2.3.1 is weakly accessible.

To get started, fix α ∈ (0,∞) and, for each δ > 0, introduce

Oδ := {X ∈ Ω : dist (X, ∂Ω) ≤ δ}, ∀ δ > 0. (2.3.6)

Also, for Z ∈ ∂Ω, set

Γδ
α(Z) := Γα(Z) ∩ Oδ

= {X ∈ Ω : dist (X, ∂Ω) ≤ δ and |X − Z| ≤ (1 + α) dist (X, ∂Ω)}, (2.3.7)

and define

Iδ := {Z ∈ ∂Ω : Γδ
α(Z) = ∅}, I :=

⋃

δ>0

Iδ. (2.3.8)

Clearly, Iδ is relatively closed in ∂Ω, so that I is a Borel set. Also, Iδ ր I as δ ց 0. Then Ω is
weakly accessible provided σ(I) = 0 or, equivalently, provided σ(Iδ) = 0 for each δ > 0.

Proposition 2.3.2 Let Ω ⊂ Rn+1 be an open set with an Ahlfors regular boundary ∂Ω. Assume
that Hn(∂Ω \ ∂∗Ω) = 0 (so that, in particular, Ω is of locally finite perimeter; cf. (2.2.17)). Then
Ω is a weakly accessible domain.

As a preliminary result, we shall establish an estimate which will also be useful in several other
instances later on. To be definite, for each X ∈ ∂Ω set

Γ(X) := {Y ∈ Ω : |X − Y | ≤ 10 dist (Y, ∂Ω)}. (2.3.9)

Proposition 2.3.3 Let Ω ⊂ Rn+1 be an open set with Ahlfors regular boundary. Then there exists
C > 0 depending only on n and the Ahlfors regularity constant on Ω such that

1

δ

∫

Oδ

|v| dX ≤ C‖N v‖L1(∂Ω,dσ), 0 < δ ≤ diamΩ, (2.3.10)

for any measurable v : Ω → R.

Proof. We first note that it suffices to prove that

1

δ

∫

eOδ

|v| dX ≤ C‖N v‖L1(∂Ω,dσ), where Õδ := Oδ \ Oδ/2, (2.3.11)

since (2.3.10) then follows by applying (2.3.11) with δ replaced by 2−jδ and summing over j ∈ Z+.
We now bring in the following lemma.
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Lemma 2.3.4 There exists K = Kn ∈ N with the following property. For each δ ∈ (0, (diamΩ)/10],
there exists a covering of ∂Ω by a collection

C = C1 ∪ · · · ∪ CK (2.3.12)

of balls of radius δ, centered in ∂Ω, such that for each k ∈ {1, . . . , K}, if B and B′ are distinct
balls in Ck, their centers are separated by a distance ≥ 10δ.

We postpone the proof of Lemma 2.3.4, and show how it is used to finish the proof of Proposi-
tion 2.3.3.

To begin, take a collection C = C1∪· · ·∪CK of balls of radius δ covering ∂Ω, with the properties
stated above. Then C# = C#

1 ∪ · · · ∪ C#
K , consisting of balls concentric with those of C with radius

2δ, covers Oδ. Furthermore, there exists A = An ∈ (0,∞) such that one can cover each ball

B ∈ C#
k by balls B1, . . . , BA of radius δ/8, centered at points in B. Now form collections of balls

C#
kℓ, 1 ≤ k ≤ K, 1 ≤ ℓ ≤ A, with each of the balls B1, . . . , BA covering B ∈ C#

k , described above,

put into a different one of the collections C#
kℓ. Throw away some balls from C#

kℓ, thinning them out
to a minimal collection

C̃ =
⋃

k≤K,ℓ≤A

C̃kℓ (2.3.13)

covering Õδ. For each (k, ℓ), any two distinct balls in C̃kℓ have centers separated by a distance ≥ 7δ.
Each ball B ∈ C̃kℓ has radius δ/8 and each point Q ∈ B has distance from ∂Ω lying between δ/4
and 5δ/4. For each such B, we will compare

∫
B |v| dX with the integral of N v over a certain set

Ã(B) ⊂ ∂Ω, which we proceed to define.
Given Y ∈ Ω, set d(Y ) := dist (Y, ∂Ω) and consider

A(Y ) := {X ∈ ∂Ω : Y ∈ Γ(X)}. (2.3.14)

There exists Q ∈ ∂Ω such that |Y − Q| = d(Y ), and certainly Q ∈ A(Y ). Also, if (2.3.9) holds,
then

A(Y ) ⊃ B(Q, 9d(Y )) ∩ ∂Ω. (2.3.15)

Now, for a ball B ∈ C̃kℓ, set

A(B) := {X ∈ ∂Ω : B ⊂ Γ(X)}. (2.3.16)

If B is centered at Y and Q ∈ ∂Ω is closest to Y , then for each Y ′ ∈ B, d(Y ′) ≥ δ/4 and
|Y ′ − Q| ≤ d(Y ) + δ/8. Now d(Y ) ≤ (9/8)δ, so |Y ′ − Q| ≤ (5/4)δ ≤ 5 d(Y ′) and, hence,

Ã(B) := B(Q, d(Y )) ∩ ∂Ω ⊂ A(B). (2.3.17)

The use of Ã(B) in establishing (2.3.11) arises from the estimates
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sup
B

|v| ≤ inf
eA(B)

N v, and Hn(Ã(B)) ≥ C1δ
n, (2.3.18)

the latter estimate due to the hypothesis that ∂Ω is Ahlfors regular. Hence

1

δ

∫

B

|v| dY ≤ Cnδn inf
eA(B)

N v ≤ C

∫

eA(B)

N v dσ. (2.3.19)

Furthermore, the separation properties established for balls in each collection C̃kℓ yield

B 6= B′ ∈ C̃kℓ =⇒ Ã(B) ∩ Ã(B′) = ∅, (2.3.20)

so for each k ≤ K, ℓ ≤ A,

1

δ

∑

B∈eCkℓ

∫

B

|v| dX ≤ C

∫

∪eA(B), B∈eCkℓ

N v dσ ≤ C‖N v‖L1(∂Ω,dσ). (2.3.21)

Consequently,

1

δ

∫

eOδ

|v| dX ≤ 1

δ

A∑

ℓ=1

K∑

k=1

∑

B∈eCkℓ

∫

B

|v| dX ≤ CAK ‖N v‖L1(∂Ω,dσ), (2.3.22)

and Proposition 2.3.3 is established, modulo the proof of Lemma 2.3.4, to which we now turn. ¤

Proof of Lemma 2.3.4. This can be proved in several ways. One approach starts by applying
Besicovitch’s Covering Theorem (cf. Theorem 2 on p. 30 in [36]) to the family of balls F :=
{B(Q, δ) : Q ∈ ∂Ω}. This yields some N = Nn ∈ N and G1, ...,GN ⊂ F such that each Gj ,
j = 1, ..., N , is a countable collection of disjoint balls in F and

∂Ω ⊂
N⋃

j=1

⋃

B∈Gj

B. (2.3.23)

To finish the proof, we need to further subdivide each Gj into finitely many subclasses, say

Gj =
N⋃

k=1

⋃

B∈Gjk

B, (2.3.24)

with the property that if B and B′ are distinct balls in Gjk then their centers are separated by a
distance ≥ 10δ. We then relabel {Gjk : 1 ≤ j, k ≤ N} as {Cj : 1 ≤ j ≤ K}, where K := N2.
To construct such a family {Gjk}1≤k≤N for each j, we once again apply Besicovitch’s Covering
Theorem to the family {B(Q, 5δ) : B(Q, δ) ∈ Gj}. This readily yields the desired conclusion. ¤

Before proceeding further, let us record a byproduct of (2.3.10) which has intrinsic interest.
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Proposition 2.3.5 Assume that Ω ⊂ Rn+1 is an open set with an Ahlfors regular boundary, and
fix α > 0. Then there exists C > 0 depending only on n, α, and the Ahlfors regularity constant on
Ω such that

1

δ

∫

Oδ

|v| dX ≤ C‖N δv‖L1(∂Ω,dσ), 0 < δ ≤ diam (Ω), (2.3.25)

for any measurable function v : Ω → R, where

N δv(X) := sup {|v(Y )| : Y ∈ Γα(X), |X − Y | ≤ 2δ}, (2.3.26)

with the convention that N δv(X) := 0 whenever the supremum in the right-hand side of (2.3.26) is
taken over the empty set. Consequently, there exists C > 0 with the property that for any measurable
function v : Ω → R and any measurable set E ⊆ Ω,

∫

E

|v| dX ≤ Cδ

∫

U(E)

N δv dσ, δ := diamE + dist (E, ∂Ω), (2.3.27)

where U(E) := {X ∈ ∂Ω : Γα(X) ∩ E 6= ∅}.

Proof. To begin with, (2.3.25) follows from directly from (2.3.10) and a simple cutoff argument.
As for (2.3.27), we use (2.3.25) to write

∫

E

|v| dX =

∫

Oδ

|1E v| dX ≤ Cδ

∫

∂Ω

N δ(1E v) dσ ≤ Cδ

∫

U(E)

N δv dσ, (2.3.28)

as desired. ¤

Having established (2.3.25), we are now in a position to carry out the

Proof of Proposition 2.3.2. To see this, take δ0 > 0 and let K ⊂ Iδ0 be an arbitrary compact set.
We want to show that σ(K) = 0. Fix ε > 0 and define

Kε := {Z ∈ Rn+1 : dist (Z, K) ≤ ε}, Kε := Kε ∩ ∂Ω = {Z ∈ ∂Ω : dist (Z, K) ≤ ε}, (2.3.29)

so that

Kε ց K as ε ց 0. (2.3.30)

Let us also take fε ∈ C0(∂Ω) such that

|fε| ≤ 1, supp fε ⊂ Kε/2, (2.3.31)

and consider an extension uε of fε satisfying
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uε ∈ C0(Ω̄), supp uε ⊂ Kε ∩ Ω̄, |uε| ≤ 1, uε

∣∣
∂Ω

= fε. (2.3.32)

In this case, (2.3.25) gives

1

δ

∫

Oδ

|uε| dX ≤ C‖N δuε‖L1(∂Ω,dσ), (2.3.33)

with C independent of ε and δ. Note that, for δ < δ0/4,

Z ∈ K =⇒ N δuε(Z) = 0 (2.3.34)

since Γδ0
α (Z) (defined as in (2.3.7)) is the empty set in this case. Also, elementary geometrical

considerations (and earlier conventions) entail

Z ∈ ∂Ω \ Kε(2+α) =⇒ Γα(Z) ∩ Kε = ∅ =⇒ Nuε(Z) = 0. (2.3.35)

Hence, (2.3.33)-(2.3.35) imply

lim sup
δ→0

1

δ

∫

Oδ

|uε| dX ≤ Cσ(Kε(2+α) \ K). (2.3.36)

To proceed, for each δ > 0 set Ωδ := {X ∈ Ω : dist (X, ∂Ω) ≥ δ}, let ϕδ(X) := dist (X, ∂Ωδ/2) and
introduce

χδ(X) :=





1 if X ∈ Ωδ,

2δ−1 ϕδ(X) if X ∈ Õδ := Oδ \ Oδ/2,

0 if X ∈ Oδ/2 ∪ (Rn+1 \ Ω).

(2.3.37)

We have χδ → χΩ in L1
loc(R

n+1) as δ → 0, hence

∇χδ −→ ∇χΩ = ν σ in D′(Rn+1). (2.3.38)

On the other hand, χδ ∈ Lip (Rn+1) with ‖∇χδ‖L∞(Rn+1) ≤ 2/δ and supp (∇χδ) ⊂ Õδ. Also,
(2.3.25) implies the following bound on the total variation of the measure ∇χδ in Kε:

‖∇χδ‖TV (Kε) = sup
‖v‖L∞(Kε)≤1

∣∣∣∣
∫

v∇χδ dX

∣∣∣∣ ≤
2

δ

∫

Oδ

|v| dX ≤ C‖N δv‖L1(∂Ω,dσ) ≤ C, (2.3.39)

uniformly in δ. Thus, we see that for each coordinate vector ej ,

ej · ∇χδ −→ (ej · ν)σ, weak∗ as Radon measures in Kε, (2.3.40)

22



as δ → 0. Consequently, for each uε as in (2.3.32),

lim
δ→0

〈uε, ej · ∇χδ〉 = 〈uε, (ej · ν)σ〉 =

∫

∂Ω

fε(ej · ν) dσ. (2.3.41)

Since

|〈uε, ej · ∇χδ〉| ≤
2

δ

∫

Oδ

|uε| dX, (2.3.42)

(2.3.36) implies that

lim sup
δ→0

|〈uε, ej · ∇χδ〉| ≤ Cσ(Kε(2+α) \ K). (2.3.43)

Comparison with (2.3.41) gives

∣∣∣
∫

∂Ω

fε (ej · ν) dσ
∣∣∣ ≤ Cσ(Kε(2+α) \ K). (2.3.44)

Now the supremum of the left side of (2.3.44) over the set of all fε ∈ C0(∂Ω) satisfying (2.3.31) is
equal to the total variation of (ej · ν)σ restricted to Kε/2, which in turn is ≥ ‖(ej · ν)σ‖TV (K), so
we have

‖(ej · ν)σ‖TV (K) ≤ Cσ(Kε(2+α) \ K), 1 ≤ j ≤ n + 1. (2.3.45)

Taking ε ց 0 gives

σ(K) = 0, (2.3.46)

on account of (2.3.30), since σ is a Radon measure (cf. (2.1.2) and Theorem 4 on p. 8 in [36]),
proving Proposition 2.3.2. ¤

In order to properly set up the proof of Theorem 2.3.1, we continue our discussion of a number
of preliminary results. Concretely, let Ω ⊂ Rn+1 be a bounded open set with finite perimeter for
which (2.3.1) holds, and let ν, σ be as stated in the opening paragraph of § 2.3. For p ∈ [1,∞), set

Lp :=
{

v ∈ C0(Ω) : N v ∈ Lp(∂Ω, dσ), and ∃ nontangential limit v
∣∣
∂Ω

σ-a.e.
}

. (2.3.47)

Our strategy is to first establish a Green formula for vector fields v ∈ Lp with divergence in L1(Ω),
provided we have the following:

if v ∈ Lp, ∃w ∈ L1 with w
∣∣
∂Ω

= v
∣∣
∂Ω

and ∃wk ∈ Lip (Ω̄)

such that ‖N (w − wk)‖L1(∂Ω,dσ) −→ 0 as k → ∞.
(2.3.48)
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Then we will show that (2.3.48) holds whenever ∂Ω is Ahlfors regular, and p ∈ (1,∞).
Before we state our first result, a comment is in order. In condition (2.3.48) it would be equiva-

lent to demand merely that wk ∈ C0(Ω̄), since elements of C0(Ω̄) are easily uniformly approximated
by Lipschitz functions (e.g., via the Stone-Weierstrass theorem). Here is our first result.

Proposition 2.3.6 Pick p ∈ [1,∞) and assume Ω is a bounded open set with Ahlfors regular
boundary, satisfying (2.3.1) as well as (2.3.48). Then

∫

Ω

div v dX =

∫

∂Ω

〈ν, v
∣∣
∂Ω

〉 dσ, (2.3.49)

whenever the vector field v satisfies

v ∈ Lp and div v ∈ L1(Ω). (2.3.50)

Proof. For each δ > 0 let χδ be as in (2.3.37) so that, clearly, χδ ∈ Lip (Ω̄). Also, if v satisfies
(2.3.50), then χδv ∈ C0

0 (Ω) and div (χδv) ∈ L1(Ω), so it is elementary that

∫

Ω

div (χδv) dX = 0. (2.3.51)

Hence,

∫

Ω

χδ div v dX = −
∫

Ω

〈∇χδ, v〉 dX =
2

δ

∫

eOδ

〈νδ, v〉 dX, (2.3.52)

where

νδ := −∇ϕδ and Õδ := Oδ \ Oδ/2. (2.3.53)

The first integral in (2.3.52) converges to the left side of (2.3.49) as δ → 0, whenever div v ∈ L1(Ω).
Hence (2.3.49) is true provided

2

δ

∫

eOδ

〈νδ, v〉 dX −→
∫

∂Ω

〈ν, v
∣∣
∂Ω

〉 dσ as δ → 0. (2.3.54)

Of course, by (2.3.52), the left side of (2.3.54) does converge as δ → 0, namely to the left side of
(2.3.49). Hence (2.3.54) is true whenever (2.3.49) is true. In particular, since Ω has finite perimeter,
(2.3.54) is true whenever v ∈ Lip (Ω).

More generally, if v ∈ Lp, take w, wk as in (2.3.48). Under our hypotheses, we have (2.3.10),
hence

∣∣∣
2

δ

∫

eOδ

(
〈νδ, wk〉 − 〈νδ, w〉

)
dX

∣∣∣ ≤ C‖N (w − wk)‖L1(∂Ω,dσ). (2.3.55)
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The weak accessibility result (Proposition 2.3.2) implies

∫

∂Ω

|v| dσ ≤
∫

∂Ω

|N v| dσ, ∀ v ∈ L1, (2.3.56)

so we also have

∣∣∣
∫

∂Ω

(
〈ν, wk〉 − 〈ν, w

∣∣
∂Ω

〉
)

dσ
∣∣∣ ≤ ‖N (wk − w)‖L1(∂Ω,dσ). (2.3.57)

Thus, since (2.3.54) holds for wk, we have

2

δ

∫

eOδ

〈νδ, w〉 dX −→
∫

∂Ω

〈ν, w
∣∣
∂Ω

〉 dσ =

∫

∂Ω

〈ν, v
∣∣
∂Ω

〉 dσ as δ → 0. (2.3.58)

Thus, to obtain (2.3.54) for each v ∈ Lp, it suffices to show that

2

δ

∫

eOδ

(
〈νδ, v〉 − 〈νδ, w〉

)
dX −→ 0 as δ → 0. (2.3.59)

Hence, it suffices to show that

u ∈ L1, u
∣∣
∂Ω

= 0 =⇒ 2

δ

∫

eOδ

|u| dX −→ 0 as δ → 0. (2.3.60)

Recalling that (2.3.10) implies (2.3.25), we see that it suffices to show that

u ∈ L1, u
∣∣
∂Ω

= 0 =⇒ ‖N δu‖L1(∂Ω,dσ) −→ 0 as δ → 0. (2.3.61)

Indeed, the hypotheses of (2.3.61) yield (N δu)(X) → 0 for σ-a.e. X ∈ ∂Ω and since N δu ≤ Nu
for each δ > 0, (2.3.61) follows from the Dominated Convergence Theorem. Proposition 2.3.6 is
therefore proven. ¤

We next show that Ahlfors regularity implies (2.3.48), for p ∈ (1,∞).

Proposition 2.3.7 If Ω ⊂ Rn+1 is a bounded open set satisfying (2.3.1) and whose boundary is
Ahlfors regular, then (2.3.48) holds for each p ∈ (1,∞).

Proof. Fix p ∈ (1,∞). For f ∈ Lp(∂Ω, dσ) and X ∈ Ω, set

Ψf(X) :=
1

V (X)

∫

∂Ω

ψ(X, Y )f(Y ) dσ(Y ), (2.3.62)

where
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ψ(X, Y ) :=
(
1 − |X − Y |

2 dist (X, ∂Ω)

)

+
and V (X) :=

∫

∂Ω

ψ(X, Y ) dσ(Y ). (2.3.63)

Then Ψ1 = 1. Also, it is readily checked that

Ψ : C(∂Ω) −→ C(Ω̄) and Ψf
∣∣∣
∂Ω

= f, ∀ f ∈ C0(∂Ω). (2.3.64)

Furthermore, given that ∂Ω is Ahlfors regular,

N (Ψf) ≤ CMf, ∀ f ∈ L1(∂Ω, dσ), (2.3.65)

where Mf is the Hardy-Littlewood maximal function of f . Hence,

‖N (Ψf)‖Lp(∂Ω,dσ) ≤ Cp‖f‖Lp(∂Ω,dσ), 1 < p < ∞. (2.3.66)

We now claim that for each p ∈ (1,∞),

Ψ : Lp(∂Ω, dσ) −→ Lp, (Ψf)
∣∣∣
∂Ω

= f σ-a.e. (2.3.67)

In light of (2.3.66), only the nontangential convergence of Ψf to f remains to be justified (that
this issue is meaningful, to begin with, is ensured by Proposition 2.3.2). However, this follows from
the second assertion in (2.3.64), the denseness of C(∂Ω) in Lp(∂Ω, σ), and the maximal function
estimate (2.3.66).

Now, to establish (2.3.48), we argue as follows. Take v ∈ Lp and set w := Ψ(v
∣∣
∂Ω

). By (2.3.67),

w ∈ Lp and w
∣∣
∂Ω

= v
∣∣
∂Ω

. Then take fk ∈ C0(∂Ω) such that fk → v
∣∣
∂Ω

in Lp(∂Ω, dσ) and set
w̃k := Ψfk. By (2.3.64), each w̃k ∈ C0(Ω̄), and by (2.3.66),

‖N (w̃k − w)‖Lp(∂Ω,dσ) ≤ Cp‖fk − v
∣∣
∂Ω

‖Lp(∂Ω,dσ) → 0, (2.3.68)

which is stronger than the L1 estimate demanded in (2.3.48). As mentioned in the paragraph after
(2.3.48), having such continuous functions suffices, since they are easily approximated by Lipschitz
functions. This finishes the proof of Proposition 2.3.7. ¤

At this stage, it is straightforward to present the final arguments in the

Proof of Theorem 2.3.1. This is a direct consequence of Proposition 2.3.6, Proposition 2.3.7,
Proposition 2.3.3 and Proposition 2.3.2. ¤

2.4 Analysis on spaces of homogeneous type

Let us first recall the definition of a space of homogeneous type, as introduced by R. Coifman
and G. Weiss in [23]. Assume that Σ is a set equipped with a quasi-distance, i.e., a function
d : Σ × Σ → [0,∞) satisfying
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d(X, Y ) = 0 ⇔ X = Y, d(X, Y ) = d(Y, X),

d(X, Y ) ≤ κ(d(X, Z) + d(Z, Y )), ∀X, Y, Z ∈ Σ,
(2.4.1)

where κ ≥ 1 is a fixed constant. In turn, a choice of a quasi-distance naturally induced a topology
on Σ for which the balls Bd(X, r) := {Y ∈ Σ : d(X, Y ) < r} (while not necessarily open when
κ > 1) form a base.

A space of homogeneous type is a structure (Σ, d, µ), where d is a quasi-distance on the set Σ
and µ is a measure satisfying the doubling condition

0 < µ(Bd(X, 2r)) ≤ Coµ(Bd(X, r)) < +∞, ∀X ∈ Σ, ∀ r > 0, (2.4.2)

for some Co ≥ 1. The number D := log2 Co ≥ 0 is called the doubling order of µ. Iterating (2.4.2)
then gives

µ(B1)

µ(B2)
≤ C

(radius of B1

radius of B2

)D
, for all balls B2 ⊆ B1. (2.4.3)

As a consequence, whenever f is a nonnegative, measurable function on Σ,

∫
−

B2

f dµ ≤ C
(radius of B1

radius of B2

)D
∫
−

B1

f dµ, for all balls B2 ⊆ B1. (2.4.4)

Let us also point out that

Σ bounded ⇐⇒ µ(Σ) < +∞, (2.4.5)

and denote by Lp
loc(Σ, dµ), 0 < p < ∞, the class of measurable functions f on Σ, having the

property that
∫
E |f |p dµ < +∞ whenever E ⊆ Σ is a bounded, measurable set.

R.A. Macias and C. Segovia have proved in [74] that, given a space of homogeneous type (Σ, d, µ),
there exists a quasi-metric d′ which is equivalent with d, in the sense that C−1d′(X, Y ) ≤ d(X, Y ) ≤
Cd′(X, Y ) for all X, Y ∈ Σ, and which satisfies the additional property

|d′(X, Y ) − d′(Z, Y )| ≤ C d′(X, Z)θ
(
d′(X, Y ) + d′(Z, Y )

)1−θ
, ∀X, Y, Z ∈ Σ, (2.4.6)

for some finite C > 0 and θ ∈ (0, 1). Using (2.4.6) it can then be verified that there exists ε > 0
such that d′(X, Y )ε is a metric on Σ. Furthermore, the balls Bd′(X, R) associated with d′ are open.
It has also been shown in [74] that

δ(X, Y ) := inf {µ(B) : B d-ball containing X and Y }, X, Y ∈ Σ, (2.4.7)

is a quasi-metric yielding the same topology on Σ as d. In addition, there exist C1, C2 > 0 such
that

27



C1R ≤ µ(Bδ(X, R)) ≤ C2R, ∀X ∈ Σ, µ({X}) < R < µ(Σ). (2.4.8)

Let us also point out here that

δ(X, Y ) ≈ µ(Bd(X, d(X, Y ))), uniformly for X, Y ∈ Σ, R > 0. (2.4.9)

The index θ is indicative of the amount of smoothness, measured on Hölder scales, functions
defined on Σ can display. For example, the Hölder space Cα(Σ, d) defined as the collection of all
real-valued functions f on Σ for which ‖f‖Cα(Σ,d) < +∞, where

‖f‖Cα(Σ,d) :=





supX 6=Y ∈Σ
|f(X)−f(Y )|

d(X,Y )α , if µ(Σ) = +∞,
∣∣∣
∫
Σ f dµ

∣∣∣ + supX 6=Y ∈Σ
|f(X)−f(Y )|

d(X,Y )α , if µ(Σ) < +∞,
(2.4.10)

is non-trivial whenever α ∈ (0, θ). Indeed, if ψ is a nice bump function on the real line and Xo ∈ Σ
is fixed, then ψ(d′(·, Xo)) belongs to Cα(Σ) for every α ∈ (0, θ).

A related smoothness space is Cα(Σ, δ), whose significance is apparent from the following obser-
vation. Let θ ∈ (0, 1) be the Hölder exponent associated with the quasi-distance δ as in (2.4.6). If

1
1+θ < p < 1 and α = 1/p− 1 ∈ (0, θ), we define the Hardy space Hp

at(Σ, dµ) as the collection of all

functionals f in
(
Cα(Σ, δ)

)∗
which possess an atomic decomposition f =

∑
j λjaj , with convergence

in
(
Cα(Σ, δ)

)∗
, where {λj}j ∈ ℓp and each aj is a p-atom, i.e. satisfies

supp a ⊆ Bd(Xo, r), ‖a‖L2(Σ,dµ) ≤ µ(Bd(Xo, r))
1/2−1/p,

∫

Σ
a dµ = 0. (2.4.11)

When µ(Σ) < +∞, the constant function a(X) = µ(Σ)−1/p, X ∈ Σ, is also considered to be a
p-atom. We then set

‖f‖Hp
at(Σ) := inf

{(∑

j

|λj |p
)1/p

: f =
∑

j

λjaj , with each aj a p-atom
}

. (2.4.12)

The space H1
at(Σ, dµ) is defined analogously, the sole exception being that the series f =

∑
j λjaj

is assumed to converge in L1(Σ, dµ). As is well-known ([23]), we have

(Hp
at(Σ, dµ))∗ = Cα(Σ, δ), if α = 1/p − 1 ∈ (0, θ). (2.4.13)

Also, corresponding to p = 1,

(H1
at(Σ, dµ))∗ = BMO(Σ, dµ), (2.4.14)

where BMO(Σ, dµ) consists of functions f ∈ L1
loc(Σ, dµ) for which ‖f‖BMO(Σ,dµ) < +∞. As usual,

we have set
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‖f‖BMO(Σ,dµ) :=





supR>0 M1(f ; R) if µ(Σ) = +∞,
∣∣∣
∫
Σ f dµ

∣∣∣ + supR>0 M1(f ; R) if µ(Σ) < +∞,
(2.4.15)

where, for p ∈ [1,∞), we have set

Mp(f ; R) := supX∈Σ supr∈(0,R]

(∫
−

Bd(X,r)

∣∣∣f −
∫
−Bd(X,r)f dµ

∣∣∣
p
dµ

)1/p
,

and
∫
−Bd(X,r)f dµ := 1

µ(Bd(X,r))

∫
Bd(X,r) f dµ.

(2.4.16)

Note that Hölder’s inequality gives

M1(f ; R) ≤ Mp(f ; R)

≈ sup
X∈Σ

sup
r∈(0,R]

(∫
−

Bd(X,r)

∫
−

Bd(X,r)
|f(Y ) − f(Z)|p dµ(Z)dµ(Y )

)1/p
,

(2.4.17)

uniformly for f ∈ BMO(Σ, dµ). Also, the John-Nirenberg inequality ensures that, for each fixed
p ∈ [1,∞),

‖f‖BMO(Σ,dµ) ≈





supR>0 Mp(f ; R) if µ(Σ) = +∞,
∣∣∣
∫
Σ f dµ

∣∣∣ + supR>0 Mp(f ; R) if µ(Σ) < +∞,
(2.4.18)

uniformly for f ∈ BMO(Σ, dµ).
Moving on, if as in [23] we set

VMO0(Σ, dµ) := the closure in BMO(Σ, dµ) of the space of continuous

functions with bounded support on Σ, (2.4.19)

then

(VMO0(Σ, dµ))∗ = H1
at(Σ, dµ). (2.4.20)

For our purposes, the space VMO0(Σ, dµ) is inadequate, so we shall consider a related version
of it. Specifically, following [98], if UC(Σ) stands for the space of uniformly continuous functions
on Σ, we introduce VMO(Σ, dµ), the space of functions of vanishing mean oscillations on Σ, as

VMO(Σ, dµ) := the closure of UC(Σ) ∩ BMO(Σ, dµ) in BMO(Σ, dµ). (2.4.21)

Note that VMO0(Σ, dµ) = VMO(Σ, dµ) if Σ is compact. In this latter setting, we also have the
following useful equivalent characterization of VMO(Σ, dµ).

29



Proposition 2.4.1 Assume that (Σ, d, µ) is a compact space of homogeneous type. Then

VMO(Σ, dµ) is the closure of Cα(Σ, d) in BMO(Σ, dµ), (2.4.22)

for every α ∈ (0, θ).

Proof. This is seen from (2.4.21) and the fact that Cα(Σ, d) →֒ C0(Σ) densely in the uniform norm,
as a simple application of the Stone-Weierstrass theorem shows. Indeed, Cα(Σ, d) is a sub-algebra
of C0(Σ) which separates the points on Σ. The latter claim is readily checked by observing that, if
X1, X2 ∈ Σ, X1 6= X2, then d′(X1, ·) ∈ Cα(Σ, d) satisfies d′(X1, X1) = 0 and d′(X1, X2) 6= 0. ¤

Given a space of homogeneous type (Σ, d, µ), call a real-valued function ω defined on Σ a weight
if it is non-negative and measurable. If 1 < p < ∞, a weight w belongs to the Muckenhoupt class
Ap if

[w]Ap := sup
B ball

( 1

µ(B)

∫

B
w dµ

)( 1

µ(B)

∫

B
w−1/(p−1) dµ

)p−1
< +∞. (2.4.23)

Corresponding to p = 1, the class A1 is then defined as the collection of all weights w for which

[w]A1 := sup
B ball

(
ess inf

B
w

)−1( 1

µ(B)

∫

B
w dµ

)
< +∞. (2.4.24)

In particular,

1

µ(B)

∫

B
w dµ ≤ [w]A1 w(X) for µ-a.e. X ∈ B, (2.4.25)

for every ball B ⊂ Σ. See, e.g., [110] for a more detailed discussion, including basic properties.
Below we summarize a number of well-known facts which are relevant for us here. To state them,
denote by M the Hardy-Littlewood maximal function on Σ,

Mf(X) = sup
B∋X

1

µ(B)

∫

B
|f | dµ, (2.4.26)

and, for any weight ω on Σ, abbreviate Lp(ω) := Lp(Σ, ω dµ). Then the following hold:

(1) If 1 < p < ∞ and ω ∈ Ap then M : Lp(ω) → Lp(ω) is bounded with norm ≤ C(Σ, [w]Ap);

(2) ω ∈ Ap if and only if ω1−p′ ∈ Ap′ , where 1/p + 1/p′ = 1, and [ω1−p′ ]Ap′
= [ω]

1/(p−1)
Ap

;

(3) If ω1, ω2 ∈ A1, then ω1 ω1−p
2 ∈ Ap and [ω1 ω1−p

2 ]Ap ≤ [ω1]
1/(p−1)
A1

[ω2]
p−1
A1

;

(4) If w is a weight for which M(w) ≤ C w on Σ then w ∈ A1 and [w]A1 ≤ C.

The following is the weighted, homogeneous space version of the commutator theorem of
Coifman-Rochberg-Weiss [21].
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Theorem 2.4.2 Let (Σ, d, µ) be a space of homogeneous type and let p0 ∈ (1,∞). Assume that T
is a linear operator with the property that for any weight ω ∈ Ap0, T maps Lp0(ω) boundedly into
itself, with norm controlled solely in terms of [ω]Ap0

.
Then for every b ∈ BMO(Σ, dµ), the commutator [Mb, T ] between T and the operator of multi-

plication by b is bounded on Lp(ω), with norm ≤ C(p, [ω]Ap)‖b‖BMO(Σ,dµ), for each p ∈ (1,∞) and
ω ∈ Ap.

In essence, this is known, and various related versions can be found in e.g., [8], [3]. Given that
this result plays an important role in this paper, we chose to present a proof based on Muckenhoupt
theory of weights and Rubio de Francia’s extrapolation theory, adapted to spaces of homogeneous
type. We begin by discussing the latter, by closely paralleling the approach recently developed
in [26] (we wish to use the opportunity to thank Chema Martell for calling this reference to our
attention).

Proposition 2.4.3 Let f, g be two nonnegative, measurable functions with the property that there
exist p0 ∈ (1,∞) such that for every w ∈ Ap0

∫

Σ
fp0 w dµ ≤ C

∫

Σ
gp0 w dµ, (2.4.27)

where the constant C depends only on [w]Ap0
. Then for each 1 < p < ∞ and ω ∈ Ap,

∫

Σ
fpω dµ ≤ C

∫

Σ
gpω dµ, (2.4.28)

where the constant C depends only on p and [ω]Ap.

Proof. The proof is divided into several steps, starting with:

Step I. Rubio de Francia’s construction. Assume that 1 < p < ∞ and that a weight func-
tion ω has been fixed. Given a sublinear operator A : Lp(ω) → Lp(ω), with ‖A‖Lp(ω)→Lp(ω) :=
sup {‖Af‖Lp(ω) : ‖f‖Lp(ω) = 1} < +∞, define

TAf :=
∞∑

j=0

Ajf

2j‖A‖j
Lp(ω)→Lp(ω)

, whenever f ∈ Lp(ω), f ≥ 0, (2.4.29)

where Aj := A ◦ · · · ◦A (j factors) if j ∈ N, and A0 := I, the identity operator. For any f ∈ Lp(ω),
f ≥ 0, the following properties are then easily checked:

f ≤ TAf, ‖TAf‖Lp(ω) ≤ 2‖f‖Lp(ω), A(TAf) ≤ 2‖A‖Lp(ω)→Lp(ω) TAf. (2.4.30)

Step II. Construction adapted to M. Thanks to (1) above, the construction in Step I can be
applied to M whenever ω ∈ Ap. Assuming that this is the case, for any h ∈ Lp(ω), h ≥ 0, we then
obtain

(i) h ≤ TMh;

(ii) ‖TMh‖Lp(ω) ≤ 2‖h‖Lp(ω);
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(iii) M(TMh) ≤ 2‖M‖Lp(ω)→Lp(ω) TMh.

In particular, by (4) above, we have

TMh ∈ A1. (2.4.31)

Step III. Construction adapted to M′. Let p′ be such that 1
p + 1

p′ = 1, and consider the sublinear
operator

M′ : Lp′(ω) −→ Lp′(ω), M′f :=
M(fω)

ω
. (2.4.32)

By (2) above, M′ is bounded provided ω ∈ Ap. If that is the case, then the construction in Step I
can be applied to M′. This shows that, if ω ∈ Ap, then for any nonnegative function h ∈ Lp′(ω)

(i)’ h ≤ TM′h;

(ii)’ ‖TM′h‖Lp′ (ω) ≤ 2‖h‖Lp′ (ω);

(iii)’ M′(TM′h) ≤ 2‖TM′‖Lp′ (ω)→Lp′ (ω)TM′h.

The last estimate entails M(ω TM′h) ≤ C ω TM′h. Hence, as before,

ω TM′h ∈ A1. (2.4.33)

Step IV. Proof of the extrapolation estimate. Fix (f, g) ∈ F and 1 < p, p′ < ∞ with 1/p +
1/p′ = 1. Then there exists a nonnegative function h ∈ Lp′(ω) with ‖h‖Lp′ (ω) = 1 and for which

‖f‖Lp(ω) =
∫
Σ fhω dµ. Making also use of (i)’ and Hölder’s inequality (with indices p0, p

′
0 and

measure TM′hω dµ), we can then write

‖f‖Lp(ω) ≤
∫

Σ
f (TM′h)ω dµ (2.4.34)

=

∫

Σ
f
(
TMg

)−1/p′0
(
TMg

)1/p′0
(TM′h)ω dµ

≤
(∫

Σ
fp0(TMg)1−p0TM′hω dµ

)1/p0
(∫

Σ
TMg TM′hω dµ

)1/p′0
=: A · B.

To proceed, set ω1 := TMg, ω2 := TM′hω and w := ω1−p0
1 ω2. Then (iii) and (iii)’ ensure that

ω1, ω2 ∈ A1. Moreover, w ∈ Ap0 by (3). Using these and (2.4.27), the first factor in the rightmost
side of (2.4.34) can be estimated as follows

A =
(∫

Σ
fp0 w dµ

)1/p0 ≤ C
(∫

Σ
gp0 w dµ

)1/p0

= C
(∫

Σ
gp0(TMg)1−p0(TM′h)ω dµ

)1/p0

≤ C
(∫

Σ
TMg (TM′h)ω dµ

)1/p0

, (2.4.35)
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where the last inequality in (2.4.35) is based on (i). By combining (2.4.34) and (2.4.35), applying
Hölder’s inequality, then using (ii) and (ii)’ we arrive at

‖f‖Lp(ω) ≤ C
(∫

Σ
TMg TM′hω dµ

)1/p0+1/p′0
= C

∫

Σ
TMg TM′hω dµ

≤ C‖TMg‖Lp(ω)‖TM′h‖Lp′ (ω) ≤ C‖g‖Lp(ω)‖h‖Lp′ (ω) = C‖g‖Lp(ω), (2.4.36)

since ‖h‖Lp′ (ω) = 1. Hence, (2.4.27) is proved. ¤

Having established Proposition 2.4.3, we are prepared to present the

Proof of Theorem 2.4.2. We shall closely follow [58], [91]. First, from simple homogeneity consid-
erations, there is no loss of generality in assuming that ‖b‖BMO (Σ,dµ) = 1. From Proposition 2.4.3,
T maps any Lp(ω) boundedly into itself, 1 < p < ∞, ω ∈ Ap, with norm controlled by p and [ω]Ap .
Fix now p ∈ (1,∞), b ∈ BMO(Σ, dµ), ω ∈ Ap, and let ε > 0 be sufficiently small so that, for any
complex number z with |z| ≤ ε,

ω e(Re z)b ∈ Ap (2.4.37)

with Ap norm controlled by C(p, ω) uniformly in z (cf., e.g., [58] pp. 32–33 for a proof in the
Euclidean setting which easily adapts to spaces of homogeneous type). The idea is now to observe
that, for an eventually smaller ε, the analytic mapping

Φ : {z ∈ C : |z| < ε} −→ L(Lp(ω)), Φ(z) := MezbTMe−zb (2.4.38)

satisfies

‖Φ(z)‖L(Lp(ω)) ≤ C for |z| < ε, and [T, Mb] = Φ′(0). (2.4.39)

The estimate ‖[T, Mb]‖Lp(ω)→Lp(ω) ≤ C now follows from elementary considerations involving
(2.4.39) and Cauchy’s reproducing formula. ¤

We next discuss the connection between Theorem 2.4.2 and Calderón-Zygmund operators. A

linear, continuous operator T : Cα(Σ, d) →
(
Cα(Σ, d)

)∗
, α ∈ (0, θ), is said to be associated with

the kernel K ∈ L1
loc(Σ × Σ \ diag) if

〈Tf, g〉 =

∫

Σ

∫

Σ
K(X, Y )f(Y )g(X) dµ(X)dµ(Y ), (2.4.40)

whenever f, g ∈ Cα(Σ, d) have bounded, disjoint supports. If, in addition, there exist a finite C > 0
and a small ε > 0 such that

|K(X, Y )| ≤ C

µ(Bd(X, d(X, Y )))
, ∀X, Y ∈ Σ, and (2.4.41)

|K(X, Y ) − K(X ′, Y )| + |K(Y, X) − K(Y, X ′)| ≤
(

d(X, X ′)
d(X, Y ′)

)ε (
C

µ(Bd(X, d(X, Y )))

)

whenever X, X ′, Y ∈ Σ satisfy d(X, Y ) ≥ κ d(X, X ′), (2.4.42)

then T is called a Calderón-Zygmund type operator.
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Corollary 2.4.4 Assume that (Σ, d, µ) is a space of homogeneous type and that T is a Calderón-
Zygmund type operator which is bounded on L2(Σ, dµ). Then the same conclusions as in Theo-
rem 2.4.2 are valid.

Proof. This is a direct consequence of Theorem 2.4.2 and the fact that Calderón-Zygmund type
operators which are bounded on L2(Σ, dµ) are also bounded on Lp(ω) whenever 1 < p < ∞ and
ω ∈ Ap. See [19] for the Euclidean space and, e.g., [75] for spaces of homogeneous type. ¤

Corollary 2.4.4 and the characterization (2.4.22) further entail the following.

Theorem 2.4.5 Suppose that (Σ, d, µ) is a compact space of homogeneous type, and assume that
T is a Calderón-Zygmund type operator which is bounded on L2(Σ, dµ). Then for every p ∈ (1,∞)
there exists C > 0 such that, for every b ∈ BMO(Σ, dµ),

inf
K

‖[Mb, T ] − K‖Lp(Σ,dµ)→Lp(Σ,dµ) ≤ C dist (b, VMO(Σ, dµ)), (2.4.43)

where the infimum is taken over all compact operators K on Lp(Σ, dµ), and the distance is measured
in BMO(Σ, dµ).

As a consequence, if T is as above and b ∈ VMO(Σ, dµ), then the commutator [Mb, T ] between
T and the operator of multiplication by b is compact on Lp(Σ, dµ) for each p ∈ (1,∞).

Proof. Once the compactness of [Mb, T ] for each b ∈ VMO(Σ, dµ) has been established, estimate
(2.4.43) follows readily from the operator bound in Corollary 2.4.4. In concert with Proposi-
tion 2.4.1, Corollary 2.4.4 also allows one to prove compactness of [Mb, T ] for each b ∈ VMO(Σ, dµ)
from such compactness when b ∈ Cα(Σ, d), for some small α > 0. In such a case, we have

[Mb, T ]f(X) =

∫

Σ

k(X, Y )f(Y ) dµ(Y ), (2.4.44)

with

|k(X, Y )| ≤ C
d(X, Y )α

µ(Bd(X, d(X, Y )))
, (2.4.45)

and this implies the desired compactness result by virtue of Lemma 2.4.6 below. ¤

In fact, we give a result in a natural level of generality, which establishes such asserted com-
pactness and which will also prove useful in §5.

Lemma 2.4.6 Suppose (Σ, d, µ) is a space of homogeneous type such that µ(Σ) < ∞. Let k(X, Y )
be a real-valued, measurable function on Σ × Σ satisfying

|k(X, Y )| ≤ ψ(d(X, Y ))

µ(Bd(X, d(X, Y )))
, (2.4.46)

where ψ(t) is monotone increasing and slowly varying, with

∫ 1

0

ψ(t)

t
dt < ∞. (2.4.47)
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Consider

Kf(X) =

∫

Σ

k(X, Y )f(Y ) dµ(Y ). (2.4.48)

Then K : Lp(Σ, dµ) → Lp(Σ, dµ) is compact, for each p ∈ (1,∞).

Proof. Take ε > 0 and set K = K# + Kb with integral kernels k(X, Y ) = k#(X, Y ) + kb(X, Y ),
where

k#(X, Y ) = k(X, Y ) for d(X, Y ) ≤ ε

0 for d(X, Y ) > ε. (2.4.49)

If for each integer j we now set

∆j(X) = {Y ∈ Σ : e−j−1 ≤ d(X, Y ) < e−j}, (2.4.50)

we may then compute

∫

Σ

|k#(X, Y )| dµ(Y ) ≤ C
∑

j≥log 1/ε

∫

∆j(X)

ψ(d(X, Y ))

µ(Bd(X, d(X, Y )))
dµ(Y ) (2.4.51)

≤ C
∑

j≥log 1/ε

ψ(e−j)

≤ C

∫ ε

0

ψ(t)

t
dt =: δ(ε).

There is a similar estimate for
∫
Σ |k#(X, Y )| dµ(X), since the doubling hypothesis allows us to

switch the roles of X and Y in (2.4.46). Therefore, if L(Lp) denotes the Banach space of bounded
linear operators on Lp(Σ, dµ), then Schur’s lemma gives

‖K#‖L(Lp) ≤ δ(ε), (2.4.52)

and δ(ε) → 0 as ε → 0.
Thus it remains to show that Kb is compact on each Lp space, for p ∈ (1,∞), under the

hypothesis that kb(X, Y ) is bounded. First note that Kb is compact on L2(Σ, dµ), since it is
Hilbert-Schmidt, due to the fact that µ(Σ) < ∞. The compactness of Kb on Lp(Σ, dµ) for each
p ∈ (1,∞) then follows from an interpolation theorem of Krasnoselski (see, e.g., [6], Theorem 2.9,
p. 203). This finishes the proof of the lemma. ¤

We now record a result proved by M. Christ in [18] which provides an analogue of the grid of
Euclidean dyadic cubes on a space of homogeneous type.

Proposition 2.4.7 Let (Σ, d, µ) be a space of homogeneous type. Then there exist a collection
Q = {Qk

α : k ∈ Z, α ∈ Ik} of open subsets of Σ, where Ik is some (possibly finite) index set, along
with constants η ∈ (0, 1) and C1, C2 > 0 such that the following hold:
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(i) for each fixed k ∈ Z, µ(Σ \ ∪α∈Ik
Qk

α) = 0 and Qk
α ∩ Qk

β = ∅ whenever α 6= β;

(ii) for any k, ℓ ∈ Z with ℓ ≥ k and any α ∈ Ik, β ∈ Iℓ, either Qℓ
β ⊆ Qk

α or Qℓ
β ∩ Qk

α = ∅;

(iii) for each k ∈ Z, α ∈ Ik, and each ℓ ∈ Z with ℓ < k, there exists a unique β ∈ Iℓ such that
Qk

α ⊆ Qℓ
β;

(iv) for each k ∈ Z and α ∈ Ik, the set Qk
α has at least one child, i.e., there exists some β ∈ Ik+1

such that Qk+1
β ⊆ Qk

α;

(v) for each k ∈ Z and α ∈ Ik, there exists Xk
α ∈ Qk

α (referred to as the center of Qk
α) such that

Bd(X
k
α, C1η

k) ⊆ Qk
α ⊆ Bd(X

k
α, C2η

k). (2.4.53)

By a slight abuse of terminology, we shall refer to the sets Qk
α as dyadic cubes on Σ, and call

Q = {Qk
α : k ∈ Z, α ∈ Ik} dyadic grid on Σ. Also, the index k will be referred to as the generation

of the dyadic cube Qk
α. In the context of (iii) above, the dyadic cube Qℓ

β will be referred to as an

ancestor of Qk
α. Corresponding to the case when k = ℓ + 1, we shall call Qℓ+1

α the parent of Qℓ
α.

Let us also note here that there there exists a small constant c > 0 such that

Qk+1
β is a child of Qk

α =⇒ µ(Qk+1
β ) ≥ cηDµ(Qk

α). (2.4.54)

Indeed, since the diameter of Qk
α is ≤ Coη

k, and if Xk+1
β ∈ Qk+1

β ⊆ Qk
α is the center of Qk+1

β , then

Qk
α ⊆ Bd(X

k+1
β , Coη

k) and, hence, µ(Qk
α) ≤ µ(Bd(X

k+1
β , Coη

k)) ≤ Cη−Dµ(Bd(X
k+1
β , C1η

k+1)) ≤
Cη−Dµ(Qk+1

β ), justifying (2.4.54). In particular, the number of children of a dyadic cube is always

≤ Cη−D.
Assume next that Σ ⊂ Rn+1 is a closed set which is Ahlfors regular (i.e., there exist two

constants 0 < a ≤ b < ∞ such that condition (2.1.1) is satisfied). When equipped with the measure
µ := Hn⌊Σ and the distance d(X, Y ) := |X − Y |, the set Σ becomes a space of homogeneous type.
In this scenario, δ(X, Y ) ≈ |X − Y |n and θ := 1/n. In particular, the Hardy space Hp

at(Σ) is
well-defined whenever n

n+1 < p ≤ 1.

Proposition 2.4.8 Let (Σ, d, µ) be as above. Then for each p ∈ [1,∞),

dist (f, VMO (Σ, dµ)) ≈ lim sup
r→0+

{
sup
X∈Σ

∫
−

Bd(X,r)

∫
−

Bd(X,r)
|f(Y ) − f(Z)|p dµ(Y ) dµ(Z)

}1/p

≈ lim sup
r→0+

{
sup
X∈Σ

∫
−

Bd(X,r)

∣∣∣f −
∫
−

Bd(X,r)
f dµ

∣∣∣
p
dµ

}1/p

, (2.4.55)

uniformly for f ∈ BMO(Σ, dµ) (i.e., the constants do not depend on f), where the distance is
measured in the BMO norm. In particular, for each p ∈ [1,∞),

dist (f, VMO (Σ, dµ)) ≈ lim
R→0+

Mp(f ; R), uniformly for f ∈ BMO(Σ, dµ), (2.4.56)
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where Mp(f ; R) is defined as in (2.4.16). Moreover, for each function f ∈ BMO(Σ, dµ) and each
p ∈ [1,∞),

f ∈ VMO(Σ, dµ) ⇐⇒ lim
r→0+

{
sup
X∈Σ

∫
−

Bd(X,r)

∣∣∣f −
∫
−

Bd(X,r)
f dµ

∣∣∣
p
dµ

}1/p

= 0. (2.4.57)

Proof. It is clear that the two upper-limits in (2.4.55) have comparable sizes, uniformly for f ∈
BMO(Σ, dµ), and that in turn, each is dominated by a fixed multiple of dist (f, VMO (Σ, dµ)).
Thus, by Hölder’s inequality, (2.4.55) is proved as soon as we show that there exists C > 0 such
that

dist (f, VMO (Σ, dµ)) ≤ C lim
R→0+

M1(f ; R), ∀ f ∈ BMO(Σ, dµ). (2.4.58)

To this end, we shall employ an approximation to the identity adapted to the scale η intervening
in the statement of Proposition 2.4.7. Concretely, it is possible to construct a sequence of functions
{pk(X, Y )}k∈Z on Σ×Σ for which there exist C, c > 0 and θ > 0 such that the following properties
hold for every integer k ∈ Z:

(i) pk(X, Y ) = 0 whenever X, Y ∈ Σ are such that d(X, Y ) ≥ cηk;

(ii) |pk(X, Y )| ≤ Cη−nk, for every X, Y ∈ Σ;

(iii) |pk(X, Y ) − pk(X
′, Y )| ≤ Cη−k(n+θ)d(X, X ′)θ, for every X, X ′, Y,∈ Σ;

(iv)
∫
Σ pk(X, Y ) dµ(Y ) = 1 for every X ∈ Σ.

The construction of the such an approximation to the identity follows closely the outline in [32].
More specifically, pick a smooth function h : R+ → R+ which is identically 1 on (0, 1) and identically
zero on (2,∞), and let Tk be the integral operator with kernel η−knh(η−k|X−Y |). Then there exists
C > 1 such that C−1 ≤ Tk1 ≤ C for every k. Let Mk and Wk be the operators of multiplication
by (Tk1)−1 and (Tk((Tk1)−1))−1, respectively, and set Pk := MkTkWkTkMk. Then pk(X, Y ), the
integral kernel of Pk, satisfies (i)-(iv) above.

Going further, we note that as a consequence of (i) and (ii) we have

sup
k

sup
X∈Σ

∫

Σ
|pk(X, Y )| dµ(Y ) < +∞. (2.4.59)

Next, fix f ∈ BMO (Σ) and a for each positive integer k define

gk(X) :=

∫

Σ
pk(X, Y )f(Y ) dµ(Y ), X ∈ Σ. (2.4.60)

Properties (i) and (iii) of the function pk(X, Y ) then imply that

|gk(X) − gk(X
′)| ≤ C1

(
η−k d(X, X ′)

)θ
M1(f ; C2η

k), if X, X ′ ∈ Σ, d(X, X ′) < Cηk.(2.4.61)

In particular, gk ∈ UC(Σ) for each k.
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We now claim that C1, C2 > 0 can be chosen, independent of f ∈ BMO(Σ, dµ) and the integer
k, such that

sup
R>0

M1(f − gk; R) ≤ C1 M1(f ; C2η
k). (2.4.62)

To justify this inequality, fix an integer k along with an arbitrary point X ∈ Σ and number R > 0.
In the case when 0 < R < ηk, we estimate

∫
−

Bd(X,R)

∣∣∣(f − gk) −
∫
−

Bd(X,R)
(f − gk) dµ

∣∣∣ dµ

≤
∫
−

Bd(X,R)

∣∣∣f −
∫
−

Bd(X,R)
f dµ

∣∣∣ dµ +

∫
−

Bd(X,R)

∣∣∣gk −
∫
−

Bd(X,R)
gk dµ

∣∣∣ dµ

=: I + II. (2.4.63)

On the one hand, from definitions it follows that I ≤ M1(f ; ηk). On the other hand,

II ≤
∫
−

Bd(X,R)

∫
−

Bd(X,R)
|gk(Y ) − gk(Z)| dµ(Y ) dµ(Z) ≤ C1 M1(f ; C2η

k), (2.4.64)

by (2.4.61) and the assumption on R. In summary,

0 < R < ηk =⇒
∫
−

Bd(X,R)

∣∣∣(f − gk) −
∫
−

Bd(X,R)
(f − gk) dµ

∣∣∣ dµ ≤ C1 M1(f ; C2η
k). (2.4.65)

In the case when R ≥ ηk, we make the observation that Qk
α ∩ Bd(X, R) 6= ∅ forces Qk

α ⊆
Bd(X, CoR), for some Co independent of k and R. In particular,

⋃

α∈J

Qk
α ⊆ Bd(X, CoR). (2.4.66)

Thus, for a sufficiently large constant C > 0, we may write

∫
−

Bd(X,R)

∣∣∣(f − gk) −
∫
−

Bd(X,R)
(f − gk) dµ

∣∣∣ dµ ≤ 2

∫
−

Bd(X,R)
|f(Y ) − gk(Y )| dµ(Y )

≤ 2

µ(Bd(X, R))

∑

α∈J

∫

Qk
α

∣∣∣
(
f(Y ) −

∫
−

Bd(Xk
α,Cηk)

f dµ
)

−
∫

Σ
pk(Y, Z)

(
f(Z) −

∫
−

Bd(Xk
α,Cηk)

f dµ
)

dµ(Z)
∣∣∣ dµ(Y )

≤ C
∑

α∈J

µ(Bd(X
k
α, Cηk))

µ(Bd(X, R))

∫
−

Bd(Xk
α,Cηk)

∣∣∣f −
∫
−

Bd(Xk
α,Cηk)

f dµ
∣∣∣ dµ

≤ C M1(f ; C2η
k)

(∑

α∈J

µ(Qk
α)

µ(Bd(X, R))

)
= C M1(f ; C2η

k)
µ
(
∪α∈JQk

α

)

µ(Bd(X, R))

≤ C M1(f ; C2η
k)

µ(Bd(X, CoR))

µ(Bd(X, R))
≤ C M1(f ; C2η

k). (2.4.67)
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Hence, the implication in (2.4.65) also holds when R ≥ ηk and this completes the proof of (2.4.62).
In turn, when µ(Σ) = +∞, the estimate (2.4.62) implies

dist (f, VMO (Σ, dµ)) ≤ ‖f − gk‖BMO(Σ,dµ) ≤ C1 M1(f ; C2η
k), (2.4.68)

which readily yields (2.4.58).
When µ(Σ) < +∞, the same type of argument applies as soon as we show that

lim
k→∞

∣∣∣
∫

Σ
(f − gk) dµ

∣∣∣ = 0. (2.4.69)

To justify this, by Hölder’s inequality it suffices to prove that

Tkf → f in L2(Σ, dµ) as k → ∞, where Tkf(X) :=

∫

Σ
pk(X, Y )f(Y ) dµ(Y ). (2.4.70)

Since the integral kernel of the operator Tk is an approximation to the identity, we have that

Tkf(X) → f(X) as k → ∞, whenever f ∈ Lip (Σ).

and |Tkf(X)| ≤ CMΣf(X), for every X and k,
(2.4.71)

where MΣ denotes the Hardy-Littlewood maximal function on Σ. Hence, the claim in (2.4.70)
follows that (2.4.71), Lebesgue’s Dominated Convergence Theorem, the boundedness of MΣ on
L2(Σ, dµ), and the density result contained in Lemma 2.4.9 below. This finishes the proof of
(2.4.55). Finally, (2.4.56) and (2.4.57) are direct consequences of (2.4.55) and definitions. ¤

We now record a density result, already invoked above, and which is also going to be useful
later on.

Lemma 2.4.9 Assume that Σ is a locally compact metric space and that σ is a locally finite Borel
measure on Σ. Also, denote by Lipo (Σ) the space of compactly supported, Lipschitz functions on
Σ. Then for every p ∈ [1,∞) the inclusion

Lipo (Σ) →֒ Lp(Σ, dσ) (2.4.72)

has dense range.

Proof. Pick ϕ ∈ Lipo([0,∞)), monotone decreasing, with ϕ(0) = 1. Let K ⊂ Σ be compact, and
for large m consider the compactly supported Lipschitz functions

fK,m(x) = ϕ
(
mdist(x, K)

)
. (2.4.73)

Let 1K denote the characteristic function of K. For each p ∈ [1,∞) one has |fK,m(x)−1K(x)|p ց 0,
so by the Monotone Convergence Theorem

fK,m −→ 1K in Lp−norm, (2.4.74)

as m → ∞, for each p ∈ [1,∞). Next, let S ⊂ Σ be a Borel set of finite measure. Since a locally
finite Borel measure on a locally compact metric space is regular, there is a sequence of compact
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sets Km ր S0 ⊂ S such that σ(S \ Km) ց 0. Hence the closure in Lp-norm of Lipo(Σ) contains
the space of finite linear combinations of the characteristic functions of such sets S, i.e., the space
of simple functions. It is standard that the space of simple functions is dense in Lp(Σ, dσ) for each
p ∈ [1,∞), so the proof is done. ¤

For future purposes, we find it convenient to restate (2.4.56) in a slightly different form. More
specifically, in the context of Proposition 2.4.8, given f ∈ L2

loc(Σ, dµ), X ∈ Σ and R > 0, we set

‖f‖∗(Bd(X, R)) := sup
B⊂Bd(X,R)

(∫
−

B
|f − fB|2 dµ

)1/2
, (2.4.75)

where the supremum is taken over all (metric) balls B included in Bd(X, R), and fB := µ(B)−1
∫
B f dµ.

It is then clear from definitions that

sup
X∈Σ

‖f‖∗(Bd(X, R)) ≈ M2(f ; R). (2.4.76)

Consequently, (2.4.56) yields:

Corollary 2.4.10 With the above notation and conventions,

lim
R→0+

[
sup
X∈Σ

‖f‖∗(Bd(X, R))
]
≈ dist (f, VMO (Σ, dµ)), (2.4.77)

uniformly for f ∈ BMO(Σ, dµ).

2.5 Ahlfors regularity of BMO1 domains

Consider a function A ∈ BMO1(R
n), i.e., the components of ∇A are functions of bounded mean

oscillation. More specifically, we assume that

A : Rn → R is locally integrable, with ∇A ∈ L1
loc and (2.5.1)

‖∇A‖∗ := sup
B ball

∫
−

B

∣∣∣∇A(x) −
(∫
−

B
∇A(y) dy

)∣∣∣ dx < ∞. (2.5.2)

From this and the John-Nirenberg inequality it follows that

A as in (2.5.1) − (2.5.2) =⇒ A ∈
⋂

1<p<∞
W 1,p

loc (Rn). (2.5.3)

Consequently a function satisfying (2.5.1)–(2.5.2) is continuous. Furthermore, by the Calderon-
Rademacher theorem (cf. [111], Proposition 11.6),

A as in (2.5.1) − (2.5.2) =⇒ A is differentiable at almost every point in Rn. (2.5.4)

Given such a function A, the domain

Ω := {X = (x, xn+1) ∈ Rn+1 : x ∈ Rn, xn+1 > A(x)}, (2.5.5)

i.e., the domain above the graph of A, is called a BMO1 domain. The main result of this section is
the following, on the regularity of surface measure of the boundary of a BMO1 domain.
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Proposition 2.5.1 Let A be as in (2.5.1)–(2.5.2). There exists κ = κ(‖∇A‖∗, n) > 1 such that

κ−1rn ≤
∫

|x−y|2+(A(x)−A(y))2<r2

y∈Rn

√
1 + |∇A(y)|2 dy ≤ κrn, (2.5.6)

for every x ∈ Rn and r > 0. Consequently, the domain Ω defined by (2.5.5) is Ahlfors regular.

Proof. First, we note that the surface area σ on ∂Ω defined by (2.5.6) coincides with n-dimensional
Hausdorff measure on ∂Ω. This is a consequence of the fact that σ = Hn⌊∂∗Ω (discussed in §2.2)
together with Proposition 2.2.2, which gives Hn(∂Ω \ ∂∗Ω) = 0. Actually, in this case a stronger
result holds, namely ∂Ω = ∂∗Ω. In fact, as shown in [55], each BMO1 domain Ω satisfies the
following “corkscrew condition.” There are constants M, R ∈ (0, 1) such that for each x ∈ ∂Ω
and each r ∈ (0, R] there are balls BMr(y1) ⊂ Ω and BMr(y2) ⊂ Rn+1 \ Ω of radius Mr, with
|x − yk| ≤ r. It remains to prove (2.5.6).

To proceed, fix x ∈ Rn, r > 0, B = B(x, r) := {y ∈ Rn : |x − y| < r}, η ∈ C∞
0 (B(x, 3r)) with

η ≡ 1 on B(x, 2r), and set

m(x, r) :=

∫
−

B
∇A(y) dy, AB := (A−A(x))η, ÃB(z) := AB(z)−〈m(x, 4r), z〉, z ∈ Rn. (2.5.7)

In particular,

AB(x) − AB(y) = A(x) − A(y) for y ∈ B(x, 2r),

∇ÃB(z) = ∇A(z) − m(x, 4r) for z ∈ B(x, 2r).
(2.5.8)

In the sequel, we shall write |E| for the Euclidean measure of a (measurable) set E ⊂ Rn.
For an arbitrary y ∈ B(x, r) and two fixed parameters, ε ∈ (0, 1/2) and p > n, we use the Mary

Weiss Lemma (cf. Lemma 1.4 on p. 144 in [14]) in concert with the John-Nirenberg inequality and
a well-known property of averages of functions in BMO in order to estimate

|ÃB(x) − ÃB(y)|
|x − y| ≤ Cp,n

(∫
−

|x−z|≤2|x−y|
|∇ÃB(z)|p dz

)1/p

≤ Cp,n

(∫
−

|x−z|≤2|x−y|
|∇A(z) − m(x, 2|x − y|)|p dz

)1/p

+ Cp,n

∣∣m(x, 2|x − y|) − m(x, 4r)
∣∣

≤ Cp,n‖∇A‖∗
{

1 + log
( 2r

|x − y|
)}

≤ C0‖∇A‖∗
( r

|x − y|
)ε

, (2.5.9)

where we shall take C0 to be a sufficiently large constant which depends only on p, n and ε.
In order to continue, introduce

∆(x, r) := {y ∈ Rn : |x − y|2 + (A(x) − A(y))2 < r2} ⊆ B(x, r), (2.5.10)

and decompose B(x, r) as Y1 ∪ Y2 where
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Y1 :=
{

y ∈ B(x, r) :
∣∣∣
〈 x − y

|x − y| , m(x, r)
〉∣∣∣ < 4C0(1 + ‖∇A‖∗)

( r

|x − y|
)ε}

, (2.5.11)

Y2 :=
{

y ∈ B(x, r) :
∣∣∣
〈 x − y

|x − y| , m(x, r)
〉∣∣∣ ≥ 4C0(1 + ‖∇A‖∗)

( r

|x − y|
)ε}

. (2.5.12)

Then, assuming that

m(x, r) 6= 0 (2.5.13)

we may estimate, writing ω := (x − y)/|x − y| and ρ := |x − y|,

|Y1| ≤
∫ r

0
ρn−1

(∫
∣∣∣
〈

ω ,
m(x,r)
|m(x,r)|

〉∣∣∣< 4C0(1+‖∇A‖∗)
|m(x,r)|

(
r
ρ

)ε dω
)
dρ

≤ 4cnC0(1 + ‖∇A‖∗)
rn

|m(x, r)| . (2.5.14)

Next, since for each y ∈ B(x, r),

A(x) − A(y)

|x − y| =
ÃB(x) − ÃB(y)

|x − y| +
〈 x − y

|x − y| , m(x, 4r) − m(x, r)
〉

+
〈 x − y

|x − y| , m(x, r)
〉
, (2.5.15)

and, as is well-known,

|m(x, 4r) − m(x, r)| ≤ cn‖∇A‖∗, (2.5.16)

it follows from (2.5.15) and (2.5.16) that

y ∈ Y2 =⇒ |A(x) − A(y)|
|x − y| ≥ 1

2

∣∣∣∣
〈 x − y

|x − y| , m(x, r)
〉∣∣∣∣ . (2.5.17)

As a consequence, since |A(x) − A(y)| < r for each y ∈ ∆(x, r), we may write

y ∈ Y2 ∩ ∆(x, r) =⇒
∣∣∣∣
〈 x − y

|x − y| , m(x, r)
〉∣∣∣∣ <

2r

|x − y| . (2.5.18)

Hence, by once again passing to polar coordinates (ω := (x − y)/|x − y| and ρ := |x − y|),

|Y2 ∩ ∆(x, r)| ≤
∫ r

0
ρn−1

(∫
∣∣∣
〈

ω ,
m(x,r)
|m(x,r)|

〉∣∣∣< 2r
ρ|m(x,r)|

dω
)
dρ (2.5.19)

≤ cn
rn

|m(x, r)| , (2.5.20)

assuming that n ≥ 2. Thus, altogether, (2.5.14) and (2.5.19) yield

|∆(x, r)| ≤ |Y1| + |Y2 ∩ ∆(x, r)| ≤ cn(1 + ‖∇A‖∗)
rn

|m(x, r)| . (2.5.21)
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We next seek a similar bound from below. To get started, we note that (2.5.9) implies the
existence of some positive, finite, universal constant C1 such that for any y ∈ B(x, r) we have

|x − y|2 + (A(x) − A(y))2 = |x − y|2
(
1 +

|AB(x) − AB(y)|2
|x − y|2

)
(2.5.22)

≤ |x − y|2
(
1 + 2

|ÃB(x) − ÃB(y)|2
|x − y|2 + 2

∣∣∣
〈 x − y

|x − y| , m(x, 4r)
〉∣∣∣

2)

≤ |x − y|2
(
1 + C1‖∇A‖2

∗
( r

|x − y|
)2ε

+ 2
∣∣∣
〈 x − y

|x − y| , m(x, r)
〉∣∣∣

2)
,

where in the last step we have used (2.5.16). Thus, for each δ ∈ (0, 1),

y ∈ Y1 ∩ B(x, δr) =⇒ |x − y|2 + (A(x) − A(y))2 < r2
{

δ2 + C2δ
2(1−ε)‖∇A‖2

∗
}

(2.5.23)

where C2 := C1 + 32C2
0 . In particular,

δ =
1

1 + C2‖∇A‖2∗
and y ∈ Y1 ∩ B(x, δr) =⇒ |x − y|2 + (A(x) − A(y))2 < r2, (2.5.24)

i.e.,

δ =
1

1 + C2‖∇A‖2∗
=⇒ Y1 ∩ B(x, δr) ⊆ ∆(x, r). (2.5.25)

Thus, for this choice of δ,

|m(x, r)| < 4C0(1 + ‖∇A‖∗) =⇒ Y1 = B(x, r) =⇒ B(x, δr) ⊆ ∆(x, r)

=⇒ |∆(x, r)| ≥ cnδnrn ≥ cnrn

(1 + ‖∇A‖2∗)n
. (2.5.26)

On the other hand, since the set Y1 (introduced in (2.5.11)) is star-like with respect to the point
x, in the case when |m(x, r)| ≥ 4C0(1 + ‖∇A‖∗) we have

|∆(x, r)| ≥ |Y1 ∩ B(x, δr)| ≥ δn · r ·
[
surface measure of Y1 ∩ ∂B(x, r)

]

≥ cnδnrn

∫
˛̨
˛̨
〈

ω ,
m(x,r)
|m(x,r)|

〉˛̨
˛̨< 4C0(1+‖∇A‖∗)

|m(x,r)|

dω

≥ 4C0cn(1 + ‖∇A‖∗)δn rn

|m(x, r)| ≥
C(n)

(1 + ‖∇A‖∗)2n

rn

|m(x, r)| . (2.5.27)

Hence, at this stage we have proved that there exist three finite dimensional constants, C0, C1, C2 >
0 such that
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|∆(x, r)| ≤ C1(1 + ‖∇A‖∗)
rn

|m(x, r)| , (2.5.28)

|∆(x, r)| ≥ C2

(1 + ‖∇A‖∗)2n

rn

|m(x, r)| if |m(x, r)| > 4C0(1 + ‖∇A‖∗), (2.5.29)

|∆(x, r)| ≥ C2r
n

(1 + ‖∇A‖∗)2n
if |m(x, r)| < 4C0(1 + ‖∇A‖∗). (2.5.30)

After this preamble, we shall show that there exists C = C(‖∇A‖∗, n) > 0 such that

∫

∆(x,r)
(1 + |∇A(y)|) dy ≥ Crn. (2.5.31)

Thanks to (2.5.29)–(2.5.30), it is enough to consider the case when |m(x, r)| is very large, say

|m(x, r)| > M(1 + ‖∇A‖∗), (2.5.32)

with M > 4C0 to be specified later. Since ∆(x, r) ⊂ B(x, r), Hölder’s and John-Nirenberg inequal-
ities, along with the estimates (2.5.29), (2.5.32), give that

∫

∆(x,r)
|∇A(y) − m(x, r)| dy ≤ |∆(x, r)|1/2

(∫

∆(x,r)
|∇A(y) − m(x, r)|2 dy

)1/2

≤ |∆(x, r)|1/2
(∫

B(x,r)
|∇A(y) − m(x, r)|2 dy

)1/2

≤ C
1/2
0 (1 + ‖∇A‖∗)1/2 rn

|m(x, r)|1/2

(∫
−

B(x,r)
|∇A(y) − m(x, r)|2 dy

)1/2

≤ cnC
1/2
0 (1 + ‖∇A‖∗)1/2‖∇A‖∗

rn

|m(x, r)|1/2

≤ cnC
1/2
0 ‖∇A‖∗M−1/2rn. (2.5.33)

Consequently,

∫

∆(x,r)
(1 + |∇A(y)|) dy ≥

∫

∆(x,r)
|∇A(y)| dy

≥ |∆(x, r)||m(x, r)| −
∫

∆(x,r)
|∇A(y) − m(x, r)| dy

≥ C2r
n

(1 + ‖∇A‖∗)2n
− cnC

1/2
0 ‖∇A‖∗M−1/2rn

≥ Crn, (2.5.34)

if M is large enough. For instance,

M > max {C0, 4c2
nC0C

−2
2 }(1 + ‖∇A‖∗)4n+2 (2.5.35)
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will do.
The proof of (2.5.6) will therefore be completed as soon as we show that there exists C =

C(‖∇A‖∗, n) > 0 such that

∫

∆(x,r)
(1 + |∇A(y)|) dy ≤ Crn. (2.5.36)

However, based on the inclusion ∆(x, r) ⊆ B(x, r) and the inequality (2.5.28) we may write

∫

∆(x,r)
(1 + |∇A(y)|) dy ≤

∫

B(x,r)
dy +

∫

B(x,r)
|∇A(y) − m(x, r)| dy + |m(x, r)| · |∆(x, r)|

≤ cnrn + cnrn‖∇A‖∗ + C1(1 + ‖∇A‖∗)rn, (2.5.37)

as desired. This finishes the proof of the proposition in the case when (2.5.13) holds.
Finally, if m(x, r) = 0, then (2.5.25) gives B(x, δr) ⊂ ∆(x, r) for some δ = δ(‖∇A‖∗, n) > 0

sufficiently small, which in turn readily yields (2.5.31). Also, (2.5.36) follows much as in (2.5.37),
so (2.5.6) holds in this case as well. ¤

In concert with Proposition 2.2.3, Proposition 2.5.1 yields the following.

Corollary 2.5.2 Let A be as in (2.5.1)–(2.5.2), define Ω as in (2.5.5) and set σ := Hn⌊∂Ω. Then
∂Ω is Ahlfors regular, with constants depending only on n and ‖A‖∗.

Define VMO1(R
n) as the (closed) subspace of BMO1(R

n) consisting of functions A : Rn → R

for which ∂jA ∈ VMO(Rn) for every j ∈ {1, ..., n + 1}. The latter space consists of functions
f ∈ BMO(Rn) for which

lim
δ→0


 sup

Q⊂Rn+1 cube

|Q|≤δ

∫
−

Q

∣∣∣f(x) −
∫
−

Q
f
∣∣∣ dx


 = 0. (2.5.38)

We would now like to discuss a natural sufficient condition guaranteeing that a BMO1 domain Ω
has a unit normal of small BMO-norm. In particular, it is of interest to know whether ν is in VMO
whenever Ω is a VMO1 domain. These issues are addressed in the proposition below, which should
be compared with the (proof of) Corollary 5.4 in [64].

Proposition 2.5.3 Let A be as in (2.5.1)-(2.5.2), and let Σ be the graph of A. Also, denote by ν
and σ the outer normal unit and the surface measure on Σ, respectively. Then there exists a finite
constant C = C(n) > 0 such that

‖ν‖BMO(Σ,dσ) ≤ C‖∇A‖∗(1 + ‖∇A‖∗), (2.5.39)

and

dist (ν , VMO (Σ, dσ)) ≤ C(1 + ‖∇A‖∗) dist(∇A , VMO (Rn)), (2.5.40)

where the distances are measured in BMO(Σ, dσ) and BMO(Rn), respectively. As a consequence,

A ∈ VMO1(R
n) =⇒ ν ∈ VMO(Σ, dσ). (2.5.41)
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Proof. As far as (2.5.39) is concerned, we note that by (2.4.17)-(2.4.18) and (2.5.6) it suffices to
prove that

∫

∆(Z,r)

∫

∆(Z,r)
|ν(X) − ν(Y )| dσ(X) dσ(Y ) ≤ C r2n‖∇A‖∗(1 + ‖∇A‖∗), (2.5.42)

for every r > 0 and Z = (z, A(z)) ∈ Σ. Using the notation in (2.5.10), we may estimate the
left-hand side of (2.5.42) by

∫

∆(z,r)

∫

∆(z,r)

∣∣∣∣∣
(∇A(x),−1)√
1 + |∇A(x)|2

− (∇A(y),−1)√
1 + |∇A(y)|2

∣∣∣∣∣
√

1 + |∇A(x)|2
√

1 + |∇A(y)|2 dx dy

≤ 2

∫

∆(z,r)

∫

∆(z,r)

√
1 + |∇A(y)|2|∇A(x) −∇A(y)| dx dy

≤ 2
(∫

∆(z,r)

∫

∆(z,r)
|∇A(x) −∇A(y)|2 dx dy

)1/2(∫

∆(z,r)

∫

∆(z,r)
[1 + |∇A(y)|2] dx dy

)1/2

=: 2 I · II. (2.5.43)

Now,

I ≤
(∫

B(z,r)

∫

B(z,r)
|∇A(x) −∇A(y)|2 dx dy

)1/2
≤ Crn‖∇A‖∗ (2.5.44)

by (2.5.10), (2.4.17)-(2.4.18) and the John-Nirenberg inequality. Upon recalling notation introduced
in (2.5.7) and the estimate (2.5.28), the John-Nirenberg inequality also gives

II ≤ Crn + C|∆(z, r)|1/2
(∫

∆(z,r)
|∇A(y)|2 dy

)1/2

≤ Crn + C|∆(z, r)|1/2
(∫

∆(z,r)
|∇A(y) − m(z, r)|2 dy

)1/2

+C|∆(z, r)||m(z, r)|

≤ Crn + Crn/2
(∫

B(z,r)
|∇A(y) − m(z, r)|2 dy

)1/2

+Crn(1 + ‖∇A‖∗)
≤ Crn(1 + ‖∇A‖∗), (2.5.45)

for some purely dimensional constants. Now, (2.5.42) follows easily from (2.5.44) and (2.5.45).
Note that the above argument and (2.4.17) also gives that for every r > 0 and Z = (z, A(z)) ∈ Σ,

∫

∆(Z,r)

∫

∆(Z,r)
|ν(X) − ν(Y )| dσ(X)dσ(Y )

≤ C rn(1 + ‖∇A‖∗)
(∫

B(z,r)

∫

B(z,r)
|∇A(x) −∇A(y)|2 dx dy

)1/2

≤ C r2n(1 + ‖∇A‖∗)M2(∇A; r). (2.5.46)
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Thus, (2.5.40) readily follows from this, (2.4.17) and (2.4.56). ¤

In order to continue, we make the following definition.

Definition 2.5.4 (i) Let Ω be a nonempty, proper open subset of Rn+1. Call Ω a BMO1-domain
if for every compact set K ⊂ Rn+1 there exist b, c > 0 such that the following hold. For every
X0 ∈ ∂Ω∩K there exists an n-plane H ⊂ Rn+1 passing through X0, a choice N of the unit normal
to H, and an open cylinder Cb,c := {X + tN : X ∈ H, |X − X0| < b, |t| < c} such that

Cb,c ∩ Ω = Cb,c ∩ {X + tN : X ∈ H, t > ϕ(X)}, (2.5.47)

Cb,c ∩ ∂Ω = Cb,c ∩ {X + tN : X ∈ H, t = ϕ(X)}, (2.5.48)

Cb,c ∩ Ω
c
= Cb,c ∩ {X + tN : X ∈ H, t < ϕ(X)}, (2.5.49)

for some function ϕ : H → R satisfying

ϕ ∈ BMO1(H), ϕ(X0) = 0 and |ϕ(X)| < c if |x′ − x0| ≤ b. (2.5.50)

(ii) It is said that the BMO1-domain Ω has constant ≤ δ if it is always (i.e., for every choice
of the compact K and boundary point X0) possible to ensure that ‖∇ϕ‖BMO(H) ≤ δ.

(iii) The classes of VMO1-domains and Lipschitz domains in Rn+1 are defined analogously,
demanding that ϕ ∈ VMO1(H) and ϕ ∈ Lip (H) in place of ϕ ∈ BMO1(H).

Parenthetically, we note that conditions (2.5.47)-(2.5.49) are not independent since, in fact, (2.5.47)
implies (2.5.48)-(2.5.49). In this vein, let us also mention that, (2.5.48) implies (2.5.47), (2.5.49)
(up to changing N into −N) if it is known a priori that

∂Ω = ∂Ω. (2.5.51)

Theorem 2.5.5 If Ω ⊂ Rn+1 is a bounded BMO1-domain with constant ≤ δ then ∂Ω is Ahlfors
regular and

dist (ν , VMO (∂Ω, dσ)) ≤ C δ (2.5.52)

where C depends only on n, and the distance is measured in BMO(∂Ω, dσ). In particular,

Ω bounded VMO1 domain =⇒ ν ∈ VMO (∂Ω, dσ). (2.5.53)

Proof. This is a consequence of Corollary 2.5.2, Proposition 2.5.3 and Definition 2.5.4. ¤

3 Singular integrals on UR domains

In this section we study various layer potentials on an open set Ω ⊂ Rn+1 whose boundary is
uniformly rectifiable (a UR domain). In §3.1 we recall the notion of uniform rectifiability, introduced
by G. David and S. Semmes, and discuss several classes of domains that have the UR property,
including Ahlfors regular NTA domains, and more generally Ahlfors regular John domains. In
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§3.2 we record some fundamental estimates for a broad class of layer potentials on UR domains.
Sections 3.3 and 3.4 establish the existence of nontangential limits a.e. of layer potentials applied
to elements of Lp(∂Ω, dσ), first in the case of Newtonian potentials and then more generally. Tools
include nontangential maximal estimates from §3.2, the Green formula discussed in §2.2 and, in
§3.4, some Clifford analysis. In §3.5 we extend the results of §3.4 to the “variable coefficient”
setting, which will be useful for the treatment of variable coefficient PDE in §5. In §3.6 we obtain
boundedness results on Lp-Sobolev spaces.

3.1 Countably rectifiable sets and uniformly rectifiable sets

Let Σ ⊂ Rn+1 be closed. We say that Σ is countably rectifiable (of dimension n) provided it can
be written as a countable union

Σ =
⋃

k

Lk ∪ Ñ , Hn(Ñ) = 0, (3.1.1)

where each Lk is the image of a compact subset of Rn under a Lipschitz map. As is well known, via
Rademacher’s theorem and Whitney’s extension theorem we can then write Σ = ∪kMk ∪N where
Hn(N) = 0 and each Mk is a compact subset of an n-dimensional C1 submanifold of Rn+1. (This
characterization was used in (2.2.7).)

A countably rectifiable set Σ ⊂ Rn+1 need not have tangent planes in the ordinary sense, but it
will have approximate tangent planes. By definition, an n-plane π ⊂ Rn+1 passing through X0 ∈ Σ
is called the approximate tangent n-plane to Σ at X0 provided

lim sup
Rց0

R−n Hn
(
Σ ∩ BR(X0)

)
> 0 (3.1.2)

and

lim sup
Rց0

R−n Hn
(
{X ∈ Σ ∩ BR(X0) : dist(X, π) > λ|X − X0|}

)
= 0, ∀λ > 0. (3.1.3)

The conditions (3.1.2) and (3.1.3) together imply that if such an n-plane π exists, then it is unique.
The following result is contained in Theorem 3.2.19 of [41].

Theorem 3.1.1 Assume Σ ⊂ Rn+1 is Hn-measurable, of locally finite Hausdorff measure. If Σ
is countably rectifiable then there exists an approximate tangent n-plane to Σ at Hn-almost every
point in Σ.

If Ω ⊂ Rn+1 is an open set of locally finite perimeter, satisfying Hn(∂Ω \ ∂∗Ω) = 0, so Σ = ∂Ω
is countably rectifiable, we denote ∂T Ω the set of points X0 ∈ ∂Ω with an approximate tangent
plane, πX0 . We note that

∂∗Ω ⊂ ∂T Ω. (3.1.4)

This follows from Theorem 5.6.5 of [118], plus Lemma 5.5.4 of [118], to cover the property (3.1.2)
(as long as Hn(∂Ω \ ∂∗Ω) = 0).

We compare πX0 with the exterior normal ν(X0), given X0 ∈ ∂∗Ω ⊂ ∂0Ω. Recall that for such
X0
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lim
R→0

R−(n+1)Hn+1
(
BR(X0) ∩ Ω± ∩ H±

ν(X0)
(X0)

)
= 0, (3.1.5)

when Ω+ := Ω, Ω− := Rn+1 \ Ω, and

H±
ν(X0)

(X0) = {Y ∈ Rn+1 : ±〈ν(X0), Y − X0〉 ≥ 0}. (3.1.6)

Let us also set

H0
ν(X0)

(X0) := {Y ∈ Rn+1 : 〈ν(X0), Y − X0〉 = 0}. (3.1.7)

Results just described plus comparison of (2.2.2) with (3.1.3) yield the following.

Proposition 3.1.2 Let Ω ⊂ Rn+1 be an open set with locally finite perimeter, satisfying Hn(∂Ω \
∂∗Ω) = 0, and suppose X0 ∈ ∂∗Ω. Then X0 ∈ ∂T Ω and ν(X0) ⊥ πXo or, equivalently,

πX0 = H0
ν(X0)

(X0). (3.1.8)

We record some notation that will be useful later in this section. Given X0 ∈ ∂∗Ω ⊂ ∂T Ω, R ∈
(0,∞), set

π±
X0

= H±
ν(X0)

(X0), ∂±BR(X0) = ∂BR(X0) ∩ π±
X0

, (3.1.9)

and

W (X, R) = ∂−BR(X)△
[
∂BR(X) ∩ Ω

]
, (3.1.10)

where U△V denotes the symmetric difference (U \V )∪ (V \U). The following result will be useful
in §§3.3–3.4.

Proposition 3.1.3 In the setting of Proposition 3.1.2, if X0 ∈ ∂∗Ω, there is a set O ⊂ [0, 1] of
density 1 at 0 such that

R−nHn(W (X0, R)) −→ 0 (3.1.11)

as R → 0 in O.

Proof. We have

∫ R

0
Hn(W (X0, r)) dr = Hn+1

(
BR(X0) ∩ (Ω△π−

X0
)
)

= Hn+1
(
BR(X0) ∩ Ω+ ∩ π+

X0
∪ BR(X0) ∩ Ω− ∩ π−

X0

)
(3.1.12)

= o(Rn+1),

as R → 0, and this implies (3.1.11). ¤

For the purposes we have in mind, the purely qualitative concept of countable rectifiability is
too weak and should be replaced by uniform rectifiability. Following G. David and S. Semmes [33]
we make the following.
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Definition 3.1.4 Call Σ ⊂ Rn+1 uniformly rectifiable provided it is Ahlfors regular and the
following holds. There exist ε, M ∈ (0,∞) (called the UR constants of Σ) such that for each x ∈ Σ,
R > 0, there is a Lipschitz map ϕ : Bn

R → Rn+1 (where Bn
R is a ball of radius R in Rn) with

Lipschitz constant ≤ M , such that

Hn
(
Σ ∩ BR(x) ∩ ϕ(Bn

R)
)
≥ εRn. (3.1.13)

If Σ is compact, this is required only for R ∈ (0, 1].

Any uniformly rectifiable set Σ is countably rectifiable. To see this, let (xj)j∈N be a countable,
dense subset of Σ, and consider (Rk)k∈N an enumeration of Q+ (or (0, 1) ∩ Q+ if Σ is compact).
For each j, k ∈ N set ∆jk := Σ ∩ B(xj , Rk) and Ljk := ϕjk(B

n
jk), where Bn

jk is an n-dimensional

ball of radius Rk and ϕjk : Bn
jk → Rn+1 is a Lipschitz function for which

Hn
(
Σ ∩ B(xj , Rk) ∩ ϕ(Bn

jk)
)
≥ εRn

k , (3.1.14)

for some ε > 0 is a fixed constant, independent of j, k. Put E :=
⋃

j,k∈N
(Ljk ∩Σ) and N := Σ \E,

so that

Σ =
( ⋃

j,k∈N

(Ljk ∩ Σ)
)
∪ N. (3.1.15)

Then, using (3.1.14) and the fact that Σ is Ahlfors regular, we may write

∫
−

∆jk

1E dHn ≥
∫
−

∆jk

1Ljk∩Σ dHn ≥ Hn(Ljk ∩ ∆jk)

Hn(∆jk)
≥ Hn(Ljk ∩ ∆jk)

C Rn
k

≥ ε/C, (3.1.16)

for every j, k ∈ N which, by density, further entails

∫
−

B(x,R)∩Σ
1E dHn ≥ ε/C, ∀x ∈ Σ, ∀R > 0. (3.1.17)

Hence, by Lebesgue-Besicovitch Differentiation Theorem (cf., e.g., Theorem 1 on p. 43 in [36]),
1E(x) > 0 at Hn-a.e. point x ∈ Σ which proves that Hn(N) = 0. In turn, this and (3.1.15) show
that (3.1.1) holds, thus Σ is countably rectifiable (of dimension n), as claimed earlier.

There are alternative characterizations of uniform rectifiability, discussed at length in the mono-
graphs [33] and [34]. We mention one here. We say a mapping ψ : Rn → Rn+1 is ω-regular if
|∇ψ| ≤ Cω1/n and

sup
x∈Rn+1

sup
R>0

R−n

∫

ψ−1(BR(x))

ω(y) dy < ∞. (3.1.18)

Then, as shown in [33], Σ is uniformly rectifiable if and only if it is Ahlfors regular and there exists
an A1-weight ω and an ω-regular mapping ψ : Rn → Rn+1 whose image contains Σ.

An important class of uniformly rectifiable sets was identified in [31], where G.David and
D. Jerison proved the following result.
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Proposition 3.1.5 Let Σ ⊂ Rn+1 be closed and Ahlfors regular. Assume Σ satisfies the following
“two disks” condition. There exists C0 ∈ (0,∞) such that for each x ∈ Σ and r > 0, there exist two
n-dimensional disks, with centers at a distance ≤ r from x, radius r/C0, contained in two different
connected components of Rn+1\Σ. (If Σ is compact, one can pick R0 ∈ (0,∞) and restrict attention
to r ∈ (0, R0].) Then Σ is uniformly rectifiable.

The somewhat more restrictive case of Proposition 3.1.5 where the disks are replaced by balls
has been established earlier by S. Semmes in [104]. As pointed out on p. 844 in [31], the same
conclusion holds if the two disks can be replaced by bi-Lipschitz images of disks. What David and
Jerison actually prove is that any set Σ as in the statement of Proposition 3.1.5 contains “big pieces
of Lipschitz graphs” (cf. Theorem 1 on p. 840 loc. cit.). There is, in fact, a more precise version of
this statement, which is implicit in the discussion following formula (10) on p. 842 of [31]. To state
this result, we bring in the notion of the Corkscrew condition, which is that there are constants
M > 1 and R > 0 (called the corkscrew constants of Ω) such that for each X ∈ ∂Ω and r ∈ (0, R)
there exists Y = Y (X, r), called the corkscrew point relative to X, such that |X − Y | < r and
dist(Y, ∂Ω) > r/M . Here is the result of [31].

Proposition 3.1.6 Let Ω ⊂ Rn+1 be an open set, with an Ahlfors regular boundary ∂Ω which
satisfies the “two disks” condition, for every r ∈ (0, R0), as in the previous proposition (here R0

may be infinite in the case that ∂Ω is unbounded). Suppose also that Ω satisfies the Corkscrew
condition for every r ∈ (0, R0). Then Ω contains “big pieces of Lipschitz domains” that is, there
exist c1, c2 ≥ 1 such that for every X ∈ ∂Ω, and every r ∈ (0, R0), one can find a Lipschitz domain
D ⊂ Rn+1 for which:

(i) D ⊂ Ω ∩ B(X, 10r);

(ii) In a new system of coordinates (which is a rigid motion of the original one) one has X =
(x′, xn+1)1≤j≤n+1 ∈ Rn × R and

D = {Y = (y′, yn+1) : ψ(y′) < yn+1 < xn+1 + r/2, |x′ − y′| < r/(2c1)}, (3.1.19)

where ψ : Rn → R is a function satisfying

|ψ(y′) − ψ(z′)| ≤ c1|y′ − z′| for all y′, z′ ∈ Rn and ‖ψ‖L∞(Rn) ≤ |xn+1| + r/2, (3.1.20)

as well as

Hn
(
{(y′, ψ(y′)) : y′ ∈ Rn, |x′ − y′| < r/(2c1)} ∩ ∂Ω

)
≥ rn/c2. (3.1.21)

Moving on, we make the following

Definition 3.1.7 A nonempty, proper open subset Ω of Rn+1 is called a UR domain provided ∂Ω
is uniformly rectifiable and also

Hn(∂Ω \ ∂∗Ω) = 0. (3.1.22)
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We impose the last condition to eliminate such cases as a slit disk. Let us emphasize that, by
definition, a UR domain Ω has an Ahlfors regular boundary.

One important class of UR domains is the class of Ahlfors regular domains with the NTA
property, introduced in [55]. We recall the definition here, since these domains will play a role in
subsequent sections.

Definition 3.1.8 A nonempty, proper open subset Ω of Rn+1 is called an NTA (nontangentially

accessible) domain provided

Ω satisfies a two-sided corkscrew condition, (3.1.23)

and

Ω satisfies a Harnack chain condition. (3.1.24)

As mentioned right above Proposition 3.1.6, the (interior) corkscrew condition on Ω is that
there are constants M > 1 and R > 0 (called the corkscrew constants of Ω) such that for each
X ∈ ∂Ω and r ∈ (0, R) there exists Y = Y (X, r) ∈ Ω, called corkscrew point relative to X, such
that |X−Y | < r and dist(Y, ∂Ω) > M−1r. Next, we shall say that Ω satisfies an exterior corkscrew
condition if Rn+1 \ Ω has the (interior) corkscrew condition, and say that Ω satisfies a two-sided
corkscrew condition if Ω has both the interior and the exterior corkscrew condition.

The Harnack chain condition is defined as follows (with reference to M and R as above). First,
given X1, X2 ∈ Ω, a Harnack chain from X1 to X2 in Ω is a sequence of balls B1, . . . , BK ⊂ Ω such
that X1 ∈ B1, X2 ∈ BK and Bj ∩Bj+1 6= ∅ for 1 ≤ j ≤ K − 1, and such that each Bj has a radius
rj satisfying M−1rj < dist(Bj , ∂Ω) < Mrj . The length of the chain is K.

Then the Harnack chain condition on Ω is that if ε > 0 and X1, X2 ∈ Ω ∩ Br/4(Q) for some

Q ∈ ∂Ω, r ∈ (0, R), and if dist(Xj , ∂Ω) > ε and |X1 −X2| < 2kε, then there exists a Harnack chain
B1, . . . , BK from X1 to X2, of length K ≤ Mk, having the further property that the diameter of
each ball Bj is ≥ M−1 min

(
dist(X1, ∂Ω), dist(X2, ∂Ω)

)
.

If Ω is unbounded, the NTA condition also requires that R = ∞ and that Rn+1 \∂Ω has exactly
two connected components, Ω and Rn+1 \ Ω.

Finally, call Ω ⊂ Rn+1 a two-sided NTA domain if both Ω and Rn+1 \ Ω̄ are nontangentially
accessible domains.

Let us remark that

Ω satisfies (3.1.23) =⇒ ∂Ω = ∂∗Ω, (3.1.25)

Ω satisfies an exterior corkscrew condition =⇒ ∂Ω = ∂Ω. (3.1.26)

The fact that Ahlfors regular domains satisfying the condition (3.1.23) are UR domains is a special
case of Proposition 3.1.5; this class of domains was also investigated in [100]. As a consequence of
these observations and (2.2.17), we have the following.

Corollary 3.1.9 If Ω ⊆ Rn+1 is a domain satisfying a two-sided corkscrew condition and whose
boundary is Ahlfors regular, then Ω is a UR domain.

When discussing the boundary behavior of layer potential operators from either side of the bound-
ary, the following observation (whose simple proof is omitted) will be important.
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Proposition 3.1.10 If Ω ⊂ Rn+1 is a UR domain for which ∂Ω = ∂Ω̄ then Rn+1 \ Ω̄ is also a UR
domain.

As already pointed out in (3.1.26), ∂Ω = ∂Ω̄ is automatically satisfied if Ω has the exterior corkscrew
property. Parenthetically, we wish to point out that while being an Ahlfors regular domain does not,
generally speaking, imply the corkscrew condition, the following related result can be established
(by arguing as in [10]).

Proposition 3.1.11 If Ω ⊂ Rn+1 is an open set with an Ahlfors regular boundary then there exists
γ ∈ (0, 1) (depending only on the Ahlfors regularity constants of Ω) with the property that

∀X ∈ ∂Ω, ∀R > 0, ∃Q ∈ Rn+1 with B(Q, γR) ⊂ B(X, R) \ ∂Ω. (3.1.27)

For later purposes, it is useful to introduce a certain scale invariant local connectivity condition
for domains in Rn+1. To put this in the proper context, recall that a bounded open set Ω ⊂ Rn+1 is
called a John domain if there exist X∗ ∈ Ω, called the (global) John center, and Co > 1 such that
for every point X ∈ Ω there exists a rectifiable curve (called John path) γ : [0, ℓ] → Ω, parametrized
by the arc-length s ∈ [0, ℓ], such that γ(0) = X, γ(ℓ) = X∗ and

dist (γ(s), ∂Ω) > s/Co, ∀ s ∈ (0, ℓ]. (3.1.28)

This terminology has been introduced in [77], in homage of F. John who has first used such a
condition in his work in elasticity [57].

Assume that Ω is a John domain with center X∗ and consider an arbitrary point Q ∈ ∂Ω.
Pick a sequence Xj ∈ Ω converging to Q and denote by γj : [0, ℓj ] → Rn+1 the John path joining
Xj with X∗ in Ω. Note that, from (3.1.28), 0 < ℓj ≤ Codist (X∗, ∂Ω) for every j. Thus, by
passing to a subsequence, it can be assumed that ℓj → ℓ as j → ∞. If we now renormalize each
γj to γ̃j : [0, 1] → Rn+1, γ̃j(s) := γj(ℓjs), a simple application of the Arzela-Ascoli compactness
criterion then shows that, by eventually passing to a subsequence, the γ̃j ’s converge uniformly to
a rectifiable path γQ joining the boundary point Q with the John center X∗ in Ω and such that
dist (Z, ∂Ω) ≥ θ|Z − Q| for each Z ∈ γQ, where θ = θ(Ω, X∗, Q) > 0. For our purposes, we shall
need a local, scale invariant version of this property, which we term local John condition. This is
made precise in the definition below.

Definition 3.1.12 Let Ω ⊂ Rn+1 be an open set. This is said to satisfy a local John condition

if there exist θ ∈ (0, 1) and R > 0 (required to be ∞ if ∂Ω is unbounded), called the John constants of
Ω, with the following significance. For every Q ∈ ∂Ω and r ∈ (0, R) one can find Qr ∈ B(Q, r)∩Ω,
called John center relative to ∆(Q, r) := B(Q, r) ∩ ∂Ω, such that B(Qr, θr) ⊂ Ω and with the
property that for each X ∈ ∆(Q, r) one can find a rectifiable path γX : [0, 1] → Ω̄, whose length is
≤ θ−1r and such that

γX(0) = X, γX(1) = Qr, dist (γX(t), ∂Ω) > θ |γX(t) − X| ∀ t > 0. (3.1.29)

Finally, Ω is said to satisfy a two-sided local John condition if both Ω and Rn+1 \ Ω̄ satisfy a
local John condition.

Clearly, any domain satisfying a local John condition also satisfies a corkscrew condition. In
the opposite direction, we wish to point out that any NTA domain satisfies a local John condition.
In fact, the following stronger result holds.
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Lemma 3.1.13 Let Ω ⊂ Rn+1 be an NTA domain with constants M, R. Suppose that X ∈ Ω,
Y ∈ ∂Ω and that r ∈ (0, R), C > 1 are such that B(X, r) ⊂ B(Y, Cr) ∩ Ω. Then there exists
Co > 1 which depends only on C and the NTA constants of Ω along with a rectifiable path γ(X, Y )
of length ≤ Cor, joining X with Y in Ω, and such that dist (Z, ∂Ω) ≥ C−1

o |Z − Y | for each point
Z ∈ γ(X, Y ).

In particular, any NTA domain satisfies a local John condition.

Proof. To justify the existence of such a path, set X0 := X and, for j = 1, 2, ..., let Xj denote
a corkscrew point relative to Y at scale ≈ 2−jr. It is then not difficult to check, with the help
of the Harnack chain condition, that there exist a number No ∈ N and a constant C1 > 1 (both
depending only on the NTA constants of Ω and the constant C in the statement of the lemma)
with the property that, for each j ∈ N, one can find a family of balls {Bk}1≤k≤N , with N ≤ No, of
radii ≈ 2−jr such that CBk ⊂ Ω, Xj−1 ∈ B1, Xj ∈ BN , and Bk ∩ Bk+1 6= ∅ for k ∈ {1, ..., N − 1}.
Consequently, there exists a polygonal path γj from Xj−1 to Xj which stays roughly at distance
2−jr from ∂Ω, and has length ≤ C22

−jr, for some C2 = C2(M, R, C) > 1. If we now take γ(X, Y )
to be the union of the paths γj , j ∈ N, it follows that γ(X, Y ) is rectifiable, and has length
≤ C3

∑∞
j=1 2−jr = C3r, for some geometrical constant C3 > 1. Furthermore, if Z ∈ γ(X, Y ),

say Z ∈ γj for some j ∈ N, then on the one hand dist (Z, ∂Ω) ≥ C42
−jr, while on the other

hand |Z − Y | ≤ |Z − Xj | + |Xj − Y | ≤ length (γj) + C5 dist (Xj , ∂Ω) ≤ C62
−jr. Altogether,

|Z − Y | ≤ Co dist (Z, ∂Ω) for some Co > 1, finishing the proof of the lemma. ¤

From Definition 3.1.12 and Corollary 3.1.9 we also have:

Corollary 3.1.14 Let Ω ⊆ Rn+1 be a domain satisfying a two-sided local John condition and whose
boundary is Ahlfors regular. Then Ω is a UR domain, of locally finite perimeter.

In the last part of this subsection we shall show that any BMO1 domain is NTA, which appears
to be folklore. To set the stage, recall that a function ϕ : Rn → R belongs to Zygmund’s Λ∗(Rn)
class if

‖ϕ‖Λ∗(Rn) := sup
x,h∈Rn

|ϕ(x + h) + ϕ(x − h) − 2ϕ(x)|
|h| < ∞. (3.1.30)

A typical example of a function in Λ∗(Rn) is Weierstrass’ nowhere differentiable function

∞∑

j=0

sin (π2jx)

2j
, x ∈ R. (3.1.31)

Going further, Zygmund’s λ∗(Rn) class is the collection of functions ϕ ∈ Λ∗(Rn) satisfying

lim
h→0

|ϕ(x + h) + ϕ(x − h) − 2ϕ(x)|
|h| = 0 (3.1.32)

uniformly in x. The space λ∗(Rn) contains functions which are quite irregular, such as

∞∑

j=1

cos (2jx)

2j
√

j
, x ∈ R, (3.1.33)
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which is almost everywhere not differentiable (cf. p. 47 in [119]).
For a function ϕ : Rn → R, consider next the following conditions

sup
B ball

(
inf

L affine

‖ϕ − L‖L∞(B)

|B|1/n

)
< ∞, (3.1.34)

lim
r→0

{
sup

B ball of radius ≤r

(
inf

L affine

‖ϕ − L‖L∞(B)

|B|1/n

)}
= 0. (3.1.35)

It is then clear that (3.1.34) implies (3.1.30), and that (3.1.34) together with (3.1.35) imply (3.1.32).
In fact, the opposite implications are also valid. Indeed, a good affine approximation to the graph
of ϕ near (x, ϕ(x)) at scale r > 0 can be constructed as follows. Fix η ∈ C∞

0 (Rn), nonnegative,
even, with

∫
η = 1, and consider L(z) := ϕ(x) + 〈∇(ϕ ∗ ηr)(x), z − x〉, z ∈ Rn. Then, according to

Lemma 3.7 on p. 94 in [55] and its proof,

sup
z∈B(x,r)

|ϕ(z) − L(z)|
r

≤ C sup
z∈B(x,r)

sup
|h|<r

|ϕ(z + h) + ϕ(z − h) − 2ϕ(z)|
|h| ≤ C‖ϕ‖Λ∗(Rn). (3.1.36)

The desired conclusions follow from this double inequality.
For 1 ≤ p < ∞, define the local Lp-oscillations of a function f ∈ L1

loc(R
n) as

{f}p,r := sup
B ball of radius ≤r

(∫
−

B

∣∣∣f(x) −
(∫
−

B
f
)∣∣∣

p
dx

)1/p
, r > 0, (3.1.37)

so that, for each fixed p ∈ [1,∞), we have ‖f‖∗ ≈ supr>0{f}p,r by the John-Nirenberg inequality.
Also, using this and the fact that VMO(Rn) is the closure in BMO(Rn) of the space of uniformly
continuous functions belonging to BMO(Rn), it can be checked that f ∈ VMO(Rn) if and only if
f ∈ BMO(Rn) and limr→0{f}p,r = 0. Let us also note here a well-known estimate relating integral
averages over concentric balls of different radii in concert with Hölder’s inequality imply

∣∣∣∣∣

∫
−

B(x,R)
f(y) dy −

∫
−

B(x,r)
f(y) dy

∣∣∣∣∣ ≤ Cn

(
1 + log

(R

r

))
{f}p,R, (3.1.38)

whenever x ∈ Rn, 0 < r < R < ∞ and 1 ≤ p < ∞.

Proposition 3.1.15 The following inclusions

BMO1(R
n) →֒ Λ∗(Rn), (3.1.39)

VMO1(R
n) →֒ λ∗(R

n), (3.1.40)

are well-defined and continuous.

Proof. Assume that ϕ ∈ BMO1(R
n) and fix x ∈ Rn, r > 0, arbitrary. Set

m(x, r) :=

∫
−

B(x,r)
∇ϕ(y) dy, L(y) := ϕ(x) + 〈m(x, 4r), y − x〉, y ∈ Rn. (3.1.41)
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Next, fix two parameters, ε ∈ (0, 1) and p > n. In an analogous fashion to (2.5.9), for any
y ∈ B(x, r) we may then estimate

|ϕ(y) − L(y)|
r

=
|ϕ(y) − ϕ(x) − 〈m(x, 4r), y − x〉|

r

≤ Cp,n
|x − y|

r

(∫
−

|x−z|≤2|x−y|
|∇ϕ(z) − m(x, 4r)|p dz

)1/p

≤ Cp,n
|x − y|

r

(∫
−

|x−z|≤2|x−y|
|∇ϕ(z) − m(x, 2|x − y|)|p dz

)1/p

+Cp,n
|x − y|

r
|m(x, 2|x − y|) − m(x, 4r)|

≤ Cp,n
|x − y|

r
{∇ϕ}p,4r

(
1 + log

( 2r

|x − y|
))

≤ Cp,n,ε{∇ϕ}p,4r

( |x − y|
r

)1−ε
≤ Cp,n,ε{∇ϕ}p,4r, (3.1.42)

by using Mary Weiss’s lemma (cf. [50], Lemma 2.10) and referring (twice) to (3.1.38). Hence,
|ϕ(y) − L(y)| ≤ Cr‖∇ϕ‖∗ and, further,

sup
B ball of radius r

(
inf

L affine

‖ϕ − L‖L∞(B)

r

)
≤ C‖∇ϕ‖∗. (3.1.43)

This proves (3.1.39). Since with the help of (3.1.42) one can readily check that (3.1.35) holds, we
may conclude that the inclusion (3.1.40) is also well-defined and bounded. ¤

According to Proposition 3.6 on p. 94 in [55], any Λ∗-domain, i.e., a set of the form

Ω := {X = (x, xn+1) ∈ Rn+1 : xn+1 > ϕ(x)} (3.1.44)

with ϕ ∈ Λ∗(Rn), is NTA. As a result of this and Proposition 3.1.15, any BMO1 domain is NTA.
We conclude this section with a review of sufficient conditions guaranteeing that the harmonic

measure of a domain is absolutely continuous with respect to its surface measure.

Proposition 3.1.16 Let Ω ⊂ Rn+1 be an open set, with an Ahlfors regular boundary ∂Ω which
satisfies the “two disks” condition introduced in Proposition 3.1.5. In addition, assume that Ω
satisfies an interior corkscrew condition and the Harnack chain condition (cf. Definition 3.1.8).
Fix Xo ∈ Ω and denote by ωXo the harmonic measure on ∂Ω (relative to Ω) with pole at Xo.

Then ωXo belongs to the Muckenhoupt class A∞ with respect to σ := Hn⌊∂Ω. In particular,
ωXo and σ are mutually absolutely continuous.

With the two disks condition replaced by a two-sided corkscrew condition and when Rn\∂Ω has
precisely two connected components, this has been first obtained in [104]. In the current format,
the above result appears as Theorem 2 on p. 842 in [31]. A result of a similar flavor, when the
Harnack chain condition is suppressed, has been established by B.Bennewitz and J. Lewis in [5].
Their Theorem 1 entails the following:
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Proposition 3.1.17 In the context of Proposition 3.1.16, the mutual absolute continuity of ωXo

and σ remains valid even when the assumption that Ω satisfies the Harnack chain condition is
dropped.

3.2 First estimates on layer potentials

The purpose of this subsection is to provide nontangential maximal function estimates for a class
of layer potentials. To be concrete, take a function

k ∈ CN (Rn+1 \ {0}) with k(−X) = −k(X) and k(λX) = λ−nk(X) ∀λ > 0, (3.2.1)

and define the singular integral operator

T f(X) :=

∫

∂Ω
k(X − Y )f(Y ) dσ(Y ), X ∈ Ω, (3.2.2)

as well as

T∗f(X) := sup
ε>0

|Tεf(X)|, X ∈ ∂Ω, where (3.2.3)

Tεf(X) :=

∫

Y ∈∂Ω

|X−Y |>ε

k(X − Y )f(Y ) dσ(Y ), X ∈ ∂Ω. (3.2.4)

The following result was established in Proposition 4 bis of [28].

Proposition 3.2.1 Assume Ω ⊂ Rn+1 is a UR domain. Take p ∈ (1,∞). There exist N ∈ Z+

and C ∈ (0,∞), each depending only on p along with the Ahlfors regularity and UR constants of
∂Ω, with the following property. If k satisfies (3.2.1), then

‖T∗f‖Lp(∂Ω,dσ) ≤ C‖k|Sn‖CN‖f‖Lp(∂Ω,dσ) (3.2.5)

for each f ∈ Lp(∂Ω, dσ).

Remark. We often refer to “geometrical characteristics” of Ω as the collection of Ahlfors regularity
and UR constants, and use the notation G(Ω), so C above has the form C = C(G(Ω), p). In other
settings, G(Ω) might involve other geometrical characteristics, such as those appearing to define
the John condition or the NTA condition.

To help put matters into proper perspective it is worth recalling that, with Ahlfors regularity as
a background assumption, the validity of (3.2.5) for all kernels k as in (3.2.1) is actually equivalent
to ∂Ω being uniformly rectifiable. See the theorem on pp. 10-14 in [33]. In this connection, a
significant open problem is to show that, for the left-to-right implication, it suffices to consider
only the Riesz kernels, i.e. kj(X) := xj/|X|n+1, 1 ≤ j ≤ n + 1. Regarding the nature of the
principal value integrals associated with the Riesz kernels, a recent result from [113] states that if
E ⊂ Rn+1 has Hn(E) < ∞ then
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E is countably rectifiable (of dimension n) ⇐⇒ (3.2.6)

lim
ε→0+

∫

Y ∈E: |Y −X|>ε

xj − yj

|X − Y |n+1
dHn(Y ) exists for Hn-a.e. X ∈ E.

We will concern ourselves with issues pertaining to the existence of principal value singular integral
operators later on, in § 3.3-§ 3.4.

Moving on, let L1,∞(∂Ω, dσ) stand for the weak-L1 space on ∂Ω, i.e. the collection of all σ-

measurable functions f on ∂Ω for which ‖f‖L1,∞(∂Ω,dσ) := supλ>0

[
λ σ({X ∈ ∂Ω : |f(X)| > λ})

]
is

finite. Corresponding to the case p = 1 in (3.2.5), we have the following.

Proposition 3.2.2 In the context of Proposition 3.2.1, there also holds

‖T∗f‖L1,∞(∂Ω,dσ) ≤ C(Ω, k)‖f‖L1(∂Ω,dσ) (3.2.7)

for each f ∈ L1(∂Ω, dσ).

Proof. Essentially, this is a consequence of Proposition 3.2.1 and standard Calderón-Zygmund
theory. For the benefit of the reader, we include a brief sketch. The departure point is the estimate

‖Tεf‖L1,∞(∂Ω,dσ) ≤ C(Ω, k)‖f‖L1(∂Ω,dσ), (3.2.8)

uniformly for ε > 0, itself a consequence of Proposition 3.2.1 and the Calderón-Zygmund decom-
position lemma (that the latter continues to hold in the context of spaces of homogeneous type is
well-known; see, e.g., [23]). Next, a variant of the classical Cotlar lemma gives the following. For
each γ ∈ (0, 1) there exists a constant C, depending only on ∂Ω, k and γ with the property that,
for each f ∈ L1(∂Ω, dσ) and X ∈ ∂Ω,

T∗,εf(X) ≤ CMf(X) + CMγ(Tε0f)(X), ∀ ε, ε0, with ε > ε0 > 0, (3.2.9)

where M is the usual Hardy-Littlewood maximal function,

T∗,εf(X) := sup
ε′>ε

|Tε′f(X)|, X ∈ ∂Ω, (3.2.10)

and

Mγf(X) := sup
R

(∫
−

∆(X,R)
|f |γ dσ

)1/γ
, X ∈ ∂Ω. (3.2.11)

With (3.2.8)-(3.2.9) in hand, (3.2.5) follows from the mapping properties of the Hardy-Littlewood
maximal function; see, e.g., pp. 250-251 in [82] for a related discussion. ¤

We further complement Proposition 3.2.1 with the following nontangential maximal function
estimate.
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Proposition 3.2.3 In the setting of Proposition 3.2.1, for each α > 0 there exists a finite constant
C > 0, depending only on p, α, as well as the Ahlfors regularity and UR constants of ∂Ω, such that

‖N (T f)‖Lp(∂Ω,dσ) ≤ C‖k|Sn‖CN‖f‖Lp(∂Ω,dσ). (3.2.12)

Moreover, corresponding to p = 1,

‖N (T f)‖L1,∞(∂Ω,dσ) ≤ C(Ω, k, α)‖f‖L1(∂Ω,dσ). (3.2.13)

Proof. To begin, assume that X ∈ Ω and Z ∈ ∂Ω are fixed points such that

|X − Z| < (1 + α) dist (X, ∂Ω). (3.2.14)

Set ε := |X − Z| and estimate

|T f(X) − T2εf(Z)| =
∣∣∣
∫

∂Ω

k(X − Y )f(Y ) dσ(Y ) −
∫

Y ∈∂Ω

|Z−Y |>2ε

k(Z − Y )f(Y ) dσ(Y )
∣∣∣

≤
∣∣∣

∫

Y ∈∂Ω

|Z−Y |<2ε

k(X − Y )f(Y ) dσ(Y )
∣∣∣

+
∣∣∣

∫

Y ∈∂Ω

|Z−Y |>2ε

(
k(X − Y ) − k(Z − Y )

)
f(Y ) dσ(Y )

∣∣∣

=: I + II. (3.2.15)

Since

|X − Y | ≥ dist (X, ∂Ω) >
|X − Z|
1 + α

=
ε

1 + α
, (3.2.16)

we have

|I| ≤ C(α, n)

εn

∫

Y ∈∂Ω

|Z−Y |<2ε

|f(Y )| dσ(Y ) ≤ C(α,Ω)Mf(Z), (3.2.17)

by Ahlfors regularity. On the other hand, if X ∈ Γ(Z), Y ∈ ∂Ω and |Y − Z| > 2ε = 2|X − Z|, we
also have |tX + (1 − t)Z − Y | ≥ C|Z − Y | for t ∈ [0, 1], and hence the Mean Value Theorem gives

|k(X − Y ) − k(Z − Y )| ≤ |X − Z| sup
0≤t≤1

|∇k(tX + (1 − t)Z − Y )|

≤ C
ε

|Z − Y |n+1
. (3.2.18)

Consequently, a familiar argument gives
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|II| ≤
∫

Y ∈∂Ω

|Z−Y |>2ε

ε

|Z − Y |n+1
|f(Y )| dσ(Y )

= cn

∞∑

j=1

∫

Y ∈∂Ω

2jε<|Z−Y |<2j+1ε

ε

|Z − Y |n+1
|f(Y )| dσ(Y )

≤ cn

∞∑

j=1

2−j(2j+1ε)−n

∫

Y ∈∂Ω

|Z−Y |<2j+1ε

|f(Y )| dσ(Y )

≤ C(Ω)
∞∑

j=1

2−jMf(Z) = C(Ω)Mf(Z), (3.2.19)

where the next-to-the-last step utilizes Ahlfors regularity.
In summary, the above analysis proves that for any two points, X ∈ Ω and Z ∈ ∂Ω, such that

(3.2.14) holds we have

|T f(X) − T2εf(Z)| ≤ C(α,Ω)Mf(Z), (3.2.20)

which further entails

|T f(X)| ≤ |T∗f(Z)| + CMf(Z). (3.2.21)

For each Z ∈ ∂Ω fixed, with the property that Γ(Z) 6= ∅, by taking the supremum in X ∈ Γ(Z)
in (3.2.21) we arrive at

N (T f)(Z) ≤ T∗f(Z) + CMf(Z). (3.2.22)

Since the above estimate trivially valid when Γ(Z) = ∅, it follows that (3.2.22) holds for all Z ∈ ∂Ω.
Now (3.2.12) is a consequence of this, (3.2.5) and Proposition 2.1.1. Finally, (3.2.13) follows

from (3.2.22), (2.1.4) and Proposition 3.2.2. ¤

Recall next the Hardy spaces introduced in §2.4.

Proposition 3.2.4 In the context of Proposition 3.2.1, for each p ∈ ( n
n+1 , 1] and α > 0 there exists

a finite constant C = C(p, α,Ω) such that

‖N (T f)‖Lp(∂Ω,dσ) ≤ C‖k|Sn‖CN‖f‖Hp
at(∂Ω,dσ). (3.2.23)

Proof. It suffices to estimate N (T a) when a is a p-atom, i.e. it satisfies (2.4.11). First, for any
κ > 1, the estimate (3.2.12) with p = 2 gives
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∫

B(Xo,κr)∩∂Ω

|N (T a)|p dσ ≤ ‖N (T a)‖p
L2(∂Ω,dσ)

· σ(∆(Xo, κr))1−2/p

≤ C‖a‖p
L2(∂Ω,dσ)

· σ(∆(Xo, κr))1−2/p

≤ C(p, κ, Ω) < +∞, (3.2.24)

by (2.4.11) and Ahlfors regularity.
On the other hand, if X ∈ Ω is such that |X − Xo| ≥ 2r then, based on the vanishing moment

condition for the atom and the Mean Value Theorem, we may write

|T a(X)| ≤
∫

B(Xo,r)
|k(X − Y ) − k(X − Xo)||a(Y )| dσ(Y )

≤ C
r

|X − Xo|n+1
σ(∆(Xo, r))

1−1/p. (3.2.25)

Now, if Y ∈ ∂Ω, X ∈ Ω are such that

|Y − Xo| ≥ 2(2 + α)r and |X − Y | < (1 + α)dist (X, ∂Ω) (3.2.26)

then

2(2 + α)r ≤ |Y − Xo| ≤ |Y − X| + |X − Xo| ≤ (2 + α)|X − Xo|. (3.2.27)

In particular,

|X − Xo| ≥ 2r and |X − Xo| ≥
1

2 + α
|Y − Xo|, (3.2.28)

so that (3.2.25) gives

|N (T a)(Y )| ≤ C
r

|Y − Xo|n+1
σ(∆(Xo, r))

1−1/p, ∀Y ∈ ∂Ω \ ∆(Xo, (2 + α)r). (3.2.29)

Consequently, if we set R := (2+α)r then (3.2.29) and the defining condition for Ahlfors regularity
give

∫

∂Ω\∆(Xo,R)
|N (T a)(Y )|p dσ(Y )

≤ Crpσ(∆(Xo, r))
p−1

∞∑

j=0

∫

∆(Xo,2j+1R)\∆(Xo,2jR)

dσ(Y )

|Y − Xo|p(n+1)

≤ Crpσ(∆(Xo, r))
p−1

∞∑

j=0

(2jR)n · (2jR)−p(n+1)

≤ C(p, α,Ω) < +∞, (3.2.30)

61



since p(n + 1) > n. If we now choose κ := 2 + α, it follows that ‖N (T a)‖Lp(∂Ω,dσ) ≤ C for some
finite constant C > 0, independent of the atom. This readily yields (3.2.23), finishing the proof of
the proposition. ¤

It is also useful to have estimates of the form

T : Lp(∂Ω, dσ) −→ Lr(Ω), (3.2.31)

when T has the form (3.2.2). We present two ways to do this. One is to combine Proposition 3.2.3
with a result of the form

‖u‖Lr(Ω) ≤ C‖Nu‖Lp(∂Ω,dσ). (3.2.32)

We give such an estimate in Proposition 3.2.7 below. First, we tackle (3.2.31) by interpolating
between cases p = 1 and p = ∞. This method is elementary and while not quite as sharp as the
result derivable from Proposition 3.2.7, it applies to a larger class of domains, which will be useful
in Sections 5–7.

Proposition 3.2.5 Let Ω ⊂ Rn+1 be a bounded, open, Ahlfors regular domain, with the property
that Hn(∂Ω\∂∗Ω) = 0. Let K : Ω×∂Ω → R be continuous on the complement of {(X, X) : X ∈ ∂Ω}
and satisfy

|K(X, Y )| ≤ C|X − Y |−n, (3.2.33)

and set

T f(X) =

∫

∂Ω

K(X, Y )f(Y ) dσ(Y ), X ∈ Ω. (3.2.34)

Then, for p ≥ 1, (3.2.31) holds for all r < p(n + 1)/n.

Proof. It is elementary from bounds

‖K(·, Y )‖Lq(Ω) ≤ Cq, q <
n + 1

n
(3.2.35)

that

T : L1(∂Ω, dσ) −→ Lq(Ω), ∀ q <
n + 1

n
. (3.2.36)

For this one needs only Ω bounded and Hn(∂Ω) < ∞. We will show that

T : L∞(∂Ω, dσ) −→ Ls(Ω), ∀ s < ∞. (3.2.37)

Then (3.2.31) follows by interpolation from (3.2.36)–(3.2.37).
To prove (3.2.37), we will establish an estimate of the form

∫

∂Ω

|K(X, Y )| dσ(Y ) ≤ γ(X), γ ∈ Ls(Ω), ∀ s < ∞. (3.2.38)

Then

∣∣∣
∫

∂Ω

K(X, Y )f(Y ) dσ(Y )
∣∣∣ ≤ ‖f‖L∞(∂Ω,dσ) γ(X), (3.2.39)
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and (3.2.37) follows. Here is part of (3.2.38).

Lemma 3.2.6 In the setting of Proposition 3.2.5,

∫

∂Ω

|K(X, Y )| dσ(Y ) ≤ C log
2M

dist(X, ∂Ω)
, (3.2.40)

with M = diam Ω.

Proof. Given X ∈ Ω, δ = dist(X, ∂Ω), take P ∈ ∂Ω with |X − P | = δ and set

A0 := {X ′ ∈ ∂Ω : |X ′ − P | ≤ 2δ},
Ak := {X ′ ∈ ∂Ω : |X ′ − P | ∈ (2kδ, 2k+1δ]}, k ≥ 1.

(3.2.41)

Ahlfors regularity of ∂Ω yields

Hn(Ak) ≤ C(2kδ)n, (3.2.42)

so

∫

Ak

|K(X, Y )| dσ(Y ) ≤ C
(2kδ)n

(2kδ)n
= C. (3.2.43)

Summing (3.2.43) over k ≥ 0 such that 2kδ ≤ M gives (3.2.40). ¤

We now present the

End of proof of Proposition 3.2.5. The fact that γ(X) = C log 2M/dist(X, ∂Ω) belongs to Ls(Ω)
for all s < ∞ follows immediately from the estimate

vol (Oδ) ≤ Cδ, (3.2.44)

for

Oδ = {X ∈ Ω : dist (X, ∂Ω) ≤ δ}, (3.2.45)

valid when Ω is bounded and Ahlfors regular. The estimate (3.2.44) has a short, elementary proof,
but rather than give it we note that it follows upon taking v ≡ 1 in (2.3.10). ¤

We now present a sharp estimate of the form (3.2.32). Specifically, we have

Proposition 3.2.7 Let Ω ⊂ Rn+1 be an Ahlfors regular domain which is either bounded, or has
an unbounded boundary. Then for each p ∈ (0,∞), (3.2.32) holds with r = p(n + 1)/n, i.e.,

‖u‖Lp(n+1)/n(Ω) ≤ C‖Nu‖Lp(∂Ω,dσ), (3.2.46)

for some geometrical constant C, independent of the function u : Ω → R.
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Proof. To prove the proposition, fix p ∈ (0,∞) and assume that u is such that ‖Nu‖Lp(∂Ω,dσ) < ∞.
We will first show that there exists a geometric constant C > 0 with the property that

|{X ∈ Ω : |u(X)| > λ}| ≤ Cσ({Q ∈ ∂Ω : Nu(Q) > λ})(n+1)/n, ∀λ > 0, (3.2.47)

where |E| denotes the (n + 1)-dimensional Euclidean measure of a measurable set E ⊆ Rn+1. The
strategy for proving (3.2.47) is to work with “tent” regions

T (O) := Ω \
[ ⋃

P∈∂Ω\O
Γα(P )

]
(3.2.48)

associated with arbitrary open subsets O of ∂Ω. The ingredients going into the proof of (3.2.46)
are the simple inclusion (itself a consequence of (3.2.48))

{X ∈ Ω : |u(X)| > λ} ⊆ T ({Q ∈ ∂Ω : Nu(Q) > λ}), ∀λ > 0, (3.2.49)

and the geometric estimate

|T (O)| ≤ Cσ(O)(n+1)/n, ∀O proper open subset of ∂Ω. (3.2.50)

Then (3.2.47) follows writing (3.2.50) for O := {Q ∈ ∂Ω : Nu(Q) > λ}, which, given that
Nu ∈ Lp(∂Ω, dσ), is a proper open set of ∂Ω when ∂Ω is unbounded. When Ω is bounded, we can
ensure that (3.2.50) also holds in the case when O = ∂Ω by taking C > σ(∂Ω)−(n+1)/n|Ω|.

Our next task is to prove (3.2.50). To do this, fix a proper open subset O of ∂Ω and decompose O
into a finite-overlap family of Whitney surface balls {∆k} (considering ∂Ω as a space of homogeneous
type; see Theorem 3.1 and the footnote on p. 71 of [22] for details). Also, for each surface ball
∆ := BR(Q) ∩ ∂Ω, Q ∈ ∂Ω, 0 < R < diam Ω, consider the Carleson region

Ct(∆) := BtR(Q) ∩ Ω, (3.2.51)

where t > 0 is a large constant, to be specified later. We now claim that t can be chosen so that

T (O) ⊂
⋃

k

Ct(∆k). (3.2.52)

In order to justify (3.2.52) we note that the definition (3.2.48) can be rephrased as

T (O) = {X ∈ Ω : dist(X,O) ≤ (1 + α)−1 dist (X, ∂Ω \ O)}. (3.2.53)

Let now X be an arbitrary point in T (O) and, for some small ε > 0, pick X∗ ∈ O such that

|X − X∗| ≤ (1 + ε) dist (X,O). (3.2.54)

Then there exists an index k for which X∗ ∈ ∆k and we shall show that ε and t can be chosen so
as to guarantee that

X ∈ Ct(∆k). (3.2.55)

Indeed, assume ∆k = BRk
(Qk) ∩ ∂Ω for some Qk ∈ ∂Ω and Rk ∈ (0, diam Ω), and write
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|X − X∗| ≤ (1 + ε) dist (X,O) ≤ 1 + ε

1 + α
dist (X, ∂Ω \ O)

≤ 1 + ε

1 + α

(
|X − X∗| + dist (X∗, ∂Ω \ O)

)
(3.2.56)

≤ 1 + ε

1 + α

(
|X − X∗| + CRk

)
.

Choosing ε ∈ (0, α), this now yields

|X − X∗| ≤ C
1 + ε

α − ε
Rk, (3.2.57)

so that (3.2.55) holds provided we take t > 1 + C(1 + ε)/(α − ε) to begin with.
Having established (3.2.52), we can finish the proof of (3.2.50) by estimating

|T (O)| ≤
∑

k

|Ct(∆k)| ≤ C
∑

k

Rn+1
k ≤ C

∑

k

σ(∆k)
(n+1)/n

≤ C
[∑

k

σ(∆k)
](n+1)/n

≤ Cσ(O)(n+1)/n, (3.2.58)

where the third inequality is based on the Ahlfors regularity of ∂Ω. This justifies (3.2.50).
There remains to show how to use (3.2.47) in the derivation of (3.2.46). First, Chebysheff’s

inequality gives

λp σ({Q ∈ ∂Ω : Nu(Q) > λ}) ≤ ‖Nu‖p
Lp(∂Ω,dσ), ∀λ > 0. (3.2.59)

Second, from (3.2.50) and (3.2.59), for each λ > 0 we have

λ−1+p(n+1)/n |{X ∈ Ω : |u(X)| > λ}|
≤ Cλ−1+p+p/n σ({Q ∈ ∂Ω : Nu(Q) > λ})1+1/n

≤ C‖Nu‖p/n
Lp(∂Ω,dσ) λp−1 σ({Q ∈ ∂Ω : Nu(Q) > λ}). (3.2.60)

At this stage, integrating the extreme sides of (3.2.60) over λ ∈ (0,∞) yields (3.2.46). ¤

Remark. If Ω is a smoothly bounded domain in Rn+1 and u is a harmonic function with, say
Nu ∈ L2(∂Ω, dσ), then the global Sobolev regularity of u in Ω is, generally speaking, no better
than H1/2(Ω). This space further embeds into L2(n+1)/n(Ω). Similar considerations apply to other
values of p 6= 2, and, in this sense, the result above is sharp. Given its significance when Ω is
bounded and u ≡ 1, the estimate (3.2.46) can be thought of as a weighted isoperimetric inequality,
in which the functions u, Nu play the role of weights.

Having established Proposition 3.2.7, we can now present a version of Theorem 2.3.1 which
applies to domains which are not necessarily bounded.

Theorem 3.2.8 Let Ω ⊂ Rn+1 be an open set which is either bounded or has an unbounded bound-
ary. Assume that ∂Ω is Ahlfors regular and satisfies (2.3.1) (thus, in particular, Ω is of locally
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finite perimeter). As before, set σ := Hn⌊∂Ω and denote by ν the measure theoretic outward unit
normal to ∂Ω. Then Green’s formula (2.3.2) holds for each vector field v ∈ C0(Ω) that satisfies

div v ∈ L1(Ω), N v ∈ L1(∂Ω, dσ) ∩ Lp
loc(∂Ω, dσ) for some p ∈ (1,∞),

and the pointwise nontangential trace v
∣∣
∂Ω

exists σ-a.e. on ∂Ω.
(3.2.61)

Proof. Assume that ∂Ω is unbounded. As a first step we note that, as is apparent from a careful
inspection of the proof of Theorem 2.3.1, formula (2.3.2) continues to hold for vector fields v ∈ C0(Ω)
satisfying

div v ∈ L1(Ω), N v ∈ Lp(∂Ω, dσ) for some p ∈ (1,∞),

the pointwise nontangential trace v
∣∣
∂Ω

exists σ-a.e.

and supp v is a bounded subset of Ω.

(3.2.62)

To continue, pick a function ϕ ∈ C∞
0 (Rn+1) satisfying ϕ ≡ 1 on B(0, 1), ϕ ≡ 0 outside B(0, 2),

and for each R > 0 set ϕR(X) := ϕ(X/R). Hence, ϕR ≡ 1 on B(0, R), ϕR(X) ≡ 0 outside
B(0, 2R), |ϕR(X)| ≤ C and |∇ϕR(X)| ≤ C/R with C > 0 independent of X and R. Thanks to
Proposition 3.2.7 and the fact that, by Proposition 2.3.2, Ω is weakly accessible, if v ∈ C0(Ω) is a
vector field satisfying (3.2.61) we have

‖v‖L(n+1)/n(Ω) + ‖v|∂Ω‖L1(∂Ω,dσ) ≤ C‖N v‖L1(∂Ω,dσ) < +∞. (3.2.63)

Also, ϕRv is as in (3.2.62) so for every R > 0 we may write

∫

∂Ω
〈ν, v〉ϕR dσ =

∫

Ω
div (ϕRv) dX =

∫

Ω

(
ϕR div v + 〈∇ϕR, v〉

)
dX. (3.2.64)

It is then clear from (3.2.63) and hypotheses that

∫

∂Ω
〈ν, v〉ϕR dσ →

∫

∂Ω
〈ν, v〉 dσ and

∫

Ω
ϕR div v dX →

∫

Ω
div v dX as R → ∞. (3.2.65)

Set ΩR := Ω ∩ (B(0, 2R) \ B(0, R)) so that supp (∇ϕR) ⊆ ΩR and |ΩR| ≤ CRn+1, then estimate

∣∣∣
∫

Ω
〈∇ϕR, v〉 dX

∣∣∣ ≤ C

R

∫

ΩR

|v(X)| dX ≤ C

R

(∫

ΩR

|v(X)|(n+1)/n dX
) n

n+1 · R(n+1)(1− n
n+1

)

= C
(∫

ΩR

|v(X)|(n+1)/n dX
) n

n+1 −→ 0, as R → ∞, (3.2.66)

by (3.2.63). Hence, passing to limit R → ∞ in (3.2.64) yields (2.3.2). ¤

For scalar-valued functions, the following version of Theorem 3.2.8 holds.
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Corollary 3.2.9 Assume that Ω ⊂ Rn+1 is an open set which is either bounded or has an un-
bounded boundary. In addition, suppose that ∂Ω is Ahlfors regular and satisfies (2.3.1) Set σ :=
Hn⌊∂Ω and denote by ν = (ν1, ..., νn+1) the measure theoretic outward unit normal to ∂Ω. Then

∫

Ω
(∂ju)(X)v(X) dX = −

∫

Ω
(∂jv)(X)u(X) dX +

∫

∂Ω
νjuv dσ (3.2.67)

for each j ∈ {1, ..., n + 1} and each scalar-valued functions u, v ∈ C0(Ω) with ∂ju, ∂jv ∈ L1
loc(Ω)

and which also satisfy

u∂jv, v∂ju ∈ L1(Ω), N (uv) ∈ L1(∂Ω, dσ) and (uv)
∣∣
∂Ω

exists σ-a.e. on ∂Ω. (3.2.68)

Proof. Granted the current hypotheses, it can be checked that in the sense of distributions

∂j(uv) = (∂ju)v + (∂jv)u in Ω. (3.2.69)

See the discussion on p. 210 in [2]. Then (3.2.67) follows as soon as we prove that

∫

Ω
(∂jw)(X) dX =

∫

∂Ω
νjw dσ (3.2.70)

for each j ∈ {1, ..., n + 1} and each scalar-valued function w ∈ C0(Ω) which satisfies

∂jw ∈ L1(Ω), Nw ∈ L1(∂Ω, dσ) and w
∣∣
∂Ω

exists σ-a.e. on ∂Ω. (3.2.71)

Indeed, it suffices to take w := uv and invoke (3.2.69)-(3.2.70). To justify (3.2.70), pick a function
ϕ ∈ C∞

0 ((−2, 2)) with ϕ ≡ 1 on (−1, 1), and set ψ(t) :=
∫ t
0 ϕ(s) ds, t ∈ R. Finally, define

ψR(t) := Rψ(t/R), R > 0, and consider vR(X) := ψR(v(X)), X ∈ Ω. Then vR ∈ C0(Ω) ∩ L∞(Ω)
and, in the sense of distributions,

∂jvR = (ψ′
R ◦ v) (∂jv) ∈ L1(Ω). (3.2.72)

Then (3.2.71) follows by writing the version of Green’s formula established in Theorem 3.2.8 for
the vector field vRej and then letting R → ∞. ¤

3.3 Boundary behavior of Newtonian layer potentials

We need to complement the estimates of §3.2 with results on the limiting behavior of T f(X) as
X → Z ∈ ∂Ω. In this section we accomplish this for the double layer Newtonian potential and
variants, before tackling more general cases in the following section.

Recall the (harmonic) double layer potential operator associated with Ω

Df(X) :=
1

ωn

∫

∂Ω

〈ν(Y ), Y − X〉
|X − Y |n+1

f(Y ) dσ(Y ), X ∈ Ω, (3.3.1)

where ωn is the surface area of the unit sphere in Rn+1, as well as its principal-value version
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Kf(X) := lim
ε→0+

Kεf(X), X ∈ ∂Ω where (3.3.2)

Kεf(X) :=
1

ωn

∫

Y ∈∂Ω

|X−Y |>ε

〈ν(Y ), Y − X〉
|X − Y |n+1

f(Y ) dσ(Y ), X ∈ ∂Ω. (3.3.3)

Here, ν(Y ) denotes the outward normal to ∂Ω at Y . In analogy with (3.2.3), we also set

K∗f(X) := sup
ε>0

|Kεf(X)|, X ∈ ∂Ω. (3.3.4)

Then Propositions 3.2.1–3.2.3 show that if α > 0, p ∈ (1,∞), and if Ω is a UR domain, then
there exist C1 = C1(p, Ω) and C2 = C2(p, α,Ω) such that

‖K∗f‖Lp(∂Ω,dσ) ≤ C1‖f‖Lp(∂Ω,dσ) (3.3.5)

and

‖N (Df)‖Lp(∂Ω,dσ) ≤ C2‖f‖Lp(∂Ω,dσ) (3.3.6)

for every function f ∈ Lp(∂Ω, dσ). Corresponding to p = 1 we also have

‖K∗f‖L1,∞(∂Ω,dσ) ≤ C‖f‖L1(∂Ω,dσ), (3.3.7)

‖N (Df)‖L1,∞(∂Ω,dσ) ≤ C‖f‖L1(∂Ω,dσ). (3.3.8)

Our next goal is to revisit the issue of a.e. pointwise existence of (3.3.2) and to prove a jump-
formula for the double layer potential (3.3.1) operator of the form

Df
∣∣∣
∂Ω

= (1
2I + K)f, ∀ f ∈ Lp(∂Ω, dσ), (3.3.9)

for each p ∈ [1,∞), where I is the identity operator and the boundary trace is taken in the sense
of (2.3.4). Note that, in order for this to be pointwise σ-a.e. meaningful, it is required that Ω is
weakly accessible (cf. (2.3.5)). Of course, any domain satisfying a corkscrew condition is weakly
accessible. As an immediate consequence of Proposition 2.3.2 and Definition 3.1.7 we also obtain
the following useful result.

Proposition 3.3.1 Every UR domain Ω ⊂ Rn+1 is weakly accessible.

We start our boundary analysis by establishing the following.

Proposition 3.3.2 Let Ω be a UR domain. Then for each f ∈ Lp(∂Ω, dσ), p ∈ [1,∞), the limit
in (3.3.2) exists at almost every point X ∈ ∂Ω, and the operators

K : Lp(∂Ω, dσ) −→ Lp(∂Ω, dσ), 1 < p < ∞, (3.3.10)

K : L1(∂Ω, dσ) −→ L1,∞(∂Ω, dσ), (3.3.11)

68



are well-defined and bounded. Furthermore, the double layer potential (3.3.1) has the property that

lim
Z→X

Z∈Γ(X)

Df(Z) = (1
2I + K)f(X) for σ-a.e. X ∈ ∂Ω, (3.3.12)

for every f ∈ Lp(∂Ω, dσ), 1 ≤ p < ∞.

Proof. Given that, thanks to (3.3.6) and (3.3.7), the maximal operator associated with the type
of limit considered in (3.3.2) is bounded on Lp(∂Ω, dσ) if 1 < p < ∞ and from L1(∂Ω, dσ) into
L1,∞(∂Ω, dσ), a familiar argument shows that it is sufficient to prove to prove the a.e. existence of
the limit in (3.3.2) for f in a dense subspace of Lp(∂Ω, dσ), say f ∈ Lipo(∂Ω) (here, Lemma 2.4.9
is used). In this scenario, matters can be further reduced to proving that

lim
ε→0+

1

ωn

∫

ε<|X−Y |<R

Y ∈∂Ω

〈ν(Y ), Y − X〉
|X − Y |n+1

f(Y ) dσ(Y ) (3.3.13)

exists at almost every X ∈ ∂Ω. Replace f(Y ) by [f(Y ) − f(X)] + f(X). Note that, by Lebesgue’s
Dominated Convergence Theorem,

lim
ε→0

1

ωn

∫

ε<|X−Y |<R

Y ∈∂Ω

〈ν(Y ), Y − X〉
|X − Y |n+1

[f(Y ) − f(X)] dσ(Y )

=
1

ωn

∫

Y ∈∂Ω, |X−Y |<R

〈ν(Y ), Y − X〉
|X − Y |n+1

[f(Y ) − f(X)] dσ(Y ), (3.3.14)

since
∫
Y ∈∂Ω, |X−Y |<R |X − Y |1−n dσ(Y ) < +∞ as can be seen by decomposing the domain of

integration in dyadic annuli and using the Ahlfors regularity condition on ∂Ω. Hence, it suffices to
show that this limit (3.3.13) exists with f(Y ) replaced by f(X) or, equivalently, with f(Y ) replaced
by 1.

To proceed, we can use the harmonicity of the kernel and integrate by parts, based on the Green
formula discussed at the end of §2.2, thus obtaining, for almost all ε and R,

∫

ε<|X−Y |<R

Y ∈∂Ω

〈ν(Y ), Y − X〉
|X − Y |n+1

dσ(Y )

=

∫

|X−Y |=R

Y ∈Rn+1\Ω

〈ν(Y ), Y − X〉
|X − Y |n+1

dσ(Y ) +

∫

|X−Y |=ε

Y ∈Rn+1\Ω

〈ν(Y ), Y − X〉
|X − Y |n+1

dσ(Y ) (3.3.15)

= −
[
surface measure of ∂B(X, ε) ∩ Ωc

]
· R−n +

[
surface measure of ∂B(X, ε) ∩ Ωc

]
· ε−n.

Thus, if we assume that X ∈ ∂∗Ω ⊂ ∂T Ω, it follows from Proposition 3.1.3 that the limit as
ε → 0+ of the last term above is ωn/2, hence the limit in (3.3.13) exists at each such point X,
at least as ε → 0 on a set of density 1 at 0. However, elementary estimates apply to the integral
(3.3.13) over a shell ε1 < |X − Y | < ε2 with ε2 − ε1 << ε1, giving convergence as asserted. This
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proves a.e. convergence in (3.3.2). At this point, Proposition 3.2.1 and Proposition 3.2.2 also give
(3.3.10)-(3.3.11).

Turning our attention to jump-formulas, we first note that Proposition 3.3.1 ensures that it
is meaningful to consider the limit in (3.3.12). Also, by (3.3.6) and (3.3.8), the non-tangential
maximal operator associated with the type of limit implicit in (3.3.12) is bounded (on Lp(∂Ω, dσ)
if 1 < p < ∞, and from L1(∂Ω, dσ) into L1,∞(∂Ω, dσ)). Since by (3.3.10)-(3.3.11) the operator in
the right-hand side of (3.3.12) is also bounded in the same context, much as before, it is sufficient
to prove (3.3.12) for f ∈ Lipo(∂Ω). Assume that this is the case and write

lim
Z∈Γ(X)

Z→X

Df(Z) = lim
ε→0+

lim
Z∈Γ(X)

Z→X

1

ωn

∫

|X−Y |>ε

Y ∈∂Ω

〈ν(Y ), Y − Z〉
|Z − Y |n+1

f(Y ) dσ(Y )

+ lim
ε→0+

lim
Z∈Γ(X)

Z→X

1

ωn

∫

|X−Y |<ε

Y ∈∂Ω

〈ν(Y ), Y − Z〉
|Z − Y |n+1

[f(Y ) − f(X)] dσ(Y )

+f(X)


 lim

ε→0+
lim

Z∈Γ(X)

Z→X

1

ωn

∫

|X−Y |<ε

Y ∈∂Ω

〈ν(Y ), Y − Z〉
|Z − Y |n+1

dσ(Y )




=: I1 + I2 + I3. (3.3.16)

For each fixed ε > 0, Lebesgue’s Dominated Convergence Theorem applies to the limit as Γ(X) ∋
Z → X in I1 and yields

I1 = lim
ε→0+

1

ωn

∫

|X−Y |>ε

Y ∈∂Ω

〈ν(Y ), Y − X〉
|X − Y |n+1

f(Y ) dσ(Y ) = Kf(X). (3.3.17)

To handle I2, we first observe that for every X, Y ∈ ∂Ω and Z ∈ Γ(X),

|X − Y | ≤ |Z − Y | + |Z − X| ≤ |Z − Y | + (1 + α) dist (Z, ∂Ω)

≤ |Z − Y | + (1 + α)|Z − Y | = (2 + α)|Z − Y |. (3.3.18)

Hence, since f is Lipschitz,

∣∣∣∣
〈ν(Y ), Y − Z〉
|Z − Y |n+1

∣∣∣∣ |f(Y ) − f(X)| ≤ C(α, f)
1

|X − Y |n−1
. (3.3.19)

so that, once again using Lebesgue’s Dominated Convergence Theorem, we obtain that

I2 = 0. (3.3.20)

As for I3 in (3.3.16), for each fixed ε > 0 and Z ∈ Γ(X), we use the harmonicity of |Z − ·|−n+1 in
Rn+1 \ {Z} in order to change the contour of integration as follows:
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1

ωn

∫

|X−Y |<ε

Y ∈∂Ω

〈ν(Y ), Y − Z〉
|Z − Y |n+1

dσ(Y ) =
1

ωn

∫

|X−Y |=ε

Y ∈Ωc

〈ν(Y ), Y − Z〉
|Z − Y |n+1

dσ(Y ), (3.3.21)

for a.e ε > 0. This step relies on Green’s formula from 2.2. Consequently,

lim
ε→0+

lim
Z∈Γ(X)

Z→X

1

ωn

∫

|X−Y |<ε

Y ∈∂Ω

〈ν(Y ), Y − Z〉
|Z − Y |n+1

dσ(Y )

= lim
ε→0+

1

ωn

∫

|X−Y |=ε

Y ∈Rn+1\Ω

〈ν(Y ), Y − X〉
|X − Y |n+1

dσ(Y )

= 1
2 , (3.3.22)

by reasoning as in (3.3.15). Thus, the limit in the left-hand side of (3.3.16) exists and matches
(1
2I + K)f(X). This finishes the proof of the proposition. ¤

For 1 ≤ i, k ≤ n + 1, consider now the operators

Rjkf(X) :=

∫

∂Ω

[
νj(Y )(∂kE)(X − Y ) − νk(Y )(∂jE)(X − Y )

]
f(Y ) dσ(Y ), X ∈ Ω, (3.3.23)

where

E(X) :=





1

ωn(1 − n)

1

|X|n−1
, if n ≥ 2,

1

2π
log |X|, if n = 1,

X ∈ Rn+1 \ {0}, (3.3.24)

is the fundamental solution for the Laplacian in Rn+1. Also, for X ∈ ∂Ω, set

Rjkf(X) := lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

[
νj(Y )(∂kE)(X − Y ) − νk(Y )(∂jE)(X − Y )

]
f(Y ) dσ(Y ), (3.3.25)

(Rjk)∗f(X) := sup
ε>0

∣∣∣
∫

Y ∈∂Ω

|X−Y |>ε

[
νj(Y )(∂kE)(X − Y ) − νk(Y )(∂jE)(X − Y )

]
f(Y ) dσ(Y )

∣∣∣. (3.3.26)

Then, thanks to Proposition 3.2.1, under the assumptions of Proposition 3.3.2 we have

‖N (Rjkf)‖Lp(∂Ω,dσ) ≤ C‖f‖Lp(∂Ω,dσ), 1 < p < ∞, (3.3.27)

‖N (Rjkf)‖L1,∞(∂Ω,dσ) ≤ C‖f‖L1(∂Ω,dσ), (3.3.28)

and
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‖(Rjk)∗f‖Lp(∂Ω,dσ) ≤ C‖f‖Lp(∂Ω,dσ), 1 < p < ∞, (3.3.29)

‖(Rjk)∗f‖L1,∞(∂Ω,dσ) ≤ C‖f‖L1(∂Ω,dσ). (3.3.30)

We wish to complement these estimates with the following result.

Proposition 3.3.3 Let Ω be a UR domain. Then for each p ∈ [1,∞) and f ∈ Lp(∂Ω, dσ), the
limit in (3.3.25) exists at almost every X ∈ ∂Ω and

Rjkf
∣∣∣
∂Ω

= Rjkf. (3.3.31)

Proof. Essentially, the same argument as in the proof of Proposition 3.3.2 applies. This time, we
only need to observe that for any reasonable domain D ⊂ Rn+1 which does not contain the point
X,

∫

∂D

[
νj(Y )(∂kE)(X − Y ) − νk(Y )(∂jE)(X − Y )

]
dσ(Y )

=

∫

D

[
(∂j∂kE)(X − Y ) − (∂k∂jE)(X − Y )

]
dY = 0 (3.3.32)

and

(νj(Y )∂yk
− νk(Y )∂yj )E(X − Y ) = 0 for Y ∈ ∂B(X, ε), (3.3.33)

since νj∂k − νk∂j is a tangential derivative and E(X − ·) is constant on ∂B(X, ε). ¤

In order to proceed, introduce the (harmonic) single layer potential operator

Sf(X) :=

∫

∂Ω
E(X − Y )f(Y ) dσ(Y ), X ∈ Ω, (3.3.34)

and denote by K∗ the adjoint of the principal value double layer operator introduced in (3.3.2)-
(3.3.3). Also, for further reference, let us also introduce here the boundary version of (3.3.34),
i.e.,

Sf(X) :=

∫

∂Ω
E(X − Y )f(Y ) dσ(Y ), X ∈ ∂Ω. (3.3.35)

As a direct consequence of Proposition 3.2.1-Proposition 3.2.2, we have the estimates

‖N (∇Sf)‖Lp(∂Ω,dσ) ≤ C‖f‖Lp(∂Ω,dσ), 1 < p < ∞, (3.3.36)

‖N (∇Sf)‖L1,∞(∂Ω,dσ) ≤ C‖f‖L1(∂Ω,dσ), (3.3.37)

for some C > 0 depending only on p, α (entering the definition of N ) as well as the Ahlfors
regularity and UR constants of ∂Ω.
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Proposition 3.3.4 Let Ω be a UR domain. Then for every f ∈ Lp(∂Ω, dσ), 1 ≤ p < ∞, and each
j ∈ {1, ..., n + 1}, the limit

lim
ε→0+

∫

|X−Y |>ε

Y ∈∂Ω

(∂jE)(X − Y )f(Y ) dσ(Y ), (3.3.38)

exists at almost every X ∈ ∂Ω. Furthermore,

lim
Z→X

Z∈Γ(X)

∂jSf(Z) = −1
2νj(X)f(X) + lim

ε→0+

∫

|X−Y |>ε

Y ∈∂Ω

(∂jE)(X − Y )f(Y ) dσ(Y ), (3.3.39)

at almost every X ∈ ∂Ω.

Parenthetically, let us note that (3.3.39) implies

∂νSf(X) :=
〈
ν(X) , lim

Z→X

Z∈Γ(X)

∇Sf(Z)
〉

= (−1
2I + K∗)f(X), (3.3.40)

at almost every X ∈ ∂Ω.

Proof of Proposition 3.3.4. With ∂ν := 〈ν,∇〉 denoting the normal derivative, the idea is to write

(∂jE)(X − Y ) = −νj(Y )∂ν(Y )[E(X − Y )]

+νk(Y )
[
νk(Y )(∂jE)(X − Y ) − νj(Y )(∂kE)(X − Y )

]
(3.3.41)

so Proposition 3.3.3 and Proposition 3.3.2 can be used (with f replaced by −νjf and νkf , respec-
tively) in order to ensure that (3.3.38) exists a.e. on ∂Ω. Since the decomposition (3.3.41) also
entails

∂jSf = −D(νjf) + Rjk(νkf), (3.3.42)

we can once again invoke Proposition 3.3.3 and Proposition 3.3.2 in order to justify (3.3.39). ¤

3.4 General odd, homogeneous layer potentials

Our goal in this subsection is to extend Proposition 3.3.4 to the setting of operators T treated in
Proposition 3.2.1. One tool used in this extension is Clifford analysis, which we will review.

To begin, the Clifford algebra with n+1 imaginary units is the minimal enlargement of Rn+1 to
a unitary real algebra (Cℓn+1, +,⊙), which is not generated (as an algebra) by any proper subspace
of Rn+1 and such that

X ⊙ X = −|X|2 for any X ∈ Rn+1. (3.4.1)

This identity readily implies that, if {ej}n+1
j=1 is the standard orthonormal basis in Rn+1, then

ej ⊙ ej = −1 and ej ⊙ ek = −ek ⊙ ej for any 1 ≤ j 6= k ≤ n + 1. (3.4.2)

In particular, we identify the canonical basis {ej}j from Rn+1 with the n + 1 imaginary units
generating Cℓn+1, so that we have the embedding
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Rn+1 →֒ Cℓn+1, Rn+1 ∋ X = (x1, ..., xn+1) ≡
n+1∑

j=1

xjej ∈ Cℓn+1. (3.4.3)

Also, any element u ∈ Cℓn+1 can be uniquely represented in the form

u =
n+1∑

l=0

∑

|I|=l

′
uI eI , uI ∈ R. (3.4.4)

Here eI stands for the product ei1 ⊙ ei2 ⊙ · · · ⊙ eil if I = (i1, i2, . . . , il) and e0 := e∅ := 1 is the
multiplicative unit. Also,

∑′ indicates that the sum is performed only over strictly increasing
multi-indices, i.e. I = (i1, i2, ..., il) with 1 ≤ i1 < i2 < · · · < il ≤ n + 1. We endow Cℓn+1 with

the natural Euclidean metric |u| :=
[∑

I |uI |2
]1/2

, if u =
∑

I uIeI ∈ Cℓn+1. Next, recall the Dirac

operator

D :=
n+1∑

j=1

ej∂j . (3.4.5)

In the sequel, we shall use DL and DR to denote the action of D on a C1 function u : Ω → Cℓn+1

(where Ω is an open subset of Rn+1) from the left and from the right, respectively. For a sufficiently
nice domain Ω with outward unit normal ν = (ν1, ..., νn+1) (identified with the Cℓn+1-valued function
ν =

∑n+1
j=1 νjej) and surface measure σ, and for any two reasonable Cℓn+1-valued functions u, v in

Ω, the following integration by parts formula holds:

∫

∂Ω
u(X) ⊙ ν(X) ⊙ v(X) dσ(X) =

∫

Ω

[
(DRu)(X) ⊙ v(X) + u(X) ⊙ (DLv)(X)

]
dX. (3.4.6)

More detailed accounts of these and related matters can be found in [7] and [88]. Another simple
but useful observation in this context is that, for any 1 ≤ p ≤ ∞,

ν⊙ : Lp(∂Ω, dσ) ⊗ Cℓn+1 −→ Lp(∂Ω, dσ) ⊗ Cℓn+1 is an isomorphism. (3.4.7)

Indeed, by (3.4.1), its inverse is −ν⊙.
Let [·]j denote the projection onto the j-th Euclidean coordinate, i.e., [X]j := xj if X =

(x1, ..., xn+1) ∈ Rn+1. The following lemma of S. Semmes (cf. [100]) will play an important role for
us.

Lemma 3.4.1 For any odd, harmonic, homogeneous polynomial P (X), X ∈ Rn+1, of degree l ≥ 3,
there exist a family Pij(X), 1 ≤ i, j ≤ n+1, of harmonic, homogeneous polynomials of degree l−2,
as well as family of odd, C∞ functions kij : Rn+1 \ {0} → Rn+1 →֒ Cℓn+1, 1 ≤ i, j ≤ n + 1, which
are homogeneous of degree −n, satisfying the following properties:

∀X ∈ Rn+1 \ {0} =⇒ P (X)

|X|n+l
= Cn,l

n+1∑

i,j=1

[kij(X)]j and (3.4.8)

(DRkij)(X) =
∂

∂xi

(
Pij(X)

|X|n+l−2

)
, 1 ≤ i, j ≤ n + 1, (3.4.9)
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for some constant Cn,l depending only on n and l.
As a consequence of (3.4.9) and (3.4.6), if we set

kij(X) := Pij(X)/|X|n+l−2 for X ∈ Rn+1 \ {0}, 1 ≤ i, j ≤ n + 1, (3.4.10)

then for any finite perimeter domain Ω ⊂ Rn+1 such that Hn(∂Ω \ ∂∗Ω) = 0, with surface measure
σ, outward unit normal ν = (νk)1≤k≤n+1, and such that 0 /∈ Ω, we have

∫

∂Ω
kij(X) ⊙ ν(X) dσ(X) =

∫

∂Ω
kij(X)νi(X) dσ(X), 1 ≤ i, j ≤ n + 1. (3.4.11)

To state one of our main results in this section, we let “hat” denote the Fourier transform in
Rn+1.

Theorem 3.4.2 Let Ω be a UR domain, and let P (X) be an odd, harmonic, homogeneous polyno-
mial of degree l ≥ 1 in Rn+1. Also, set k(X) := P (X)/|X|n+l for X ∈ Rn+1 \ {0} and recall the
operators T and Tε associated with this kernel as in (3.2.2), (3.3.2).

Then, for each p ∈ [1,∞), f ∈ Lp(∂Ω, dσ), the limit

Tf(X) := lim
ε→0+

Tεf(X) (3.4.12)

exists for a.e. X ∈ ∂Ω. Also, the induced operators

T : Lp(∂Ω, dσ) −→ Lp(∂Ω, dσ), p ∈ (1,∞), (3.4.13)

T : L1(∂Ω, dσ) −→ L1,∞(∂Ω, dσ), (3.4.14)

are bounded. Finally, the jump-formula

lim
Z→X

Z∈Γ(X)

T f(Z) = 1
2
√
−1

k̂(ν(X))f(X) + Tf(X) (3.4.15)

is valid at a.e. X ∈ ∂Ω, whenever f ∈ Lp(∂Ω, dσ), 1 ≤ p < ∞.

Proof. We shall first prove (3.4.12) by induction on l. When l = 1, the existence of the limit in
(3.4.12) is a consequence of Proposition 3.3.4, so we assume l ≥ 3 and that this limit exists a.e. on
∂Ω for any kernel associated with a polynomial of degree l − 2 as in the statement of the theorem.

Now, granted the identity (3.4.8), it suffices to treat the case when the operator (3.3.2) is
associated with a kernel kij of the type specified in Lemma 3.4.1. Given that, in this scenario,

(3.2.5) holds, there is no loss of generality in assuming that f ∈ ν ⊙
[
Lipo(∂Ω) ⊗ Cℓn+1

]
(here

(3.4.7) is used). Assuming that this is the case, it is then easy to show that the limit (3.4.12) exists
if and only if

lim
ε→0+

∫

Y ∈∂Ω

ε<|X−Y |<1

kij(X − Y ) ⊙ ν(Y ) dσ(Y ) (3.4.16)

exists for a.e. X ∈ ∂Ω. To this end, assume that X ∈ ∂∗Ω ⊂ ∂T Ω, and for each ε ∈ (0, 1) set
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Dε(X) :=
[
B(X, 1) \ B(X, ε)

]
∩ Ωc. (3.4.17)

We may then compute

lim
ε→0+

∫

Y ∈∂Ω

ε<|X−Y |<1

kij(X − Y ) ⊙ ν(Y ) dσ(Y )

= lim
ε→0+

∫

∂Dε(X)

kij(X − Y ) ⊙ ν(Y ) dσ(Y )

− lim
ε→0+

∫

∂B(X,ε)∩Ωc

kij(X − Y ) ⊙ ν(Y ) dσ(Y )

−
∫

∂B(X,1)∩Ωc

kij(X − Y ) ⊙ ν(Y ) dσ(Y )

=: I1 + I2 + I3. (3.4.18)

By (3.4.11) written for the domain Dε(X), the first limit in the right-hand side of (3.4.18) can be
expressed as

I1 = lim
ε→0+

∫

∂Dε(X)

kij(X − Y )νi(Y ) dσ(Y )

= lim
ε→0+

∫

Y ∈∂Ω

ε<|X−Y |<1

kij(X − Y )νi(Y ) dσ(Y )

+ lim
ε→0+

∫

∂B(X,ε)∩Ωc

kij(X − Y )νi(Y ) dσ(Y )

+

∫

∂B(X,1)∩Ωc

kij(X − Y )νi(Y ) dσ(Y )

=: I11 + I12 + I13. (3.4.19)

In turn, the existence of the limit I11 (for a.e. X ∈ ∂Ω) is a consequence of the fact that kij(X) =
Pij(X)/|X|n+l−2 with Pij(X) odd, homogeneous, harmonic polynomial of degree l− 2 in Rn+1 and
the induction hypothesis. Going further, we have

I12 = lim
ε→0+

∫

∂−B(X,ε)
kij(X − Y )νi(Y ) dσ(Y ) + lim

ε→0+

∫

W (X,ε)
kij(X − Y )νi(Y ) dσ(Y ). (3.4.20)

Now, making use of the fact that the kernel kij is homogeneous of degree −n, the first limit above
is

∫
∂−B(X,1) kij(X − Y )νi(Y ) dσ(Y ) whereas, by Proposition 3.1.3, the second limit in (3.4.20) is
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zero, at least as ε → 0 on a set of density 1 at 0. This finishes the treatment of I1. The limit I2 in
(3.4.18) is then handled in a similar manner to I12. Altogether, this justifies the existence of the
limit in (3.4.16) for a.e. X ∈ ∂Ω, hence finishing the proof of the fact that the limit in (3.4.12)
exists for a.e. X ∈ ∂Ω. (Passing from the limit on a set thick at ε = 0 to the general limit stated
in (3.4.12) is elementary.)

The fact that the operators (3.4.13)-(3.4.14) are bounded follows from what we have proved up
to this point and Proposition 3.2.1-Proposition 3.2.2.

As regards (3.4.15), we shall once again proceed by induction on l. The case l = 1 has been
already dealt with in Proposition 3.3.4, so we may assume that l ≥ 3 and that the corresponding
statement is true for any kernel k(X) associated with a polynomial of degree l−2 as in the statement
of the theorem. Now, for a given k(X) as in Lemma 3.4.1 we recall the kernels kij introduced there
and set

Tijf(X) :=

∫

∂Ω
kij(X − Y )f(Y ) dσ(Y ), X ∈ Ω. (3.4.21)

In particular, the identity (3.4.8) gives

T f = Cn,l

n+1∑

i,j=1

[Tijf ]j , ∀ f ∈ Lp(∂Ω, dσ), (3.4.22)

and, hence, it suffices to show that

lim
Z→X

Z∈Γ(X)

Tjkf(Z) = 1
2
√
−1

k̂ij(ν(X))f(X) + lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

kij(X − Y )f(Y ) dσ(Y ), (3.4.23)

at almost every X ∈ ∂Ω.
Much as before, it suffices to prove this identity in the case when f = ν ⊙ g for some g ∈

Lipo(∂Ω) ⊗ Cℓn+1. We shall also assume that X ∈ ∂∗Ω ⊂ ∂T Ω. In this scenario, by paralleling the
treatment of the harmonic double layer in (3.3.16), we decompose

lim
Z∈Γ(X)

Z→X

Tij(ν ⊙ g)(Z) = lim
ε→0+

lim
Z∈Γ(X)

Z→X

∫

|X−Y |>ε

Y ∈∂Ω

kij(Z − Y ) ⊙ ν(Y ) ⊙ g(Y ) dσ(Y )

+ lim
ε→0+

lim
Z∈Γ(X)

Z→X

1

ωn

∫

|X−Y |<ε

Y ∈∂Ω

kij(Z − Y ) ⊙ ν(Y ) ⊙ [g(Y ) − g(X)] dσ(Y )

+


 lim

ε→0+
lim

Z∈Γ(X)

Z→X

∫

|X−Y |<ε

Y ∈∂Ω

kij(Z − Y ) ⊙ ν(Y ) dσ(Y )


 ⊙ g(X)

=: I1 + I2 + I3. (3.4.24)

As in the case of (3.3.16), we then have
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I1 = lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

kij(X − Y )f(Y ) dσ(Y ) and I2 = 0. (3.4.25)

There remains to treat I3 and we begin by rewriting the integral there as

∫

|X−Y |<ε

Y ∈∂Ω

kij(Z − Y ) ⊙ ν(Y ) dσ(Y ) =

∫

∂(B(X,ε)∩Ωc)

kij(Z − Y ) ⊙ ν(Y ) dσ(Y )

−
∫

∂B(X,ε)∩Ωc

kij(Z − Y ) ⊙ ν(Y ) dσ(Y ). (3.4.26)

As before, based on Proposition 3.1.3 and the homogeneity of the kernel we may then write

lim
ε→0+

lim
Z∈Γ(X)

Z→X

∫

∂B(X,ε)∩Ωc

kij(Z − Y ) ⊙ ν(Y ) dσ(Y ) =

∫

∂−B(X,1)

kij(X − Y ) ⊙ ν(Y ) dσ(Y ). (3.4.27)

Now, for the first integral in the right-hand side of (3.4.26) we apply the identity (3.4.11) (for the
domain B(X, ε) ∩ Ωc) and obtain

∫

∂(B(X,ε)∩Ωc)

kij(Z − Y ) ⊙ ν(Y ) dσ(Y ) =

∫

∂(B(X,ε)∩Ωc)

kij(Z − Y )νi(Y ) dσ(Y ). (3.4.28)

In summary, the above argument gives

lim
Z∈Γ(X)

Z→X

Tij(ν ⊙ g)(Z) = lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

kij(X − Y ) ⊙ ν(Y ) ⊙ g(Y ) dσ(Y ) (3.4.29)

+




∫

∂−B(X,1)

kij(X − Y ) ⊙ ν(Y ) dσ(Y )


 ⊙ g(X)

+


 lim

ε→0+
lim

Z∈Γ(X)

Z→X

∫

∂(B(X,ε)∩Ωc)

kij(Z − Y )νi(Y ) dσ(Y )


 ⊙ g(X).

Next, we introduce

T ijf(X) :=

∫

∂Ω
kij(X − Y )f(Y ) dσ(Y ), X ∈ Ω, (3.4.30)

and note two things about this family of operators. On the one hand, given the nature of the
kernels kij , the induction hypothesis allows us to write that, for every g ∈ Lp(∂Ω, dσ),
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lim
Z→X

Z∈Γ(X)

T jk(νig)(Z) = 1
2
√
−1

k̂ij(ν(X))νi(X)g(X)

+ lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

kij(X − Y )νi(Y )g(Y ) dσ(Y ) (3.4.31)

at almost every X ∈ ∂Ω.
On the other hand, by proceeding analogously as in (3.4.24), we also get

lim
Z→X

Z∈Γ(X)

T jk(νig)(Z) = lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

kij(X − Y )νi(Y )g(Y ) dσ(Y ) (3.4.32)

+




∫

∂−B(X,1)

kij(X − Y )νi(Y ) dσ(Y )


 g(X)

+


 lim

ε→0+
lim

Z∈Γ(X)

Z→X

∫

∂(B(X,ε)∩Ωc)

kij(Z − Y )νi(Y ) dσ(Y )


 g(X),

a.e. on ∂Ω, for every g ∈ Lp(∂Ω, dσ). By comparing (3.4.31) with (3.4.32) we eventually arrive at
the conclusion that

lim
ε→0+

lim
Z∈Γ(X)

Z→X

∫

∂(B(X,ε)∩Ωc)

kij(Z − Y )νi(Y ) dσ(Y ) = 1
2
√
−1

k̂ij(ν(X))νi(X) (3.4.33)

−
∫

∂−B(X,1)

kij(X − Y )νi(Y ) dσ(Y ).

(Note that, strictly speaking, it is this identity that justifies the existence of the last double limit
in (3.4.29).) Thus, from this and (3.4.29), we may finally deduce that
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lim
Z∈Γ(X)

Z→X

Tij(ν ⊙ g)(Z) = lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

kij(X − Y ) ⊙ ν(Y ) ⊙ g(Y ) dσ(Y )

+




∫

∂−B(X,1)

kij(X − Y ) ⊙ ν(Y ) dσ(Y )


 ⊙ g(X)

+ 1
2
√
−1

k̂ij(ν(X))νi(X) ⊙ g(X)

−




∫

∂−B(X,1)

kij(X − Y )νi(Y ) dσ(Y )


 g(X)

= − 1
2
√
−1

k̂ij(ν(X))νi(X)ν(X) ⊙ (ν ⊙ g)(X)

−




∫

∂−B(X,1)

kij(X − Y ) ⊙ ν(Y ) dσ(Y )


 ⊙ ν(X) ⊙ (ν ⊙ g)(X)

+




∫

∂−B(X,1)

kij(X − Y )νi(Y ) dσ(Y )


 ν(X) ⊙ (ν ⊙ g)(X)

+ lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

kij(X − Y ) ⊙ (ν ⊙ g)(Y ) dσ(Y ). (3.4.34)

In short, for every f ∈ Lp(∂Ω, dσ), 1 ≤ p < ∞, we have that at a.e. X ∈ ∂Ω

lim
Z∈Γ(X)

Z→X

Tijf(Z) = αij(X)f(X) + lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

kij(X − Y )f(Y ) dσ(Y ), (3.4.35)

where the coefficient αij(X) is implicitly defined by (3.4.34). Hence, in order to fully justify (3.4.31),
it remains to show that

αij(X) = 1
2
√
−1

k̂ij(X). (3.4.36)

By carrying out a similar analysis but for the domain Ωc in place of Ω (and keeping in mind
that the outward unit normal for Ωc is −ν), we obtain that for every f ∈ Lp(∂Ω, dσ), 1 ≤ p < ∞,
and for a.e. X ∈ ∂Ω,

lim
Z∈Γ−(X)

Z→X

Tijf(Z) = −αij(X)f(X) + lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

kij(X − Y )f(Y ) dσ(Y ), (3.4.37)
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where Γ−(X) stands for the nontangential approach region with vertex at X ∈ ∂(Ωc) corresponding
to the domain Ωc (cf. (2.1.5)), and we have retained the same definition for Tijf(X) as in (3.4.30)
when X ∈ Ωc. In particular, for every f ∈ Lp(∂Ω, dσ), 1 ≤ p < ∞,

lim
Z∈Γ(X)

Z→X

Tijf(Z) − lim
Z∈Γ−(X)

Z→X

Tijf(Z) = 2αij(X)f(X) at a.e. X ∈ ∂Ω. (3.4.38)

Another characteristic of αij(X), visible from (3.4.34), is that this quantity depends only on the
tangent plane to Ω at X and not on Ω itself. Consequently, in order to compute the actual value
of αij(X) using (3.4.38), it suffices to replace Ω by any other (reasonable) domain having the same
tangent plane at X, such as a suitably rotated and translated half-space. In this latter scenario,
for every f ∈ Lp(∂Ω, dσ), 1 ≤ p < ∞, the jump-formula

lim
Z∈Γ(X)

Z→X

Tijf(Z) − lim
Z∈Γ−(X)

Z→X

Tijf(Z) =
1√
−1

k̂ij(ν(X))f(X) at a.e. X ∈ ∂Ω (3.4.39)

is well-known (see, e.g, the discussion in [91]). All in all, from (3.4.39) and (3.4.38) we may conclude
that (3.4.36) holds. This justifies (3.4.31) and finishes the proof of the theorem. ¤

From Theorem 3.4.2 to the general case described by (3.2.1)–(3.2.2) is but a short step. We
take care of this in the more general variable coefficient context in the next subsection.

3.5 The variable coefficient case

Our goal in this subsection is to prove a variable coefficient version of Theorem 3.4.2.

Theorem 3.5.1 If Ω ⊂ Rn+1 is a UR domain, there exists a positive integer N = N(n) such that
if the kernel k is as in (3.2.1) then the limit in (3.4.12) exists and the jump-formula (3.4.15) holds
a.e. on ∂Ω for each Lp(∂Ω, dσ), 1 ≤ p < ∞.

Actually, a more general result is true. Namely, there exists a positive integer M = M(n)
with the property that if the function b(X, Z) is odd and homogeneous of degree −n in the variable
Z ∈ Rn+1, and if Dα

Zb(X, Z) is continuous and bounded on Rn+1 × Sn for |α| ≤ M , then the limit

Bf(X) := lim
ε→0+

Bεf(X), where (3.5.1)

Bεf(X) :=

∫

Y ∈∂Ω

|X−Y |>ε

b(X, X − Y )f(Y ) dσ(Y ), X ∈ ∂Ω, (3.5.2)

exists for every f ∈ Lp(∂Ω, dσ), 1 ≤ p < ∞, and almost every X ∈ ∂Ω, and the operator B is
bounded on Lp(∂Ω, dσ) for every p ∈ (1,∞), and from L1(∂Ω, dσ) into L1,∞(∂Ω, dσ). In fact, if

B∗f(X) := sup
ε>0

|Bεf(X)|, X ∈ ∂Ω, (3.5.3)

then, for every p ∈ (1,∞),
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‖B∗f‖Lp(∂Ω,dσ) ≤ C(p, Ω) sup
|α|≤M

‖Dα
Zb(X, Z)‖L∞(Rn+1×Sn)‖f‖Lp(∂Ω,dσ). (3.5.4)

Also, corresponding to p = 1, (3.5.4) holds if the weak-L1 norm is used in the left-hand side.
Furthermore, if

Bf(X) :=

∫

∂Ω
b(X, X − Y )f(Y ) dσ(Y ), X ∈ Ω, (3.5.5)

then for every f ∈ Lp(∂Ω, dσ), 1 ≤ p < ∞, at almost every X ∈ ∂Ω, there holds

lim
Z→X

Z∈Γ(X)

Bf(Z) = 1
2
√
−1

b̂(X, ν(X))f(X) + Bf(X), (3.5.6)

where, above, “hat” stands for the Fourier transform in the second variable, and

‖N (Bf)‖Lp(∂Ω,dσ) ≤ C(p, Ω) sup
|α|≤M

‖Dα
Zb(X, Z)‖L∞(Rn+1×Sn)‖f‖Lp(∂Ω,dσ). (3.5.7)

Finally, for n
n+1 < p ≤ 1,

‖N (Bf)‖Lp(∂Ω,dσ) ≤ C(p, Ω) sup
|α|≤M

‖Dα
Zb(X, Z)‖L∞(Rn+1×Sn)‖f‖Hp

at(∂Ω,dσ). (3.5.8)

Proof. Of course, it suffices to treat the second part of the theorem, in which case we argue as in
[91]. For each X ∈ Rn+1, we expand

b(X, Z) =
∑

ℓ∈N

aℓ(X)Ψℓ

( Z

|Z|
)
|Z|−n, (3.5.9)

where {Ψℓ : ℓ ∈ N} is an orthonormal basis of L2(Sn) consisting of spherical harmonics. Further-
more, we arrange that each Ψℓ is real, and either even or odd. Consequently, since

aℓ(X) =

∫

Sn

b(X, ω)Ψℓ(ω) dω, (3.5.10)

it follows that aℓ ≡ 0 whenever Ψℓ is even. Also, from (3.5.10), integrations by parts, and our
assumptions on b(X, Z), it follows that the sequence of coefficients {aℓ}ℓ is rapidly decreasing in ℓ,
i.e.

∀ j ∈ N ∃Cj > 0 such that ‖aℓ‖L∞ ≤ Cj ℓ−j , ∀ ℓ ∈ N. (3.5.11)

If for each ℓ ∈ N for which aℓ is not identically zero we now set
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kℓ(X) := Ψℓ

(
X
|X|

)
|X|−n, X ∈ Rn+1 \ {0},

Bℓ,εf(X) :=

∫

Y ∈∂Ω

|X−Y |>ε

kℓ(X − Y )f(Y ) dσ(Y ), X ∈ ∂Ω,

Bℓ,∗f(X) := sup
ε>0

∣∣∣
∫

∂Ω
kℓ(X − Y )f(Y ) dσ(Y )

∣∣∣, X ∈ ∂Ω,

(3.5.12)

then for each p ∈ (1,∞) Proposition 3.2.1 gives

‖Bℓ,∗f‖Lp(∂Ω,dσ) ≤ C(n, p, ℓ)‖f‖Lp(∂Ω,dσ), where

the constant C(n, p, ℓ) has polynomial growth in ℓ.
(3.5.13)

Next, for each µ ∈ N, write

Bεf(X) =
∑

ℓ≤µ

aℓ(X)Bℓ,εf(X) +
∑

ℓ≥µ

aℓ(X)Bℓ,εf(X) (3.5.14)

and observe that for each j ∈ N there exists Cj > 0 such that

∥∥∥∥∥∥
sup
ε>0

∣∣∣
∑

ℓ≥µ

aℓBℓ,εf
∣∣∣

∥∥∥∥∥∥
Lp(∂Ω,dσ)

≤
∑

ℓ≥µ

‖aℓ‖L∞‖Bℓ,∗f‖Lp(∂Ω,dσ)

≤ Cj µ−j‖f‖Lp(∂Ω,dσ). (3.5.15)

On the other hand, Theorem 3.4.2 gives that, for each fixed µ, the first sum in (3.5.14) converges
at almost every X ∈ ∂Ω. Thus, if we consider the disagreement function

Df (X) := lim sup
ε→0+

Bεf(X) − lim inf
ε→0+

Bεf(X)

= lim sup
ε→0+

(∑

ℓ≥µ

aℓ(X)Bℓ,εf(X)
)
− lim inf

ε→0+

(∑

ℓ≥µ

aℓ(X)Bεf(X)
)
, (3.5.16)

where the second equality holds for every µ ∈ N and almost every X ∈ ∂Ω, Chebysheff’s inequality
inequality gives that for every j ∈ N, λ > 0 and f ∈ Lp(∂Ω, dσ)

σ
(
{X ∈ ∂Ω : Df (X) > λ}

)
≤ Cjµ

−jλ−p‖f‖p
Lp(∂Ω,dσ). (3.5.17)

Passing to limit µ → ∞ then shows that Df (X) = 0 for σ-a.e. X ∈ ∂Ω and this concludes the
proof of the fact that the limit in (3.5.1) exists at almost every boundary point.

All the other remaining claims in the statement of the theorem can be proved in a similar
fashion, using Theorem 3.4.2 and an expansion in spherical harmonics as above. This finishes the
proof of Theorem 3.5.1. ¤

It will also be useful to treat the following variant of (3.5.5):

83



B̃f(X) :=

∫

∂Ω

b(Y, X − Y )f(Y ) dσ(Y ), X ∈ Ω. (3.5.18)

The same sort of analysis works, with X replaced by Y in the spherical harmonic expansion (3.5.9).
We have the following.

Theorem 3.5.2 In the setting of Theorem 3.5.1, with B̃ given by (3.5.18), we have

‖N B̃f‖Lp(∂Ω,dσ) ≤ C(p, Ω) sup
|α|≤M

‖Dα
Zb(Y, Z)‖L∞(Rn+1×Sn)‖f‖Lp(∂Ω,dσ), (3.5.19)

if 1 < p < ∞, plus a similar estimate (involving replaced by weak-L1,∞ in the left-hand side) when
p = 1.

On the other hand, if n
n+1 < p < 1, r > n(p−1 − 1) and, for each |α| ≤ M , the function

Dα
Zb(Y, Z) is in Cr(Rn+1) in the variable Y , uniformly for |Z| = 1, then for any compact Σo ⊂ ∂Ω,

‖N B̃f‖Lp(Σo,dσ) ≤ C(p, Ω) sup
|α|≤M

sup
|Z|=1

‖Dα
Zb(Y, Z)‖Cr(Σo)‖f‖hp

at(Σo), (3.5.20)

for f supported on Σo.
Finally, given p ∈ [1,∞) and f ∈ Lp(∂Ω, dσ), then for almost all X ∈ ∂Ω,

lim
Z→X,Z∈Γ(X)

B̃f(Z) =
1

2
√
−1

b̂(X, ν(X))f(X) − Btf(X), (3.5.21)

where B is as in (3.5.1) and the superscript t indicates transposition.

In turn, Theorem 3.5.1 and Theorem 3.5.2 apply to the Schwartz kernels of certain pseudod-
ifferential operators. Recall that a pseudodifferential operator Q(X, D) with symbol q(X, ξ) in
Hörmander’s class Sm

1,0 is given by the oscillatory integral

Q(X, D)u = (2π)−(n+1)/2

∫
q(X, ξ)û(ξ)ei〈X,ξ〉 dξ

= (2π)−(n+1)

∫ ∫
q(X, ξ)ei〈X−Y,ξ〉u(Y ) dY dξ. (3.5.22)

We are concerned with a smaller class of symbols, Sm
cl , defined by requiring that (the matrix-valued)

function q(X, ξ) has an asymptotic expansion of the form

q(X, ξ) ∼ qm(X, ξ) + qm−1(X, ξ) + · · · , (3.5.23)

with qj smooth in X and ξ and homogeneous of degree j in ξ (for |ξ| ≥ 1). Call qm(X, ξ), i.e.
the leading term in (3.5.23), the principal symbol of q(X, D). In fact, we shall find it convenient
to work with classes of symbols which only exhibit a limited amount of regularity in the spatial
variable (while still C∞ in the Fourier variable). Specifically, for each r ≥ 0 we define

CrSm
1,0 := {q(X, ξ) : ‖Dα

ξ q(·, ξ)‖Cr ≤ Cα(1 + |ξ|)m−|α|, ∀α}. (3.5.24)
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The class of pseudodifferential operators associated with such symbols will be denoted OPCrSm
1,0.

As before, we write OPCrSm
cl for the subclass of classical pseudodifferential operators in OPCrSm

1,0

whose symbols can be expanded as in (3.5.23), where qj(X, ξ) ∈ CrSm−j
1,0 is homogeneous of degree

j in ξ for |ξ| ≥ 1, j = m, m− 1, . . . . Finally, we set ØPCrSm
cl for the space of all formal adjoints of

operators in OPCrSm
cl .

Given a classical pseudodifferential operator Q(x, D) ∈ OPCrS−1
cl , we denote by kQ(X, Y ) and

SymQ(X, ξ) its Schwartz kernel and its principal symbol, respectively. Next, if Ω ⊆ Rn+1 is a
domain with outward unit normal ν and boundary surface measure σ, we can introduce integral
operators of layer potential type by formally writing

KQf(X) := P.V.

∫

∂Ω
kQ(X, Y )f(Y ) dσ(Y )

= lim
ε→0+

∫

Y ∈∂Ω: |X−Y |>ε

kQ(X, Y )f(Y ) dσ(Y ), X ∈ ∂Ω, (3.5.25)

and

KQf(X) :=

∫

∂Ω
kQ(X, Y )f(Y ) dσ(Y ), X ∈ Ω. (3.5.26)

In this context, Theorem 3.5.1 and Theorem 3.5.2 yield the following result.

Theorem 3.5.3 Let Ω ⊂ Rn+1 be a bounded UR domain. Also let Q(x, D) ∈ OPC0S−1
cl be such

that SymQ(X, ξ) is odd in ξ and recall the operators (3.5.25)-(3.5.26).
Then, for each f ∈ Lp(∂Ω, dσ), with 1 ≤ p < ∞, KQf(X) makes sense at almost every boundary

point X ∈ ∂Ω and

KQ : Lp(∂Ω, dσ) → Lp(∂Ω, dσ), 1 < p < ∞, (3.5.27)

KQ : L1(∂Ω, dσ) → L1,∞(∂Ω, dσ), (3.5.28)

are bounded operators. Furthermore,

‖N (KQf)‖Lp(∂Ω,dσ) ≤ C(Ω, Q, p)‖f‖Lp(∂Ω,dσ), ∀f ∈ Lp(∂Ω, dσ), 1 < p < ∞, (3.5.29)

plus a similar estimate involving weak-L1 in the left-hand side when p = 1.
On the other hand, for n/(n + 1) < p ≤ 1,

‖N (KQf)‖Lp(∂Ω,dσ) ≤ C‖f‖hp
at(∂Ω,dσ), ∀f ∈ hp

at(∂Ω, dσ). (3.5.30)

Moreover, if f ∈ Lp(∂Ω, dσ) with 1 ≤ p < ∞, then KQf has a nontangential boundary trace at
almost every boundary point. More specifically,

KQf
∣∣∣
∂Ω

=
1

2
√
−1

SymQ(·, ν)f + KQf a.e. on ∂Ω. (3.5.31)

Finally, similar results are valid for a pseudodifferential operator Q(X, D) ∈ ØPC0S−1
cl . In this

setting, for the analogue of (3.5.30) we require that Q ∈ ØPCrS−1
cl where r > n(p−1 − 1) and

n
n+1 < p < 1.
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In fact, since the main claims in Theorem 3.5.3 are local in nature and given the invariance
of the class of domains and pseudodifferential operators (along with their Schwartz kernels and
principal symbols) under smooth diffeomorphisms, these results can be naturally extended to the
setting of domains on manifolds and pseudodifferential operators acting between vector bundles.
We shall further elaborate on this aspect in Section 5, where one of the aims is to treat operators
with even rougher kernels.

3.6 Singular integrals on Sobolev spaces

Let Ω ⊂ Rn+1 be an open set, of locally finite perimeter, whose boundary is Ahlfors regular and
satisfies (2.3.1). As in the past, set σ := Hn⌊∂Ω and denote by ν = (ν1, ..., νn+1) the measure
theoretic outward unit normal to ∂Ω. Next, consider the first-order tangential derivative operators,
acting on a compactly supported function ϕ, of class C1 in a neighborhood of ∂Ω, by

∂τjk
ϕ := νj(∂kϕ)

∣∣∣
∂Ω

−νk(∂jϕ)
∣∣∣
∂Ω

, j, k = 1, . . . , n + 1. (3.6.1)

We now make the following definition. Given two indices

1 < p, p′ < ∞,
1

p
+

1

p′
= 1, (3.6.2)

set

Lp
1(∂Ω, dσ) :=

{
f ∈ Lp(∂Ω, dσ) : ∃ c > 0 such that if ϕ ∈ C1

0 (Rn+1)

then
n+1∑

j,k=1

∣∣∣∣
∫

∂Ω
f (∂τjk

ϕ) dσ

∣∣∣∣ ≤ c‖ϕ‖Lp′ (∂Ω,dσ)

}
. (3.6.3)

In order to get a better understanding of the nature of this space, fix f ∈ Lp
1(∂Ω, dσ), take j, k ∈

{1, . . . , n + 1}, and consider the functional Λjk, defined as follows.

Λjk : {ϕ|∂Ω : ϕ ∈ C1
0 (Rn+1)} −→ R, Λjk(ϕ|∂Ω) :=

∫

∂Ω
f(∂τjk

ϕ) dσ. (3.6.4)

We claim that Λjk is unambiguously defined. To justify this claim, assume that ϕ ∈ C1
0 (Rn+1)

and ϕ|∂Ω = 0. Use a mollification argument to produce a sequence ϕα ∈ C∞
0 (Rn+1), α ∈ N, with

the property that ∂γϕα converges to ∂γϕ as α → ∞, uniformly on compact subsets of Rn+1, for
each multinidex γ of length ≤ 1. Then, for each fixed α ∈ N and each ψ ∈ C∞

0 (Rn+1), based on
definitions and repeated integrations by parts we may write
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∫

∂Ω
ψ(∂τjk

ϕα) dσ =

∫

∂Ω
ψ

(
νj(∂kϕα)

∣∣
∂Ω

− νk(∂jϕα)
∣∣
∂Ω

)
dσ

=

∫

Ω

{
∂j(ψ∂kϕα) − ∂k(ψ∂jϕα)

}
dx

=

∫

Ω

{
∂jψ∂kϕα − ∂kψ∂jϕα

}
dx

=

∫

Ω

{
∂k(∂jψϕα) − ∂j(∂kψϕα)

}
dx

=

∫

∂Ω

(
νk(∂jψ)|∂Ω − νj(∂kψ)|∂Ω

)
(ϕα|∂Ω) dσ. (3.6.5)

Passing to the limit yields, upon recalling that ϕ = 0 on ∂Ω,

∫

∂Ω
ψ(∂τjk

ϕ) dσ = 0. (3.6.6)

To continue, we remark that thanks to Lemma 2.4.9, the fact that each Lipschitz function initially
defined on a subset of Rn+1 extends to the entire space (with control of the Lipschitz constant) and
a standard mollification argument, we have

{
ϕ|∂Ω : ϕ ∈ C∞

0 (Rn+1)
}
→֒ Lp(∂Ω, dσ) densely, for each p ∈ (1,∞). (3.6.7)

Granted this, (3.6.6) forces ∂τjk
ϕ = 0 on ∂Ω, which concludes the proof that Λjk is meaningly

defined. Having established this, a reference to (3.6.3) allows us to conclude that Λjk extends to a
functional in (Lp′(∂Ω, dσ))∗ = Lp(∂Ω, dσ). Riesz’s representation theorem then ensures that there
exists gjk ∈ Lp(∂Ω, dσ) with the property that

Λjk(ϕ|∂Ω) =

∫

∂Ω
gjkϕ dσ, ∀ϕ ∈ C1

0 (Rn+1). (3.6.8)

In order to indicate the dependence of gjk on f , from now on we shall denote this function by ∂τkj
f .

A calculation very similar in spirit to (3.6.5) then shows that this is compatible with (3.6.1). In
summary, we have shown that, given f ∈ Lp

1(∂Ω, dσ), for each j, k, there exists a unique function
∂τkj

f ∈ Lp(∂Ω, dσ) with the property that

∫

∂Ω
f(∂τjk

ϕ) dσ =

∫

∂Ω
(∂τkj

f)ϕ dσ, ∀ϕ ∈ C1
0 (Rn+1). (3.6.9)

In particular, ∂τjk
f = −∂τkj

f . If for f ∈ Lp(∂Ω, dσ) we now define ∂τjk
f as a functional on

C1
0 (Rn+1)

∣∣
∂Ω

by taking (3.6.9) as a definition, the reasoning above also shows that

Lp
1(∂Ω, dσ) =

{
f ∈ Lp(∂Ω, dσ) : ∂τjk

f ∈ Lp(∂Ω, dσ), j, k = 1, . . . , n + 1
}

. (3.6.10)

When equipped with the natural norm, i.e.,
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‖f‖Lp
1(∂Ω,dσ) := ‖f‖Lp(∂Ω,dσ) +

n+1∑

j,k=1

‖∂τjk
f‖Lp(∂Ω,dσ), (3.6.11)

the space Lp
1(∂Ω, dσ) is Banach for each 1 < p < ∞. Henceforth we assume that ∂Ω is compact.

Then Lp
1(∂Ω, dσ) is, for each p ∈ (1,∞), a module over {ϕ|∂Ω : ϕ ∈ C1

0 (Rn+1)}. Moreover, the
following Leibnitz rule holds (for each p ∈ (1,∞) and j, k ∈ {1, ..., n + 1})

∂τjk
(ϕf) = (∂τjk

ϕ)f + ϕ(∂τjk
f), ∀ϕ ∈ C1

0 (Rn+1), ∀ f ∈ Lp
1(∂Ω, dσ). (3.6.12)

Let us also point out here that, since {ϕ|∂Ω : ϕ ∈ C1
0 (Rn+1)} is a dense subspace of Lp(∂Ω, dσ) for

every p ∈ (1,∞), we have

Lp
1(∂Ω, dσ) →֒ Lp(∂Ω, dσ) densely, for every p ∈ (1,∞). (3.6.13)

For each 1 < p < ∞, let us now set

Lp
−1(∂Ω, dσ) :=

(
Lp′

1 (∂Ω, dσ)
)∗

,
1

p
+

1

p′
= 1, (3.6.14)

and note that the application

J : Lp
1(∂Ω, dσ) −→

[
Lp(∂Ω, dσ)

]1+n(n+1)/2
, Jf :=

(
f, (∂τjk

f)1≤j,k≤n+1

)
, (3.6.15)

has the property that RangeJ is closed, and J an isomorphism onto its range. This shows that
Lp

1(∂Ω, dσ) is a reflexive space, whenever 1 < p < ∞. In particular, from (3.6.13), we obtain

Lp(∂Ω, dσ) →֒ Lp
−1(∂Ω, dσ) densely, for every p ∈ (1,∞). (3.6.16)

Lemma 3.6.1 Let Ω ⊂ Rn+1 be a UR domain. Also, assume that u ∈ C1(Ω) is such that N (∇u),
N (u) ∈ Lp(∂Ω, dσ) for some p ∈ (1,∞), and u along with ∂ju, 1 ≤ j ≤ n + 1, have nontangential
limits at σ-almost every boundary point on ∂Ω. Then

u
∣∣∣
∂Ω

∈ Lp
1(∂Ω, dσ) and ∂τjk

(u|∂Ω) = νj(∂ku)
∣∣∣
∂Ω

−νk(∂ju)
∣∣∣
∂Ω

. (3.6.17)

In particular,

n+1∑

j,k=1

‖∂τjk
(u|∂Ω)‖Lp(∂Ω,dσ) ≤ C‖N (∇u)‖Lp(∂Ω,dσ). (3.6.18)
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Proof. For two arbitrary indices j, k ∈ {1, ..., n + 1} and ϕ ∈ C1
0 (Rn+1) we may write based on

Proposition 3.2.5 and Theorem 2.3.1 (or Corollary 3.2.8, if Ω is unbounded) applied twice

∫

∂Ω
u(∂τkj

ϕ) dσ =

∫

∂Ω
u(νk∂jϕ − νj∂kϕ) dσ

=

∫

Ω

(
∂ku∂jϕ − ∂ju∂kϕ

)
dX

=

∫

∂Ω

(
νj(∂ku)|∂Ω − νk(∂ju)|∂Ω

)
ϕ dσ. (3.6.19)

Since ϕ is arbitrary, (3.6.19) shows that u|∂Ω ∈ Lp
1(∂Ω, dσ) and νr(∂su)|∂Ω − νs(∂ru)|∂Ω = ∂τrsu,

proving (3.6.17). Then (3.6.18) is a consequence of the second formula in (3.6.17). ¤

Consider now a second-order differential operator (here and below we use the summation con-
vention):

Lu :=
(
∂r(a

αβ
rs ∂suβ)

)

α
(3.6.20)

with constant (real) coefficients, which is strongly elliptic in the sense that there exists κ > 0 such
that the following Legendre-Hadamard condition is satisfied:

aαβ
rs ξrξsζαζβ ≥ κ|ξ|2|ζ|2, ∀ ξ = (ξr)r, ∀ ζ = (ζα)α. (3.6.21)

Also, denote by E ∈ C∞(Rn+1 \{0}) a (matrix-valued) fundamental solution for L⊤, the adjoint of
L, which is even and homogeneous of degree −(n− 1), and define the single layer and its boundary
version by setting

Sf(X) :=

∫

∂Ω
E(X − Y )f(Y ) dσ(Y ), X ∈ Rn+1 \ ∂Ω, (3.6.22)

Sf(X) :=

∫

∂Ω
E(X − Y )f(Y ) dσ(Y ), X ∈ ∂Ω. (3.6.23)

Also, if E = (Eβγ)β,γ and f = (fα)α are defined on ∂Ω, introduce the associated double layer and
its principal value version by setting

Df(X) :=
(
−

∫

∂Ω
νs(Y )aαβ

rs (∂rEγβ)(X − Y )fα(Y ) dσ(Y )
)

γ
, X ∈ Rn+1 \ ∂Ω, (3.6.24)

Kf(X) :=
(
− lim

ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

νs(Y )aβα
rs (∂rEγβ)(X − Y )fα(Y ) dσ(Y )

)

γ
, X ∈ ∂Ω.(3.6.25)

Finally, if Ω ⊂ Rn+1 is an open set, we define

Ω+ := Ω, Ω− := Rn+1 \ Ω̄. (3.6.26)
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In particular, whenever 1 < p < ∞,

Sf
∣∣∣
∂Ω±

= Sf, ∀ f ∈ Lp(∂Ω, dσ). (3.6.27)

Proposition 3.6.2 Let Ω ⊂ Rn+1 be a UR domain, and take p ∈ (1,∞). Then for each f ∈
Lp

1(∂Ω, dσ) the nontangential trace ∂jDf
∣∣∣
∂Ω

exists σ-a.e. on ∂Ω, for each j ∈ {1, ..., n + 1}, and

‖N (∇Df)‖Lp(∂Ω,dσ) ≤ C‖f‖Lp
1(∂Ω,dσ), (3.6.28)

for some finite constant C > 0 depending only on p, α, as well as the Ahlfors regularity and UR
constants of ∂Ω.

Proof. Assume first that Ω is bounded. Then for each index γ, point X ∈ Ω and j ∈ {1, ..., n + 1},
we have

∂j

(
Df

)

γ
(X) = −

∫

∂Ω
νs(Y )aβα

rs (∂j∂rEγβ)(X − Y )fα(Y ) dσ(Y )

= −
∫

∂Ω
aβα

rs ∂τjs(Y )[(∂rEγβ)(X − Y )]fα(Y ) dσ(Y )

=

∫

∂Ω
aβα

rs (∂rEγβ)(X − Y )(∂τjsfα)(Y ) dσ(Y ), (3.6.29)

where in the second equality we have used the fact that aβα
rs νj(Y )(∂s∂rEγβ)(X−Y ) = 0 for X 6= Y ,

and we have integrated by parts on the boundary. Then the desired conclusions follow easily from
this.

When ∂Ω is unbounded, more attention should be paid to the third step in (3.6.29), since
(3.6.4) no longer directly applies, as ϕ(Y ) := (∂rEγβ)(X − Y ) fails to have compact support.
This issue, nonetheless, can be addressed in a straightforward manner, inserting a cut-off fac-
tor ψ(Y/R), where ψ ∈ C∞

0 (Rn+1) satisfies ψ ≡ 1 on B(0, 1). Similarly to (3.6.12), we express
ψ(Y/R)∂τjs(Y )[(∂rEγβ)(X − Y )] as

∂τjs(Y )[ψ(Y/R)(∂rEγβ)(X − Y )] − (∂rEγβ)(X − Y )∂τjs(Y )[ψ(Y/R)], (3.6.30)

then send R → ∞, and note that residual terms above to converge to zero on account of |∇[ψ(Y/R)]| ≤
C/R. Since ψ(Y/R) → 1 as R → ∞, by relying on Lebesgue’s Dominated Convergence Theorem,
this ultimately shows that

∂j

(
Df

)

γ
(X) =

∫

∂Ω
aβα

rs (∂rEγβ)(X − Y )(∂τjsfα)(Y ) dσ(Y ), (3.6.31)

irrespective of whether ∂Ω is bounded or not. ¤

Recall next the (principal value) double layer potential operator K introduced in (3.6.25), as
well as the (boundary version) single layer S from (3.6.23). We have:
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Corollary 3.6.3 If Ω ⊂ Rn+1 is a UR domain, then

K : Lp
1(∂Ω, dσ) −→ Lp

1(∂Ω, dσ) (3.6.32)

is a well-defined, bounded operator for every p ∈ (1,∞). In addition, if ∂Ω is compact, then so is

S : Lp(∂Ω, dσ) −→ Lp
1(∂Ω, dσ). (3.6.33)

Proof. From Theorem 3.5.2 we have that

Df
∣∣∣
∂Ω

= (1
2I + K)f, ∀ f ∈ Lp(∂Ω, dσ). (3.6.34)

Thus, the fact that the double layer potential operator (3.6.32) is well-defined and bounded follows
from this and Lemma 3.6.1. The same lemma and Theorem 3.5.2 also prove that the operator
(3.6.33) is bounded when ∂Ω is compact. ¤

Proposition 3.6.4 Let Ω ⊂ Rn+1 be a bounded UR domain. Then for each 1 < p < ∞, the single
layer S, originally defined as in (3.6.33), extends to a bounded operator

S : Lp
−1(∂Ω, dσ) −→ Lp(∂Ω, dσ). (3.6.35)

Also, there exists a finite constant C = C(Ω, p) > 0 such that

‖N (Sf)‖Lp(∂Ω,dσ) ≤ C‖f‖Lp
−1(∂Ω,dσ), ∀ f ∈ Lp

−1(∂Ω, dσ). (3.6.36)

Finally, for each f ∈ Lp
−1(∂Ω, dσ) the nontangential pointwise trace Sf

∣∣∣
∂Ω

exists at σ-a.e. point

on ∂Ω, and in fact

Sf
∣∣∣
∂Ω

= Sf, ∀ f ∈ Lp
−1(∂Ω, dσ). (3.6.37)

Proof. From (3.6.33) and duality (cf. (3.6.14)), we see that

S∗ : Lp
−1(∂Ω, dσ) −→ Lp(∂Ω, dσ) (3.6.38)

is well-defined and bounded for every p ∈ (1,∞). To justify dropping the star, we need to show that
the action of this operator is compatible with that of S from (3.6.33). However, this is a consequence
of (3.6.16), along with the simple observation that the adjoint of S : Lp(∂Ω, dσ) → Lp(∂Ω, dσ) is
S : Lp′(∂Ω, dσ) → Lp′(∂Ω, dσ), 1/p + 1/p′ = 1. This proves that S in (3.6.33) extends uniquely to
a bounded, linear operator in the context of (3.6.35).

Next, for 1 < p, p′ < ∞ with 1/p + 1/p′ = 1, we shall prove the following characterization of
the space (3.6.14). There exists some C = C(Ω, p) > 0 such that

91



For all f ∈ Lp
−1(∂Ω, dσ) there exist f0, fjk ∈ Lp(∂Ω, dσ), 1 ≤ j < k ≤ n + 1,

such that ‖f0‖Lp(∂Ω,dσ) +
∑

1≤j<k≤n+1

‖fjk‖Lp(∂Ω,dσ) ≤ C‖f‖Lp
−1(∂Ω,dσ)

and 〈f, g〉 =

∫

∂Ω

(
f0g +

∑

1≤j<k≤n+1

fjk∂τjk
g
)

dσ for every g ∈ Lp′

1 (∂Ω, dσ).

(3.6.39)

To prove this, recall the mapping J from (3.6.15) and consider the composition

f ◦ J−1 : Range J −→ R, (3.6.40)

where J−1 : Range J → Lp′

1 (∂Ω, dσ) is an isomorphism, and f is regarded as a functional in(
Lp′

1 (∂Ω, dσ)
)∗

. Since Range J is a closed subspace of
[
Lp′(∂Ω, dσ)

]1+n(n+1)/2
, Hahn-Banach’s

Extension Theorem in concert with Riesz’s Representation Theorem ensure the existence of f0, fjk ∈
Lp(∂Ω, dσ), 1 ≤ j < k ≤ n + 1, such that the properties listed in (3.6.39) hold.

For each f ∈ Lp
−1(∂Ω, dσ), 1 < p < ∞, and g ∈

(
Lp′

1 (∂Ω, dσ)
)∗

we let f(g) := 〈f, g〉 denote the

obvious dual pairing. For such f , we can now (unequivocally) define

Sf(X) := f
(
E(X − ·)

)
= f ◦ J−1 ◦ J

(
E(X − ·)

)

=

∫

∂Ω
E(X − Y )f0(Y ) dσ(Y ) +

∫

∂Ω
∂τjk

[E(X − Y )]fjk(Y ) dσ(Y ), X ∈ Ω,
(3.6.41)

where f0, fjk ∈ Lp(∂Ω, dσ), 1 ≤ j < k ≤ n + 1, are as in (3.6.39). We observe that even
though the functional f ◦ J−1, acting initially on Range J , may not have a unique extension

to all of
[
Lp′(∂Ω, dσ)

]1+n(n+1)/2
, the expression in (3.6.41) is well-defined, since every such exten-

sion
(
f0, (fjk)1≤j,k≤n+1

)
must agree on Range J . Then (3.6.36) is a consequence of this, (3.6.39)

and (3.2.12). Also, the existence of the nontangential pointwise trace Sf
∣∣∣
∂Ω

at σ-a.e. point on ∂Ω

follows from (3.6.41) and Theorem 3.5.2.
To justify (3.6.37) we only need to observe that, from what we have proved to this point,

the mappings (3.6.35) and Lp
−1(∂Ω, dσ) ∋ f 7→ Sf

∣∣∣
∂Ω

∈ Lp(∂Ω, dσ) are well-defined, linear and

bounded. Since, by (3.6.27), they coincide on Lp(∂Ω, dσ) which, by (3.6.16), is a dense subspace in
their common domain, (3.6.37) follows. This finishes the proof of the proposition. ¤

Let us now define the tangential gradient operator by setting

∇tanf :=
(
νk∂τkj

f
)

1≤j≤n+1
, ∀ f ∈ Lp

1(∂Ω, dσ). (3.6.42)

Lemma 3.6.5 Assume that Ω ⊂ Rn+1 is a UR domain. Then for each function f ∈ Lp
1(∂Ω, dσ)

∂τjk
f = νj(∇tanf)k − νk(∇tanf)j , j, k = 1, ..., n + 1, (3.6.43)
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σ-a.e. on ∂Ω. In particular,

‖∇tanf‖Lp(∂Ω,dσ) ≈
n+1∑

j,k=1

‖∂τjk
f‖Lp(∂Ω,dσ), ∀ f ∈ Lp

1(∂Ω, dσ). (3.6.44)

Also, for every f ∈ Lp
1(∂Ω, dσ),

〈ν,∇tanf〉 = 0 σ-a.e. on ∂Ω. (3.6.45)

Proof. Let f ∈ Lp
1(∂Ω, dσ) be arbitrary and select an operator L as in (3.6.20)-(3.6.21) (for example,

L = ∆ will do). As before, let E be a fundamental solution of L and construct the double layer D
as in (3.6.24), along with its principal value version (3.6.25). Also, set

u±(X) := Df(X) for X ∈ Ω±. (3.6.46)

Thus, by (3.6.31), Theorem 3.4.2, (3.3.9) and Proposition 3.6.2

there exist ∇u±
∣∣∣
∂Ω

, u±
∣∣∣
∂Ω

= (±1
2I + K)f

and ‖N (∇u±)‖Lp(∂Ω,dσ) ≤ C‖f‖Lp
1(∂Ω,dσ).

(3.6.47)

Next, for two arbitrary indices j, k ∈ {1, ..., n + 1} we decompose

νj(∇tanf)k − νk(∇tanf)j

= νj

(
∇tan(

1
2I + K)f

)

k
− νk

(
∇tan(

1
2I + K)f

)

j

− νj

(
∇tan(−1

2I + K)f
)

k
+ νk

(
∇tan(−1

2I + K)f
)

j
,

(3.6.48)

so (3.6.43) is proved as soon as we show that

νj

(
∇tan(±1

2I + K)f
)

k
− νk

(
∇tan(±1

2I + K)f
)

j
= ∂τjk

(±1
2I + K)f. (3.6.49)

By the trace identity in (3.6.47), this is equivalent to showing that

νj

(
∇tan(u

±|∂Ω)
)

k
− νk

(
∇tan(u

±|∂Ω)
)

j
= ∂τjk

(u±|∂Ω). (3.6.50)

Now, by (3.6.42) and Lemma 3.6.1, for each j, k ∈ {1, . . . , n + 1} we have

νj(∇tanu
±|∂Ω)k − νk(∇tanu

±|∂Ω)j = νjνr∂τrk
(u±|∂Ω) − νkνs∂τsj (u

±|∂Ω)

= νjνrνr(∂ku
±)|∂Ω − νjνrνk(∂su

±)|∂Ω

−νkνsνs(∂ju
±)|∂Ω + νkνsνj(∂su

±)|∂Ω

= νj(∂ku
±)|∂Ω − νk(∂ju

±)|∂Ω

= ∂τjk
(u±|∂Ω), (3.6.51)
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i.e., (3.6.50) holds. This completes the proof of (3.6.43). The identity (3.6.45) is proved in a similar
fashion and this finishes the proof of the lemma. ¤

We conclude this subsection with the following useful remark.

Proposition 3.6.6 Assume that Ω ⊂ Rn+1 is a bounded UR domain and that f ∈ Lp
1(∂Ω, dσ) for

some p ∈ (1,∞). Then

f = locally constant on ∂Ω ⇐⇒ ∇tanf = 0. (3.6.52)

Proof. The left-to-right implication is a consequence of (3.6.42) and the fact that the tangential
derivatives ∂τjk

annihilate constants. In the opposite direction, assume that f ∈ Lp
1(∂Ω, dσ) has

∇tanf = 0, and denote by D the harmonic double layer operator associated with ∂Ω. Then (3.6.31)
and (3.6.43) imply that Df is locally constant both in Ω+ := Ω and its complement, Ω−, from
which we may deduce that f = Df |∂Ω+ −Df |∂Ω− is locally constant on ∂Ω. ¤

4 Semmes-Kenig-Toro domains, Poincaré inequalities, and singu-

lar integrals

In this section we discuss a special class of UR domains Ω for which certain important layer
potentials are not merely bounded on Lp(∂Ω, dσ) but are actually compact, extending results of
[37] that deal with C1 domains. The domains we identify as having this property are denoted here
regular Semmes-Kenig-Toro domains (regular SKT domains for short). We give definitions and
basic properties of this class of domains in §4.1. These domains are special cases of what we call
SKT domains, which in turn are special cases of Reifenberg flat domains, which we also briefly
discuss. We also define the class of ε-regular SKT domains, for ε > 0, a class for which we will
show such layer potentials have small norm modulo compacts if ε is small.

As we have mentioned in the Introduction, SKT domains have been called chord arc domains.
The notion of chord-arc domains originated in dimension 2, where the defining condition is that
the length of a boundary arc between two points should not exceed the length of a chord between
these points by too great a factor. The notion in higher dimensions, which is somewhat more
sophisticated, originated in S. Semmes [101] and was further developed in [64]–[66]. In higher
dimensions, this “chord arc” designation is not so successful in describing the essential features of
these domains, so we propose to call them SKT domains. Similarly, we have relabeled what in these
papers were called chord arc domains with vanishing constant, calling them regular SKT domains.

In §4.2 we discuss a Poincaré inequality of Semmes and some refinements, define the Semmes
decomposition of an SKT domain, and apply the Poincaré inequality to obtain further results on
this Semmes decomposition. We use this to obtain further equivalent characterizations of regular
SKT domains. In particular we show that an open bounded set Ω ⊂ Rn+1 is a regular SKT domain
if and only if Ω is a two-sided NTA domain that is Ahlfors regular and such that ν ∈ VMO(∂Ω, dσ).

In §4.3 we make use of the Poincaré inequality of §4.2 to demonstrate that if Ω satisfies a two-
sided John condition and is Ahlfors regular, then the Sobolev space Lp

1(∂Ω, dσ) is isomorphic to
the space W p,1(∂Ω) defined for general metric measure spaces by HajÃlasz [46]. This has a number
of useful consequences, one being the denseness in Lp

1(∂Ω, dσ) of the space of Lipschitz functions
on ∂Ω.

§4.5 is the heart of this section. Here we single out a class of layer potentials, which as we will
see are of particular interest in the analysis of elliptic boundary problems, and show that they are
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compact on Lp(∂Ω, dσ) for p ∈ (1,∞) when Ω is a regular SKT domain. A quantitative version
of this result, involving the concept of ε-regular SKT domain, is also presented. As a preliminary
step, in §4.4 we present a treatment of such compactness in the case of VMO1 domains, based
on work in [50], which also plays a role in the proof of compactness in §4.5, as does the Poincaré
inequality established in §4.2.

In §4.6 we show that whenever Ω is a UR domain, satisfying a two-sided John condition, then
such compactness (accompanied by compactness of a natural family of commutators) implies that
Ω is a regular SKT domain, thus completing the circle of our compactness results. Going further,
we estimate the distance from ν to VMO (∂Ω, dσ) in terms of the distance of a selected family of
such operators to the space of compact operators.

In §4.7 we consider “Clifford-Szegö projections”, defined a priori on L2(∂Ω, dσ) ⊗ Cℓn+1, and
establish Lp extensions when Ω is a bounded, regular SKT domain. In doing so, we bring in
analogues of Kerzman-Stein formulas ([68]).

4.1 Reifenberg flat domains, SKT domains, and regular SKT domains

Here we present definitions and basic properties of Reifenberg-flat domains, SKT domains, and
regular SKT domains. Our presentation in this subsection follows closely that in [64]–[66].

Definition 4.1.1 Let Σ ⊂ Rn+1 be a nonempty, locally compact set and let δ ∈ (0, 1
4
√

2
). We say

that Σ is δ-Reifenberg flat if for each compact set K ⊂ Rn+1 there exists R = R(K) > 0 such
that for every Q ∈ K ∩ Σ and every r ∈ (0, R] there exists a n-dimensional plane L(Q, r) which
contains Q and such that

1

r
D[Σ ∩ B(Q, r) , L(Q, r) ∩ B(Q, r)] ≤ δ (4.1.1)

where B(Q, r) := {X ∈ Rn+1 : |X − Q| < r} and, for each A, B ⊂ Rn+1,

D[A, B] := max
{

sup{dist (a, B) : a ∈ A} , sup{dist (b, A) : b ∈ B}
}

(4.1.2)

is the Hausdorff distance between the sets A, B.

As in [65], for each Q ∈ Σ and r > 0, introduce

θ(Q, r) := inf
L

{1

r
D[Σ ∩ B(Q, r) , L ∩ B(Q, r)]

}
, (4.1.3)

where the infimum is taken over all n-planes containing Q, so that condition (4.1.1) becomes

∀K ⊂ Rn+1 compact, ∃R > 0 such that sup
0<r≤R

sup
Q∈Σ∩K

θ(Q, r) ≤ δ. (4.1.4)

Definition 4.1.2 We say that Σ ⊂ Rn+1 is a Reifenberg flat set with vanishing constant

if it is δ-Reifenberg flat for some δ ∈ (0, 1
4
√

2
) and for each compact set K ⊂ Rn+1 there holds

lim
r→0+

sup
Q∈Σ∩K

θ(Q, r) = 0. (4.1.5)
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Definition 4.1.3 We say that Ω ⊂ Rn+1 has the separation property if for each compact set
K ⊂ Rn+1 there exists R > 0 such that for every Q ∈ ∂Ω ∩ K and r ∈ (0, R] there exists an
n-dimensional plane L(Q, r) containing Q and a choice of unit normal vector to L(Q, r), ~nQ,r,
satisfying

{X + t ~nQ,r ∈ B(Q, r) : X ∈ L(Q, r), t < − r
4} ⊂ Ω,

{X + t ~nQ,r ∈ B(Q, r) : X ∈ L(Q, r), t > r
4} ⊂ Rn+1 \ Ω.

(4.1.6)

Moreover, if Ω is unbounded, we also require that ∂Ω divides Rn+1 into two distinct connected
components and that Rn+1 \ Ω has a non-empty interior.

Note that the separation property clearly implies

∂Ω = ∂∗Ω, (4.1.7)

i.e., the topological boundary and the measure-theoretic boundary of Ω coincide.
The following result is proved in §3 of [64].

Theorem 4.1.4 There exists a dimensional constant δn ∈ (0, 1
4
√

2
) with the property that any

domain Ω ⊂ Rn+1 that has the separation property and whose boundary is a δ-Reifenberg flat set,
δ ∈ (0, δn), is an NTA-domain.

Definition 4.1.5 Let Ω ⊂ Rn+1 and δ ∈ (0, δn). Call Ω a δ-Reifenberg flat domain if Ω has
the separation property and ∂Ω is δ-Reifenberg flat. Moreover, if Ω is unbounded, we shall also
require that

sup
r>0

sup
Q∈∂Ω

θ(Q, r) < δn. (4.1.8)

If Ω is a δ-Reifenberg flat domain and ∂Ω is Reifenberg-flat with vanishing constant, we say Ω is a
Reifenberg flat domain with vanishing constant.

As a consequence of Theorem 4.1.4 and the above definition we have the following.

Corollary 4.1.6 If the open set Ω ⊂ Rn+1 is a δ-Reifenberg flat domain with δ ∈ (0, δn) then Ω is
a two-sided NTA domain.

Let Ω ⊂ Rn+1 be a domain of locally finite perimeter, such that Hn(∂Ω \ ∂∗Ω) = 0 and ∂Ω
satisfies the Ahlfors-David regularity condition. We denote by ν the measure-theoretic outward
unit normal to ∂Ω and refer to σ := Hn ⌊ ∂Ω as the surface measure of the boundary of Ω. Then
(∂Ω, Euclidean distance, σ) becomes a space of homogeneous type, for which the definitions and
the results in § 2.4 apply. In particular, we define the space BMO(∂Ω, dσ) as the collection of
functions f ∈ L2

loc(∂Ω, dσ) with the property that ‖f‖∗ < +∞ where

‖f‖∗ := sup
r>0

sup
Q∈∂Ω

( 1

σ(∆(Q, r))

∫

∆(Q,r)
|f − f∆(Q,r)|2 dσ

)1/2
, (4.1.9)

∆(Q, r) := ∂Ω ∩ B(Q, r), f∆(Q,r) :=
1

σ(∆(Q, r))

∫

∆(Q,r)
f dσ. (4.1.10)
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As in (2.4.15), the definition of ‖f‖∗ is slightly adjusted when ∂Ω is compact, by adding |
∫
∂Ω f dσ|

in the right-hand side of (4.1.9).
Consistent with (2.4.21), we denote by VMO(∂Ω, dσ) the closure in BMO(∂Ω, dσ) of the space

of uniformly continuous real-valued functions belonging to BMO(∂Ω, dσ). Then Proposition 2.4.8
provides an alternative description of VMO(∂Ω, dσ), as the space of functions f ∈ L2

loc(∂Ω, dσ)
with the property that

lim
r→0+

sup
Q∈∂Ω

‖f‖∗(∆(Q, r)) = 0, (4.1.11)

where we have set (compare with (2.4.77))

‖f‖∗(∆(Q, r)) := sup
∆⊂∆(Q,r)

(∫
−

∆
|f − f∆|2 dσ

)1/2
, (4.1.12)

with the supremum taken over all surface balls ∆ contained in ∆(Q, r).
As noted in Remark 4.2 on p. 397 of [65], if Ω ⊂ Rn+1 is a set of locally finite perimeter and a

δ-Reifenberg flat domain for some δ ∈ (0, δn), then as a consequence of (4.1.7), ∂Ω and the measure-
theoretic boundary of Ω agree. In particular, the the measure-theoretic outward unit normal ν is
well-defined σ-a.e. on ∂Ω.

Another observation of interest (cf. Remark 4.1 on pp. 396-397 of [65]) is as follows. If Ω ⊂ Rn+1

is a δ-Reifenberg flat domain for some δ ∈ (0, δn) then given any compact set K ⊂ Rn+1 there exists
R > 0 with the property that

σ(∆(Q, r)) ≥ (1 + δ)−1ωnrn, ∀Q ∈ ∂Ω ∩ K, ∀ r ∈ (0, R]. (4.1.13)

Definition 4.1.7 Let δ ∈ (0, δn), where δn is as in Theorem 4.1.4. A set Ω ⊂ Rn+1 of locally
finite perimeter is said to be a δ-SKT domain if Ω is a δ-Reifenberg flat domain, ∂Ω satisfies the
Ahlfors-David regularity condition and, for each compact set K ⊂ Rn+1, there exists R > 0 such
that

sup
Q∈∂Ω∩K

‖ν‖∗(∆(Q, R)) < δ, (4.1.14)

where, as before, ν is the measure-theoretic outward unit normal to ∂Ω.

Definition 4.1.8 Call Ω ⊂ Rn+1 a regular SKT domain if Ω is a δ-SKT domain for some δ ∈
(0, δn) and, in addition, ν ∈ VMO(∂Ω, dσ).

For the goals we have in mind, it is natural to finally make the following.

Definition 4.1.9 An open set Ω ⊂ Rn+1 is called an ε-regular SKT domain if Ω is a δ-SKT
domain for some δ ∈ (0, δn) and, in addition, dist

(
ν, VMO(∂Ω, dσ)

)
< ε where the distance is

taken in the BMO(∂Ω, dσ) norm.

Definitions 4.1.7 and 4.1.8 are those given in [65] (where the domains were called, respectively
δ-chord arc domains and chord arc domains with vanishing constant). In this connection, it is
useful to recall Theorem 4.6 of [65], which says that if Ω ⊂ Rn+1 is a set of locally finite perimeter
and also a δ-Reifenberg flat domain for some δ ∈ (0, δn), the following statements are equivalent:

97



(1) Ω is a regular SKT domain;

(2) Ω is a Reifenberg-flat domain with vanishing constant, and for each compact K meeting ∂Ω,

lim
r→0

sup
Q∈∂Ω∩K

σ(∆(Q, r))

ωnrn
= 1, (4.1.15)

where ∆(Q, r) = Br(Q) ∩ ∂Ω and ωn is the volume of the unit ball in Rn.

(3) For each compact K ⊂ Rn+1 meeting ∂Ω,

lim
r→0

inf
Q∈∂Ω∩K

σ(∆(Q, r))

ωnrn
= lim

r→0
sup

Q∈∂Ω∩K

σ(∆(Q, r))

ωnrn
= 1. (4.1.16)

From this we also have the following.

Proposition 4.1.10 Assume that Ω ⊂ Rn+1 is a regular SKT domain. Then Ω is a δ-SKT domain
for each δ ∈ (0, δn).

Proof. As stated above, Ω is a Reifenberg flat domain with vanishing constant. In particular, Ω is
δ-Reifenberg flat for each δ ∈ (0, δn), and the desired conclusion follows now from definitions. ¤

Directly from definitions, we also have:

Proposition 4.1.11 An open set Ω ⊂ Rn+1 is a regular SKT domain if and only if it is an
ε-regular SKT domain for each ε > 0.

The following result is relevant to applying layer potentials.

Proposition 4.1.12 If Ω ⊂ Rn+1 is a δ-SKT domain for some δ ∈ (0, δn), then Ω is an UR
domain. In particular, any ε-regular SKT domain is a UR domain.

Proof. The hypotheses imply that ∂Ω is Ahlfors regular and that Ω is δ-Reifenberg flat for small
δ, and hence Ω is an NTA domain. As we saw in §3.1, all Ahlfors regular NTA domains are UR
domains. ¤

4.2 A Poincaré type inequality, Semmes decomposition, and consequences

The following Poincaré inequality will play several important roles, both in further results in this
subsection on the Semmes decomposition and in the proof of compactness in §4.5. Recall the local
John condition, introduced in Definition 3.1.12.

Proposition 4.2.1 For each open set Ω ⊂ Rn+1 which satisfies a two-sided local John condition
and whose boundary is Ahlfors regular there exists Ro (which can be taken +∞ if ∂Ω is unbounded)
with the following property. Let 1 < p < ∞, f ∈ Lp

1(∂Ω, dσ), Q ∈ ∂Ω, R ∈ (0, Ro), ∆ :=
B(Q, R) ∩ ∂Ω. Then there exists C = C(Ω, p) > 0 such that

[∫
−

∆
|f − f∆|p dσ

]1/p
≤ CR

[∫
−

5∆
|∇tanf |p dσ

]1/p

+CR
∞∑

j=2

2−j

σ(2j∆)

∫

2j∆\2j−1∆
|∇tanf | dσ. (4.2.1)
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In particular, the above estimate holds whenever Ω is a two-sided NTA domain with an Ahlfors
regular boundary.

A comment is in order here. In [103] (cf. Lemma 1.1 on p. 406), Semmes derives a Poincaré
inequality of the type

∫
−

∆
|f − f∆| dσ ≤ CR

[∫
−

5∆
|∇tanf |2 dσ

]1/2
, (4.2.2)

in the case when the quantity

‖ν‖BMO(∂Ω,dσ) + sup
X∈∂Ω

sup
0<r≤R

sup
Y ∈∆(X,R)

R−1|〈X − Y, ν∆(X,R)〉| (4.2.3)

is sufficiently small, and when both f and ∂Ω are smooth (for a constant C which is independent
of smoothness). There are several aspects of this result which do not suit the purposes that we
have in mind. First, the smallness condition imposed on (4.2.3) is, in effect, an a priori flatness
assumption on ∂Ω, a hypothesis which we wish to avoid making at this stage. Second, the smooth-
ness assumptions on f and ∂Ω play a crucial role in Semmes’ proof. Among other things, this
ensures that (4.2.2) holds, albeit with a ‘bad’ constant C = A(∂Ω) (where A(∂Ω) depends on the
smoothness of ∂Ω), and Semmes’s strategy is to derive an estimate of the form

A(∂Ω) ≤ C1A(∂Ω) + C2 (4.2.4)

where the constants C1, C2 > 0 are independent of smoothness, and C1 is small if (4.2.3) is small.
In particular, arranging that C1 ∈ (0, 1/2) forces A(∂Ω) ≤ 2C2, granted that A(∂Ω) is known to
be finite, to begin with. Such an approach clearly fails if the smoothness assumption on ∂Ω is
dropped.

We remark that in contrast to situations in which an a priori estimate obtained under a hy-
pothesis of smoothness may be used to deduce a general result via a limiting process, in the present
setting it is far from clear whether it is possible to construct suitable smooth approximating surfaces
in order to remove the regularity assumptions in [103].

For these reasons, we present below a conceptually different proof, which relies on the Calderón-
Zygmund theory for singular integrals of layer potential type, developed in earlier chapters.

Proof of Proposition 4.2.1. Assume that Ω+ = Ω and Ω− = Rn+1 \ Ω̄ satisfy a local John condition
with constants θ, Ro, and that ∂Ω is Ahlfors regular. Corollary 3.1.14 guarantees that Ω is a UR
domain, of locally finite perimeter. Fix R ∈ (0, Ro), Q ∈ ∂Ω, p ∈ (1,∞) and f ∈ Lp

1(∂Ω, dσ). Next,
let E(X) denote the standard (radial) fundamental solution for the Laplacian in Rn+1 and, for each
j = 1, . . . , n + 1, define, using the summation convention,

gj(X) := −
∫

∂Ω
(∂kE)(X − Y )(∂τjk

f)(Y ) dσ(Y ), X ∈ Rn+1 \ ∂Ω. (4.2.5)

In particular, gj(X) = ∂jDf(X) by (3.6.31). Also, set

~g := (gj)1≤j≤n+1, µ∆ :=

∫
−

∆
X dσ(X), ~g∆ :=

∫
−

∆
~g(X) dσ(X). (4.2.6)

Finally, introduce
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hj(X) := −
∫

∂Ω
(∂kE)(X − Y )(∂τjk

f)(Y )1(5∆)c(Y ) dσ(Y ), (4.2.7)

and

~h := (hj)1≤j≤n, ~h∆ =

∫
−

∆

~h(X) dσ(X). (4.2.8)

With K denoting the principal value version of the harmonic double layer on ∂Ω, we can then write

f(X) =
(

1
2I + K

)
f(X) +

(
1
2I − K

)
f(X) (4.2.9)

= lim
Z∈Γ+(X), Z→X

D+f(X) − lim
Z∈Γ−(X), Z→X

D−f(X),

where D± is the harmonic double layer mapping functions on ∂Ω into Ω±. If we now define

u+(X) := D+f(X) − 〈X,~h∆〉, X ∈ Ω+, u−(X) := D−f(X) − 〈X,~h∆〉, X ∈ Ω−, (4.2.10)

then

(∫
−

∆
|f − f∆|pdσ

)1/p

=
[∫
−

∆

∣∣∣
(

1
2I + K

)
f −

∫
−

∆

(
1
2I + K

)
f dσ − 〈X − µ∆,~h∆〉

+
(

1
2I − K

)
f −

∫
−

∆

(
1
2I − K

)
f dσ + 〈X − µ∆,~h∆〉

∣∣∣
p
dσ

]1/p

=
[∫
−

∆

∣∣∣u+ −
∫
−

∆
u+dσ − u− +

∫
−

∆
u−dσ

∣∣∣
p
dσ

]1/p

≤
[∫
−

∆

∣∣∣u+ −
∫
−

∆
u+dσ

∣∣∣
p
dσ

]1/p
+

[∫
−

∆

∣∣∣u− −
∫
−

∆
u−dσ

∣∣∣
p
dσ

]1/p
. (4.2.11)

Let A±
∆ ∈ Ω± be John centers relative to ∆(Q, R) and note that for almost every X ∈ ∂Ω,
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[∫
−

∆

∣∣∣u±(X) −
∫
−

∆
u± dσ

∣∣∣
p
dσ(X)

]1/p

=
[∫
−

∆

∣∣∣
∫
−

∆

(
u±(X) − u±(Y )

)
dσ(Y )

∣∣∣
p
dσ(X)

]1/p

≤
∫
−

∆

[∫
−

∆

∣∣∣u±(X) − u±(Y )
∣∣∣
p
dσ(X)

]1/p
dσ(Y )

≤
∫
−

∆

[∫
−

∆

∣∣∣u±(X) − u±(A±
∆)

∣∣∣
p
dσ(X)

]1/p
dσ(Y )

+

∫
−

∆

[∫
−

∆

∣∣∣u±(Y ) − u±(A±
∆)

∣∣∣
p
dσ(X)

]1/p
dσ(Y )

=
[∫
−

∆

∣∣∣u± − u±(A±
∆)

∣∣∣
p
dσ

]1/p
+

∫
−

∆

∣∣∣u± − u±(A±
∆)

∣∣∣ dσ

≤ 2
[∫
−

∆

∣∣∣u± − u±(A±
∆)

∣∣∣
p
dσ

]1/p
, (4.2.12)

by Hölder’s inequality. Thus, matters are reduced to estimating

[∫
−

∆

∣∣∣u+ − u+(A+
∆)

∣∣∣
p
dσ

]1/p
,

[∫
−

∆

∣∣∣u− − u−(A−
∆)

∣∣∣
p
dσ

]1/p
. (4.2.13)

We shall indicate how this is done for the first expression above, as the second one can be handled
in a similar fashion. To proceed, we recall from Definition 3.1.12 that there exists a rectifiable path
γX joining X with A+

∆, of length ≤ CR, and such that γX ⊂ Γ+
κ (X) for some geometrical constant

κ. Let ds and Z(s) be, respectively, the arc-length element and arc-length parametrization of γX .
Then

[∫
−

∆

∣∣∣u+ − u+(A+
∆)

∣∣∣
p
dσ

]1/p
=

[∫
−

∆

∣∣∣
∫

γX

〈Ż(s),∇u+(Z(s))〉 ds
∣∣∣
p
dσ(X)

]1/p

≤ CR
[∫
−

∆

∣∣∣N (|∇u+|1B(Q,2R)∩Ω)
∣∣∣
p
dσ

]1/p
. (4.2.14)

On the other hand,

∇u+(X) = ∇D+f(X) − ~h∆ = −
(∫

∂Ω
(∂kE)(X − Y )(∂τjk

f)(Y )15∆(Y ) dσ(Y )
)

1≤j≤n+1

−
(∫

∂Ω
(∂kE)(X − Y )(∂τjk

f)(Y )1∂Ω\5∆(Y ) dσ(Y )

−
∫
−

∆

∫

∂Ω
(∂kE)(Z − Y )(∂τjk

f)(Y )1∂Ω\5∆(Z) dσ(Y ) dσ(Z)
)

1≤j≤n+1

=: ~a(X) +~b(X). (4.2.15)

Observe that
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[∫
−

∆
|N (~a)|p dσ

]1/p
≤ C

[∫
−

5∆
|∇tanf |p dσ

]1/p
, (4.2.16)

thanks to the estimates on singular integrals from §3.2. Moreover,

|~b(X)| ≤
∫
−

∆

(∫

∂Ω\5∆

∣∣∣(∇E)(X − Y ) − (∇E)(Z − Y )
∣∣∣|∇tanf(Y )| dσ(Y )

)
dσ(Z), (4.2.17)

so using the Mean Value Theorem we obtain

sup
X∈B(Q,2R)∩Ω

|~b(X)| ≤ C

∫

∂Ω\B(Q,2R)

R

|Q − Y |n+1
|∇tanf(Y )| dσ(Y )

≤ C
∞∑

j=1

2−j

∫
−

2j+1∆\2j∆
|∇tanf | dσ. (4.2.18)

Therefore,

[∫
−

∆
|N (~b1B(Q,2R)∩Ω)|p dσ

]1/p
≤ C

∞∑

j=1

2−j

σ(2j+1∆)

∫

2j+1∆\2j∆
|∇tanf | dσ. (4.2.19)

Now (4.2.1) follows by combining (4.2.11), (4.2.12), (4.2.14), (4.2.15), (4.2.16) and (4.2.19). ¤

This Poincaré lemma enables us to establish the following, which will be of great use both in
the proof of Semmes’ Decomposition Theorem, to be discussed shortly, as well as later, in §4.5.

Theorem 4.2.2 Assume that Ω ⊂ Rn+1 is an open set that satisfies a two-sided local John condi-
tion and whose boundary is Ahlfors regular (in particular, any two-sided NTA domain with Ahlfors
regular boundary will do).

Then there exist Ro (which can be taken +∞ if Ω is unbounded) and C = C(Ω) > 0 with the
property that for each ε ∈ (0, 1), X ∈ ∂Ω and R ∈ (0, Ro), there holds

sup
Y ∈∆(X,2R)

R−1|〈X − Y, ν∆(X,R)〉| ≤ C‖ν‖∗(∆(X, 8ε−1R)) + Cε, (4.2.20)

where ν∆(X,R) :=
∫
−∆(X,R)ν dσ.

It is not too hard to show that if Ω ⊂ Rn+1 is a set of locally finite perimeter which satisfies an
exterior corkscrew condition then

lim
Y →X
Y ∈∂Ω

〈
ν(X),

X − Y

|X − Y |
〉

= 0, ∀X ∈ ∂∗Ω. (4.2.21)

This is implicit in the proof of Lemma A.1.3 of [66]. (Let us recall in this context that the exterior
corkscrew condition on Ω implies ∂Ω = ∂Ω.) The usefulness of (4.2.20) stems from the fact that this
estimate gives, at each fixed scale, a quantitative control of the inner product between the average
of unit normal and the (normalized) chord in terms of the corresponding local mean oscillations of
the unit normal.

Before presenting the proof of Theorem 4.2.2, we record the following useful corollary.
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Corollary 4.2.3 Granted the geometrical hypotheses on Ω made in the statement of Theorem 4.2.2,
there exists a finite geometrical constant C = C(Ω) > 0 such that

sup
X∈∂Ω

sup
R>0

sup
Y ∈∆(X,2R)

R−1|〈X − Y, ν∆(X,R)〉| ≤ C‖ν‖BMO(∂Ω,dσ), (4.2.22)

and

lim sup
R→0+

[
sup

X∈∂Ω
sup

Y ∈∆(X,2R)
R−1|〈X − Y, ν∆(X,R)〉|

]
≤ C dist (ν , VMO (∂Ω, dσ)). (4.2.23)

Proof. First, (4.2.22) follows easily by estimating ‖ν‖∗(∆(X, 8ε−1R)) ≤ ‖ν‖BMO (∂Ω,dσ) and then
letting ε > 0 approach 0 in (4.2.20). As for (4.2.23), we take the supremum of both sides in (4.2.20)
with respect to X ∈ ∂Ω, then invoke (2.4.77), before making ε → 0+. ¤

Estimate (4.2.22) is the main result in [103] and Semmes establishes this in the case when ∂Ω is a
C∞ smooth surface using his Poincaré type inequality (Lemma 1.1 on p. 406 of [103]). The necessity
that ∂Ω is smooth in Semmes’ argument is inherited from here (see the comments following the
statement of Proposition 4.2.1). In our situation, we shall employ our version of Poincaré inequality
from Proposition 4.2.1 when dealing with (4.2.20). The appearance of ε in (4.2.20) is an artifact
attributed to our Poincaré inequality being weaker than the standard version, due to the presence
of the series in the right-hand side of (4.2.1). As already seen in the proof of Corollary 4.2.3, this
is not a serious impediment.

Proof of Theorem 4.2.2. Let Ro be such that the Poincaré inequality from Proposition4.2.1 applies
on surface balls of radius ≤ CRo, where C is a large, suitable geometrical constant.

To justify (4.2.20), fix X ∈ Ω, R ∈ (0, Ro), ε ∈ (0, 1) and abbreviate ∆ := ∆(X, R). Consider
next

gX(Y ) := 〈X − Y, ν∆〉, Y ∈ ∂Ω. (4.2.24)

For this function, we claim that the following estimate is valid:

|gX(Y ) − gX(Y ′)| ≤ C(Ω, α)R1−α|Y − Y ′|α
{
‖ν‖∗(∆(X, 8ε−1R)) + ε

}
, ∀Y, Y ′ ∈ 2∆, (4.2.25)

for each α ∈ (0, 1). Granted this, choosing Y ′ = X yields

|gX(Y )| ≤ CR‖ν‖∗(∆(X, 8ε−1R)) + CRε, ∀Y ∈ 2∆, (4.2.26)

which readily gives (4.2.20). Therefore, there remains to prove (4.2.25). First note that

|∇tangX(Y )| = |∇gX(Y ) − 〈∇gX(Y ), ν(Y )〉ν(Y )|
= |ν∆ − 〈ν∆, ν(Y )〉ν(Y )|
= |ν∆ − ν(Y ) − 〈ν∆ − ν(Y ), ν(Y )〉ν(Y )|
≤ 2|ν∆ − ν(Y )|. (4.2.27)
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Fix an arbitrary surface ball ∆r or radius r such that ∆r ⊂ ∆ and set N := [−log2ε] + 1. In
particular, 2N ∼ ε−1 and 2−N ∼ ε. Then for each p, q ∈ (1,∞), the estimate (4.2.27), our Poincaré
inequality, John-Nirenberg’s inequality and the fact that |ν| = 1 yield

1

r

(∫
−

∆r

|gX − (gX)∆r |p dσ
)1/p

≤ C
(∫
−

4∆r

|∇tangX |p dσ
)1/p

+ C
∞∑

j=1

2−j

∫
−

2j+1∆r

|∇tangX | dσ

≤ C
(∫
−

4∆r

|ν − ν∆|p dσ
)1/p

+ C

∞∑

j=1

2−j

∫
−

2j+1∆r

|ν − ν∆| dσ

≤ C
∞∑

j=1

2−j
(∫
−

2j+1∆r

|ν − ν∆|pq dσ
)1/(pq)

≤ C
∞∑

j=1

(2jr)−n/(pq)2−j
(∫

2j+2∆
|ν − ν∆|pq dσ

)1/(pq)

≤ C
(R

r

)n/(pq)
∞∑

j=1

2−j
(∫
−

2j+2∆
|ν − ν∆|pq dσ

)1/(pq)

≤ C
(R

r

)n/(pq){ N∑

j=1

2−j
(∫
−

2j+2∆
|ν − ν∆|pq dσ

)1/(pq)
+ 2−N

}

≤ C
(R

r

)n/(pq){( ∞∑

j=1

j 2−j
)
‖ν‖∗(∆(X, 2N+3R)) + 2−N

}

≤ C
(R

r

)n/(pq){
‖ν‖∗(∆(X, 8ε−1R)) + ε

}
. (4.2.28)

Given α ∈ (0, 1), if p, q ∈ (1,∞) are chosen such that α = 1−n/(pq), then the above estimate gives

r−α
(∫
−

∆r

|gX − (gX)∆r |p dσ
)1/p

≤ C(Ω, p, α)R1−α
{
‖ν‖∗(∆(X, 8ε−1R)) + ε

}
. (4.2.29)

Using N. Meyer’s criterion for Hölder continuity ([81]) we may then estimate

sup
Y,Y ′∈2∆

|gX(Y ) − gX(Y ′)|
|Y − Y ′|α ≤ C sup

∆r⊂∆
r−α

∫
−

∆r

|gX(Y ) − (gX)∆r | dσ(Y )

≤ C sup
∆r⊂∆

r−α
(∫
−

∆r

|gX(Y ) − (gX)∆r |p dσ(Y )
)1/p

≤ CR1−α
{
‖ν‖∗(∆(X, 8ε−1R)) + ε

}
. (4.2.30)

Let us remark that while the setting in [81] is that of the ordinary Euclidean space, Meyer’s
argument carries over to the current setting. Indeed, the key ingredients in the proof are: (i) the
classical Calderón-Zygmund lemma, and (ii) the fact that that the estimate under discussion re-
scales naturally under dilations. That the Calderón-Zygmund lemma continues to be valid in the
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setting of spaces of homogeneous type is well-known; see, e.g., [22]. As for (ii), the feature which is
lost when replacing the Euclidean space Rn by ∂Ω is that, as opposed to the latter, the former is
stable under dilations. One possible remedy is to consider, in place of just one domain Ω, the entire
class of domains whose boundaries are Ahlfors-regular, with fixed Ahlfors regularity constants. This
class is then stable under dilations and the same type of argument as in [81] continues to work in
this context.

Now, estimate (4.2.30) justifies (4.2.25), thus finishing the proof of the theorem. ¤

We now turn our attention to an important tool, Semmes’ decomposition theorem, which origi-
nally appeared in Proposition 5.1 on p. 212 of [101]. In [101], this result was stated for C2 surfaces,
albeit the constants involved were independent of smoothness. A more general formulation, in
which the C2 smoothness assumption is replaced by Reifenberg flatness, appears in Theorem 4.1
on p. 398 of [65] (see also the comments on p. 66 in [15]). Here, however, our goal is to start with
a different set of hypotheses which, a priori, do not specifically require the domain in question to
be Reifenberg flat. More concretely, we shall ask instead that the domain satisfies a two-sided
local John condition, its boundary is Ahlfors regular, and that its unit normal has a small local
BMO norm. Cf. Theorem 4.2.4 below. As pointed out in Corollary 4.2.5, the class of domains just
described include any two-sided NTA domain with an Ahlfors regular boundary and whose unit
normal has a small local BMO norm.

Once Semmes’ decomposition theorem is established in this context, we can then show that any
domain satisfying the aforementioned hypotheses is necessarily Reifenberg flat (at an appropriate
scale). This is accomplished later, in Theorem 4.2.7.

Theorem 4.2.4 Let Ω ⊂ Rn+1 be an open set that satisfies a two-sided local John condition and
whose boundary is Ahlfors regular.

Then there exists a geometrical constant C∗ > 1 with the following significance: suppose that
there exists δ ∈ (0, 1/(10C∗)) with the property that for every compact set K ⊂ Rn+1 there exists
RK > 0 for which

sup
Q∈K∩∂Ω

‖ν‖∗(∆(Q, RK)) ≤ δ. (4.2.31)

Then for every compact set K ⊂ Rn+1 there exist C1, C2, C3, C4 > 0 depending only on Ω and K,
along with R∗ > 0 depending on Ω, K and δ, for which the following holds. If Q ∈ K ∩ ∂Ω and
0 < r ≤ R∗, then there exists a unit vector ~nQ,r and a Lipschitz function

h : H(Q, r) := 〈~nQ,r〉⊥ −→ R, with ‖∇h‖L∞ ≤ C3 δ, (4.2.32)

and whose graph

G := {X = Q + ζ + t ~nQ,r : ζ ∈ H(Q, r), t = h(ζ)} (4.2.33)

(in the coordinate system X = (ζ, t) ⇔ X = Q + ζ + t ~nQ,r, ζ ∈ H(Q, r), t ∈ R) is a good
approximation of ∂Ω in the cylinder

C(Q, r) := {Q + ζ + t ~nQ,r : ζ ∈ H(Q, r), |ζ| ≤ r, |t| ≤ r} (4.2.34)
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in the following sense. With Cj = Cj(Ω,K), 1 ≤ j ≤ 3, as above,

σ
(
C(Q, r) ∩ (∂Ω△G)

)
≤ C1ωnrn exp (−C2/δ). (4.2.35)

Also, there exist two disjoint sets G(Q, r) (‘good’) and E(Q, r) (‘evil’) such that

C(Q, r) ∩ ∂Ω = G(Q, r) ∪ E(Q, r) with G(Q, r) ⊂ G (4.2.36)

and σ(E(Q, r)) ≤ C1 ωnrn exp (−C2/δ). (4.2.37)

Moreover, if Π : Rn+1 −→ H(Q, r) is defined by Π(X) = ζ if X = Q + ζ + t~nQ,r ∈ Rn+1 with
ζ ∈ H(Q, r) and t ∈ R, then

∣∣∣X −
(
Q + Π(X) + h(Π(X))~nQ,r

)∣∣∣ ≤ C3 δ dist (Π(X) , Π(G(Q, r))), ∀X ∈ E(Q, r), (4.2.38)

and

C(Q, r) ∩ ∂Ω ⊆ {Q + ζ + t ~nQ,r : |t| ≤ C3δr, ζ ∈ H(Q, r)}, (4.2.39)

Π(C(Q, r) ∩ ∂Ω) = {ζ ∈ H(Q, r) : |ζ| < r}. (4.2.40)

Finally,

(1 − C4δ)ωnrn ≤ σ(∆(Q, r)) ≤ (1 + C4δ)ωnrn. (4.2.41)

Thus, heuristically, the fact that a domain Ω ⊂ Rn+1 satisfies a two-sided local John condition, has
an Ahlfors regular boundary, and its unit normal has small local mean oscillations, implies that, at
an appropriate scale (within a cylinder) ∂Ω agrees with the graph of a function with small Lipschitz
constant except for a small bad set, while staying close to the this graph even on the bad set.

Before presenting the proof of this result we record a consequence and a related result, of
independent interest. The first one is a direct consequence of Lemma 3.1.13.

Corollary 4.2.5 Assume that Ω is a two-sided NTA domain in Rn+1 with the property that ∂Ω is
Ahlfors regular and such that (4.2.31) holds. Then the conclusions in Theorem 4.2.4 remain valid
in this context.

The second result is readily seen from definitions.

Proposition 4.2.6 Assume that Ω satisfies a two-sided corkscrew condition and ∂Ω is Ahlfors
regular. Also, suppose that ∂Ω is δ-Semmes decomposable (i.e., the conclusions in Theorem 4.2.4
hold) for some δ > 0 which is small relative to the corkscrew constant of Ω. Then ∂Ω is δo-Reifenberg
flat, with δo = Cδ for some geometric constant C > 0.

We now present the

Proof of Theorem 4.2.4. Let δ > 0 be such that δ2 ∈ (0, 1
10C∗

), with C∗ to be specified later, and fix

an arbitrary compact K ⊂ Rn+1. Set K̃ := {X ∈ Rn+1 : dist (X,K) ≤ 1}. Our hypotheses imply
the existence of some RK̃ > 0 such that
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‖ν‖∗(∆(X, RK̃)) ≤ δ2 for each X ∈ K̃ ∩ ∂Ω. (4.2.42)

If we now introduce R∗ := min {δ2RK̃/(8C) , RK̃/8 , Ro/100 , 1}, where Ro is the constant used in
the statement of Theorem 4.2.2 and C > 0 is the constant appearing in (4.2.20), Theorem 4.2.2
gives

sup
0<r<R∗

sup
X∈K̃∩∂Ω

sup
Y ∈∆(X,2r)

r−1|〈X − Y, ν∆(X,r)〉| ≤ 2δ2, (4.2.43)

where, as in the past, ν∆(X,r) :=
∫
−∆(X,r)ν dσ. For R > 0 and X ∈ ∂Ω, set

ν∗
X,R(Y ) := sup

ρ∈(0,R)

∫
−

∆(Y,ρ)
|ν(Z) − ν∆(X,2R)| dσ(Z), Y ∈ ∂Ω. (4.2.44)

It follows that

ν∗
X,R(Y ) ≤ M

(
|ν − ν∆(X,2R)|1∆(X,2R)

)
(Y ), ∀Y ∈ ∆(X, R), (4.2.45)

where M is the Hardy-Littlewood maximal function on ∂Ω. Thus, by (4.2.45), the boundedness of
M on L2(∂Ω, dσ), John-Nirenberg’s inequality and (4.2.42), we have

(∫
−

∆(X,R)
|ν∗

X,R(Y )|2 dσ(Y )
)1/2

≤ C
(∫
−

∆(X,2R)
|ν(Y ) − ν∆(X,2R)|2 dσ(Y )

)1/2
≤ Cδ2, (4.2.46)

whenever X ∈ K̃ ∩ ∂Ω and 0 < R < RK̃/2.
Next, fix a point Q ∈ K ∩ ∂Ω and choose C∗ := max {C, 1}, where C is the geometrical

constant appearing in (4.2.46). If 0 < δ2 < (10C∗)−1 and R ∈ (0, RK̃/2) it follows from this that
there exists Yo ∈ ∆(Q, R) such that ν∗

Q,R(Yo) ≤ 1/10. Since matters can be arranged so that
|ν(Yo) − ν∆(Q,2R)| ≤ ν∗

Q,R(Yo), this forces

9
10 ≤ |ν∆(Q,2R)| ≤ 1, ∀R ∈ (0, RK̃/2). (4.2.47)

In particular, for each r ∈ (0, R∗),

~nQ,r :=
ν∆(Q,4r)

|ν∆(Q,4r)|
(4.2.48)

is a well-defined unit vector in Rn+1. Set H(Q, r) := {X ∈ Rn+1 : 〈X,~nQ,r〉 = 0} and introduce a
new system of coordinates in Rn+1 by setting

X = (ζ, t) ⇐⇒ X = Q + t ~nQ,r + ζ, t ∈ R, ζ ∈ H(Q, r). (4.2.49)

Also, define Π : Rn+1 −→ H(Q, r) by Π(X) = ζ if X = (ζ, t), and write ζ(X), t(X) in place of
ζ, t whenever necessary to stress the dependence of the new coordinates on the point X ∈ Rn+1.
Finally, consider the cylinder C(Q, r) defined as in (4.2.34) and introduce
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G(Q, r) := {X ∈ C(Q, r) ∩ ∂Ω : ν∗
Q,2r(X) ≤ δ}, E(Q, r) :=

(
C(Q, r) ∩ ∂Ω

)
\ G(Q, r).(4.2.50)

Next, we claim that there exist two geometrical constants C > 0, c > 0 such that

∫
−

∆(Q,2r)
exp (c δ−2 ν∗

Q,2r) dσ ≤ C. (4.2.51)

Granted this, we may then conclude that

exp (c/δ)
σ(E(Q, r))

σ(∆(Q, 2r))
≤ 1

σ(∆(Q, 2r))

∫

E(Q,r)
exp (c δ−2 ν∗

Q,2r) dσ ≤ C, (4.2.52)

from which the estimate (4.2.37) follows. To justify (4.2.51), set f := M(|ν − ν∆(Q,4r)|1∆(Q,4r)), so
that ν∗

Q,2r(X) ≤ f(X) if X ∈ ∆(Q, 2r). Expanding the exponential function into an infinite power
series we may then write

∫
−

∆(Q,2r)
exp (c δ−2 ν∗

Q,r) dσ ≤
∫
−

∆(Q,2r)
exp (c δ−2 f) dσ

=
1

σ(∆(Q, 2r))

∫ ∞

0
σ
(
{X ∈ ∆(Q, 2r) : exp (c δ−2 f(X)) > λ}

)
dλ

≤ 1 +
1

σ(∆(Q, 2r))

∫ ∞

1
σ
(
{X ∈ ∆(Q, 2r) : exp (c δ−2 f(X)) > λ}

)
dλ

≤ 1 +
1

σ(∆(Q, 2r))

∫ ∞

0
σ
(
{X ∈ ∆(Q, 2r) : c δ−2 f(X) > s}

)
es ds

≤ e +
1

σ(∆(Q, 2r))

∞∑

k=0

1

k!

∫ ∞

1
σ
(
{X ∈ ∆(Q, 2r) : f(X) > s δ2/c}

)
sk ds. (4.2.53)

To continue, note that for every p ∈ [2,∞), the Lp-boundedness of the Hardy-Littlewood maximal
operator (with bounds independent of p) gives

σ
(
{X ∈ ∆(Q, 2r) : f(X) > s δ2/c}

)

σ(∆(Q, 2r))
≤

( c

s δ2

)p
∫
−

∆(Q,2r)
f(X)p dσ(X) (4.2.54)

≤ C
( c

s δ2

)p
∫
−

∆(Q,4r)
|ν(X) − ν∆(Q,4r)|p dσ(X),

and we now claim that

∫
−

∆(Q,4r)
|ν(X) − ν∆(Q,4r)|p dσ(X) ≤ C1Γ(p + 1)

(
C2‖ν‖∗(∆(Q, 4r))

)p
, (4.2.55)

where Γ(t) :=
∫ ∞
0 λt−1e−λ dλ is the Gamma function. Taking this inequality for granted for the

time being, we combine (4.2.55) and (4.2.54) and recall that ‖ν‖∗(∆(Q, 4r)) ≤ δ to obtain
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σ
(
{X ∈ ∆(Q, 4r) : f(X) > s δ2/c}

)

σ(∆(Q, 4r))
≤ C1Γ(p + 1)

(c C2

s

)p
, (4.2.56)

for each p ∈ [2,∞). Utilizing (4.2.56), in which we take p = k + 2, k = 0, 1, ..., back into (4.2.53)
then yields

∫
−

∆(Q,2r)
exp (c δ−2 ν∗

Q,4r) dσ ≤ Co + C1

∞∑

k=0

k3

∫ ∞

1
sk

(c C2

s

)k+2
ds =: C < +∞, (4.2.57)

if 0 < c < 1/C2. This finishes the proof of (4.2.51), modulo that of (4.2.55). As regards the latter,
we use following the John-Nirenberg level set estimate with exponential bound

σ
(
{X ∈ ∆(Q, 4r) : |ν(X) − ν∆(Q,4r)| > λ}

)
≤ C exp

( −C2λ

‖ν‖∗(∆(Q, 4r))

)
(4.2.58)

(whose validity in the context of spaces of homogeneous type is well-known; see, e.g., [1], [23], and
Theorem 2 on p. 33 in [110]), in order to write

∫
−

∆(Q,4r)
|ν(X) − ν∆(Q,4r)|p dσ(X) = p

∫ ∞

0
λp−1σ

(
{X ∈ ∆(Q, 4r) : |ν(X) − ν∆(Q,4r)| > λ}

)
dλ

≤ C1p

∫ ∞

0
λp−1exp

( −C2λ

‖ν‖∗(∆(Q, 4r))

)
dλ

≤ C1p
(
C2‖ν‖∗(∆(Q, 4r))

)p
∫ ∞

0
tp−1e−t dt

= C1pΓ(p)
(
C2‖ν‖∗(∆(Q, 4r))

)p
. (4.2.59)

Since p Γ(p) = Γ(p + 1), this justifies (4.2.55) and concludes the proof of (4.2.51).
We now turn to the task of constructing the Lipschitz function h. As a preliminary matter, we

note here that the estimate (4.2.43) gives

|〈X − Y, ν∆(Q,4r)〉| ≤ |〈X − Y, ν∆(X,|X−Y |)〉| + |X − Y ||ν∆(Q,4r) − ν∆(X,|X−Y |)|

≤ 2δ2 |X − Y | + |X − Y |
∫
−

∆(X,|X−Y |)
|ν − ν∆(Q,4r)| dσ

≤
(
2δ2 + ν∗

Q,2r(X)
)
|X − Y |, (4.2.60)

provided X ∈ K̃ ∩ ∂Ω, r ∈ (0, R∗) and Y ∈ B(X, 2r). Also, recall from (4.2.49) that

t(X) = 〈X − Q,~nQ,r〉, X ∈ Rn+1. (4.2.61)

This, (4.2.47)-(4.2.48) and (4.2.60) then allow us to control
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|t(X) − t(Y )| = |〈X − Y, ~nQ,r〉|
≤ 10

9 |〈X − Y, ν∆(Q,4r)〉| ≤ 4δ|X − Y | (4.2.62)

whenever X ∈ G(Q, r), Y ∈ B(X, 2r), r ∈ (0, R∗). (Note that X ∈ G(Q, r) implies X ∈ K̃ ∩ ∂Ω.)
On the other hand, we may write ζ(X) − ζ(Y ) = X − Y − (t(X) − t(Y ))~nQ,r so that

|ζ(X) − ζ(Y )| ≥ |X − Y | − |t(X) − t(Y )| ≥ (1 − 4δ)|X − Y |, (4.2.63)

granted that X, Y are as above. Combining (4.2.62) and (4.2.63) then gives

|t(X) − t(Y )| ≤ 4δ

1 − 4δ
|ζ(X) − ζ(Y )| ≤ Cδ|ζ(X) − ζ(Y )|,

X ∈ G(Q, r), Y ∈ B(X, 2r),

(4.2.64)

for some geometrical constant C > 0. As a consequence, the projection Π is one-to-one on G(Q, r)
and, hence, the mapping

h : Π(G(Q, r)) −→ R, h(ζ(X)) := t(X), (4.2.65)

is well-defined. By (4.2.64), this mapping satisfies a Lipschitz condition with constant Cδ. It
can be therefore extended as a Lipschitz function, which we continue to denote by h, to the entire
hyperplane H(Q, r), with constant ≤ Cδ. Note that its graph G (in the (ζ, t)-system of coordinates)
contains {(ζ(X), t(X)) : X ∈ G(Q, r)} = G(Q, r).

The inclusion (4.2.39) is a direct consequence of the convention (4.2.49), formula (4.2.61) and
estimate (4.2.43). In turn, this implies that the connected sets

C+(Q, r) := {(ζ, t) : |ζ| ≤ r, −r < t < −C3δr},
C−(Q, r) := {(ζ, t) : |ζ| ≤ r, C3δr < t < r},

(4.2.66)

do not intersect ∂Ω. Thus, Ω+ := Ω and Ω− := Rn+1 \ Ω̄ form a disjoint, open cover of C±(Q, r)
and since the two-sided corkscrew condition guarantees that C±(Q, r) ∩ Ω± 6= ∅, we may finally
conclude that

C+(Q, r) ⊆ Ω+ and C−(Q, r) ⊆ Ω−. (4.2.67)

Now, clearly, Π(C(Q, r) ∩ ∂Ω) ⊆ {ζ ∈ H(Q, r), |ζ| ≤ r}. The opposite inclusion fails only when
there exists a line segment parallel to ~nQ,r whose two endpoints belong to C+(Q, r) and to C−(Q, r),
respectively, and which does not intersect ∂Ω. However, (4.2.67) and simple connectivity arguments
rule out this scenario, hence (4.2.40) is proved.

Going further, observe that (4.2.40) implies

{ζ ∈ H(Q, r), |ζ| ≤ r} \ Π(G(Q, r)) ⊆ Π(E(Q, r)) (4.2.68)
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so that

Hn
(
{ζ ∈ H(Q, r), |ζ| ≤ r} \ Π(G(Q, r))

)
≤ Hn

(
Π(E(Q, r))

)
(4.2.69)

≤ Hn(E(Q, r)) ≤ C1 ωnrn exp (−C2/δ),

using the fact that Π maps balls in Rn+1 into balls in hyperplane H(Q, r) or the same radii, and

invoking (4.2.37). Now, C(Q, r) ∩
(
G \ ∂Ω

)
⊆ G ∩ Π−1

(
{ζ ∈ H(Q, r), |ζ| ≤ r} \ Π(G(Q, r))

)
and

since G is the graph of a Lipschitz function, we may deduce that

Hn
(
C(Q, r) ∩

(
G \ ∂Ω

))

≤ Hn
(
G ∩ Π−1

(
{ζ ∈ H(Q, r), |ζ| ≤ r} \ Π(G(Q, r))

))

≤ C Hn
(
Π

(
G ∩ Π−1

(
{ζ ∈ H(Q, r), |ζ| ≤ r} \ Π(G(Q, r))

)))

≤ C Hn
(
{ζ ∈ H(Q, r), |ζ| ≤ r} \ Π(G(Q, r))

)
≤ C1 ωnrn exp (−C2/δ), (4.2.70)

by (4.2.69). Keeping in mind that C(Q, r)∩
(
∂Ω \G

)
is contained in E(Q, r), the estimate (4.2.35)

now follows from (4.2.70) and (4.2.37).

As for the proximity condition (4.2.38), fix X ∈
(
C(Q, r)∩ ∂Ω

)
\G(Q, r) and let X∗ ∈ G(Q, r)

be arbitrary. Since X∗ ∈ G(Q, r) and X ∈ B(X∗, 2r), estimate (4.2.64) gives

|t(X) − h(Π(X∗))| = |t(X) − t(X∗)| ≤ Cδ|Π(X) − Π(X∗)|, (4.2.71)

for some geometrical constant C > 0. Consequently,

|X − (Π(X), h(Π(X)))| = |t(X) − h(Π(X))|
≤ |t(X) − h(Π(X∗))| + |h(Π(X∗)) − h(Π(X))|
≤ Cδ|Π(X) − Π(X∗)|, (4.2.72)

by (4.2.71) and the Lipschitz condition on h. Taking the infimum over X∗ ∈ G(Q, r) now yields
(4.2.38).

There remains to prove (4.2.41). Using (4.2.35), (4.2.40) and (4.2.32), we may estimate

σ(∆(Q, r)) = Hn(∂Ω ∩ B(Q, r)) ≤ Hn(C(Q, r) ∩ ∂Ω)

≤ Hn(C(Q, r) ∩ G) + Hn
(
C(Q, r) ∩ (∂Ω \ G)

)

≤
∫

ζ∈H(Q,r): |ζ|<r

√
1 + |∇h(ζ)|2 dLn(ζ) + C1 ωnrn exp (−C2/δ)

≤
(
1 + C3δ + C1 exp (−C2/δ)

)
ωnrn ≤ (1 + C4δ)ωnrn. (4.2.73)
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Also, from (4.2.35) and (4.2.32),

ωnrn = Hn
(
Π({ζ ∈ H(Q, r) : |ζ| < r})

)
≤ Hn(C(Q, r) ∩ ∂Ω)

≤ Hn(B(Q, r) ∩ ∂Ω) + Hn
(
(C(Q, r) ∩ ∂Ω) \ B(Q, r)

)

≤ σ(∆(Q, r)) + Hn
(
(C(Q, r) ∩ G) \ B(Q, r)

)
+ Hn

(
C(Q, r) ∩ (∂Ω \ G)

)

≤ σ(∆(Q, r)) + C3 δ ωn rn + C1 ωnrn exp (−C2/δ)

≤ σ(∆(Q, r)) + C4 δ ωnrn (4.2.74)

so that (1 − C4 δ)ωn rn ≤ σ(∆(Q, r)). Hence, (4.2.41) follows from this and (4.2.73), completing
the proof of the theorem. ¤

From Definition 4.1.7 and Corollary 4.1.6, it follows that if Ω ⊆ Rn+1 is a δ-SKT domain for
some δ ∈ (0, δn), then Ω is a two-sided NTA domain, ∂Ω is Ahlfors regular, and for each compact
set K ⊂ Rn+1, there exists R > 0 such that (4.1.14) holds. Remarkably, the converse implication is
also valid (up to a multiplicative geometrical constant). This is made precise in the theorem below.

Theorem 4.2.7 Let Ω ⊆ Rn+1 be an open set that satisfies a two-sided local John condition and
whose boundary is Ahlfors regular. In the case when Ω is unbounded, it is also required that ∂Ω
divides Rn+1 into two distinct connected components.

Then there exists a geometrical constant Co > 1 with the following significance. Assume that
there exists δ > 0, sufficiently small relative to the John and Ahlfors regularity constants of Ω, with
the property that for every compact set K ⊂ Rn+1 there exists RK > 0 such that

sup
Q∈K∩∂Ω

‖ν‖∗(∆(Q, RK)) ≤ δ. (4.2.75)

Then Ω is a δo-SKT domain, with δo = Coδ. In particular, Ω is a δo-Reifenberg flat domain and,
hence, a two-sided NTA domain.

Proof. Since Corollary 3.1.14 gives that Ω has locally finite perimeter, it suffices to show that Ω is
δo-Reifenberg flat if δo := Coδ for some geometrical constant Co > 1. The latter is chosen so that
the conditions in Definition 4.1.1 are verified (for Σ := ∂Ω and Coδ in place of δ) by the n-plane
L(Q, r) := Q + H(Q, r), with H(Q, r) as in Theorem 4.2.4. That this is possible is ensured by
(4.2.39). As can be seen from (4.2.66)-(4.2.67), choosing Co sufficiently large also guarantees that
the conditions in Definition 4.1.3, with L(Q, r) := Q + H(Q, r) and ~nQ,r as in (4.2.48), are verified
as well. The desired conclusion follows. ¤

Theorem 4.2.7 and definitions readily yield the following.

Corollary 4.2.8 Assume that Ω ⊆ Rn+1 is an open set with compact, Ahlfors regular boundary
which satisfies a two-sided John condition and such that dist (ν, VMO(∂Ω, dσ)) < ε where ν is the
unit normal to ∂Ω and the distance is taken in the VMO (∂Ω, dσ) norm.

Then there exist εo and Co, depending only on n and the John and Ahlfors regularity constants
of Ω, such that if ε ∈ (0, εo) then Ω is a δ-SKT domain where δ := Coε.

Conversely, if the open set Ω ⊆ Rn+1, with compact boundary, is a δ-SKT domain for some
δ ∈ (0, δn), then Ω is also an ε-regular SKT domain with ε := δ.
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Theorem 4.2.7 also implies the following equivalent characterizations of bounded, regular SKT
domains.

Theorem 4.2.9 Let Ω ⊆ Rn+1 be an open set with compact boundary and denote by kX := k(·, X)
its Poisson kernel with fixed pole at X ∈ Ω. Then the following statements are equivalent:

(i) Ω satisfies a two-sided local John condition, ∂Ω is Ahlfors regular, and the unit normal ν of
Ω belongs to VMO (∂Ω, dσ);

(ii) Ω is a two-sided NTA domain, ∂Ω is Ahlfors regular, and ν ∈ VMO (∂Ω, dσ);

(iii) Ω is a two-sided NTA domain, ∂Ω is Ahlfors regular, log kX ∈ VMO (∂Ω, dσ) and there exists
δ > 0 sufficiently small (relative to the NTA and Ahlfors regularity constants of Ω) with the
property that

dist (ν , VMO (∂Ω, dσ)) < δ; (4.2.76)

(iv) Ω is a regular SKT domain (in particular, Ω is a Reifenberg flat domain with vanishing
constant).

Proof. The equivalence (i) ⇔ (ii) is covered by Theorem 4.2.7 and Lemma 3.1.13. Next, that
(ii) ⇔ (iv) is a direct consequence of definitions, Theorem 4.2.7 and the comments preceding its
statement. In concert with Theorem 4.2.7 and Corollary 2.4.10, conditions in (iii) guarantee that Ω
is Reifenberg flat with a sufficiently small constant hence, further, Reifenberg flat with a vanishing
constant, by virtue of Theorem 7.36 on p. 139 of [15]. Hence, Ω is a regular SKT domain. That,
conversely, log kX ∈ VMO (∂Ω, dσ) if Ω is a regular SKT domain is part of the main result in [65].
This shows that (iii) ⇔ (iv), finishing the proof. ¤

Remark I. We wish to point out that the flatness condition (4.2.76) plays the role of the hypothesis
adopted in [65], [66] that Ω is a sufficiently flat Reifenberg domain. Either flatness condition
precludes domains such as Ω = {X ∈ R3+1 : x2

4 < x2
1 + x2

2 + x2
3} from serving as a counterexample

to the claim that:

a two-sided NTA domain with an Ahlfors regular boundary
and for which log k∞, the logarithm of the Poisson kernel with
pole at infinity, has vanishing mean oscillations is necessarily
Reifenberg with vanishing constant.

Indeed, while the boundary of such a domain is the light cone x2
4 = x2

1 +x2
2 +x2

3 in R3+1 and, hence,
k∞ = dω∞/dσ = c, constant, by [97] and [64], the domain in question is not δ-Reifenberg and nor
is condition (4.2.76) satisfied if δ < 1/8.

Remark II. Characterizations such as those in Theorem 4.2.9 have been used in [53] to show that
the class of regular SKT domains is invariant under C1 diffeomorphisms of the Euclidean space.

4.3 Sobolev spaces revisited

In this subsection we wish to clarify the relationship between our Sobolev spaces Lp
1(∂Ω, dσ) intro-

duced in § 3.6 and general concept of Sobolev space defined for abstract abstract measure metric
spaces. For the reader’s convenience, we include a brief review of the latter, based on [46], [48].
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Let (Σ, d, µ) be a measure metric space, i.e., a metric space (Σ, d) equipped with a doubling,
positive Borel measure µ, which is finite on bounded, measurable sets. Given a µ-measurable,
real-valued function u on Σ, denote by D(u) the collection of all generalized gradients of u, i.e.
nonnegative, µ-measurable functions g on Σ with the property that there exists E ⊂ Σ with
µ(E) = 0 and such that

|u(X) − u(Y )| ≤ d(X, Y )(g(X) + g(Y )), ∀X, Y ∈ Σ \ E. (4.3.1)

As in [46], for each p ∈ (1,∞) then define the Sobolev space

W 1,p(Σ) := {u ∈ Lp(Σ, dµ) : D(u) ∩ Lp(Σ, dµ) 6= ∅} (4.3.2)

and equip it with the norm

‖u‖W 1,p(Σ) := ‖u‖Lp(Σ,dµ) + inf
g∈D(u)

‖g‖Lp(Σ,dµ). (4.3.3)

As observed in [46],

W 1,p(Σ) is a Banach space for each p ∈ (1,∞). (4.3.4)

Given q ∈ [1,∞) and f ∈ Lq
loc(Σ, dµ), consider the following Calderón-type maximal operator

Λ∗,qf(X) := sup
r>0

(∫
−

Bd(X,r)

∣∣∣∣
f(Y ) − fX,r

r

∣∣∣∣
q

dµ(Y )

)1/q

, X ∈ Σ, (4.3.5)

where Bd(X, r) := {Y ∈ Σ : d(X, Y ) < r} and we have set fX,r :=
∫
−Bd(X,r)f dµ.

The following is a minor variation of Theorem 3.4 on p. 606 in [48].

Proposition 4.3.1 Let (Σ, d, µ) be a measure metric space of finite diameter. Then for each
p ∈ (1,∞) there exist constants with the following significance. First, the following statements are
equivalent:

(i) u ∈ W 1,p(Σ);

(ii) u ∈ Lp(Σ, dµ) and there exists a nonnegative function g ∈ Lp(Σ, dµ) such that the Poincaré
inequality

∫
−

Bd(X,r)
|u(Y ) − uX,r| dµ(Y ) ≤ C r

∫
−

Bd(X,r)
g dµ (4.3.6)

holds for every X ∈ Σ and r > 0;

(iii) u ∈ Lp(Σ, dµ) and Λ∗,1u ∈ Lp(Σ, dµ).
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Second,

‖u‖W 1,p(Σ) ≈ ‖u‖Lp(Σ,dµ) + inf {‖g‖Lp(Σ,dµ) : g satisfies (4.3.6)}
≈ ‖u‖Lp(Σ,dµ) + ‖Λ∗,1u‖Lp(Σ,dµ). (4.3.7)

We shall also make use of the following Lusin-type approximation result from [46].

Proposition 4.3.2 Assume that (Σ, d, µ) is a measure metric space of finite diameter and that
1 < p < ∞. Then for each f ∈ W 1,p(Σ) and ε > 0 there exists h ∈ Lip (Σ) for which

µ({X ∈ Σ : f(X) 6= h(X)}) < ε and ‖f − h‖W 1,p(Σ) < ε. (4.3.8)

In particular, the collection of Lipschitz functions is dense in each W 1,p(Σ), 1 < p < ∞.

This completes our review of Sobolev spaces in abstract metric measure spaces and we return
to the setting when Σ is the boundary of a sufficiently reasonable domain Ω ⊂ Rn+1. If Ω ⊂ Rn+1

is an open set with an Ahlfors regular boundary, then ∂Ω equipped with the Euclidean distance
and the surface measure σ becomes a measure metric space. Consequently, we can consider the
Sobolev space W 1,p(∂Ω) as in (4.3.2)-(4.3.3), for each p ∈ (1,∞).

Proposition 4.3.3 Let Ω ⊂ Rn+1 be an open set with an Ahlfors regular boundary, which satisfies
a two-sided local John condition (which is therefore a UR domain), and fix p ∈ (1,∞). Then the
inclusion map

Lp
1(∂Ω, dσ) →֒ W 1,p(∂Ω) (4.3.9)

is well-defined and continuous.

Proof. Denote by D± the harmonic double layers in Ω±. We shall show that there exists a finite
constant C = C(Ω, p) > 0 such that, given f ∈ Lp

1(∂Ω, dσ),

g := C
(
N (∇D+f) + N (∇D−f) + |f |

)
(4.3.10)

is a generalized gradient for f (if ∂Ω is unbounded, |f | can be dropped from the definition of g).
To prove this claim, fix f ∈ Lp

1(∂Ω, dσ) and set u± := D±f in Ω±. Then for a.e. X, Y ∈ ∂Ω we
can write f(X)−f(Y ) = (u+(X)−u+(Y ))−(u−(X)−u−(Y )). If either ∂Ω is unbounded, or when
∂Ω is bounded and R := |X −Y | is sufficiently small (say, 0 < R < Ro, with Ro as in the definition
of the local John condition) we let A±

R be the John centers of B(X, 2R) ∩ Ω± and estimate

|u±(X) − u±(Y )| ≤ |u±(X) − u±(A±
R)| + |u±(Y ) − u±(A±

R)|

≤ CR
(
N (∇u±)(X) + N (∇u±)(X)

)

≤ |X − Y |(g(X) + g(Y )). (4.3.11)

Here, to obtain the second inequality, we can write
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u±(X) − u±(A±
R) =

∫ CXR

0

∂

∂s
u
(
z±X(s)

)
ds, (4.3.12)

where z±X(s) is a unit speed parametrization of the non-tangential path γX , connecting X to A±
R,

of length CXR ≤ CR, whose existence is guaranteed by definition of the local John condition (and
similarly with Y in place of X). Thus,

|f(X) − f(Y )| ≤ |X − Y |(g(X) + g(Y )) for a.e. X, Y ∈ ∂Ω. (4.3.13)

When ∂Ω is bounded and R ≥ Ro, we trivially have |f(X)−f(Y )| ≤ R−1
o |X −Y |(|f(X)|+ |f(Y )|),

so that (4.3.13) continues to hold in this case as well. Note that the function g given in (4.3.10)
satisfies ‖g‖Lp(∂Ω,dσ) ≤ C‖f‖Lp

1(∂Ω,dσ) < +∞, by (3.6.31).

Altogether, this shows that g is a generalized gradient for f . Hence, f ∈ W 1,p(∂Ω) and
‖f‖W 1,p(∂Ω) ≤ ‖f‖Lp(∂Ω,dσ) + ‖g‖Lp(∂Ω,dσ) ≤ C‖f‖Lp

1(∂Ω,dσ). The desired conclusion follows. ¤

We continue with another useful embedding result.

Lemma 4.3.4 If Ω is a bounded UR domain then the inclusion

Lip (∂Ω) →֒ Lp
1(∂Ω, dσ) (4.3.14)

is well-defined and continuous for each p ∈ (1,∞).

Proof. To fix ideas, assume that p ∈ (1,∞) and f ∈ Lip(∂Ω). Recall that Kirszbraun’s Theorem
asserts that any Lipschitz function defined on a subset of a metric space can be extended to a
Lipschitz function on the entire space with the same Lipschitz constant (see, e.g., [117]). Thus, we
can assume that f = F |∂Ω, where F is a Lipschitz function in Rn+1 with

‖∇F‖L∞(Rn+1) ≤ Cn‖f‖Lip (∂Ω). (4.3.15)

Pick a nice bump function η, set ηε(x) := ε−(n+1)η(x/ε) and regularize F ε := F ∗ ηε, ε > 0. Then
‖∇F ε‖L∞(Rn+1) ≤ Cn‖f‖Lip (∂Ω) and for any ψ ∈ C∞(Rn+1) we may estimate

∣∣∣∣
∫

∂Ω
f∂τjk

ψ dσ

∣∣∣∣ =

∣∣∣∣limε→0

∫

∂Ω
F ε∂τjk

ψ dσ

∣∣∣∣ =

∣∣∣∣limε→0

∫

∂Ω
∂τjk

F εψ dσ

∣∣∣∣

≤ C‖ψ‖L1(∂Ω,dσ) lim sup
ε→0

‖∇F ε‖L∞(Rn+1)

≤ C‖ψ‖L1(∂Ω,dσ)‖f‖Lip (∂Ω). (4.3.16)

Since C∞(Rn+1)|∂Ω is a dense subset of L1(∂Ω, dσ) (which is easily seen with the help of Lemma 2.4.9),
it follows that for each j, k ∈ {1, ..., n + 1} the assignment ψ 7→

∫
∂Ω f∂τjk

ψ dσ extends to a
functional in (L1(∂Ω, dσ))∗ = L∞(∂Ω, dσ), of norm ≤ C‖f‖Lip (∂Ω). Hence, there exists unique
bjk ∈ L∞(∂Ω, dσ), with ‖bjk‖L∞(∂Ω,dσ) ≤ C‖f‖Lip (∂Ω) for which

∫

∂Ω
f∂τjk

ψ dσ = −
∫

∂Ω
bjkψ dσ, ∀ψ ∈ C∞

0 (Rn+1). (4.3.17)
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This proves that ∂τjk
f = bjk ∈ L∞(∂Ω, dσ) satisfies ‖∂τjk

f‖L∞(∂Ω,dσ) ≤ C‖f‖Lip (∂Ω). In particular,
the inclusion (4.3.14) is well-defined and continuous. ¤

Let Ω be an open set in Rn+1 with an Ahlfors regular boundary. In analogy with (4.3.5), if
q ∈ [1,∞) and f ∈ Lq

loc(∂Ω, dσ), in the current setting we define Calderón’s maximal operator as

Λ∗,qf(X) := sup
r>0

(∫
−

∆(X,r)

∣∣∣∣
f(Y ) − fX,r

r

∣∣∣∣
q

dσY

)1/q

, X ∈ ∂Ω, (4.3.18)

where we have set fX,r :=
∫
−∆(X,r)f dσ.

Proposition 4.3.5 Assume that Ω ⊂ Rn+1 is an open set with an Ahlfors regular boundary, and
which satisfies a two-sided local John condition. Also, fix p, q with 1 ≤ q < p. Then

‖f‖Lp
1(∂Ω,dσ) ≈ ‖Λ∗,qf‖Lp(∂Ω,dσ) + ‖f‖Lp(∂Ω,dσ), (4.3.19)

uniformly for f ∈ Lp
1(∂Ω, dσ).

A few comments are in order. The idea of characterizing membership to classical Sobolev
spaces, defined in the Euclidean setting, in terms of maximal operators (such as (4.3.18)) goes back
to Calderón (see [12], [13]). In [105], Semmes has dealt with the issue of extending Calderón’s
theory when the flat Euclidean space is replaced by a more general manifold. Semmes’ version
of Calderón’s theorem (closely related to the case p = q = 2 of (4.3.19)) is stated for a smooth
surface albeit the comparability constants do not depend on smoothness (but only on the Ahlfors
regularity constants and the NTA constants). In the same paper, Semmes also raises the issue of
eliminating the a priori smoothness assumption on the surface. The latter is the main attribute of
our result.

Proof of Proposition 4.3.5. Let Ω, p, q be as above and pick qo ∈ (1, p) with qo ≥ q. Also, select an
arbitrary f ∈ Lp

1(∂Ω, dσ). Let M denote the Hardy-Littlewood maximal operator on ∂Ω. For each
X ∈ ∂Ω and r > 0, the Poincaré inequality (4.2.1) then gives

(∫
−

∆(X,r)

∣∣∣∣
f(Y ) − fX,r

r

∣∣∣∣
q

dσY

)1/q

≤
(∫
−

∆(X,r)

∣∣∣∣
f(Y ) − fX,r

r

∣∣∣∣
qo

dσY

)1/qo

≤ CR
[∫
−

∆(X,5r)
|∇tanf |qo dσ

]1/qo

+ CR
∞∑

j=1

2−j

∫
−

∆(X,2j+1r)
|∇tanf | dσ

≤ C
[
M(|∇tanf |qo)(X)

]1/qo

, (4.3.20)

provided that either ∂Ω is unbounded or r ∈ (0, Ro), with Ro as in the statement of Proposi-
tion 4.2.1. If, on the other hand, ∂Ω is bounded and r ≥ Ro, we simply estimate

(∫
−

∆(X,r)

∣∣∣∣
f(Y ) − fX,r

r

∣∣∣∣
q

dσY

)1/q

≤ C
[
M(|f |qo)(X)

]1/qo

. (4.3.21)
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Either way, using (4.3.20), (4.3.21) and the boundedness of M on Lp/qo(∂Ω, dσ) we arrive at

‖Λ∗,qf‖Lp(∂Ω,dσ) ≤ C
(
‖∇tanf‖Lp(∂Ω,dσ) + ‖f‖Lp(∂Ω,dσ)

)
. (4.3.22)

This justifies the right-pointing inequality in (4.3.19).
Turning to the other direction, recall that

∂τjk
:= νj∂k − νk∂j , (4.3.23)

where ν is the outer unit normal to ∂Ω, and νj is the j-th component of ν. Let S, D denote,
respectively, the single and double layer potentials associated with the Laplacian in Rn+1 and set

u± := Df
∣∣∣
Ω±

where Ω+ := Ω, Ω− := Rn+1 \ Ω̄. (4.3.24)

In the current context, (3.6.31) then gives

∂ju
± = −∂rS(∂τjrf)|Ω± (4.3.25)

so that by Proposition 3.6.2, the second formula in (3.6.17) and (3.3.39),

∂τjk
(u±|∂Ω) = νj(∂ku

±|∂Ω) − νk(∂ju
±|∂Ω) (4.3.26)

= νj

[
±1

2νr∂τkr
f − p.v.∂rS(∂τkr

f)
]
− νk

[
±1

2νr∂τjrf − p.v.∂rS(∂τjrf)
]
,

where p.v.∂rS is the (convolution-like) principal value integral operator on ∂Ω whose kernel is
(∂rE)(X − Y ) (with E as in (3.3.24)). Thus,

∂τjk
(u+|∂Ω) − ∂τjk

(u−|∂Ω) = νjνr∂τkr
f − νkνr∂τjrf

= νjνr(∇tanf)j − νkνr(∇tanf)k

= ∂τjk
f, (4.3.27)

on account of (4.3.26) and (3.6.43). The second formula in (3.6.17) and our earlier work on the
nature of boundary traces allows for the following interpretation of the leftmost expression above.
Given a point X ∈ ∂Ω that is weakly accessible from Ω± (i.e., X ∈ Γ±(X)), and for which the
respective non-tangential limits of ∇u± exist (in particular, a.e. boundary point enjoys these prop-
erties), we form two non-tangential paths in Ω±, terminating at X, with arc-length parametrizations
γ±(s), 0 ≤ s ≤ δX , γ±(0) = X, dist(γ±(s), ∂Ω) ≈ s (cf. Definition 3.1.12), and we interpret the
leftmost side of (4.3.27) evaluated at X as

lim
s→0

((
νj(X)(∂ku

+)(γ+(s)) − νk(X)(∂ju
+)(γ+(s))

)

−
(
νj(X)(∂ku

−)(γ+(s)) − νk(X)(∂ju
−)(γ+(s))

))
. (4.3.28)
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Fix a boundary point X along with two non-tangential paths γ± as above, and fix also s ∈ (0, δX).
We claim that for each index j ∈ {1, ..., n + 1},

|(∂ju
+)(γ+(s)) − (∂ju

−)(γ−(s))| ≤ CΛ∗,1f(X). (4.3.29)

In turn, this and (3.6.42) entail the pointwise bound

|∇tanf(X)| ≤ CΛ∗,1f(X) for a.e. X ∈ ∂Ω, (4.3.30)

from which the left-pointing inequality in (4.3.19) follows immediately.
To prove the above claim, we first note that by (3.6.52), we may replace f by f − fX,s, and we

write

f − fX,s =

∞∑

i=0

fi, (4.3.31)

where

f0 := (f − fX,s)1∆(X,s), fi := (f − fX,s)1∆(X,2is)\∆(X,2i−1s), i ≥ 1. (4.3.32)

(If ∂Ω is compact, the terms fi may be vacuous for i large). Then

|(∂ju
+)(γ+(s)) − (∂ju

−)(γ−(s))| ≤ |(∂jDf0)(γ
+(s))| + |(∂jDf0)(γ

−(s))| (4.3.33)

+

∞∑

i=1

|(∂jDfi)(γ
+(s)) − (∂jDfi)(γ

−(s))| =: I + II + III.

Standard estimates for derivatives of the fundamental solution for the Laplacian in Rn+1 and the
specific nature of the parametric paths γ± ensure that

I + II ≤ C

∫

∆(X,s)

1

|γ±(s) − Y |n+1
|f(Y ) − fX,s| dσY

≤ C

∫
−

∆(X,s)

∣∣∣∣
f(Y ) − fX,s

s

∣∣∣∣ dσY ≤ CΛ∗,1f(X). (4.3.34)

Similarly, using also the mean value theorem, we obtain that

|(∂jDfi)(γ
+(s)) − (∂jDfi)(γ

−(s))|

≤ C

∫

∆(X,2is)\∆(X,2i−1s)

|(∇2E)(γ+(s) − Y ) − (∇2E)(γ−(s) − Y )||f(Y ) − fX,s| dσY

≤ C2−i

∫
−

∆(X,2is)

∣∣∣∣
f(Y ) − fX,s

2is

∣∣∣∣ dσY , (4.3.35)
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since |γ+(s) − γ−(s)| ≤ Cs, and if Y ∈ ∆(X, 2is) \ ∆(X, 2i−1s) and Z ∈ γ±(s) then for i large
enough we may write |Z−Y | ≥ |X−Y |−|X−Z| ≥ 2i−1s−Cs ≥ C2is. Going further, we estimate

∫
−

∆(X,2is)

∣∣∣∣
f(Y ) − fX,s

2is

∣∣∣∣ dσY

≤
∫
−

∆(X,2is)

∣∣∣∣
f(Y ) − fX,2is

2is

∣∣∣∣ dσY

+
i∑

j=1

∫
−

∆(X,2is)

∣∣∣∣
fX,2js − fX,2j−1s

2is

∣∣∣∣ dσY

≤
∣∣∣∣
f(Y ) − fX,2is

2is

∣∣∣∣ dσY + C
i∑

j=1

∫
−

∆(X,2js)

∣∣∣∣
f(Y ) − fX,2js

2js

∣∣∣∣ dσY

≤ CiΛ∗,1f(X). (4.3.36)

In conjunction with (4.3.35), this yields the bound

III ≤ C

∞∑

i=1

i 2−iΛ∗,1f(X) ≤ CΛ∗,1f(X). (4.3.37)

This proves (4.3.29) and concludes the proof of Proposition 4.3.5. ¤

Recall the space W 1,p(∂Ω) defined in the first part of this subsection, in (4.3.2).

Theorem 4.3.6 Suppose that Ω ⊂ Rn+1 is an open set satisfying a two-sided local John condition
and whose boundary is compact and Ahlfors regular. Then for each p ∈ (1,∞),

Lp
1(∂Ω, dσ) = W 1,p(∂Ω) (4.3.38)

with equivalence of norms.

Proof. Recall from Proposition 4.3.3 that Lp
1(∂Ω, dσ) →֒ W 1,p(∂Ω) and note that, as seen from

(4.3.7) and Proposition 4.3.5

‖f‖Lp
1(∂Ω,dσ) ≈ ‖f‖W 1,p(∂Ω), uniformly for f ∈ Lp

1(∂Ω, dσ). (4.3.39)

We also know that Lip (∂Ω) is contained in Lp
1(∂Ω, dσ) (cf. Lemma 4.3.4), and is dense in W 1,p(∂Ω)

(cf. Proposition 4.3.2). Since, by (4.3.39), the norms in these two Banach spaces are equivalent,
the equality (4.3.38) follows. ¤

Corollary 4.3.7 Let Ω ⊂ Rn+1 be an open set satisfying a two-sided local John condition and
whose boundary is compact and Ahlfors regular. Then for each p ∈ (1,∞) the following hold:

(i) The inclusion (4.3.14) has dense range, i.e., Lipschitz functions form a dense subset of the
Sobolev space;
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(ii) A function f ∈ Lp(∂Ω, dσ) belongs to Lp
1(∂Ω, dσ) if and only if Λ∗,1f ∈ Lp(∂Ω, dσ).

Proof. Part (i) is a consequence of (4.3.38) and Proposition 4.3.2. The “if” direction of part
(ii) follows from Proposition 4.3.1 and Theorem 4.3.6, whereas the “only if” direction is already
contained in Proposition 4.3.5. ¤

Proposition 4.3.8 Assume that Ω ⊂ Rn+1 is an open set satisfying a two-sided local John condi-
tion and whose boundary is compact and Ahlfors regular. Then for each p ∈ (1,∞) the inclusion

C∞(Rn+1)
∣∣∣
∂Ω

→֒ Lp
1(∂Ω, dσ) (4.3.40)

is well-defined, with dense range.

Proof. To begin with, Lemma 4.3.4 shows that (4.3.40) is indeed well-defined. The main issue here
is proving the denseness of the range, a task to which we now turn.

By the Hahn-Banach Theorem it suffices to show that if Λ ∈
(
Lp

1(∂Ω, dσ)
)∗

vanishes on

C∞(Rn+1)
∣∣∣
∂Ω

then it vanishes on Lp
1(∂Ω, dσ). Invoking (3.6.39), this can be further rephrased

as follows: If f0, fjk ∈ Lp′(∂Ω, dσ), 1 ≤ j < k ≤ n + 1, 1/p + 1/p′ = 1, then

∫

∂Ω

(
f0ϕ +

∑

1≤j<k≤n+1

fjk∂τjk
ϕ
)

dσ = 0 ∀ϕ ∈ C∞(Rn+1)

=⇒
∫

∂Ω

(
f0f +

∑

1≤j<k≤n+1

fjk∂τjk
f
)

dσ = 0 ∀ f ∈ Lp′

1 (∂Ω, dσ). (4.3.41)

To this end, assume that f0, fjk are as above and note that, by part (i) in Corollary 4.3.7, it suffices
to show that the conclusion in (4.3.41) holds if f ∈ Lip (∂Ω).

Assuming that this is the case, consider fε := F ε|∂Ω, ε > 0, where F ε are the functions
constructed as in the proof of Lemma 4.3.4, in conjunction with this f . It is then clear that fε → f
in Lp′(∂Ω, dσ) as ε → 0 and, since supε>0 ‖∂τjk

f‖L∞(∂Ω,dσ) ≤ C‖f‖Lip (∂Ω), Alaoglu’s Theorem

ensures that we can assume that ∂τjk
fε → ∂τjk

f weakly in Lp′(∂Ω, dσ) as ε → 0.
Based on these, we may then write

∫

∂Ω

(
f0f +

∑

1≤j<k≤n+1

fjk∂τjk
f
)

dσ = lim
ε→0

∫

∂Ω

(
f0fε +

∑

1≤j<k≤n+1

fjk∂τjk
fε

)
dσ = 0, (4.3.42)

granted our hypotheses on f0, fjk, since fε is of the form F ε|∂Ω with F ε ∈ C∞(Rn+1). This justifies
(4.3.42) and finishes the proof of the proposition. ¤

Corollary 4.3.9 Let Ω ⊂ Rn+1 be an open set satisfying a two-sided local John condition and
whose boundary is compact and Ahlfors regular. Then the boundary integration by parts formula

∫

∂Ω
(∂τjk

f)g dσ = −
∫

∂Ω
f(∂τjk

g) dσ (4.3.43)
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holds for each j, k ∈ {1, ..., n+1}, whenever f ∈ Lp
1(∂Ω, dσ) and g ∈ Lp′

1 (∂Ω, dσ) with p, p′ ∈ (1,∞),
1/p + 1/p′ = 1.

In particular, for each j, k ∈ {1, ..., n + 1} and 1 < p < ∞, the tangential differential operator
∂τjk

: Lp
1(∂Ω, dσ) → Lp(∂Ω, dσ) can be consistently extended as the bounded mapping

∂τjk
: Lp(∂Ω, dσ) −→ Lp

−1(∂Ω, dσ) =
(
Lp′

1 (∂Ω, dσ)
)∗

, 〈∂τjk
f, g〉 := −

∫

∂Ω
f(∂τjk

g) dσ. (4.3.44)

Proof. By Proposition 4.3.8, it suffices to prove (4.3.43) when f = u|∂Ω and g = v|∂Ω, for some
u, v ∈ C1(Ω). In this setting,

∫

∂Ω
u (∂τjk

v) dσ =

∫

Ω

(
∂ju(X)∂kv(X) − ∂ku(X)∂jv(X)

)
dX, ∀ j, k ∈ {1, ..., n + 1}. (4.3.45)

Since the right-hand side of (4.3.45) is antisymmetric in u and v, we obtain that

∫

∂Ω
u (∂τjk

v) dσ =

∫

∂Ω
(∂τkj

u) v dσ, (4.3.46)

from which (4.3.43) follows. ¤

Having clarified the relationship between our Sobolev spaces and those defined on general mea-
sure metric spaces (cf. Proposition 4.3.3 and Theorem 4.3.6), the properties deduced in the abstract
framework carry over to the current setting. As an example, we have:

Corollary 4.3.10 Assume that Ω ⊂ Rn+1 is an open set satisfying a two-sided local John condition
and whose boundary is compact and Ahlfors regular. Then

Lp
1(∂Ω, dσ) →֒ Lp∗(∂Ω, dσ) if 1 < p < n, where p∗ := np

n−p , (4.3.47)

Lp
1(∂Ω, dσ) →֒ Cα(∂Ω) if n < p < ∞, where α := 1 − n

p . (4.3.48)

Corresponding to p = n, functions in Ln
1 (∂Ω, dσ) satisfy a global exponential integrability condition

of John-Nirenberg type. If, in addition, ∂Ω is compact, then

Lp
1(∂Ω, dσ) →֒ Lp(∂Ω, dσ) compactly, for each p ∈ (1,∞). (4.3.49)

Proof. The embeddings (4.3.47)-(4.3.48) are consequences of Proposition 4.3.3 and Theorem 8.7 on
p. 197 in [47] (cf. also Theorem 6 in [46]). The claim in (4.3.49) follows from Theorem 4.3.6 and
Corollary 1 on p. 125 in [60]. ¤

Corollary 4.3.11 Let Ω ⊂ Rn+1 be a bounded open set satisfying a two-sided local John condition
and whose boundary is Ahlfors regular. Also, recall the single layer potential operator S from
(3.6.22). Then

‖N (Sf)‖Lq(∂Ω,dσ) ≤ C(Ω, p, q) ‖f‖Lp(∂Ω,dσ), (4.3.50)

where q := np/(n − p) if 1 < p < n, and q < ∞ if n ≤ p < ∞.
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Proof. This is a direct consequence of (4.3.47)-(4.3.48), (3.6.14) and (3.6.36). ¤

We conclude this subsection with the following global Poincaré inequality.

Proposition 4.3.12 Assume that Ω ⊂ Rn+1 is an open set satisfying a two-sided local John con-
dition and whose boundary is Ahlfors regular, compact and connected. Then for any p ∈ (1,∞),

(∫
−

∂Ω
|f − f∂Ω|p dσ

)1/p
≤ C

(∫
−

∂Ω
|∇tanf |p dσ

)1/p
, (4.3.51)

uniformly for f ∈ Lp
1(∂Ω, dσ), where f∂Ω denotes the integral average of f on ∂Ω.

Proof. Seeking a contradiction, assume that there exists a sequence fj ∈ Lp
1(∂Ω, dσ), j ∈ N, with

‖∇tanf‖Lp(∂Ω,dσ) → 0 as j → ∞ and yet ‖fj − (fj)∂Ω‖Lp(∂Ω,dσ) = 1 for each j ∈ N. Based on
(4.3.49), there is no loss of generality in assuming that fj − (fj)∂Ω → g in Lp(∂Ω, dσ) as j → ∞.
In particular, this entails

‖g‖Lp(∂Ω,dσ) = 1 and

∫

∂Ω
g dσ = 0. (4.3.52)

We now claim that g ∈ Lp
1(∂Ω, dσ) and, in fact, ∇tang = 0. Indeed, if ϕ ∈ C1(Rn+1), then for each

k, ℓ ∈ {1, ..., n + 1} we may write

∫

∂Ω
g(∂τkℓ

ϕ) dσ = lim
j→∞

∫

∂Ω
(fj − (fj)∂Ω)(∂τkℓ

ϕ) dσ = lim
j→∞

∫

∂Ω
(∂τℓk

fj)ϕ dσ = 0, (4.3.53)

justifying the claim. Going further, this, the connectivity assumption on ∂Ω and Proposition 3.6.6
further entail that g is constant on ∂Ω. With this in hand, the desired contradiction is evident
from (4.3.52). ¤

4.4 Compactness of double layer-like operators on VMO1 domains

Here we discuss the work in [50] and, when Ω is a VMO1 domain, use it to establish the compactness
on Lp(∂Ω, dσ) of singular integral operators belonging to a distinguished class (which contains the
principal value harmonic double layer K). Prior to presenting this in the form of a theorem, we
isolate a key estimate. To state it, recall next that given p ∈ (1,∞), a positive, locally integrable
function w defined in Rn is said to belong to the Muckenhoupt class Ap if

[w]Ap := sup
Q⊂Rn, cube

(∫
−

Q
w(x) dx

)(∫
−

Q
w(x)−1/(p−1) dx

)p−1
< ∞. (4.4.1)

For further reference, we recall that, corresponding to p = 1,

[w]A1 := sup
Q⊂Rn, cube

(∫
−

Q
w(x) dx

)(
ess inf

Q
w

)−1
< ∞, (4.4.2)

and that, corresponding to p = ∞,

A∞ :=
⋃

p≥1

Ap. (4.4.3)
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The relevance of this concept in the current context stems from the following observation made in
[50]:

A as in (2.5.1)-(2.5.2) =⇒ w :=
√

1 + |∇A|2 ∈ ⋂
1<p<∞

Ap

and [w]Ap < Cn,p(1 + ‖∇A‖∗) for each p ∈ (1,∞).
(4.4.4)

For p ∈ (1,∞) and w ∈ Ap define Lp
w(Rn) as the weighted Lp space in Rn with respect to the

measure w dx. We then have

Theorem 4.4.1 For each m, n ∈ N there exists N = N(n, m) ∈ N with the following significance.
Let A, Bj, j = 1, ..., m, be functions in BMO1(R

n) and set B := (B1, ..., Bm). Also, pick an even
function F : Rm → R of class CN+2 with the property that |F (w)| ≤ C(1+ |w|)−1 for w ∈ Rm, and
∂αF ∈ L1(Rm) whenever 0 ≤ |α| ≤ N + 2. Finally, for each x ∈ Rn set

T∗[A, B]f(x) := sup
ε>0

∣∣∣
∫

y∈Rn

|x−y|>ε

A(x) − A(y) − 〈∇A(y), x − y〉
|x − y|n+1

F
(B(x) − B(y)

|x − y|
)

f(y) dy
∣∣∣. (4.4.5)

Then for each p ∈ (1,∞) and w ∈ Ap, there holds

‖T∗[A, B]f‖Lp
w(Rn) ≤ C(n, p, [w]Ap)

( ∑

|α|≤N+2

‖∂αF‖L1(Rm) + sup
w∈Rm

[(1 + |w|)|F (w)|]
)
×

×‖∇A‖∗
(
1 +

m∑

j=1

‖∇Bj‖∗
)N

‖f‖Lp
w(Rn). (4.4.6)

Proof. This is a mild extension of Theorem 1.10 in [50], where the case m = 1 has been treated. The
current version can be proved along similar lines, the only notable difference being that the quantity

denoted mB(∇A) at the bottom of page 490 in [50] now becomes
(∫
−B∇Bj dx

)

1≤j≤m
and the ‘dot’

products in Case 2 and Case 3 on pp. 491-492 in [50] should be interpreted accordingly. This allows
for the same reduction (via good λ-inequalities) to the case when A, B are Lipschitz functions.
The Lipschitz version of Theorem 4.4.1 is well-known; see, for instance, Theorem 11 on p.108 in
[83] for the unweighted version of (4.4.6). The fact that a Muckenhoupt weight can be allowed is a
well-known property of singular integral operators of Calderón-Zygmund type; cf. [19], [83]. When
A is a Lipschitz function, the special algebraic expression A(x) − A(y) − 〈∇A(y), x − y〉 no longer
plays a crucial role, in the sense that it can be decoupled into A(x)−A(y) and 〈∇A(y), y−x〉, then
both pieces can be treated separately, yielding (by linearity and rescaling) the factor ‖∇A‖L∞ in
the right hand-side of the estimate (4.4.6). ¤

Theorem 4.4.2 Retain the same assumptions as in Theorem 4.4.1 and strengthen the hypothesis
on A by requiring that this function belongs to VMO1(R

n). Also, for a fixed, arbitrary cube Q in
Rn, define

T [A, B]f(x) := lim
ε→0+

∫

y∈Rn

|x−y|2+(A(x)−A(y))2>ε2

A(x) − A(y) − 〈∇A(y), x − y〉
|x − y|n+1

F
(B(x) − B(y)

|x − y|
)

f(y) dy, (4.4.7)
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where x ∈ Q. Then for each p ∈ (1,∞), w ∈ Ap, and f ∈ Lp
w(Q), the limit in (4.4.7) exists for a.e.

x ∈ Q and the operator

T [A, B] : Lp
w(Q) −→ Lp

w(Q) (4.4.8)

is compact.

Proof. Once Theorem 4.4.1 has been established, the same proof as in [50] applies. ¤

We conclude this subsection with several remarks.

Remark I. Let L(Lp(∂Ω, dσ)) stand for the Banach space of linear, bounded operators on Lp(∂Ω, dσ).
Theorem 4.4.1 implies that, in the case when ∂Ω is the graph of a BMO1 function A,

‖K‖L(Lp(∂Ω,dσ)) ≤ C‖∇A‖∗(1 + ‖∇A‖∗)N , (4.4.9)

for some N = N(n) > 0. In particular, for each p ∈ (1,∞), the operator 1
2I + K is invertible on

Lp(∂Ω, dσ) when ‖∇A‖∗ is small enough. A closely related issue, namely whether

Ω bounded VMO1 domain =⇒ K is compact on Lp(∂Ω, dσ), (4.4.10)

has been solved in the affirmative in [50] (cf. Theorem 1.17 there). On the other hand, if Ω is a
bounded BMO1 domain with the property that ν ∈ VMO(∂Ω, dσ), then we may write

1
2I + K =

[
1
2I +

(
K − K∗

2

)]
+

(
K + K∗

2

)
=: K1 + K2 (4.4.11)

and note that K1 is accretive on L2(∂Ω, dσ) since
∫
∂Ω f K1f dσ = 1

2‖f‖2
L2(∂Ω,dσ), whereas the

integral kernel of K2 is 〈(∇E)(X − Y ), ν(X)− ν(Y )〉, i.e., of commutator type (see Theorem 2.4.2
and Theorem 2.4.5). All these can then be used to show that, in this case, 1

2I + K is Fredholm
with index zero on L2(∂Ω, dσ). While we shall consider this point in greater detail later on, here
we want to point out that the above observation invites the natural question whether the harmonic
double layer K itself is actually compact on L2(∂Ω, dσ) (or, more generally, on Lp(∂Ω, dσ) for each
p ∈ (1,∞)) whenever Ω is a bounded BMO1 domain for which ν ∈ VMO(∂Ω, dσ). Since BMO1

domains have been shown in [55] to have the NTA property, the affirmative answer to this question
follows from the results of the next subsection.

Remark II. Recall Zygmund’s Λ∗ class defined by (3.1.30), along with its counterpart λ∗ defined by
the requirement (3.1.32). There exist dimensional constants Cn > 0 and δn > 0 with the property
that if δ ∈ (0, δn) and ‖ϕ‖Λ∗(Rn) ≤ Cnδ then Ω = {(x, xn+1) : xn+1 > ϕ(x)} is δ-Reifenberg flat.
Indeed, the separation property can be checked using the argument starting at the bottom of p. 95
in [55]. To also establish the estimate

sup
r>0

sup
Q∈∂Ω

θ(Q, r) ≤ C‖ϕ‖Λ∗(Rn), (4.4.12)

fix η ∈ C∞
0 (Rn), nonnegative, even, with

∫
η = 1. If, for any Q ∈ ∂Ω, Q = (x, ϕ(x)), and r > 0, we

now introduce the hyperplane
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L(Q, r) :=
{(

z , ϕ(x) + 〈∇(ϕ ∗ ηr)(x), z − x〉
)
: z ∈ Rn

}
, (4.4.13)

then (4.4.12) follows from (3.1.36). A slight version of the above argument also shows that Ω is a
Reifenberg flat domain with vanishing constant whenever ϕ ∈ λ∗(Rn). This is acknowledged at the
beginning of §3 on p. 524 in [64]. The same remark is also made on p. 371 of [65]. As a consequence,
one can deduce that each VMO1 domain is a regular SKT domain. In particular, the material of
the following subsection will extend the compactness result presented in Theorem 4.4.2.

4.5 Compactness of double layer-like operators on regular SKT domains

Here we shall extend the scope of work initiated in §4.4 by proving Theorem 4.5.1, which is the
main result in this subsection. To state it, we find it convenient to introduce the following piece of
notation. Given a Banach space X , set L(X ) for the Banach space of all bounded linear operators
on X and define

Cp (X ) := the space of all linear compact operators on X , (4.5.1)

which, as is well-know, is a closed subspace of L(X ). An extension of the compactness result below
to more general, variable coefficient kernels appears in Theorem 4.5.4.

Theorem 4.5.1 Let Ω ⊂ Rn+1 be a domain satisfying a two-sided local John condition and whose
boundary is Ahlfors regular and compact. Also, fix an arbitrary p ∈ (1,∞). Then for every ε > 0
the following holds.

Given a function k satisfying

k : Rn+1 \ {0} → R is smooth, even, and homogeneous of degree − (n + 1), (4.5.2)

consider the operator

Tf(X) := lim
η→0

∫

Y ∈∂Ω,|X−Y |>η

〈X − Y, ν(Y )〉k(X − Y )f(Y ) dσ(Y ), X ∈ ∂Ω. (4.5.3)

Then there exists δ > 0, depending only on ε, the geometric characteristics G(Ω) of Ω, n, p and
‖k|Sn‖CN (where the integer N is as in (3.2.5)) with the property that

dist (ν , VMO(∂Ω, dσ)) < δ =⇒ dist (T , Cp (Lp(∂Ω, dσ)) < ε, (4.5.4)

where the distance in the right-hand side is measured in L(Lp(∂Ω, dσ)).
As a corollary, granted the initial geometrical assumptions on Ω and (4.5.2)-(4.5.3), then for

every p ∈ (1,∞) there exists ε′ = ε′(G(Ω), k, p, ε) > 0 such that

Ω is a ε′-regular SKT domain =⇒ dist (T , Cp (Lp(∂Ω, dσ)) < ε. (4.5.5)

In particular, under the same background hypotheses, the following implication is valid for every
p ∈ (1,∞):

ν ∈ VMO (∂Ω, dσ) =⇒ T : Lp(∂Ω, dσ) −→ Lp(∂Ω, dσ) is a compact operator. (4.5.6)
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Proof. To set the stage, we first note that, thanks to Proposition 4.1.12 and the current assump-
tions, the hypotheses of Theorem 3.5.2 are satisfied. In particular, the operator (4.5.6) is bounded
whenever 1 < p < ∞. Throughout the proof, C = C(Ω) will mean that the C depends only on
n and the John constants of Ω (e.g., the corkscrew constants and the constants appearing in the
Ahlfors regularity conditions for Ω).

Next, fix p ∈ (1,∞) along with an operator T as in (4.5.2)-(4.5.3). Fix also an arbitrary
threshold ε > 0. For δ > 0 to be specified later, assume that

dist (ν , VMO (∂Ω, dσ)) < δ. (4.5.7)

Then it follows from (2.4.77) that it is possible to select Rδ > 0 such that

‖ν‖∗(∆(X, R)) < δ, ∀X ∈ ∂Ω, ∀R ∈ (0, 100 CRδ), (4.5.8)

where C > 0 is a fixed, sufficiently large large constant, depending on Ω.
Our goal is to show that if δ is sufficiently small (relative to ε, the geometrical constants of Ω, n,

p and ‖k|Sn‖CN , where the integer N is as in (3.2.5)) then the distance, measured in L(Lp(∂Ω, dσ)),
from T to the space of compact operators on Lp(∂Ω, dσ) is ≤ ε. To this end, we note that

sup
X∈∂Ω

sup
Y ∈∆(X,2R)

R−1|〈X − Y, ν∆(X,R)〉| ≤ Cδ, provided 0 < R < 10 CRδ, (4.5.9)

for some C = C(Ω) > 0, by (4.5.7) and (4.2.23). Furthermore, we shall assume that Rδ is small
enough so that the conclusions in Theorem 4.2.4 are valid as stated for the choice R∗ := 10CRδ.
Going further, cover

∂Ω ⊂
N⋃

j=1

B(Xj , Rδ), Xj ∈ ∂Ω, 1 ≤ j ≤ N, (4.5.10)

and assume that this has been refined (using the Besicovitch covering theorem – cf. Theorem 2 on
p. 30 in [36], or Lemma 11B.1 in [111]), so as to have bounded overlap, independent of δ and N .
That is, there is a fixed constant dimensional c(n) such that each each point lies in at most c(n) of
the balls {B(Xj , Rδ)}1≤j≤N . Pick now a family of smooth functions, {ϕj}1≤j≤N , with the property
that, for each j, ϕj ∈ C∞

0 (B(Xj , Rδ)), 0 ≤ ϕj ≤ 1, and
∑

ϕ2
j = 1 on a neighborhood of ∂Ω. Also,

for each j = 1, ..., N , select ψj ∈ C∞
0 (B(Xj , Rδ)) satisfying 0 ≤ ψj ≤ 1 and which is identically one

on the support of ϕj . Finally, generally speaking, denote by Mf the operator of multiplication by
the function f . We may then write

T =
N∑

j=1

M1−ψjTMϕ2
j
+

N∑

j=1

MψjTMϕ2
j

(4.5.11)

and note that the first sum in the right hand-side of (4.5.11) is a compact operator on Lp(∂Ω, dσ).
Thus, for the purpose we have in mind, it suffices to show that
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∥∥∥
N∑

j=1

MψjTMϕ2
j

∥∥∥
L(Lp(∂Ω,dσ))

≤ ε. (4.5.12)

(We note that estimates on the gradients of ϕj and ψj are not used in subsequent calculations.)
With this in mind, for an arbitrary f ∈ Lp(∂Ω, dσ) we may write, using (twice) the bounded overlap
property of the family {B(Xj , Rδ)}1≤j≤N ,

(∫

∂Ω

∣∣∣
N∑

j=1

ψjT (ϕ2
jf)

∣∣∣
p
dσ

)1/p
≤ Cp,n

( N∑

j=1

∫

∂Ω
|ψjT (ϕ2

jf)|p dσ
)1/p

≤ Cp,n

( N∑

j=1

‖MψjTMϕj‖p
L(Lp(∂Ω,dσ))

∫

∂Ω
|ϕjf |p dσ

)1/p

≤ Cp,n max
1≤j≤N

‖MψjTMϕj‖L(Lp(∂Ω,dσ))

(∫

∂Ω
|f |p dσ

)1/p
. (4.5.13)

Hence (4.5.12) follows as soon as we show that δ can be chosen such that

‖MψjTMϕj‖L(Lp(∂Ω,dσ)) ≤ ε/Cp,n, ∀ j ∈ {1, ..., N}. (4.5.14)

For the remaining of the proof we shall focus on establishing (4.5.14) for a fixed, arbitrary j.
We therefore find it convenient to re-denote Xo := Xj , introduce ∆o := ∆(Xo, Rδ) and drop the
dependence on j for ϕj , ψj . To get started, fix γ > 0 and, for each locally integrable function f on
∂Ω, define

Mγf(X) := sup
∆∋X

(∫
−

∆
|f |1+γ dσ

)1/(1+γ)
, X ∈ ∂Ω, (4.5.15)

where the supremum is taken over all surface balls ∆ containing X. Consider now a grid Qo of
dyadic cubes Q on ∂Ω (cf. Proposition 2.4.7) at a fixed scale, comparable to diam ∆o. Also, set

Io :=
⋃

Q∈Qo, Q∩2∆o 6=∅
Q. (4.5.16)

Let us also fix f ∈ Lipc (∂Ω) and λ > 0 arbitrary. Also, assume that A > 0 is a fixed constant,
whose actual size is to be specified later. The strategy of the proof is to deduce a good-λ inequality
of the form

σ
(
{X ∈ Io : T∗(ϕf)(X) > 3λ and Mγf(X) ≤ Aλ}

)

≤ c(δ)σ
(
{X ∈ Io : T∗(ϕf)(X) > λ}

)
, (4.5.17)

where
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lim
δ→0

c(δ) = 0. (4.5.18)

Here we wish to stress that, in contrast to the standard approach (cf. [19]), the constant A is taken
to be large, rather than small. Such a choice is of utmost importance in the derivation of (4.5.14).
The crucial ingredient allowing us to nonetheless implement the technology associated with good-λ
inequalities in this context is the smallness of the local BMO norm of ν, which turns out to be an
adequate counterbalance of the fact that A is large.

Of course, as far as (4.5.17) is concerned, it suffices to consider the case when

Fλ := {X ∈ Io : T∗(ϕf)(X) > 3λ and Mγf(X) ≤ Aλ} 6= ∅, (4.5.19)

otherwise there is nothing to prove. Fix X⋆ ∈ Fλ and bring in the decomposition Io = Pλ ∪ Sλ

where

Pλ := {X ∈ Io : T∗(ϕf)(X) ≤ λ}, Sλ := {X ∈ Io : T∗(ϕf)(X) > λ}. (4.5.20)

Let us first treat the case when Pλ = ∅, i.e., when Sλ = Io.
We shall make use of Semmes’s decomposition in the version presented in Theorem 4.2.4. In

particular, (4.2.36)-(4.2.37) induce a splitting Io = G∪E into two disjoint (‘good’ and ‘evil’) pieces
satisfying the following two properties. First, in some suitable local co-ordinate system, G agrees
with the graph G of a Lipschitz function h for which

‖∇h‖L∞ ≤ δ (4.5.21)

and, second, there exist C1, C2 > 0, geometrical constants, such that

σ(E) ≤ C1 exp (−C2/δ)σ(Io). (4.5.22)

Thanks to (4.5.22), in order to establish (4.5.17) in the current case, it is enough to look at

σ
(
{X ∈ G : T∗(ϕf1G)(X) > 3

2λ and Mγf(X) ≤ Aλ}
)

+ σ
(
{X ∈ G : T∗(ϕf1E)(X) > 3

2λ and Mγf(X) ≤ Aλ}
)
. (4.5.23)

The first piece can be estimated by rewriting it in graph co-ordinates, based on (4.2.32)-(4.2.33).
More specifically, denote by σ̃ the surface measure on G, and by T̃ the operator associated with
G much as T in (4.5.3) is associated with ∂Ω. (It is well-known that the measures σ and σ̃ are
compatible on ∂Ω ∩ G. See, e.g., Proposition 12.9 in [111].) We can then apply Chebysheff’s
inequality and Theorem 4.4.1 in concert with the smallness condition (4.5.21) to estimate
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σ
(
{X ∈ G : T∗(ϕf1G)(X) > 3

2λ}
)

= σ̃
(
{X ∈ G : T̃∗(ϕf1G)(X) > 3

2λ}
)

≤ C

λ1+γ

∫

G
|T∗(ϕf1G)|1+γ dσ̃

≤ C
δ

λ1+γ

∫

G
|f1G|1+γ dσ̃ ≤ Cδ

σ(Io)

λ1+γ

∫
−

Io

|f |1+γ dσ

≤ Cδ
σ(Io)

λ1+γ

[
Mγf(X⋆)

]1+γ

≤ C A1+γδ σ(Io). (4.5.24)

As for the second term in (4.5.23), we let q :=
√

1 + γ ∈ (1,∞) and write

σ
(
{X ∈ G : T∗(ϕf1E)(X) > 3

2λ}
)

≤ C

λq

∫

∂Ω
|T∗(ϕf1E)|q dσ ≤ C

λq

(∫

Io

|f |q1E dσ
)

≤ C
σ(E)(q−1)/q

λq

(∫

Io

|f |q2
dσ

)1/q
(4.5.25)

≤ Cλ−qσ(Io)
(σ(E)

σ(Io)

)(q−1)/q(∫
−

Io

|f |q2
dσ

)1/q

≤ C1λ
−qexp

(
−C2(q − 1)

δq

)
σ(Io)

[
Mγf(X⋆)

]q

≤ C1A
√

1+γexp
(
− C2 γ

δ
√

1 + γ(
√

1 + γ + 1)

)
σ(Io),

using Hölder’s inequality and the estimate (4.5.22). Altogether, the above reasoning shows that
(4.5.17) holds with a constant as in (4.5.18), when Pλ = ∅.

Assume next that Pλ 6= ∅. Perform a decomposition

Sλ =
⋃

k∈K
Qk (4.5.26)

into maximal dyadic subcubes of Io. That is, using a stopping time argument which involves
successive dyadic divisions of Io (in the sense described in Proposition 2.4.7), we can produce a
covering of Sλ with mutually disjoint dyadic cubes Qk which are maximal in the sense that, if Q̃k

denotes the dyadic parent of Qk, then

∃X∗
k ∈ Q̃k ∩

(
Io \ Sλ

)
= Q̃k ∩ Pλ. (4.5.27)

To each k ∈ K we associate a surface ball ∆k with center in Qk and of radius diamQk. We also let
∆̃k be a surface ball with center at some point in Q̃k and radius 2 diam Q̃k.
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Going further, we categorize the collection {∆k}k∈K into two classes. Specifically, denote by K1

the collection of all k ∈ K with the property that ∆k contains a point X∗∗
k for which

Mγf(X∗∗
k ) ≤ Aλ, (4.5.28)

and set K2 := K \ K1. It follows then that

Fλ ∩ ∆k = ∅, ∀ k ∈ K2, (4.5.29)

and, since Fλ ⊆ Sλ,

σ
(
{X ∈ Io : T∗(ϕf)(X) > 3λ and Mγf(X) ≤ Aλ}

)
=

∑

k∈K1

σ(Fλ ∩ ∆k). (4.5.30)

If we now denote

Fk := {X ∈ ∆k : T∗(ϕf)(X) > 3λ}, k ∈ K1, (4.5.31)

it follows that Fλ ∩ ∆k ⊆ Fk for each k ∈ K1, and our goal is to prove that

σ(Fk) ≤ c(δ)σ(∆k), ∀ k ∈ K1, (4.5.32)

with c(δ) > 0 as in (4.5.18). Granted this, we may then conclude that

σ(Fλ) =
∑

k∈K1

σ(Fλ ∩ ∆k) ≤
∑

k∈K1

σ(Fk)

≤ c(δ)
∑

k∈K1

σ(∆k) ≤ c(δ)σ(Sλ), (4.5.33)

which justifies (4.5.17).
Turning to (4.5.32), fix k ∈ K1. In order to lighten notation, in the sequel we agree to suppress

the dependence of ∆k, ∆̃k, Fk, X∗
k and X∗∗

k on k, and just simply write ∆, ∆̃, F , X∗ and X∗∗,
respectively. With this convention in mind, let R stand for the radius of ∆ and denote by ∆∗ the
surface ball of center X∗ and diameter C diam ∆, for a constant C > 0 depending only on Ω, chosen
so that 2∆̃ ⊂ ∆∗ ⊂ Co∆o, for a suitably large constant Co, depending on Ω. We then decompose

ϕf = g1 + g2, where g1 := (ϕf)12∆∗ , g2 := (ϕf)1∂Ω\2∆∗ , (4.5.34)

so that

σ(F ) ≤ σ
(
{X ∈ ∆ : T∗g1(X) > 3

2λ}
)

+ σ
(
{X ∈ ∆ : T∗g2(X) > 3

2λ}
)
. (4.5.35)

Now, the contribution from g1 is handled as before, applying Semmes’ decomposition to ∆∗ and
using the fact that there exists X∗∗ ∈ ∆ such that Mγf(X∗∗) ≤ Aλ. For this, we thus obtain
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σ
(
{X ∈ ∆ : T∗g1(X) > 3

2λ}
)
≤ c(δ)σ(∆) (4.5.36)

with c(δ) > 0 as in (4.5.18), which is of the right order.
As for g2, observe first that since the truncation in the definition of g2 occurs at X∗ ∈ ∆̃ ∩ Pλ,

we have

∣∣∣Tεg2(X
∗)

∣∣∣ ≤ T∗(ϕf)(X∗) ≤ λ, ∀ε > 0. (4.5.37)

With ε > 0 momentarily fixed, consider now an arbitrary point X ∈ ∆ and bound

∣∣∣Tεg2(X) − Tεg2(X
∗)

∣∣∣ ≤ I + II + II, (4.5.38)

where

I :=

∫

∂Ω\2∆∗

∣∣∣〈X − Y, ν(Y )〉k(X − Y ) − 〈X∗ − Y, ν(Y )〉k(X∗ − Y )
∣∣∣|(ϕf)(Y )| dσ(Y ),

II :=

∫

Y ∈∂Ω\2∆∗

|X−Y |>ε, |X∗−Y |<ε

|〈X − Y, ν(Y )〉| · |k(X − Y )| · |(ϕf)(Y )| dσ(Y ), (4.5.39)

III :=

∫

Y ∈∂Ω\2∆∗

|X∗−Y |>ε, |X−Y |<ε

|〈X∗ − Y, ν(Y )〉| · |k(X∗ − Y )| · |(ϕf)(Y )| dσ(Y ).

In preparation for estimating I, we wish to analyze the difference between the original integrand
and a similar expression in which ν(Y ) has been replaced by ν∆∗ :=

∫
−∆∗ν dσ. Let R denotes the

radius of ∆∗. Keeping in mind that X ∈ ∆, the error which occurs in this fashion can be estimate
as follows

∣∣∣
∫

∆o\2∆∗

(
〈X − Y, ν(Y ) − ν∆∗〉k(X − Y )

−〈X∗ − Y, ν(Y ) − ν∆∗〉k(X∗ − Y )
)
f(Y ) dσ(Y )

∣∣∣

≤ C

∫

∆o\2∆∗

R

(R + |X∗ − Y |)n+1
|ν(Y ) − ν∆∗ ||f(Y )| dσ(Y )

≤ C
∑

j∈N

2j+1∆∗⊆Co∆o

2−j

∫
−

2j+1∆∗\2j∆∗

|ν(Y ) − ν∆∗ ||f(Y )| dσ(Y )

≤ C
( ∞∑

j=1

j 2−j
)
‖ν‖∗(Co∆o)Mγf(X∗)

≤ CA δλ, (4.5.40)
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where we have used the well-known fact that |ν∆∗ −ν2j∆∗ | ≤ C j ‖ν‖∗(2j+1∆∗). On the other hand,
based on the properties of k(X) and the Mean-Value Theorem we have

∣∣∣
∫

∆o\2∆∗

(
〈X − Y, ν∆∗〉k(X − Y ) − 〈X∗ − Y, ν∆∗〉k(X∗ − Y )

)
f(Y ) dσ(Y )

∣∣∣

≤ C
∑

j∈N

2j+1∆∗⊆Co∆o

∫

2j+1∆∗\2j∆∗

( |〈X − X∗, ν∆∗〉|
|X∗ − Y |n+1

+ R
|〈X − Y, ν∆∗〉|
|X∗ − Y |n+2

)
|f(Y )| dσ(Y )

≤ C
∑

j∈N

2j+1∆∗⊆Co∆o

∫

2j+1∆∗\2j∆∗

|〈X − X∗, ν∆∗〉|
|X∗ − Y |n+1

|f(Y )| dσ(Y )

+CR
∑

j∈N

2j+1∆∗⊆Co∆o

∫

2j+1∆∗\2j∆∗

|〈X − Y, ν∆∗ − ν2j+1∆∗〉|
|X∗ − Y |n+2

|f(Y )| dσ(Y )

+CR
∑

j∈N

2j+1∆∗⊆Co∆o

∫

2j+1∆∗\2j∆∗

|〈X − Y, ν2j+1∆∗〉|
|X∗ − Y |n+2

|f(Y )| dσ(Y )

=: I1 + I2 + I3. (4.5.41)

Now, much as before, with the help of (4.5.9) we obtain

|I1| + |I3| ≤ C‖ν‖∗(Co∆o)
∞∑

j=1

2−j

∫
−

2j+1∆∗\2j∆∗

|f(Y )| dσ(Y )

≤ C‖ν‖∗(Co∆o)Mγf(X∗∗) ≤ CA δλ, (4.5.42)

and

|I2| ≤ C‖ν‖∗(Co∆o)
∞∑

j=1

j 2−j

∫
−

2j+1∆∗\2j∆∗

|f(Y )| dσ(Y )

≤ C‖ν‖∗(Co∆o)Mγf(X∗∗) ≤ CA δλ. (4.5.43)

In summary, the estimates (4.5.40)-(4.5.43) prove that

I ≤ CA δλ. (4.5.44)

Turning our attention to II and III in (4.5.39), let us first note that

|X − Y | ≈ |X∗ − Y | ≈ |X∗∗ − Y |, uniformly for

X, X∗∗ ∈ ∆, X∗ ∈ ∆̃ and Y ∈ ∂Ω \ 2∆∗.
(4.5.45)

In particular, |X − Y | ≈ |X∗ − Y | ≈ ε in the domain of integration in II and III. Let us also
observe that it can be assumed that
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0 < ε < C Rδ (4.5.46)

since otherwise both II and III vanish, out of simple support considerations. These considerations
allow us to estimate

II ≤ C1ε
−n

∫

|X∗∗−Y |<C2ε

|X−Y |<C3ε

|〈X − Y, ν(Y )〉|
|X − Y | |f(Y )| dσ(Y )

≤ C1ε
−n

∫

|X∗∗−Y |<C2ε

|X−Y |<C3ε

|〈X − Y, ν(Y ) − ν∆(X,ε)〉|
|X − Y | |f(Y )| dσ(Y )

+C1ε
−n

∫

|X∗∗−Y |<C2ε

|X−Y |<C3ε

|〈X − Y, ν∆(X,ε)〉|
|X − Y | |f(Y )| dσ(Y )

=: II1 + II2. (4.5.47)

Using Hölder and John-Nirenberg inequalities, (4.5.28), as well as (4.5.46) and the assumption
(4.5.8), we may continue with

II1 ≤ C4‖ν‖∗(∆(X, C5ε))Mγf(X∗∗) ≤ CA δ. (4.5.48)

Proceeding in an analogous fashion and invoking (4.5.9) we also obtain

II2 ≤ C6 sup
Y ∈∆(X,C3ε)

|〈X − Y, ν∆(X,ε)〉|Mγf(X∗∗) ≤ CA δ. (4.5.49)

In a similar manner,

III ≤ CA δ, (4.5.50)

so that, altogether,

∣∣∣Tεg2(X) − Tεg2(X
∗)

∣∣∣ ≤ CA δλ, ∀X ∈ ∆. ∀ ε > 0, (4.5.51)

by (4.5.44) and (4.5.49)-(4.5.50). In particular,

∣∣∣Tεg2(X) − Tεg2(X
∗)

∣∣∣ ≤ 1
2λ, ∀X ∈ ∆, ∀ ε > 0, (4.5.52)

provided

0 < δ <
1

4C2
and A =

1√
δ
. (4.5.53)
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Note that, by virtue of (4.5.37), (4.5.52) entails

T∗g2(X) ≤ 3
2λ, ∀X ∈ ∆, (4.5.54)

whenever (4.5.53) holds. For this choice, we then write

σ
(
{X ∈ ∆ : T∗(ϕf)(X) > 3λ}

)
≤ σ

(
{X ∈ ∆ : T∗g1(X) > 3

2λ}
)

+σ
(
{X ∈ ∆ : T∗g2(X) > 3

2λ}
)

(4.5.55)

and observe that, by (4.5.54), the last term above drops out, as the corresponding set is empty.
Thus, if A and δ are as in (4.5.53), estimate (4.5.32) is a consequence of this and (4.5.36). This
finishes the proof of (4.5.17) in the case when A and δ are as in (4.5.53), which we shall assume
henceforth.

Having proved (4.5.17), we make use of this inequality to deduce that

σ
(
{X ∈ Io : T∗(ϕf)(X) > 3λ}

)
(4.5.56)

≤ σ
(
{X ∈ ∂Ω : Mγf(X) ≥ δ−1/2λ}

)
+ c(δ)σ

(
{X ∈ Io : T∗(ϕf)(X) > λ}

)
.

Multiplying (4.5.56) by λp−1 and integrating in λ ∈ (0,∞) then yields

3−p

∫

Io

|T∗(ϕf)|p dσ ≤ δp/2

∫

∂Ω
|Mγf |p dσ + c(δ)

∫

Io

|T∗(ϕf)|p dσ

≤ C∂Ω,γ,p δp/2

∫

∂Ω
|f |p dσ + c(δ)

∫

Io

|T∗(ϕf)|p dσ. (4.5.57)

Since
∫
Io
|T∗(ϕf)|p dσ < ∞, we can absorb the last integral in (4.5.57) in the left hand-side and

obtain

∫

Io

|T∗(ϕf)|p dσ ≤ c(δ)

∫

∂Ω
|f |p dσ (4.5.58)

with c(δ) > 0 as in (4.5.18). Consequently,

∫

∂Ω
|ψT (ϕf)|p dσ ≤

∫

Io

|T∗(ϕf)|p dσ ≤ c(δ)

∫

∂Ω
|f |p dσ, (4.5.59)

where c(δ) > 0 is, once again, as in (4.5.18). Since f is arbitrary in Lp(∂Ω, dσ), (4.5.14) follows by
choosing δ > 0 suitably small (relative to Ω, p, n, k and γ) to begin with. This finishes the proof
of the theorem. ¤

The following results illustrate the sharpness of the theorem just established. For θ ∈ (0, 2π), p ∈
(1,∞), consider the following (“bow” shaped) closed contour given by the parametric representation

Σθ(p) :=



±

sin
(
(π − θ)z

)

sin(πz)
: z ∈ 1

p + iR



 . (4.5.60)
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Proposition 4.5.2 Consider a bounded, simply connected curvilinear polygon Ω ⊂ R2 with angles
θj, j = 1, ..., N , and let p ∈ (1,∞). For each j = 1, ..., N , consider the bow-shaped curve Σθj (p)

associated with the angle θj as in (4.5.60), and denote by Σ̂θj (p) the (closed) two-dimensional region
encompassed by Σθj (p). Let K stand for the harmonic double layer potential operator on ∂Ω. Then
the spectrum of K on Lp(∂Ω, dσ) has the following structure:

Spec
(
K, Lp(∂Ω, dσ)

)
=




⋃

1≤j≤N

Σ̂θ(p)




⋃
{λk}k, (4.5.61)

where {λk}k, the collection of eigenvalues of K on Lp(∂Ω), is a finite subset of (−1, 1].
Moreover, for z ∈ ∪N

j=1Σθj (p) the operator zI − K is not Fredholm on Lp(∂Ω, dσ), whereas for

z ∈ C \
(
∪N

j=1Σθj (p)
)

the operator zI − K is Fredholm on Lp(∂Ω, dσ) and its index is given by

index
(
zI − K : Lp(∂Ω, dσ)

)
=

N∑

j=1

W (z, Σθj (p)), (4.5.62)

where W (z, Σθj (p)) denotes the winding number of z with respect to the curve Σθj (p).

Cf. [99]. Similar results hold, in fact, for double layer potential operators associated with the Lamé
and Stokes systems; see [87].

It is clear from the result just stated that the presence of any angle θ 6= π prevents K from being
compact on Lp(∂Ω, dσ) when Ω is a curvilinear polygon in R2, for any p ∈ (1,∞). This failure of K
to be compact can be quantified in a more precise fashion. Concretely, consider the case when Ω is
a curvilinear polygon with precisely one angular point located at the origin 0 ∈ R2. Furthermore,
assume that, in a neighborhood of 0, ∂Ω agrees with a sector of aperture θ ∈ (0, π) with vertex at
0. In particular, the outward unit normal ν to Ω is smooth on ∂Ω \ {0} and is piecewise constant
near 0, where it assumes two values, say, ν+ and ν−. Define

{ν}Osc(∂Ω) := lim sup
ε→0

(
sup
Bε

∫
−
Bε∩∂Ω

∫
−
Bε∩∂Ω

∣∣∣ ν(X) − ν(Y )
∣∣∣ dσXdσY

)
, (4.5.63)

where the supremum is taken over the collection {Bε} of disks with centers on ∂Ω and of ra-
dius ε. We obviously have {ν}Osc(∂Ω) ≤ 2 dist (ν, VMO(∂Ω, dσ)), where the distance is taken in
BMO(∂Ω). Furthermore, as a consequence of a Proposition 2.4.8, there exists C > 0 such that
dist (ν, VMO(∂Ω, dσ)) ≤ C{ν}Osc(∂Ω). Altogether,

{ν}Osc(∂Ω) ∼ lim sup
ε→0

(
sup
Bε

∫
−
Bε∩∂Ω

∫
−
Bε∩∂Ω

∣∣∣ ν(X) − ν(Y )
∣∣∣ dσXdσY

)

∼ ‖ν+ − ν−‖ ∼
√

1 + cos θ, (4.5.64)

which shows that there exists a family of domains Ω = Ωθ as above for which

dist (ν, VMO(∂Ωθ, dσ)) −→ 0, as θ → π. (4.5.65)

Based on this analysis, we may conclude the following.
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Proposition 4.5.3 For each ε > 0 there exists a bounded Lipschitz domain Ω (whose Lipschitz
character is controlled by a universal constant) with the property that dist (ν, VMO(∂Ω, dσ)) < ε
and yet for each p ∈ (1,∞) the operator K fails to be compact on Lp(∂Ω, dσ).

This shows that the hypotheses of Theorem 4.5.1 cannot be relaxed in a substantiative way.

We conclude this subsection by discussing a variable coefficient version of Theorem 4.5.1.

Theorem 4.5.4 If Ω is a regular SKT domain, the compactness result (4.5.6) of Theorem 4.5.1
holds with the kernel k(X−Y ) replaced by k(X, X−Y ), where k(X, Z) is even and homogeneous of
degree −(n+1) in Z, and Dα

Zk(X, Z) is continuous and bounded on Rn+1 ×Sn for all |α| ≤ M(n).
More generally, if Ω is an ε′-regular SKT domain, with ε′ = ε′(G(Ω), ‖k‖CN , p, ε), the result (4.5.5)
holds in this setting.

Proof. In the context of Proposition 3.2.1, we have

‖T‖L(Lp) ≤ C
∥∥k

∣∣
Sn

∥∥
CN , (4.5.66)

for some C = C(p, G(Ω)) > 0 and N = N(p, G(Ω)) ∈ Z+. An expansion

k(X, Z) =
∑

ℓ

aℓ(X)Ψℓ

( Z

|Z|
)
|Z|−(n+1) (4.5.67)

works just as in the proof of Theorem 3.5.1 in §3.5. ¤

4.6 Characterization of regular SKT domains via compactness

If Ω ⊂ Rn+1 is a UR domain with outward unit normal ν = (ν1, ..., νn+1) and surface measure
σ := Hn⌊ ∂Ω, then the Riesz transforms (Rk)1≤k≤n+1 on ∂Ω are defined by

Rkg(X) := lim
ε→0+

2

ωn

∫

Y ∈∂Ω

|X−Y |>ε

xk − yk

|X − Y |n+1
g(Y ) dσ(Y ), X ∈ ∂Ω, (4.6.1)

where k ∈ {1, ..., n + 1}, and g is a real-valued function on ∂Ω. Hence, formally,

∇S = 1
2 (R1, ...,Rn+1) (4.6.2)

where S is the harmonic single layer potential on ∂Ω. In light of the identification (4.6.2), it is
convenient to abbreviate

[Mν ,∇S] := 1
2

(
[Mνj ,Rk]

)

1≤j,k≤n+1
. (4.6.3)

We are now ready to state the main results in this subsection.

Theorem 4.6.1 Assume that Ω ⊂ Rn+1 is an open set that satisfies a two-sided local John condi-
tion, and for which ∂Ω is Ahlfors regular and compact. Then Ω is a regular SKT domain if and only
if the harmonic double layer K along with the commutator [Mν ,∇S] are compact on L2(∂Ω, dσ).
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There is also a quantitative version of Theorem 4.6.1. To state it, recall the definition (4.5.1).

Theorem 4.6.2 Assume that Ω ⊂ Rn+1 is a UR domain and that p ∈ (1,∞). Then there exists
C > 0, depending only on n, p, as well as the UR and Ahlfors regularity constants of ∂Ω, such that

dist
(
ν , VMO (∂Ω, dσ)

)
≤ C

(
dist

(
K, Cp (Lp(∂Ω, dσ))

))1/(n+1)
(4.6.4)

+C
∑

1≤j,k≤n+1

(
dist

(
[Mνj ,Rk], Cp (Lp(∂Ω, dσ))

))1/(n+1)
.

As a corollary, the following holds. Assume that Ω ⊂ Rn+1 is an open set that satisfies a two-
sided local John condition, and for which ∂Ω is Ahlfors regular and compact. Then for every δo > 0
and p ∈ (1,∞) there exists δ > 0, depending only on δo, n, p and the geometry of Ω such that

dist
(
K, Cp (Lp(∂Ω, dσ))

)
+

∑

1≤j,k≤n+1

dist
(
[Mνj ,Rk], Cp (Lp(∂Ω, dσ))

)
< δ

=⇒ Ω is a δo-SKT domain. (4.6.5)

It is significant that similar results can be phrased purely in terms of the Riesz transforms Rk,
1 ≤ k ≤ n + 1, from (4.6.1). In contrast to the harmonic double layer K, the latter are operators
whose kernels are universal (i.e., independent of the underlying domain). Specifically, we have the
following.

Theorem 4.6.3 Assume that Ω ⊂ Rn+1 is a UR domain and that p ∈ (1,∞). Then there exists
C > 0, depending only on n, p, as well as the UR and Ahlfors regularity constants of ∂Ω, such that

dist
(
ν , VMO (∂Ω, dσ)

)
≤ C

(
dist

(
I +

n+1∑

j=1

R2
j , Cp (Lp(∂Ω, dσ))

))1/(n+1)

+C
∑

1≤j,k≤n+1

(
dist

(
[Rj ,Rk], Cp (Lp(∂Ω, dσ))

))1/(n+1)
. (4.6.6)

As a consequence, the following is true. Suppose that Ω ⊂ Rn+1 is an open set that satisfies a
two-sided local John condition, and for which ∂Ω is Ahlfors regular and compact. Then for every
δo > 0 and p ∈ (1,∞) there exists δ > 0, depending only on δo, n, p and the geometry of Ω such
that

dist
(
I +

n+1∑

j=1

R2
j , Cp (Lp(∂Ω, dσ))

)
+

∑

1≤j,k≤n+1

dist
(
[Rj ,Rk], Cp (Lp(∂Ω, dσ))

)
< δ

=⇒ Ω is a δo-SKT domain. (4.6.7)

Theorem 4.6.4 Assume that Ω ⊂ Rn+1 is an open set that satisfies a two-sided local John condi-
tion, and for which ∂Ω is Ahlfors regular and compact. Then
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Ω is a regular SKT domain ⇐⇒





I +
n+1∑

j=1

R2
j ∈ Cp

(
Lp(∂Ω, dσ)

)
and

[Rj ,Rk] ∈ Cp
(
Lp(∂Ω, dσ)

)
, 1 ≤ j, k ≤ n + 1,

(4.6.8)

for some (hence all) p ∈ (1,∞).

As the above theorem illustrates, there is significant geometric information encoded in the Riesz
transforms associated with a given domain. In this vein, it is interesting to compare Theorem 4.6.4
with a recent result from [52] to the effect that, if Ω ⊂ Rn+1 is a two-sided NTA domain with an
Ahlfors regular boundary, then

∂Ω is a sphere, or a n-plane ⇐⇒

I +
n+1∑

k=1

R2
k = 0 and [Rj ,Rk] = 0 ∀ j, k ∈ {1, ..., n + 1}. (4.6.9)

The proofs of Theorems 4.6.1-4.6.4, presented at the end of the subsection, make use of the
Clifford algebra formalism discussed in the first part of §3.4, which we now revisit. Recall that
elements in Cℓn+1 can be uniquely written as u =

∑n+1
l=0

∑′
|I|=luI eI with uI ∈ R, where eI stands

for the product ei1 · ei2 . . . eil if I = (i1, i2, . . . , il) with 1 ≤ i1 < i2 < · · · < il ≤ n + 1 and, as
before, e0 := e∅ := 1. The Clifford conjugation on Cℓn+1, denoted by ‘bar’, is defined as the unique
real-linear involution on Cℓn+1 for which eIeI = eIeI = 1 for any multi-index I. We define the
scalar part of u =

∑
I uIeI ∈ Cℓn+1 as u0 := u∅, and endow Cℓn+1 with the natural Hilbert space

structure

〈u, v〉 :=
∑

I

uIvI , if u =
∑

I

uIeI , v =
∑

I

vIeI ∈ Cℓn+1. (4.6.10)

It follows that

|u|2 = (u ⊙ ū)0 = (ū ⊙ u)0, 〈u, v〉 = (u ⊙ v̄)0 = (ū ⊙ v)0, ∀u, v ∈ Cℓn+1, (4.6.11)

X̄ = −X for any X ∈ Rn+1, (4.6.12)

u + ū = 2u0 for any u ∈ Rn+1 ⊙ Rn+1, (4.6.13)

ū = u and u ⊙ v = v̄ ⊙ ū, for any u, v ∈ Cℓn+1, (4.6.14)

|u ⊙ v| ≤ cn|u||v|, for any u, v ∈ Cℓn+1. (4.6.15)

Lemma 4.6.5 Let Mb denote the operator of multiplication by b (from the left). Then, in the above
Clifford algebra setting,

(Mb)
∗ = Mb̄, ∀ b ∈ Cℓn+1. (4.6.16)

where star denotes adjunction with respect to the inner product in Cℓn+1.
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Proof. Write b =
∑n+1

ℓ=0

∑′
|I|=ℓ bIeI . By linearity, it suffices to show that for any multi-indices I, K

and any j ∈ {1, ..., n}, there holds

〈ejeI , eK〉 = −〈eI , ejeK〉. (4.6.17)

In turn, this is seen by analyzing three cases. First, when j 6∈ I and j 6∈ K, both sides in (4.6.17)
vanish. Second, consider the case when j 6∈ I and K = K1 ∪{j}∪K2 (with K1 = {k ∈ K : k < j},
K2 = {k ∈ K : k > j}). On the one hand, if I 6= K1 ∪ K2 then once again both sides of (4.6.17)
vanish. If, on the other hand, I = K1 ∪ K2 then both sides in (4.6.17) become (−1)|K1|+1. The
third (and final) case, when j ∈ I and j 6∈ K is handled in a similar fashion. ¤

Let now Ω ⊂ Rn+1 be a fixed UR domain. As usual, denote by ν = (ν1, ..., νn+1) the outward
unit normal to ∂Ω and by σ := Hn⌊ ∂Ω the surface measure on ∂Ω. The Cauchy-Clifford operator
C associated with ∂Ω is given by

Cf(X) := lim
ε→0+

1

ωn

∫

Y ∈∂Ω

|X−Y |>ε

X − Y

|X − Y |n+1
⊙ ν(Y ) ⊙ f(Y ) dσ(Y ), X ∈ ∂Ω, (4.6.18)

where f is a Cℓn+1-valued function defined on ∂Ω. From Theorem 3.4.2, we know that

C : Lp(∂Ω, dσ) ⊗ Cℓn+1 −→ Lp(∂Ω, dσ) ⊗ Cℓn+1 (4.6.19)

is well-defined and bounded for any p ∈ (1,∞). Similar considerations apply to the Riesz transforms
(Rk)1≤k≤n+1 on ∂Ω, defined in (4.6.1).

Lemma 4.6.6 Let Ω be a UR domain and recall that K stands for the harmonic double layer
potential operator defined in (3.3.2) (with the understanding that K acts component-wise on Cℓn+1-
valued functions). Also, recall that [A, B] := AB − BA is the usual commutator bracket.

If C∗ denotes the adjoint of C in (4.6.18), then

(C − C∗)f = −2Kf −
n+1∑

l=0

∑

|I|=l

′ n+1∑

j,k=1

(
[Mνj ,Rk]fI

)
ej ⊙ ek ⊙ eI , (4.6.20)

for each sufficiently nice Cℓn+1-valued function f =
∑n+1

l=0

∑′
|I|=l fI defined on ∂Ω.

Proof. With the help of Lemma 4.6.5 it is straightforward to compute

C∗f(X) = − lim
ε→0+

1

ωn

∫

Y ∈∂Ω

|X−Y |>ε

ν(X) ⊙ X − Y

|X − Y |n+1
⊙ f(Y ) dσ(Y ), X ∈ ∂Ω, (4.6.21)

i.e.,

C∗ = MνCMν . (4.6.22)

140



Hence, at a.e. X ∈ ∂Ω,

(C − C∗)f(X) (4.6.23)

= lim
ε→0+

1

ωn

∫

Y ∈∂Ω

|X−Y |>ε

[
(X − Y ) ⊙ ν(Y ) + ν(X) ⊙ (X − Y )

]
⊙ f(Y )

|X − Y |n+1
dσ(Y ).

Based on (4.6.13)-(4.6.14) and (4.6.11), we may rewrite the expression in the brackets as

(X − Y ) ⊙ ν(Y ) + ν(X) ⊙ (X − Y )

=
[
(X − Y ) ⊙ ν(Y ) + (X − Y ) ⊙ ν(Y )

]
+ (ν(X) − ν(Y )) ⊙ (X − Y )

= 2
(
(X − Y ) ⊙ ν(Y )

)

0
+

n+1∑

j,k=1

(νj(X) − νj(Y ))(xk − yk)ej ⊙ ek

= 2〈X − Y, ν(Y )〉 +
n+1∑

j,k=1

(νj(X) − νj(Y ))(xk − yk)ej ⊙ ek. (4.6.24)

Now the identity (4.6.20) readily follows from (4.6.24) and definitions. ¤

Assume that Ω ⊂ Rn+1 is a domain satisfying a two-sided local John condition and whose
boundary is Ahlfors regular and compact. Also, fix p ∈ (1,∞). It follows from Corollary 2.4.5,
Theorem 4.5.1 and Lemma 4.6.6 that for every ε > 0 there exists δ > 0, depending only on ε, the
geometry of Ω, n and p, such that

dist (ν , VMO(∂Ω, dσ)) < δ =⇒ dist
(
C − C∗ , Cp (Lp(∂Ω, dσ) ⊗ Cℓn+1)

)
< ε, (4.6.25)

where the distance in the right-hand side is measured in L(Lp(∂Ω, dσ)). Thus, informally, ν close
to being in VMO (∂Ω, dσ) implies C close to being self-adjoint, modulo compact operators. Re-
markably, the opposite implication in this statement is also true, and this is made precise in the
theorem below.

Theorem 4.6.7 Let Ω ⊂ Rn+1 be a UR domain and assume that p ∈ (1,∞). Then there exists
C > 0, depending only on n, p, as well as the UR and Ahlfors regularity constants of ∂Ω, such that

dist
(
ν , VMO (∂Ω, dσ)

)
≤ C

[
dist

(
C − C∗ , Cp (Lp(∂Ω, dσ) ⊗ Cℓn+1)

)]1/(n+1)
. (4.6.26)

As a consequence, if C− C∗ is a compact operator on Lp(∂Ω, dσ)⊗ Cℓn+1 for some p ∈ (1,∞) then
ν ∈ VMO (∂Ω, dσ).

Proof. As a preliminary step, we establish the following result of general nature: Assume that
T : Lp(∂Ω, dσ) → Lp(∂Ω, dσ) is a compact operator for some p ∈ (1,∞). Then for every η > 0
there exists Rη > 0 such that

141



‖1∆rT‖L
(
Lp(∂Ω,dσ)

) ≤ η, ∀ r ∈ (0, Rη), (4.6.27)

where ∆r stands for an arbitrary surface ball of radius r.
To justify this, we reason by contradiction and assume that that there exist a threshold ηo > 0

along with a sequence of surface balls {∆rj}j∈N in ∂Ω, with rj → 0+ as j → ∞, for which
‖1∆rj

T‖L
(
Lp(∂Ω,dσ)

) ≥ ηo. In particular, there exist fj ∈ Lp(∂Ω, dσ), j ∈ N, with ‖fj‖Lp(∂Ω,dσ) = 1

for each j, and such that

‖1∆rj
Tfj‖Lp(∂Ω,dσ) ≥ ηo/2, ∀ j ∈ N. (4.6.28)

Since T is compact, by eventually passing to a subsequence, we may assume that there exists
g ∈ Lp(∂Ω, dσ) such that Tfj → g in Lp(∂Ω, dσ) as j → ∞. Next, write

1∆rj
Tfj = 1∆rj

(Tfj − g) + 1∆rj
g (4.6.29)

and observe that ‖1∆rj
(Tfj − g)‖Lp(∂Ω,dσ) ≤ ‖Tfj − g‖Lp(∂Ω,dσ) → 0 as j → ∞, whereas 1∆rj

g → 0

in Lp(∂Ω, dσ) as j → ∞, by Lebesgue’s Dominated Convergence Theorem. Hence, 1∆rj
Tfj → 0 in

Lp(∂Ω, dσ) as j → ∞, contradicting (4.6.28).
After this preamble, assume that T ∈ Cp (Lp(∂Ω, dσ) ⊗ Cℓn+1) is such that

‖(C − C∗) − T‖L
(
Lp(∂Ω,dσ)⊗Cℓn+1

) ≤ η/2 (4.6.30)

for some η ∈ (0, 1/10). If we now select Rη > 0 such that ‖1∆rT‖L
(
Lp(∂Ω,dσ)⊗Cℓn+1

) ≤ η/2 whenever

r ∈ (0, Rη), it follows that

‖1∆r(C − C∗)‖L
(
Lp(∂Ω,dσ)⊗Cℓn+1

) ≤ η, ∀ r ∈ (0, Rη). (4.6.31)

By further decreasing Rη if necessary, it can be assumed that 0 < Rη < η1/(n+1)(diam Ω)/100. We
now claim that there exists C > 0, which depends only on the Ahlfors regularity constants of ∂Ω
and p, such that

sup
Q∈∂Ω

inf
A∈Rn+1

(∫
−

∆(Q,r)
|ν(X) − A|p dσ(X)

)1/p
≤ Cη1/(n+1), ∀ r ∈ (0, Rη). (4.6.32)

From this and Proposition 2.4.8, we may then conclude that dist (ν, VMO(∂Ω, dσ)) < Cη1/(n+1)

which readily proves (4.6.26).
To prove this claim, fix Q ∈ ∂Ω and r ∈ (0, Rη) arbitrary. Then

∫

∆(Q,r)

∣∣∣
∫

∆(P,r)

ν(X) ⊙ (X − Y ) + (X − Y ) ⊙ ν(Y )

|X − Y |n+1
dσ(Y )

∣∣∣
p
dσ(X)

= ‖1∆(Q,r)(C − C∗)1∆(P,r)‖p
Lp(∂Ω,dσ)⊗Cℓn+1

≤ ‖1∆(Q,r)(C − C∗)‖p

L
(
Lp(∂Ω,dσ)⊗Cℓn+1

)‖1∆(P,r)‖p
Lp(∂Ω,dσ)

≤ Cηprn. (4.6.33)
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Next, pick a point P ∈ ∂Ω with |Q − P | = η−1/(n+1)r and observe that

∫

∆(Q,r)

∣∣∣
∫

∆(P,r)

ν(X) ⊙ (Q − Y ) + (Q − Y ) ⊙ ν(Y )

|Q − Y |n+1
dσ(Y )

∣∣∣
p
dσ(X) ≤ Cηprn (4.6.34)

since the difference between the left-most integrands in (4.6.33) and (4.6.34) can be pointwise
bounded by

C|X − Q| sup
Z∈[X,Q]

|Z − Y |−(n+1) ≤ Cηr−n, (4.6.35)

on the domain of integration. Using once more the same type of argument shows that

∫

∆(Q,r)

∣∣∣
∫

∆(P,r)

(ν(X) ⊙ (Q − P )

|Q − P |n+1
+

(Q − Y ) ⊙ ν(Y )

|Q − Y |n+1

)
dσ(Y )

∣∣∣
p
dσ(X) ≤ Cηprn. (4.6.36)

Selecting

A := |Q − P |n−1
(∫
−

∆(P,r)

(Q − Y ) ⊙ ν(Y )

|Q − Y |n+1
dσ(Y )

)
⊙ (Q − P ) (4.6.37)

and using (4.6.14)-(4.6.15), allows us to estimate

∫

∆(Q,r)
|ν(X) − A|p dσ(X)

=
(
η−1/(n+1)r

)p(n−1)
∫

∆(Q,r)

∣∣∣(ν(X) − A) ⊙ Q − P

|Q − P |n+1
⊙ (Q − P )

∣∣∣
p
dσ(X)

≤ C
(
η−1/(n+1)r

)pn
∫

∆(Q,r)

∣∣∣
ν(X) ⊙ (Q − P )

|Q − P |n+1
− A ⊙ Q − P

|Q − P |n+1

∣∣∣
p
dσ(X)

≤ C
(
η−1/(n+1)r

)pn
∫

∆(Q,r)

∣∣∣
ν(X) ⊙ (Q − P )

|Q − P |n+1
+

∫
−

∆(P,r)

(Q − Y ) ⊙ ν(Y )

|Q − Y |n+1
dσ(Y )

∣∣∣
p
dσ(X)

≤ C
(
η−1/(n+1)r

)pn
∫

∆(Q,r)

∣∣∣
∫
−

∆(P,r)

(ν(X) ⊙ (Q − P )

|Q − P |n+1
+

(Q − Y ) ⊙ ν(Y )

|Q − Y |n+1

)
dσ(Y )

∣∣∣
p
dσ(X)

≤ C
(
η−1/(n+1)r

)pn
(ηprn)r−pn ≤ Cσ(∆(Q, r))ηp/(n+1).

From this (4.6.32) follows, finishing the proof of the theorem. ¤

To state our next result, recall the Clifford-Cauchy operator from (4.6.18) and the Riesz trans-
forms from (4.6.1).

Theorem 4.6.8 Assume that Ω ⊂ Rn+1 is an open set satisfying a two-sided local John condition
and such that ∂Ω is Ahlfors regular and compact. Also, denote by ν = (ν1, ..., νn+1) the outward
unit normal to Ω. Then the following statements are equivalent:

(i) C − C∗ is a compact operator on Lp(∂Ω, dσ) ⊗ Cℓn+1 for some (hence all) p ∈ (1,∞);
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(ii) [C, C∗] is a compact operator on Lp(∂Ω, dσ) ⊗ Cℓn+1 for some (hence all) p ∈ (1,∞);

(iii) the harmonic double layer K and the commutators [Mνj ,Rk], 1 ≤ j, k ≤ n + 1, between
the Riesz transforms and multiplication by the components of the unit normal, are compact
operators on Lp(∂Ω, dσ) for some (and, hence, all) p ∈ (1,∞);

(iv) I +
n+1∑

j=1

R2
j and the commutators [Rj ,Rk], 1 ≤ j, k ≤ n + 1, are compact operators on

Lp(∂Ω, dσ) for some (hence, all) p ∈ (1,∞);

(v) the commutators [Mνj ,Rk] and [Rj ,Rk], 1 ≤ j, k ≤ n + 1, are are compact operators on
Lp(∂Ω, dσ) for some (and, hence, all) p ∈ (1,∞);

(vi) Ω is a regular SKT domain.

Proof. We shall need the fact that, in the context of Theorem 4.6.8, the Cauchy-Clifford operator
satisfies

C2 = 1
4I on Lp(∂Ω, dσ) ⊗ Cℓn+1, (4.6.38)

for every p ∈ (1,∞). As to do not disrupt the flow of the presentation, the proof of this identity
is postponed for the next subsection. Granted (4.6.38), we obtain via duality (C∗)2 = 1

4I on
Lp(∂Ω, dσ) ⊗ Cℓn+1, 1 < p < ∞. Hence,

[C, C∗] = (C − C∗)(C + C∗) on L2(∂Ω, dσ) ⊗ Cℓn+1. (4.6.39)

We now make the observation that

C + C∗ is an invertible operator on L2(∂Ω, dσ) ⊗ Cℓn+1. (4.6.40)

Indeed, on the one hand, C + C∗ = C(I + 4CC∗) thanks to (4.6.38). On the other hand, CC∗ is a
nonnegative, self-adjoint operator so I + 4CC∗ is invertible on L2(∂Ω, dσ) ⊗ Cℓn+1. Now, (4.6.40)
readily follows from these considerations.

In concert, (4.6.39) and (4.6.40) prove that

[C, C∗] compact on L2(∂Ω, dσ) ⊗ Cℓn+1

⇐⇒ C − C∗ compact on L2(∂Ω, dσ) ⊗ Cℓn+1, (4.6.41)

which, in turn, justifies the equivalence (i) ⇔ (ii).
Moving on, the implication (iii) ⇒ (i) is a consequence of Lemma 4.6.6. If (i) holds, then

Theorem 4.6.7 gives that ν ∈ VMO (∂Ω, dσ). Consequently, Ω is a regular SKT domain by virtue
of Theorem 4.2.9. This proves (i) ⇒ (vi). Assume next that (vi) holds. From Theorem 4.5.1
we know that the harmonic double layer K is a compact operator on Lp(∂Ω, dσ). Also, since
ν ∈ VMO (∂Ω, dσ), Theorem 2.4.5 and Theorem 3.4.2 give that [Mνj ,Rk], the commutator between
the operator of multiplication by the j-th component of ν and the k-th Riesz transform on ∂Ω is
also compact on Lp(∂Ω, dσ), for each j, k ∈ {1, ..., n + 1}. Hence, (vi) ⇒ (iii).
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In summary, (i) ⇔ (ii) ⇔ (iii) ⇔ (vi). To consider (iv), we first re-write (4.6.18) in the form

CMν = −1
2

n∑

k=1

RkMek
, (4.6.42)

so that

CMνCMν = 1
4

n+1∑

j,k=1

RjRkMejMek
= −1

4

n+1∑

k=1

R2
k + 1

4

∑

1≤j 6=k≤n+1

RjRkMejMek

= −1
4

n+1∑

k=1

R2
k + 1

4

∑

1≤j<k≤n+1

(RjRk −RkRj)Mej⊙ek
. (4.6.43)

Thus, based on (4.6.43) and (4.6.22), we may conclude that

CC∗ = −1
4

n+1∑

k=1

R2
k + 1

4

∑

1≤j<k≤n+1

(RjRk −RkRj)Mej⊙ek
. (4.6.44)

In turn, this and (4.6.38) imply

C(C∗ − C) = −1
4

(
I +

n+1∑

k=1

R2
k

)
+ 1

4

∑

1≤j<k≤n+1

[Rj ,Rk]Mej⊙ek
, (4.6.45)

C − C∗ = C
(
I +

n+1∑

k=1

R2
k

)
+

∑

1≤j<k≤n+1

C[Rj ,Rk]Mej⊙ek
. (4.6.46)

It is then clear from (4.6.45) that (i) ⇒ (iv), and from (4.6.46) that (iv) ⇒ (i). Hence (i) ⇔ (iv).
Finally, consider (v). To this end, we use (4.6.22) and (4.6.43) to write

C∗C = −MνCMνCMνMν = −MνCC∗Mν

= −1
4

n+1∑

k=1

R2
k + 1

4

∑

1≤j 6=k≤n+1

MνRjRkMejMek
Mν . (4.6.47)

Note that MνRjRkMejMek
Mν and RjRkMνMejMek

Mν differ by expressions containing commu-
tators between the Riesz transforms and multiplication by the components of ν, and that

∑

1≤j 6=k≤n+1

RjRkMνMejMek
Mν =

∑

1≤j<k≤n+1

[Rj ,Rk]MνMejMek
Mν . (4.6.48)

Furthermore

[
Mν

(n+1∑

k=1

R2
k

)
Mν

]∗
= Mν

(n+1∑

k=1

R2
k

)
Mν . (4.6.49)
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These observations readily give that (v) ⇒ (ii). On the other hand, it is clear that (iii)−(iv) ⇒ (v),
completing the proof of the theorem (modulo the justification of (4.6.38), which is postponed for
the next subsection). ¤

We are now in a position to complete the proofs of our main results in this subsection:

Proof of Theorem 4.6.1. This is a direct consequence of Theorem 4.6.8. ¤

Proof of Theorem 4.6.2. This is an immediate consequence of (4.6.26) and (4.6.20). ¤

Proof of Theorem 4.6.3. This readily follows from (4.6.46) and (4.6.26). ¤

Proof of Theorem 4.6.4. This is implied by Theorem 4.6.8. ¤

4.7 Clifford-Szegö projections and regular SKT domains

Let Ω ⊂ Rn+1 be an NTA domain, with an Ahlfors regular boundary. Retain the same Clifford
algebra formalism as in §4.6, and recall the Dirac operator

D :=

n+1∑

j=1

Mej∂j . (4.7.1)

In particular,

−D2 = ∆, (4.7.2)

the Laplacian in Rn+1. In analogy with the classical setting of functions of one complex variable,
for each p ∈ (1,∞) define the Hardy spaces

Hp(Ω) := {u : Ω → Cℓn+1 : N (u) ∈ Lp(∂Ω, dσ), Du = 0 in Ω}, (4.7.3)

with the convention that that if Ω is unbounded and ∂Ω is bounded, the decay condition

u(x) = O(|x|−n) as |x| → ∞ (4.7.4)

is also included. Next, consider the boundary version of the Hardy spaces (4.7.3)

Hp(∂Ω) := {u|∂Ω : u ∈ Hp(Ω)}. (4.7.5)

(The existence of the boundary trace will be established in (4.7.13).) Furthermore, define the
Clifford-Szegö projection

P : L2(∂Ω, dσ) ⊗ Cℓn+1 −→ H2(∂Ω) →֒ L2(∂Ω, dσ) ⊗ Cℓn+1 (4.7.6)

as the orthogonal projection of L2(∂Ω, dσ)⊗Cℓn+1 onto the closed subspace H2(∂Ω). The issue we
wish to study first is whether (4.7.6) extends to

P : Lp(∂Ω, dσ) ⊗ Cℓn+1 −→ Hp(∂Ω) (4.7.7)

in a continuous and onto fashion for other values of p ∈ (1,∞). In the classical setting, when Ω is the
unit disk in the complex plane (and D is the Cauchy-Riemann operator), this holds for 1 < p < ∞
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according to a famous theorem of M. Riesz which, in fact, is equivalent to the Lp-boundedness of
the Hilbert transform on the unit circle. See pp. 151–152 in [50] for more details. Our main result
in this respect, which can be viewed as a higher-dimensional generalization of Theorem 2.1(1)(4) on
p. 67 in [72], is Theorem 4.7.2, given below. Before stating it, we mention the following extension
of a theorem of Calderón, established in [52], Theorem 2.6.

Theorem 4.7.1 Assume that Ω ⊂ Rn+1 is a two-sided NTA domain with an Ahlfors regular bound-
ary (making it a UR domain). Then the following decomposition is valid for each p ∈ (1,∞):

Lp(∂Ω, dσ) ⊗ Cℓn+1 = Hp
+(∂Ω) ⊕Hp

−(∂Ω), (4.7.8)

where Hp
±(∂Ω) are the boundary Hardy spaces corresponding to Ω+ := Ω and Ω− := Rn+1 \ Ω.

(In particular, this implies H2(∂Ω) in (4.7.6) is closed.) Here is our result.

Theorem 4.7.2 Assume that Ω ⊂ Rn+1 is an NTA domain with an Ahlfors regular boundary.
Then there exists ε = ε(Ω) > 0 with the property that P extends to a bounded mapping of
Lp(∂Ω, dσ) ⊗ Cℓn+1 onto Hp(∂Ω) for each p ∈ (2 − ε, 2 + ε). In particular, with p as above,
the following decomposition is valid:

Lp(∂Ω, dσ) ⊗ Cℓn+1 = Hp(∂Ω) ⊕
(
ν ⊙Hp(∂Ω)

)
, (4.7.9)

where the direct sum is topological (when p = 2 this is an orthogonal decomposition).
Moreover, if ∂Ω is compact then given any p ∈ (1,∞) there exists ε > 0 depending only on p, n

and the geometrical constants of of Ω with the property that if Ω is an ε-regular SKT domain then
the Clifford-Szegö projection can be extended to a bounded operator from Lp(∂Ω, dσ) ⊗ Cℓn+1 onto
Hp(∂Ω). Furthermore, (4.7.9) holds.

As a corollary, when Ω is a regular SKT domain with compact boundary, the Clifford-Szegö
projection is extendible to a bounded operator from Lp(∂Ω, dσ) ⊗ Cℓn+1 onto Hp(∂Ω) for each p ∈
(1,∞) and (4.7.9) is valid in this range.

Proof. Consider the Cauchy-Clifford operator

Cf(X) :=
1

ωn

∫

∂Ω

X − Y

|X − Y |n+1
⊙ ν(Y ) ⊙ f(Y ) dσ(Y ), X ∈ Ω, (4.7.10)

where f is a Cℓn+1-valued function defined on ∂Ω. It follows from Theorem 3.4.2 and Proposi-
tion 3.2.3 that for each p ∈ (1,∞)

‖N (Cf)‖Lp(∂Ω,dσ) ≤ C‖f‖Lp(∂Ω,dσ)⊗Cℓn+1
, (4.7.11)

Cf
∣∣∣
∂Ω

= (1
2I + C)f, D(Cf) = 0 in Ω, (4.7.12)

for every f ∈ Lp(∂Ω, dσ) ⊗ Cℓn+1.
We now claim that if p ∈ (1,∞), the following Fatou type theorem and Cauchy reproducing

formula hold:

u
∣∣∣
∂Ω

exists, and u = C(u|∂Ω) in Ω, ∀u ∈ Hp(Ω). (4.7.13)

Indeed, according to Theorem 6.4 on p. 112 of [55],
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any function u which is harmonic in an NTA domain Ω and nontangen-
tially bounded from below on E ⊂ ∂Ω has a nontangential limit ωXo-a.e.
on E (where ωXo is the harmonic measure with pole at Xo ∈ Ω).

Now, the fact that u|∂Ω exists for every u ∈ Hp(Ω), p ∈ (1,∞), is a consequence of (4.7.2), the above
local Fatou theorem applied to Ek := {X ∈ ∂Ω : Nu(X) < 2k}, k = 1, 2..., and the mutual absolute
continuity between the surface and harmonic measures proved in [31]; cf. Proposition 3.1.16.

We shall now establish Cauchy’s reproducing formula in (4.7.13) in the case when the domain
Ω has an unbounded boundary (the argument when ∂Ω is compact is similar and simpler). Thus,
assume that ∂Ω is unbounded, fix X∗ ∈ Ω and pick Xo ∈ ∂Ω such that |X∗ − Xo| = η, where
η := dist (X∗, ∂Ω).

Given u ∈ Hp(Ω+) and 0 < ε < η, the idea now is to employ Theorem 3.2.8 for the vector field

v(X) :=
( X∗ − X

|X∗ − X|n+1
⊙ ej ⊙ u(X)

)

1≤j≤n+1
(4.7.14)

in the domain Ω \B(X∗, ε). Since Du = 0 in Ω (cf. (4.7.3)), one may readily check that the vector
field v is divergence free. In more detail, a calculation gives

(div v)(X) =

n+1∑

j=1

∂j

( X∗ − X

|X∗ − X|n+1
⊙ ej ⊙ u(X)

)

=
(n+1∑

j=1

∂j

[ X∗ − X

|X∗ − X|n+1

]
⊙ ej

)
⊙ u(X) +

X∗ − X

|X∗ − X|n+1
⊙ (Du)(X).

(4.7.15)

The last term vanishes, since Du = 0 in Ω. Also, for any scalar-valued function f one has the
readily verified identity

∑

j

∂j(Df) ⊙ ej = −∆f, (4.7.16)

which, in concert with the observation that (X∗ − X)/|X∗ − X|n+1 is a constant times (Df)(X)
if f(X) := |X∗ − X|1−n, shows that the penultimate term in (4.7.15) also vanishes. Hence v is
divergence free in Ω \ B(X∗, ε). Consequently,

1

ωn

∫

∂Ω

X∗ − X

|X∗ − X|n+1
⊙ ν(X) ⊙ u(X) dσ(X)

=
1

ωn

∫

∂B(X∗,ε)

X∗ − X

|X∗ − X|n+1
⊙ X∗ − X

ε
⊙ u(X) dσ(X)

=

∫
−

∂B(X∗,ε)
u(X) dσ(X)

= u(X∗), (4.7.17)

by the Mean Value Formula for harmonic functions. Thus, u(X∗) = C(u|∂Ω)(X∗) follows, as soon
as we show that Nεv ∈ L1(∂Ω, dσ) where Nε is the nontangential maximal operator relative to
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Ω \ B(X∗, ε). (That Nεv ∈ Lp
loc(∂Ω, dσ) is easily checked using N v ∈ Lp(∂Ω, dσ) and the Ahlfors

regularity of ∂Ω.)
To this end, it suffices to note that Nεv(X) ≤ C

(η+|Xo−X|)n (Nu)(X) for σ-a.e. X ∈ ∂Ω and

that, as a function of X, (η + |Xo −X|)−n belongs to Lp′(∂Ω, dσ), where 1/p+1/p′ = 1. The latter
claim is easily checked by decomposing ∂Ω in dyadic annuli of the form ∆(Xo, 2

j+1η) \∆(Xo, 2
jη)

and using the Ahlfors regularity of ∂Ω. This concludes the proof of (4.7.13).
Proceeding further, we note from (4.7.11), (4.7.12), and (4.7.13) that the operator

C : Lp(∂Ω, dσ) ⊗ Cℓn+1 −→ Hp(Ω) (4.7.18)

is well-defined, bounded and onto for each p ∈ (1,∞). From this and (4.7.11)-(4.7.13) we then
obtain

C2 = 1
4I on Lp(∂Ω, dσ) ⊗ Cℓn+1, (4.7.19)

which has been already employed in the proof of Theorem 4.6.8.
A careful inspection of the argument reveals that (4.7.19) is valid if Ω is merely a UR domain.

We elaborate on this. Strictly speaking, (4.7.19) has been obtained using (4.7.10)–(4.7.13). While
(4.7.10)–(4.7.11) work if Ω is only UR, the Fatou type theorem contained in (4.7.13) requires that Ω
is NTA. However, an inspection of the arguments leading up to (4.7.19) shows that we only need to
know that functions of the type u = Cf , for f ∈ Lp(∂Ω, dσ)⊗ Cℓn+1, have pointwise nontangential
trace σ-a.e. on the boundary, which follows from our previously established jump formulas, valid
for UR domains.

Next, formula (4.7.19) further entails

Im
(

1
2I + C : Lp(∂Ω, dσ) ⊗ Cℓn+1

)
= Hp(∂Ω) = Ker

(
−1

2I + C : Lp(∂Ω, dσ) ⊗ Cℓn+1

)
. (4.7.20)

We now establish a version of Kerzman-Stein’s formula (cf. [68]) in the Clifford algebra setting.
To get started, note that the identities

P(1
2I + C) = 1

2I + C, (−1
2I + C)P = 0 in L2(∂Ω, dσ) ⊗ Cℓn+1, (4.7.21)

can be easily justified in light of (4.7.20). Taking the adjoint of the second equality and subtracting
it from the first yields P(I + C − C∗) = 1

2I + C. Next, introduce the bounded operator

A := C − C∗ : Lp(∂Ω, dσ) ⊗ Cℓn+1 −→ Lp(∂Ω, dσ) ⊗ Cℓn+1, 1 < p < ∞. (4.7.22)

On L2(∂Ω, dσ)⊗Cℓn+1, since A is a bounded, skew-adjoint operator, the operator I +A is accretive
and, hence, invertible. From general stability results it follows then that there exists ε > 0 so that

I + A : Lp(∂Ω, dσ) ⊗ Cℓn+1 −→ Lp(∂Ω, dσ) ⊗ Cℓn+1 is invertible for 2 − ε < p < 2 + ε. (4.7.23)

In this fashion, we arrive at the Kerzman-Stein type formula

P = (1
2I + C) ◦ (I + A)−1 (4.7.24)
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valid in Lp(∂Ω, dσ)⊗Cℓn+1, 2− ε < p < 2 + ε. This, (4.7.23) and Theorem 3.4.2 then show that P

extends as a bounded operator in Lp(∂Ω, dσ) ⊗ Cℓn+1 for 2 − ε < p < 2 + ε and, in fact,

P : Lp(∂Ω, dσ) ⊗ Cℓn+1 −→ Hp(∂Ω) is onto for 2 − ε < p < 2 + ε. (4.7.25)

Consider next Q, the complementary orthogonal projection of (4.7.6). Hence, by (4.6.22),

Qf = (I − P)f =
[
I − (1

2I + C)(I + A)−1
]
f = (1

2I − C∗)(I + A)−1f (4.7.26)

= −Mν(
1
2I + C)Mν(I + A)−1f, (4.7.27)

since M2
ν = −I. We therefore arrive at the conclusion that Q extends as a bounded, surjective

operator

Q : Lp(∂Ω, dσ) ⊗ Cℓn+1 −→ ν ⊙Hp(∂Ω) (4.7.28)

whenever 2 − ε < p < 2 + ε. From (4.7.25) and (4.7.28), the conclusion regarding (4.7.9) follows.
This finishes the proof of the first part of the theorem.

Consider next the claim made in the second part of the statement of the theorem. Fix p ∈ (1,∞)
and denote by p′ its Hölder conjugate exponent. Then Theorem 4.6.8 implies that

dist
(
A , Cp (Lq(∂Ω, dσ) ⊗ Cℓn+1)

)
< 1, for every q in between p and p′, (4.7.29)

if Ω is an ε-regular SKT domain for a sufficiently small ε. Assuming that this is the case, we may
then conclude that the operator I +A is Fredholm with index zero on Lq(∂Ω, dσ)⊗Cℓn+1 for every
q in between p and p′. Also, from what we have proved already, this operator is also invertible
when q = 2. It is then easy to show that the operator in question is, in fact, invertible for every q
in between p and p′. Background material on Fredholm operators can be found in the Functional
Analysis appendix in Vol. 1 of [112].

With this in hand and proceeding as in the first part of the proof, we arrive at the conclusion
that (4.7.25) and (4.7.28) actually hold for the given p. As a consequence, (4.7.9) is also valid for
the given p.

Finally, when Ω is a regular SKT domain then, by Proposition 4.1.11, Ω is an ε-regular SKT
domain for every ε > and, hence, (4.7.9) is valid for the full range 1 < p < ∞ in this case. ¤

Denote by P± the Clifford-Szegö projections corresponding to Ω+ := Ω and Ω− := Rn+1 \ Ω̄,
respectively.

Theorem 4.7.3 Let Ω ⊂ Rn+1 be a two-sided NTA domain, with a compact, Ahlfors regular
boundary. Then the following statements are equivalent:

(i) 1
2I + C − P+ and −1

2I + C + P− are compact operators on L2(∂Ω, dσ) ⊗ Cℓn+1;

(ii) P+P− (or, equivalently, P−P+) is a compact operator on L2(∂Ω, dσ) ⊗ Cℓn+1;

(iii) I − P+ − P− is a compact operator on L2(∂Ω, dσ) ⊗ Cℓn+1;

(iv) Ω is a regular SKT domain.
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Proof. This will follow from Theorem 4.6.8 as soon as we establish the following operator identities:

1
2I + C − P+ = (1

2I + C)(C − C∗)(I + A)−1, (4.7.30)

−1
2I + C + P− = (−1

2I + C)(C − C∗)(−I + A)−1, (4.7.31)

I − P+ − P− = (1
2I + C)(C − C∗)(I + A)−1

−(−1
2I + C)(C − C∗)(−I + A)−1, (4.7.32)

−P+(I − P+ − P−) = P+P−, −P−(I − P+ − P−) = P−P+, (4.7.33)

C − C∗ = (1
2I + C − P+)(I + A)

−(−1
2I + C + P−)(−I + A), (4.7.34)

C − C∗ = P+P−(C + C∗) − (C + C∗)P−P+. (4.7.35)

To this end, note that (4.7.30) is a direct consequence of (4.7.24), and that (4.7.31) is proved
similarly. Next, (4.7.32) is obtained by subtracting (4.7.31) from (4.7.30). The two identities in
(4.7.33) are easily verified by multiplying through and using the fact that P± are projections. Also,
(4.7.34) follows easily from (4.7.30) and (4.7.31). As for (4.7.35), we start with

P+(−1
2I + C) = P+

(
(1
2I + C) − I

)
= 1

2I + C − P+, (4.7.36)

and use it to obtain

P+P−(−1
2I + C) = 1

2I + C − P+. (4.7.37)

Dualizing (1
2I + C)P− = 0 we also obtain P−(1

2I + C∗) = 0, so that

P+P−(1
2I + C∗) = 0. (4.7.38)

Adding (4.7.38) and (4.7.37) then yields

1
2I + C − P+ = P+P−(C + C∗), (4.7.39)

so by subtracting (4.7.39) from its dual version we arrive at (4.7.35). ¤

5 Laplace-Beltrami layer potentials and the Dirichlet and Neu-

mann problems

In this section we study the Dirichlet and Neumann problems for the Laplace operator ∆ on a
regular SKT domain Ω in a Riemannian manifold M . We consider more generally operators of the
form L = ∆ − V where V ∈ L∞(M) is ≥ 0. We set up the double layer operator D and the single
layer operator S in §5.1 and investigate their basic properties of Lp-boundedness and nontangential
boundary limit behavior, when Ω is a UR domain. Compactness results are derived in §5.2 when Ω
is a regular SKT domain. Results of §§3–4 are crucial for the work here. In §5.3 we extend Green
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formulas of §2.3 to the manifold setting. This extension is used in §5.4 to establish injectivity of
certain boundary layer operators, which in combination with the compactness results of §5.2 then
yields invertibility. Then in §5.5 the Dirichlet and Neumann problems are solved, in terms of D
and of S acting on inverses of appropriate boundary layer operators, applied to the boundary data.
Results here will be complemented in §6 by results on various second order elliptic systems. In §5.6
we extend the results of §§5.4–5.5 to the setting of ε-regular SKT domains.

5.1 Boundedness and jump-relations

To set the stage, we let M be a compact, connected manifold, of dimension n + 1, endowed with a
Riemannian metric tensor g =

∑
j,k gjkdxj ⊗dxk, perhaps of limited smoothness, as we will discuss

further below. As is customary, we also let g denote det (gjk) and set dV :=
√

g dX for the volume
element on M . Finally, let ∆ denote the Laplace-Beltrami operator associated to the metric tensor
and fix a nonnegative potential V ∈ L∞(M) which is not identically zero. Then

L := ∆ − V, (5.1.1)

is a second-order elliptic operator which maps the classical Sobolev space H1,2(M) isomorphically
onto its dual, H−1,2(M), and whose inverse can be represented as an integral operator, say

L−1u(X) =

∫

M

E(X, Y )u(Y ) dV(Y ), X ∈ M. (5.1.2)

The invariance of various classes of rough domains under C1-diffeomorphisms has been studied
in [53]. In the context of Riemannian manifolds, this allows one to define, in a coordinate invariant
fashion, classes of rough domains much as in the Euclidean setting.

If Ω ⊂ M is a UR domain, then the double layer potential associated with Ω in the compact
(n + 1)-dimensional Riemannian manifold M has the form

Df(X) :=

∫

∂Ω

∂E

∂νY
(X, Y ) f(Y ) dσg(Y ), (5.1.3)

with E(X, Y ) as in (5.1.2), and where σg stands for the surface measure induced by the metric on
∂Ω. It is important to point out that, in any local coordinate system, if σ is the surface measure
induced by the Euclidean metric (i.e. when gjk = δjk) on ∂Ω, then

dσg = ρ dσ, where ρ, ρ−1 ∈ L∞(∂Ω, dσ). (5.1.4)

The proof of (5.1.4) can be seen by noting that both surface measures σ and σg are equal to n-
dimensional Hausdorff measure, for ∂Ω ∩ U ⊂ M , where U is a coordinate patch with either the
Euclidean metric or the Riemannian metric of M , together with the fact that subsets of U have
diameters in these two metrics varying by a bounded factor. In fact, one has, in local coordinates,

ρ(X) =
√

g(X) G(X, n(X))1/2, (5.1.5)

where g(X) = det (gjk(X)), G(X, ξ) = gjk(X)ξjξk, and n = (nj)j is the unit conormal to ∂Ω in
the Euclidean metric. See §5.3 for more on this.

Concerning the nature of the singularity in E(x, y), let us recall here that a parametrix con-
struction, detailed for progressively rougher metric tensors in [91]–[93], gives

√
g(X) E(X, Y ) = e0(X − Y, X) + e1(Y, X), (5.1.6)
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in local coordinates, where the leading term has the form

e0(Z, X) := Cn

(∑
gjk(X)zjzk

)−(n−1)/2
, Z = (zi)i ∈ Rn+1, (5.1.7)

where Cn is a purely dimensional constant and the residue e1(Y, X) satisfies the following estimates
if the metric tensor is Hölder continuous, say gjk ∈ Cα for some α ∈ (0, 1),

|e1(Y, X)| ≤ C|X − Y |−(n−1−α), |∇Y e1(Y, X)| ≤ C|X − Y |−(n−α). (5.1.8)

Cf. Proposition 2.4 of [93], which improves (2.70)–(2.71) of [92]. (Here the dimension of M is
n + 1 rather than n.) There are related estimates in [93] when gjk has modulus of continuity ω(h),
satisfying

∫ 1

0

√
ω(h)

h
dh < ∞. (5.1.9)

We will return to this matter later in this subsection.
Theorem 3.5.1 treats the contribution to Df(X) due to g(X)−1/2∂ν(Y )e0(X − Y, X). Now we

examine the behavior of

K1f(X) :=

∫

∂Ω

k1(X, Y )f(Y ) dσg(Y ), k1(X, Y ) := g(X)−1/2 ∂ν(Y )e1(Y, X), X ∈ Ω, (5.1.10)

and

K1f(X) :=

∫

∂Ω

k1(X, Y )f(Y ) dσg(Y ), X ∈ ∂Ω. (5.1.11)

We will estimate NK1f , examine the behavior of (5.1.10) as X approaches the boundary, and show
that K1 : Lp(∂Ω, dσ) → Lp(∂Ω, dσ), compactly, for p ∈ (1,∞).

Behind this analysis is the following rather general result. Let X be a compact metric space, with
distance function d(X, Y ) and positive measure µ having the property that for some 0 < A1, A2 < ∞
and n ∈ N,

A1r
n ≤ µ(Br(X)) ≤ A2r

n, (5.1.12)

for all X ∈ X , r ∈ (0, diamX ]. As it follows from (5.1.4) and the discussion in §3, X = ∂Ω has
this property when Ω is a bounded, (n+1)-dimensional UR domain and µ is n-dimensional surface
area.

Proposition 5.1.1 Assume X is as above and let k1(X, Y ) be a measurable function on X × X
satisfying

|k1(X, Y )| ≤ ψ(d(X, Y )) d(X, Y )−n, (5.1.13)

where ψ(t) is monotone increasing, slowly varying, with

∫ 1

0

ψ(t)

t
dt < ∞. (5.1.14)

Consider

153



K1f(X) :=

∫

X

k1(X, Y )f(Y ) dµ(Y ). (5.1.15)

Then K1 : Lp(X , dµ) → Lp(X , dµ) is compact, for each p ∈ (1,∞).

Proof. Under the hypothesis (5.1.12), this result is a special case of Lemma 2.4.6. ¤

To apply Proposition 5.1.1 to K1 and K1, first note that if the metric tensor is Hölder continuous,
so (5.1.8) holds, then (5.1.13) holds with ψ(t) = tα, α ∈ (0, 1). Thus K1 is compact on Lp(∂Ω, dσg)
for each p ∈ (1,∞). Also

N (K1f)(X) ≤
∫

∂Ω

kM
1 (X, Y )|f(Y )| dσg(Y ), X ∈ ∂Ω, (5.1.16)

where

kM
1 (X, Y ) := sup

Z∈Γ(X)
|k1(Z, Y )|, X, Y ∈ ∂Ω. (5.1.17)

If (5.1.8) holds, then, since dist (Z, X) ≤ Cdist (Z, ∂Ω) for Z ∈ Γ(X), we have the same sort of
estimate (5.1.13) on kM

1 (X, Y ). Hence

‖N (K1f)‖Lp(∂Ω,dσg) ≤ Cp‖f‖Lp(∂Ω,dσg), 1 < p < ∞. (5.1.18)

We are ready to establish a result on boundary behavior.

Lemma 5.1.2 Given p ∈ (1,∞), f ∈ Lp(∂Ω, dσg), we have

lim
Z→X

Z∈Γ(X)

K1f(Z) = K1f(X), σg − a.e. X ∈ ∂Ω. (5.1.19)

Proof. Given the bound (5.1.18) on ‖N (Kf)‖Lp(∂Ω,dσg), it suffices to show that convergence in
(5.1.19) holds for each f ∈ C0(∂Ω). To see this, write

lim
Z→X

Z∈Γ(X)

K1f(Z) = lim
ε→0

lim
Z→X

Z∈Γ(X)

∫

|X−Y |>ε
k1(Z, Y )f(Y ) dσg(Y )

+ lim
ε→0

lim
Z→X

Z∈Γ(X)

∫

|X−Y |<ε
k1(Z, Y )f(Y ) dσg(Y ) (5.1.20)

=: I1 + I2.

For each ε > 0, the Lebesgue Dominated Convergence Theorem applies to I1 twice, giving

I1 = lim
ε→0

∫

|X−Y |>ε

k1(X, Y )f(Y ) dσg(Y ) = K1f(X). (5.1.21)

Meanwhile, with kM
1 (X, Y ) as in (5.1.17), we have

I2 ≤ ‖f‖L∞(∂Ω,dσ) lim
ε→0

∫

|X−Y |<ε

kM
1 (X, Y ) dσg(Y ) = 0, (5.1.22)
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by estimates parallel to (2.4.51). ¤

A useful notational convention is as follows. Fix a smooth background metric go and denote by
do(X, Y ) the geodesic distance between X, Y ∈ M , taken with respect to go. We then set

P.V.

∫

∂Ω
F (X, Y ) dσg(Y ) := lim

ε→0+

∫

Y ∈∂Ω

do(X,Y )>ε

F (X, Y ) dσg(Y ), X ∈ ∂Ω. (5.1.23)

Theorem 5.1.3 Let Ω be a UR domain in a compact, connected Riemannian manifold whose
metric tensor is Hölder continuous, let L be given by (5.1.1) with V ≥ 0 and V > 0 on a set of
positive measure, and let D be given by (5.1.3). Then, for p ∈ (1,∞), f ∈ Lp(∂Ω, dσ),

‖N (Df)‖Lp(∂Ω,dσg) ≤ Cp‖f‖Lp(∂Ω,dσg), (5.1.24)

and

lim
Z→X

Z∈Γ(X)

Df(Z) = (1
2I + K)f(X), for σg − a.e. X ∈ ∂Ω, (5.1.25)

where

Kf(X) := P.V.

∫

∂Ω

∂E

∂νY
(X, Y )f(Y ) dσg(Y ) (5.1.26)

has the property

‖Kf‖Lp(∂Ω,dσg) ≤ Cp‖f‖Lp(∂Ω,dσg). (5.1.27)

Proof. Most of the claims follow in a straightforward manner by combining Lemma 5.1.2 with the
results of §§3–4. In fact, the only remaining task is to verify the limit (5.1.25). Note that

Df(Z) =

∫

∂Ω

〈dY E(Z, Y ), ν(Y )〉f(Y ) dσg(Y ) (5.1.28)

= E(νf)(z),

where we have set

Eh(Z) :=

∫

∂Ω

dY E(Z, Y )h(Y ) dσg(Y ). (5.1.29)

The same arguments as above bound N (Eh) and appeal to results of §4 gives

lim
Z→X

Z∈Γ(X)

Df(Z) = A(X)f(X) + Kf(X), (5.1.30)

with K as in (5.1.26) and A(X) of the form

A(X) = − 1

2
√
−1

〈p(X, n(X)), ν(X)〉, (5.1.31)
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where n(X) is the unit conormal to ∂Ω at the point X (in the Euclidean metric, in a local coordinate
system) and p(X, ξ) is the principal symbol of the operator on functions on Rn+1 with integral kernel
dY e0(X − Y, X). This is an (n + 1)-covector with components

pj(X, ξ) = −
√
−1

ρ(X)√
g(X)

G(X, ξ)−1ξj , G(X, ξ) = gjk(X)ξjξk, (5.1.32)

where (gjk)jk is the inverse matrix of (gjk)jk. Now the unit conormal to ∂Ω with respect to the
metric gjk is given by

νj(X) = G(X, n(X))−1/2nj(X), for a.e. X ∈ ∂Ω, (5.1.33)

and the unit normal to ∂Ω with respect to this metric is given by

νj(X) = gjk(X)νk(X), for a.e. X ∈ ∂Ω. (5.1.34)

Thus, we have

A(X) =
1

2

ρ(X)√
g(X)

gjk(X)nk(X)nj(X)G(X, n(X))−3/2 (5.1.35)

=
1

2

ρ(X)√
g(X)

G(X, n(X))−1/2

=
1

2
,

the last identity by (5.1.5). ¤

We now discuss how results of [93] allow one to extend Theorem 5.1.3 to a class of Riemannian
manifolds whose metric tensors have a weaker modulus of continuity, namely one satisfying (5.1.9).
Indeed, according to Proposition 2.4 of [93], if ω satisfies the Dini condition

∫ 1
0 ω(t)t−1 dt < ∞,

while t−αω(t) ց for some α ∈ (0, 1), then one has these estimates on e1(Y, X):

|e1(Y, X)| ≤ C
σ(|X − Y |)
|X − Y |n−1

, |∇Y e1(Y, X)| ≤ C
β(|X − Y |)
|X − Y |n (5.1.36)

(given that dim M = n + 1), where

σ(h) :=

∫ h

0

ω(t)

t
dt, (5.1.37)

and β(h) is required to satisfy two conditions. The first is β(h) ≥ σ(h). The second is that there
exists ω1(h) satisfying the Dini condition

∫ 1

0

ω1(t)

t
dt < ∞, (5.1.38)

such that

ω(ρh) ≤ β(ρ)ω1(h), ∀ ρ, h ∈ (0, 1]. (5.1.39)

In such a case, the hypothesis (5.1.13) of Proposition 5.1.1 holds with ψ(t) = β(t), so Proposi-
tion 5.1.1 applies provided

∫ 1
0 β(t)t−1 dt < ∞.
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Now if ω(t) = tα with α ∈ (0, 1), then one can take σ(t) = β(t) = ω1(t) = tα. On the other
hand, if ω(t) = (log 1/t)−α for t << 1, one needs α > 2. For example, if 0 < a < b, one can take

ω(h) =
(
log

1

h

)−2−b
, σ(h) =

(
log

1

h

)−1−b
,

β(h) =
(
log

1

h

)−1−a
, ω1(h) =

(
log

1

h

)−1−(b−a)
. (5.1.40)

More generally, if ω satisfies (5.1.9), then (5.1.37)–(5.1.39) hold with ω1(t) =
√

ω(t), σ(t) ≤ Cω1(t),
and β(t) = ω1(t). Thus Proposition 5.1.1 is applicable with ψ(t) = β(t) = ω1(t), and all the steps
in the proof of Theorem 5.1.3 extend to yield:

Theorem 5.1.4 The results of Theorem 5.1.3 hold whenever the metric tensor on M has a modulus
of continuity satisfying (5.1.9).

We now turn to the single-layer potential

Sf(X) :=

∫

∂Ω

E(X, Y )f(Y ) dσg(Y ), X ∈ Ω, (5.1.41)

and its gradient

∇Sf(X) =

∫

∂Ω

∇XE(X, Y )f(Y ) dσg(Y ), X ∈ Ω. (5.1.42)

In this case it is convenient to exploit the symmetry E(X, Y ) = E(Y, X) and replace (5.1.6) by

√
g(Y )E(X, Y ) = e0(X − Y, Y ) + e1(X, Y ). (5.1.43)

In this scenario, the second estimate in (5.1.36) becomes

|∇Xe1(X, Y )| ≤ C
β(|X − Y |)
|X − Y |n . (5.1.44)

Also, in this case, Theorem 3.5.2 applies to the contribution of g(Y )−1/2∇Xe0(X−Y, Y ) to ∇Sf(X),
and the same arguments as used above apply to the analysis of

K̃1f(X) :=

∫

∂Ω

k̃1(X, Y )f(Y ) dσg(Y ), k̃1(X, Y ) := g(Y )−1/2∇Xe1(X, Y ). (5.1.45)

We obtain the following extension of (3.3.36)–(3.3.39):

Theorem 5.1.5 In the setting of Theorem 5.1.4, we have, for p ∈ (1,∞),

‖N (∇Sf)‖Lp(∂Ω,dσg) ≤ Cp‖f‖Lp(∂Ω,dσg). (5.1.46)

Also, given p ∈ (1,∞) and f ∈ Lp(∂Ω, dσg), one has for almost all X ∈ ∂Ω,

lim
Z→X

Z∈Γ(X)

(
∂ν(X)Sf

)
(Z) = (−1

2I + K∗)f(X), (5.1.47)

where K∗ is the adjoint of K, given by (5.1.26).
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5.2 Compactness of K

We now establish compactness of K on Lp(∂Ω, dσ) for p ∈ (1,∞), when Ω is a regular SKT domain.

Theorem 5.2.1 Retain the hypotheses of Theorem 5.1.3 (or 5.1.4), but this time assume that Ω
is a regular SKT domain. Then the operator K defined in (5.1.26) is compact when acting from
Lp(∂Ω, dσg) into itself, whenever 1 < p < ∞.

Proof. To get started, we peel off some pieces that are always compact on Lp(∂Ω, dσg) and look at
what remains. So far we have

K = Kb + K1, (5.2.1)

where K1, given by (5.1.11), is known to be compact, and (in a local coordinate patch)

Kbf(X) = P.V.

∫

∂Ω

∂ν(Y )e0(X − Y, X)f(Y ) dσg(Y ). (5.2.2)

Now, by (5.1.7), setting

Γ(X, X − Y ) := gjk(X)(xj − yj)(xk − yk), X = (xi)i, Y = (yi)i ∈ Rn+1, (5.2.3)

it follows that, if Cn is as in (5.1.7), we have

∂ν(Y )e0(X − Y, X) = −Cn

2
(n − 1)

[
∂ν(Y )Γ(X, X − Y )

]
Γ(X, X − Y )−(n+1)/2, (5.2.4)

and, via (5.1.33)–(5.1.34),

∂ν(Y )Γ(X, X − Y ) = G(Y, n(Y ))−1/2gℓm(Y )nℓ(Y )
∂

∂ym

[
gjk(X)(xj − yj)(xk − yk)

]
(5.2.5)

= −2G(Y, n(Y ))−1/2nℓ(Y )gℓm(Y )gmk(X)(xk − yk)

= −2G(Y, n(Y ))−1/2nj(Y )gjk(X)(xk − yk),

with nj := nℓg
ℓj . Hence

Kbf(X) = (n − 1)Cn P.V.

∫

∂Ω

nj(Y )gjk(X)(xk − yk)

Γ(X, X − Y )(n+1)/2
G(Y, n(Y ))−1/2f(Y ) dσg(Y ). (5.2.6)

Next we set

Kb = K# + K2, (5.2.7)

where K2 is defined by substituting gjk(X) − gjk(Y ) for gjk(X) in (5.2.6). Thus K2 is compact,
by Proposition 5.1.1, and K# has the form (5.2.6) with nj(Y )gjk(X) replaced by nj(Y )gjk(Y ) =
nk(Y ), so

K#f(X) = (n − 1)Cn P.V.

∫

∂Ω

nk(Y )(xk − yk)

Γ(X, X − Y )(n+1)/2
G(Y, n(Y ))−1/2f(Y ) dσg(Y ). (5.2.8)
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Compare this formula with (3.3.1). Now K# has the form

K#f = TMf, Mf(Y ) = G(Y, n(Y ))−1/2f(Y ), (5.2.9)

and Theorem 4.5.4 is directly applicable to T . Since G(Y, n(Y ))−1/2 is bounded, this yields com-
pactness of K# and completes the proof of Theorem 5.2.1. ¤

5.3 Green formulas on Riemannian manifolds

Let Rm carry a continuous metric tensor (gjk), in addition to the Euclidean metric tensor (δjk). A
vector field v = vj∂j has divergence div v ∈ D′(Rm) given by

〈ϕ, div v〉 = −〈∂jϕ, g1/2vj〉, (5.3.1)

where g = det (gjk), and we use the summation convention. If div v is a locally integrable multiple
of Lebesgue measure, or equivalently of dV = g1/2 dx, we identify div v with the density div v dV.
We denote by div0v this quantity associated to (δjk) rather than (gjk), so div v = g−1/2div0(g

1/2v),
in the locally integrable case.

Let Ω ⊂ Rm be an open set with locally finite perimeter. Assume v belongs to

D = {v ∈ C0
0 (Rm, Rm) : div v ∈ L1(Rm)}

= {v ∈ C0
0 (Rm, Rm) : div0(g

1/2v) ∈ L1(Rm)}. (5.3.2)

Then

∫

Ω

div v dV =

∫

Ω

div0(g
1/2v) dx. (5.3.3)

Hence Green’s theorem from §2.2 gives

∫

Ω

div v dV =

∫

∂∗Ω

〈n, v〉 g1/2 dσ, (5.3.4)

where n is the outward-pointing unit normal with respect to the metric (δjk) and σ is the (m− 1)-
dimensional Hausdorff measure defined by (δjk). We claim that

∫

∂∗Ω

〈n, v〉 g1/2 dσ =

∫

∂∗Ω

〈ν, v〉g dσg, (5.3.5)

where ν is the unit outward-pointing normal determined by (gjk), 〈 , 〉g is the inner product deter-
mined by (gjk), and σg is (m−1)-dimensional Hausdorff measure determined by (gjk). The vectors
ν = νj∂j and n = nj∂j have associated covectors

νb =
∑

νj dxj , nb =
∑

nj dxj , (5.3.6)
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where

νj = gjkν
k, nj = δjkn

k. (5.3.7)

The covectors νb and nb are parallel and both have unit length, with respect to their associated
metric tensors, so

nj = aνj , a2 = 〈nb, nb〉g = gjknjnk. (5.3.8)

Hence

〈n, v〉 g1/2 = njv
jg1/2

= g1/2〈nb, nb〉1/2
g νjv

j

= g1/2〈nb, nb〉1/2
g 〈ν, v〉g. (5.3.9)

Thus (5.3.5) is equivalent to the assertion that

σg = g1/2〈nb, nb〉1/2
g σ (5.3.10)

on measurable subsets of ∂∗Ω. The following result establishes (5.3.10).

Proposition 5.3.1 Let S ⊂ Rm be a countably rectifiable (m − 1)-dimensional set in Rm, with
measure-theoretic unit normal n determined by the Euclidean structure. If σ is (m−1)-dimensional
Hausdorff measure determined by (δjk) and σg is (m−1)-dimensional Hausdorff measure determined
by (gjk), then (5.3.10) holds on S.

Proof. It is clear from the definitions that for each compact K ⊂ Rm there exists CK ∈ (1,∞) such
that

C−1
K σ(A) ≤ σg(A) ≤ CKσ(A), A ⊂ K. (5.3.11)

The hypothesis of countable rectifiability implies there is a disjoint union

S =
⋃

k≥1

Mk ∪ N, (5.3.12)

where each Mk is a Borel subset of some (m−1)-dimensional C1 submanifold of Rm, while σ(N) = 0,
hence σg(N) = 0. It is elementary that (5.3.10) holds on each C1 submanifold of Rm, of dimension
m − 1, so by (5.3.12) it holds on S. ¤

Since ∂∗Ω is countably rectifiable, we have the following variant of Proposition 2.2.4.
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Proposition 5.3.2 Let Rm have a continuous metric tensor (gjk). Let Ω ⊂ Rm be an open set
with locally finite perimeter. Then

∫

Ω

div v dV =

∫

∂∗Ω

〈ν, v〉g dσg, (5.3.13)

for all v ∈ D, defined by (5.3.2).

Similarly we can apply Proposition 2.2.5 to deduce that

∫

Ω

div0(g
1/2v) dx =

∫

∂∗Ω

〈n, v〉 g1/2 dσ, (5.3.14)

whenever Ω has a tame interior approximation and v belongs to

D̃ = {v ∈ C0
0 (Ω, Rm) : div0(g

1/2v) ∈ L1(Ω)}
= {v ∈ C0

0 (Ω, Rm) : div v ∈ L1(Ω)}. (5.3.15)

We obtain

Proposition 5.3.3 If Rm has a continuous metric tensor (gjk) and Ω ⊂ Rm has a tame interior

approximation, then (5.3.13) holds for all v ∈ D̃.

Also the results of §2.3 together with Proposition 5.3.1 yield the following.

Proposition 5.3.4 If g = (gjk) is a continuous metric tensor on Rm and Ω ⊂ Rm is a bounded
domain with Ahlfors regular boundary, then (5.3.13) holds whenever

div v ∈ L1(Ω) and v ∈ Lp, (5.3.16)

for some p > 1, where

Lp := {v ∈ C(Ω) : N v ∈ Lp(∂Ω, dσg) and ∃nontangential limit vb, σg−a.e.}. (5.3.17)

Remark. Using partitions of unity, we can extend the scope of these results to Ω ⊂ M , where M is
a smooth manifold with a continuous metric tensor.

We can apply Proposition 5.3.4 in the following setting. Let M be a compact manifold with a
Riemannian metric whose components are continuous with a modulus of continuity ω satisfying

∫ 1

0

√
ω(t)

t
dt < ∞. (5.3.18)

Let V ∈ L∞(M) satisfy V ≥ 0 on M and V > 0 on a set of positive measure. Then let E(x, y)
be the integral kernel of (∆ − V )−1 on L2(M). Let Ω ⊂ M be a connected UR domain. For
f ∈ Lp(∂Ω, dσg), set
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Sf(x) :=

∫

∂Ω

E(x, y)f(y) dσg(y), x ∈ Ω. (5.3.19)

A fundamental result is

‖N (∇Sf)‖Lp(∂Ω,dσg) ≤ Cp‖f‖Lp(∂Ω,dσg), 1 < p < ∞, (5.3.20)

and that nontangential limits of ∇Sf exist σg-a.e. on ∂Ω. In addition,

lim
y→x in Γx

〈ν(x),∇Sf(y)〉 =
(
−1

2 + K∗
)
f(x), σg-a.e., (5.3.21)

where K∗ : Lp(∂Ω, dσg) → Lp(∂Ω, dσg), for 1 < p < ∞. Also, by Proposition 3.2.5,

‖∇Sf‖Lp(Ω) + ‖Sf‖Lq(Ω) ≤ C‖f‖L2(∂Ω,dσg) (5.3.22)

for some p, q > 2, and elementary estimates give ‖NSf‖Lr(∂Ω,dσg) ≤ C‖f‖L2(∂Ω,dσg) for some r > 2.

Now if we take f ∈ L2(∂Ω, dσg) and set

u = Sf, v = u∇u, (5.3.23)

we have

div v = |∇u|2 + u∆u = |∇u|2 + V u2, on Ω. (5.3.24)

Thus Proposition 5.3.4 applies to give

∫

Ω

(|∇u|2 + V u2) dV =

∫

∂Ω

u
(
−1

2I + K∗
)
f dσg. (5.3.25)

5.4 Invertibility of boundary layer potentials

As in §5.1, let Ω be an open subset of a compact, connected manifold M , endowed with a Rie-
mannian metric tensor g whose components have a modulus of continuity satisfying the Dini-type
condition (5.1.9). We set L = ∆−V with bounded V ≥ 0 on M , V > 0 on a set of positive measure,
and define the double layer potential D by (5.1.3) and the single layer potential S by (5.1.41). By
Theorem 5.1.3, if Ω is a UR domain, then, for a.e. X ∈ ∂Ω,

lim
Z→X,Z∈Γ(X)

Df(Z) =
(

1
2I + K

)
f(X), (5.4.1)

and
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K : Lp(∂Ω, dσg) −→ Lp(∂Ω, dσg), 1 < p < ∞. (5.4.2)

Similarly, if Z → X ∈ ∂Ω from a nontangential region in Ω− := M \ Ω, we have

Df
∣∣
∂Ω− =

(
−1

2I + K
)
f. (5.4.3)

Also, by Theorem 5.1.5 and its counterpart for Ω−,

∂νSf
∣∣
∂Ω± =

(
∓1

2I + K∗
)
f. (5.4.4)

We establish invertibility of these operators on Lp(∂Ω, dσg), under certain conditions. Here is our
starting point.

Proposition 5.4.1 Let Ω ⊂ M be a connected UR domain. Assume V > 0 on a set of positive
measure in each connected component of Ω− = M \ Ω. Then

1
2I + K∗ is injective on L2(∂Ω, dσg). (5.4.5)

If V > 0 on a set of positive measure in Ω, then also −1
2I + K∗ is injective on L2(∂Ω, dσ), while

V ≡ 0 on Ω =⇒ −1
2I + K∗ : L2

0(∂Ω, dσg) → L2
0(∂Ω, dσg), injectively. (5.4.6)

Here and elsewhere, L2
0(∂Ω, dσg) consists of functions in L2(∂Ω, dσg) that integrate to 0 on ∂Ω with

respect to σg.

Proof. We have finally assembled all the tools needed to make the standard argument work. Here
it is. Assume f ∈ L2(∂Ω, dσg) is annihilated by 1

2I + K∗, and set

u := Sf. (5.4.7)

Then we can apply the Green formula (5.3.25), with Ω replaced by Ω− = M \ Ω, and hence with
−1

2I + K∗ replaced by 1
2I + K∗. We have

∫

Ω−

(|∇u|2 + V u2) dV =

∫

∂Ω

u
(

1
2I + K∗

)
f dσg = 0. (5.4.8)

Hence |∇u| ≡ 0 on Ω−, so u is constant on each connected component of Ω−, and the hypothesis
on V implies that each such constant must be 0. Thus u ≡ 0 on M \Ω. Hence u has zero boundary
trace on ∂Ω from inside Ω, so

∫

Ω

(|∇u|2 + V u2) dV =

∫

∂Ω

u
(
−1

2I + K∗
)
f dσg = 0. (5.4.9)
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Hence u is constant on Ω and since u does not jump across ∂Ω, because its trace from both sides
is Sf , the constant must be 0, so u ≡ 0 on M . Thus, by (5.4.4), (1

2I + K∗)f = 0 = (−1
2I + K∗)f ,

so f = 0. This proves (5.4.5).
The proof that −1

2I + K∗ is injective on L2(∂Ω, dσg) if V > 0 on a set of positive measure in
Ω is the same. As for (5.4.6), given f ∈ L2

0(∂Ω, σg), again define u by (5.4.7). Applying the Green
formula to v = ∇u gives, via (5.3.21),

∫

∂Ω

(
−1

2I + K∗
)
f dσg =

∫

Ω

∆u dV = 0, (5.4.10)

so indeed −1
2I +K∗ maps L2

0(∂Ω, σg) to itself. Next, if f ∈ L2
0(∂Ω, σg) is annihilated by −1

2I +K∗,
then (5.4.9) applies, and we deduce that u is constant on Ω; say u ≡ a on Ω. Now we have
(1
2I + K∗)f = f , so

∫

Ω−

(|∇u|2 + V u2) dV =

∫

∂Ω

u
(

1
2I + K∗

)
f dσg

= a

∫

∂Ω

f dσg = 0. (5.4.11)

This forces u ≡ 0 on Ω−. Since u does not jump across ∂Ω, this forces a = 0, so u ≡ 0 on M . As
before, this forces f = 0. ¤

Now for the invertibility result.

Proposition 5.4.2 Let Ω ⊂ M be a connected, regular SKT domain. Assume as usual that V ≥ 0
is bounded on M , and V > 0 on a set of positive measure on each connected component of Ω− =
M \ Ω. Then

1
2I + K, 1

2I + K∗ : Lp(∂Ω, dσg) → Lp(∂Ω, dσg), isomorphically , ∀ p ∈ (1,∞). (5.4.12)

If V > 0 on a set of positive measure in Ω, then −1
2I + K and −1

2 + K∗ are isomorphisms on
Lp(∂Ω, dσg) for each p ∈ (1,∞), while

V ≡ 0 on Ω =⇒ −1
2I + K∗ : Lp

0(∂Ω, σg) → Lp
0(∂Ω, σg), isomorphically, (5.4.13)

for each p ∈ (1,∞).

Proof. In this setting, Proposition 5.4.1 applies, and we also know that K and K∗ are compact on
Lp(∂Ω, dσg) for each p ∈ (1,∞), so all the operators in (5.4.12) and (5.4.13) are Fredholm of index
zero. By Proposition 5.4.1, 1

2I + K∗ is injective on L2(∂Ω, dσg), hence on Lp(∂Ω, dσg) for each
p ∈ [2,∞). Thus 1

2I + K∗ is invertible on Lp(∂Ω, dσg) for each p ∈ [2,∞), so 1
2I + K is invertible

on Lp(∂Ω, dσg) for each p ∈ (1, 2], hence injective on Lp(∂Ω, dσg) for each p ∈ (1,∞), and hence
invertible on Lp(∂Ω, dσg) for each p ∈ (1,∞), and we have (5.4.12). Similar arguments yield the
rest of Proposition 5.4.2. ¤
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5.5 The Dirichlet and Neumann problems

We can now apply the results of §5.4 to the Dirichlet and Neumann problems. We make the
standing assumption that Ω is a connected regular SKT domain in M , a compact manifold with
a Riemannian metric tensor whose components satisfy the Dini-type condition (5.1.9). We set
L = ∆ − V and assume V ∈ L∞(M) is ≥ 0 and that V > 0 on a set of positive measure on each
connected component of M \ Ω. Since we are studying Lu = 0 on Ω, we can alter V at will off Ω,
so there is no loss of generality in making this last assumption. Here is our result.

Theorem 5.5.1 Given p ∈ (1,∞), take

f, g ∈ Lp(∂Ω, dσg). (5.5.1)

Then the Dirichlet problem

Lu = 0 on Ω, u
∣∣
∂Ω

= f (5.5.2)

has a unique solution u ∈ C1(Ω) satisfying

‖Nu‖Lp(∂Ω,dσg) ≤ C‖f‖Lp(∂Ω,dσg). (5.5.3)

If V > 0 on a set of positive measure on Ω, the Neumann problem

Lu = 0 on Ω, ∂νu
∣∣
∂Ω

= g (5.5.4)

has a unique solution u ∈ C1(Ω) satisfying

‖N∇u‖Lp(∂Ω,dσg) ≤ C‖g‖Lp(∂Ω,dσg). (5.5.5)

If V ≡ 0 on Ω, then, provided g ∈ Lp
0(∂Ω, σg), (5.5.4) has a solution satisfying (5.5.5), unique up

to an additive constant.

Proof. For existence in (5.5.2), we take

u = D
(

1
2I + K

)−1
f, (5.5.6)

and for existence in (5.5.4) we take

u = S
(
−1

2I + K∗
)−1

g. (5.5.7)

The respective properties (5.5.3) and (5.5.5) then follow from the results of §5.1.
As for uniqueness, the argument given in §7.1 applies here with only minor modifications, so to

avoid redundancy we refer the reader to §7.1. ¤
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5.6 Extensions to ε-regular SKT domains

We extend the results of §5.2 and §§5.4–5.5 from the setting of regular SKT domains to the setting
of ε-regular SKT domains. Take M to be a compact manifold, with a Riemannian metric tensor
g, satisfying a Dini-type condition as in §5.1. Take L = ∆ − V and K as before. The following
replaces Theorem 5.2.1.

Proposition 5.6.1 Let Ω ⊂ M be a domain, satisfying a two-sided John condition, with Ahlfors
regular boundary. Fix p ∈ (1,∞). For each δ > 0, the following holds. Let G(Ω) denote the
geometrical characteristics of Ω (consisting in this case of the Ahlfors regularity, UR, and John
constants, measured with respect to some coordinate chart). There exists ε = ε

(
G(Ω), M, g, p, δ

)
> 0

such that

Ω is an ε-regular SKT domain =⇒ dist(K, Cp(Lp(∂Ω, dσg)) < δ. (5.6.1)

Proof. As in the proof of Theorem 5.2.1, K = K# + K1 + K2 where, by Proposition 5.1.1, K1 and
K2 are compact. Furthermore, K# = TM as in (5.2.9), and Theorem 4.5.4 applies to T , to yield
(5.6.1). ¤

The injectivity results of Proposition 5.4.1 remain at our disposal. We can now extend Propo-
sition 5.4.2.

Proposition 5.6.2 Let Ω ⊂ M be as in Proposition 5.6.1 and assume also that Ω is connected.
Assume V > 0 on a set of positive measure on each connected component of Ω− = M \ Ω. Take
q ∈ (1, 2]. Assume (cf. notation from Proposition 5.6.1)

ε′ ≤ inf
q≤p≤q′

ε
(
G(Ω), M, g, p, 1

2

)
(5.6.2)

and that Ω is an ε′-regular SKT domain. Then, for each p ∈ [q, q′],

1
2I + K : Lp(∂Ω, dσg) → Lp(∂Ω, dσg),

1
2I + K∗ : Lp(∂Ω, dσg) → Lp(∂Ω, dσg), (5.6.3)

isomorphically. If V > 0 on a set of positive measure in Ω, then −1
2I + K and −1

2I + K∗ are
isomorphisms on Lp(∂Ω, dσg), while

V ≡ 0 on Ω =⇒ −1
2I + K∗ : Lp

0(∂Ω, dσg) → Lp
0(∂Ω, dσg), isomorphically. (5.6.4)

Proof. The hypotheses yield

dist
(
K, Cp (Lp(∂Ω), dσg)

)
< 1

2 . (5.6.5)

Hence the operators ±1
2I + K and ±1

2I + K∗ are Fredholm on Lp(∂Ω, dσg), of index zero. The
arguments used in Proposition 5.4.2 finish the proof, except that now we work on p ∈ [q, q′] rather
than p ∈ (1,∞). ¤

From here, we can extend Theorem 5.5.1, as follows.
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Theorem 5.6.3 Take Ω as in Proposition 5.6.2, q ∈ (1, 2], p ∈ [q, q′], and ε as in (5.6.2). Take
f, g ∈ Lp(∂Ω, dσg). Then the Dirichlet problem (5.5.2) has a unique solution u ∈ C1(Ω) satisfying
(5.5.3). If V > 0 on a set of positive measure on Ω, the Neumann problem (5.5.4) has a unique
solution u ∈ C1(Ω) satisfying (5.5.5). If V ≡ 0 on Ω, then, provided g ∈ Lp

0(∂Ω, dσg), (5.5.4) has
a solution satisfying (5.5.5), unique up to an additive constant.

Proof. We can appeal to Proposition 5.6.2 to write solutions in the form (5.5.6) and (5.5.7).
Uniqueness again follows from arguments that will be given in §7. ¤

6 Second order elliptic systems on regular SKT domains: set-up

In this section we apply the methods of §§2–4 to a variety of second order elliptic systems: the
Lamé system of linear elasticity, the Stokes system for steady fluid flows, and the Maxwell system
for time-harmonic electromagnetic fields. We also consider various boundary problems for the
scalar Laplace operator, complementing and supplementing results of §5. Unlike in §5, we restrict
attention to constant-coefficient equations in Euclidean space in this section.

Section 6.1 is devoted to a more detailed description of the various boundary problems to be
studied for the Lamé system, Stokes system, and Maxwell system, and the various layer potential
operators that arise to solve these boundary problems. Some of these layer potentials conform to
the form (4.5.3), yielding compactness for regular SKT domains and small norm modulo compacts
for ε-regular SKT domains, and some do not; further techniques will be brought to bear on these.

Section 6.2 derives compactness results on Lp-Sobolev spaces Lp
1(∂Ω, dσ), for regular SKT do-

mains, which complement our compactness results on Lp(∂Ω, dσ). In addition, there are Fredholm
results on Lp

1(∂Ω, dσ), obtained when dist(ν, VMO(∂Ω, dσ)) is small.
Section 6.3 studies the invertibility of various double layer potential operators. When they have

the form λI +K with K either compact or of norm modulo compacts < |λ|, the crux is to establish
injectivity, and separate techniques are involved in the various cases. This yields results for regular
SKT domains, of the form that λI + K is invertible on Lp(∂Ω, dσ) for each p ∈ (1,∞). For the
more general class of ε-regular SKT domains, we obtain invertibility for a range of p, depending on
how small ε is.

Section 6.4 studies the invertibility of single layer potentials, typically from Lp(∂Ω, dσ) →
Lp

1(∂Ω, dσ) or Lp
−1(∂Ω, dσ) → Lp(∂Ω, dσ), or some variant. Section 6.5 studies the invertibility of

the magnetostatic layer potential. This is a double layer potential, but the invertibility results have
a significantly different flavor from those of §6.3.

6.1 Examples

To illustrate the scope of the analysis pertaining to operators of the form (4.5.2)-(4.5.3), which was
carried out in §4.5, here we shall discuss in detail three examples, namely integral operators arising
in the study of linear elasticity, in the study of the Stokes system for hydrostatics, and in the study
of the time-harmonic Maxwell system.

Our first example comes from linear elasticity problems on domains in Rn+1. Specifically, let

µ > 0 and λ > − 2µ

n + 1
, (6.1.1)

and, for a fixed, arbitrary parameter r ∈ R, set (using the standard δ-Kronecker formalism)
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aαβ
jk (r) := µδjkδαβ + (µ + λ − r) δjαδkβ + r δjβδkα. (6.1.2)

Then for any vector field ~u = (uα)1≤α≤n+1 and any α = 1, ..., n + 1 we have (using the repeated
index summation convention)

∂j

(
aαβ

jk (r)∂kuβ

)
= µ∆uα + (µ + λ)∂α(div ~u), (6.1.3)

i.e., the α-component of the Lamé operator µ∆+(µ+λ)∇ div acting on ~u. The conormal derivative
associated with the above choice of coefficients in the writing of the Lamé operator is then given
by

∂r
ν~u :=

(
νja

αβ
jk (r)∂kuβ

)

α
= [µ(∇~u)⊤ + r(∇~u)]

∣∣∣
∂Ω

ν + (µ + λ − r)(div ~u)
∣∣∣
∂Ω

ν, (6.1.4)

where the superscript ⊤ denotes transposition.
The approach to solving the Dirichlet problem





µ∆~u + (µ + λ)∇div ~u = 0 in Ω,

~u
∣∣∣
∂Ω

= ~f ∈
[
Lp(∂Ω, dσ)

]n+1
,

N (~u) ∈ Lp(∂Ω, dσ),

(6.1.5)

via the method of boundary integral operators proceeds as follows. Recall that ωn denotes the
surface measure of the unit sphere in Rn+1, and let E(X) = (Ejk(X))1≤j,k≤n+1 be the standard
fundamental solution for the Lamé system, defined at each X = (xj)j ∈ Rn+1 \ {0} by

Ejk(X) :=





−1

2µ(2µ + λ)ωn

[
3µ + λ

n − 1

δjk

|X|n−1
+

(µ + λ)xjxk

|X|n+1

]
, if n ≥ 2,

1

2πµ(2µ + λ)

[
(3µ + λ)δjklog |X| − (µ + λ)xjxk

|X|2
]

, if n = 1.

(6.1.6)

See, e.g., [71] and (9.2) in Chapter 9 of [70]. Assuming that −µ ≤ r ≤ µ, we then define the elastic
double layer potential operator Dr by setting

Dr~g(X) :=

∫

∂Ω

[∂r
ν(Y )E(Y − X)]⊤~g(Y ) dσ(Y ), X ∈ Ω, (6.1.7)

for each ~g ∈
[
Lp(∂Ω, dσ)

]n+1
. Assuming that the domain Ω is reasonable, we seek a solution to

(6.1.5) in the form ~u = Dr~g for a suitable ~g ∈
[
Lp(∂Ω, dσ)

]n+1
, in which case it is useful to know

that

Dr~g
∣∣∣
∂Ω

= (1
2I + Kr)~g, (6.1.8)
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where I denotes the identity operator, and

Kr~g(X) := lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

[∂r
ν(Y )E(Y − X)]⊤~g(Y ) dσ(Y ), X ∈ ∂Ω. (6.1.9)

Explicitly, the integral kernel of the operator (6.1.9) is a (n+1)× (n+1) matrix whose (j, k) entry
is given by

−L1(r)
δjk

ωn

〈X − Y, ν(Y )〉
|X − Y |n+1

− (1 − L1(r))
n + 1

ωn

〈X − Y, ν(Y )〉(xj − yj)(xk − yk)

|X − Y |n+3

− L2(r)
1

ωn

(xj − yj)νk(Y ) − (xk − yk)νj(Y )

|X − Y |n+1
, (6.1.10)

where

L1(r) :=
µ(3µ + λ) − r(µ + λ)

2µ(2µ + λ)
, L2(r) :=

µ(µ + λ) − r(3µ + λ)

2µ(2µ + λ)
. (6.1.11)

It is here that the usefulness of making a judicious choice for the parameter r is most apparent.
Specifically, for

r :=
µ(µ + λ)

3µ + λ
(6.1.12)

we have L2(r) = 0 and, hence, the last term in (6.1.10) drops out. Consequently, the operator
(6.1.10) corresponding to the choice (6.1.12), referred to in the literature as the pseudo-stress
elastic double layer (cf., e.g., [70]), takes the form (4.5.3). We shall denote this operator by Kψ.

Another particular conormal derivative which has received a lot of attention is the so-called
traction which corresponds to (6.1.4) written for r = µ, i.e.,

∂µ
ν ~u = µ[∇~u + ∇~u⊤]

∣∣∣
∂Ω

ν + λ(div ~u)
∣∣∣
∂Ω

ν. (6.1.13)

The operator (6.1.9)–(6.1.10) written for r = µ is called the traction elastic double layer and is
denoted by Ktrac. As is apparent from (6.1.10), Ktrac fails to be of the form (4.5.3).

Our second example pertains to the Stokes system of hydrostatics. In this case, for a given,
sufficiently nice domain Ω ⊂ Rn+1 and 1 < p < ∞, the Dirichlet problem for the velocity field ~u
and the scalar pressure π reads





∆~u −∇π = 0 in Ω,

div ~u = 0 in Ω,

~u
∣∣∣
∂Ω

= ~f ∈ Lp
ν(∂Ω, dσ),

N (~u) ∈ Lp(∂Ω, dσ),

(6.1.14)

where, for each 1 < p < ∞, we have set
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Lp
ν(∂Ω, dσ) :=

{
~f ∈

[
Lp(∂Ω, dσ)

]n+1
:

∫

∂Ω
〈ν, ~f〉 dσ = 0

}
. (6.1.15)

In order to implement the method of layer potentials for this problem, for each fixed parameter
γ ∈ R, consider the coefficients

aαβ
jk (γ) := δjkδαβ + γ δjβδkα, (6.1.16)

and note that for every α = 1, ..., n + 1,

∂j

(
aαβ

jk (γ)∂kuβ

)
= ∆uα + γ∂α(div ~u). (6.1.17)

In particular,

div ~u = 0 =⇒ ∂j

(
aαβ

jk (γ)∂kuβ

)
= (∆~u)α, α = 1, ..., n + 1. (6.1.18)

For an arbitrary, given pair (~u, π), where ~u is a divergence-free field and π is a scalar function,
define the conormal derivative associated with (6.1.16), (6.1.17) by

∂γ
ν (~u, π) := [(∇~u)⊤ + γ(∇~u)]

∣∣∣
∂Ω

ν − π
∣∣∣
∂Ω

ν. (6.1.19)

Going further, let E(X) = (Ejk(X))1≤j,k≤n+1 be the canonical matrix-valued fundamental solution
for the Stokes system, where

Ejk(X) :=





− 1

2ωn

(
1

n − 1

δjk

|X|n−1
+

xjxk

|X|n+1

)
, if n ≥ 2,

− 1

4π

(
δjklog |X| + xjxk

|X|2
)

, if n = 1,

X = (xj)j ∈ Rn+1 \ {0},(6.1.20)

and the corresponding pressure vector

~q(X) := − 1

ωn

X

|X|n+1
, X ∈ Rn+1 \ {0}. (6.1.21)

For each X ∈ Rn+1 \ {0}, these functions satisfy

∂kEjk(X) = 0 for 1 ≤ j ≤ n + 1 and ∂jEjk(X) = 0 for 1 ≤ k ≤ n + 1, (6.1.22)

∆Ejk(X) = ∆Ekj(X) = ∂kqj(X) = ∂jqk(X) for 1 ≤ j, k ≤ n + 1. (6.1.23)

Now, assume that −1 < γ ≤ 1 and, for each ~g ∈ Lp
ν(∂Ω, dσ) define the hydrostatic double layer

potential operator Dγ by
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Dγ~g(X) :=

∫

∂Ω

[∂γ
ν(Y )(E, ~q)(Y − X)]⊤~g(Y ) dσ(Y ), X ∈ Ω, (6.1.24)

where, in this context, ∂γ
ν(Y ) is applied to each pair consisting of the j-th column in E(Y −X) and

the j-th component of ~q(Y − X), i.e.

(∂γ
ν (E, ~q))jk = να∂αEkj + γνα∂kEαj − qjνk. (6.1.25)

Let us also define the corresponding potential for the pressure by setting

P~g(X) :=

∫

∂Ω

〈∂ν(Y )~q(Y − X) , ~g(Y )〉 dσ(Y ), X ∈ Ω, (6.1.26)

where the normal derivative is applied component-wise. We seek a solution for (6.1.14) in the form
~u = Dγ~g, π = P~g, for a suitable ~g ∈ Lp

ν(∂Ω, dσ). It is then of interest to know that

Dγ~g
∣∣∣
∂Ω

= (1
2I + Kγ)~g, (6.1.27)

where

Kγ~g(X) := lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

[∂γ
ν(Y )(E, ~q)(Y − X)]⊤~g(Y ) dσ(Y ), X ∈ ∂Ω. (6.1.28)

The integral kernel of the operator (6.1.28) is a (n + 1) × (n + 1) matrix whose (j, k) entry is

−(1 − γ)
δjk

ωn

〈X − Y, ν(Y )〉
|X − Y |n+1

− (1 + γ)
n + 1

ωn

〈X − Y, ν(Y )〉(xj − yj)(xk − yk)

|X − Y |n+3

− (1 − γ)
1

ωn

(xj − yj)νk(Y ) − (xk − yk)νj(Y )

|X − Y |n+1
. (6.1.29)

For γ = 1, in which case the operator (6.1.28) is known as the slip hydrostatic double layer (cf.,
e.g., [71]), the last term in (6.1.29) vanishes. Thus, for this particular choice of the parameter γ,
the operator (6.1.28) becomes of the type (4.5.3).

Our last example concerns the time-harmonic Maxwell’s equations with wave number k ∈ C,
Im k ≥ 0, in a domain Ω ⊂ R3:

curl ~E + ik ~H = 0 and curl ~H − ik ~E = 0 in Ω, ν × ~E
∣∣∣
∂Ω

= ~f on ∂Ω. (6.1.30)

Eliminating ~H then leads us to considering
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(∆ + k2) ~E = 0 in Ω,

div ~E = 0 in Ω,

N ( ~E) ∈ Lp(∂Ω, dσ),

ν × ~E
∣∣∣
∂Ω

= ~f ∈ Lp
tan(∂Ω, dσ),

(6.1.31)

where 1 < p < ∞ and

Lp
tan(∂Ω, dσ) :=

{
~f = (f1, f2, f3) : fj ∈ Lp(∂Ω, dσ), j = 1, 2, 3 and 〈ν, ~f〉 = 0 a.e. on ∂Ω

}
(6.1.32)

stands for the space of vector fields which are tangential to ∂Ω, with p-th power integrable compo-
nents. In this setting, the method of layer potentials consists of looking for a solution ~E for (6.1.31)
in the form

~E(X) := curl

∫

∂Ω
Φk(X − Y )~g(Y ) dσ(Y ), X ∈ Ω, (6.1.33)

where ~g ∈ Lp
tan(∂Ω, dσ) is yet to be determined and Φk is the canonical radial fundamental solution

for the Helmholtz operator ∆ + k2 in R3, i.e.

Φk(X) := −e
√
−1 k|X|

4π|X| , X ∈ R3 \ {0}. (6.1.34)

In particular, Φ0(X) = − 1
4π|X| is the usual fundamental solution for the Laplacian in R3. Then, if

Ω is sufficiently nice, we have the following trace formula

ν × ~E
∣∣∣
∂Ω

= (−1
2I + Mk)~g, (6.1.35)

where

Mk~g(X) := lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

ν(X) × curlX{Φk(X − Y )~g(Y )} dσ(Y ), X ∈ ∂Ω, (6.1.36)

is the so-called magneto-static layer potential (cf., e.g., [24]). The elementary algebraic identity

~a × (~b × ~c) = −〈~a,~b〉~c + 〈~a,~c〉~b, ∀~a, ~b, ~c ∈ R3, (6.1.37)

plus the fact that 〈ν(Y ), ~g(Y )〉 = 0 for a.e. Y ∈ ∂Ω, allow us to express the integrand in Mk~g(X)
in the form

ν(X) ×
(
(∇Φk)(X − Y ) × ~g(Y )

)
= −∂ν(X)Φk(X − Y )~g(Y )

+〈ν(X) − ν(Y ), ~g(Y )〉(∇Φk)(X − Y ),

=: k1(X, Y )~g(Y ) + k2(X, Y )~g(Y ). (6.1.38)
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Now, k1(X, Y ) can be decomposed further as

k1(X, Y ) = −∂ν(X)Φ0(X − Y ) + ∂ν(X)

[
Φ0(X − Y ) − Φk(X − Y )

]
, (6.1.39)

where the first term in the right hand-side of (6.1.39) is of the type (4.5.3) (in fact, up to a sign,
this is the kernel of the adjoint harmonic double layer), and the second one is a bounded function
on ∂Ω × ∂Ω, thus giving rise to a compact operator on Lp(∂Ω, dσ). Finally, k2(X, Y )~g(Y ) can be
written as

k2(X, Y )~g(Y ) = 〈ν(X) − ν(Y ), ~g(Y )〉(∇Φ0)(X − Y )

+ 〈ν(X) − ν(Y ), ~g(Y )〉
[
(∇Φ0)(X − Y ) − (∇Φk)(X − Y )] (6.1.40)

where the structure of the first term is that of a commutator between a nice singular integral and
the operator of multiplication by ν, whereas the expression in the brackets is a bounded function
on ∂Ω × ∂Ω, hence once again giving rise to a compact operator on Lp(∂Ω, dσ). In particular, for
this first term in the right hand-side of (6.1.40) the homogeneous space version of the commutator
theorem of Coifman-Rochberg-Weiss applies (see Theorem 2.4.2 and Theorem 2.4.5).

6.2 Compactness of layer potential operators on Sobolev spaces

Consider a differential operator L as in (3.6.20)-(3.6.21) and, as before, let E = (Eβγ)β,γ be a
fundamental solution for L in Rn+1 which decays at infinity. Given a bounded domain Ω ⊂ Rn+1,
of finite perimeter, whose boundary is Ahlfors regular and satisfies (2.3.1), introduce the double
layer potential operator and its boundary version as in (3.6.24), (3.3.3).

The goal is to study the compactness of K on the Sobolev space Lp
1(∂Ω, dσ), for 1 < p < ∞.

In the case of the harmonic double layer potential such a compactness result was established for
bounded C1 domains in [37], via methods which make essential use of the local graph structure of
the boundary of the domain in question. Of course, the domains we consider in this paper typically
lack this key feature, so a new approach is required. We nonetheless have:

Theorem 6.2.1 Assume that Ω ⊂ Rn+1 is a bounded regular SKT domain, and let L, E, K be
defined as before. Furthermore, assume that the double layer operator K has the form (4.5.3). Then
the operator K is compact on Lp

1(∂Ω, dσ) for every p ∈ (1,∞).

As a preamble, we first record the following jump formula.

Lemma 6.2.2 Assume that Ω ⊂ Rn+1 is a bounded UR domain, and let L, E, be defined as before.
Recall the single layer from (3.6.22) and, for each multi-indices α, β, set

Sαβ g(X) :=

∫

∂Ω
Eαβ(X − Y )g(Y ) dσ(Y ), X ∈ Rn+1 \ ∂Ω. (6.2.1)

Also, consider

B :=
[(

aαβ
jk νjνk

)

α,β

]−1
, B =

(
bαβ

)

α,β
. (6.2.2)
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Then for every r ∈ {1, ..., n + 1}

∂rSαβ g
∣∣∣
∂Ω±

(X) = ∓1
2νr(X)bαβ g(X) + lim

ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

(∂rEαβ)(X − Y )g(Y ) dσ(Y ), (6.2.3)

at a.e. X ∈ ∂Ω, whenever g ∈ Lp(∂Ω, dσ), 1 < p < ∞.

Proof. This is a direct consequence of Theorem 3.5.2. ¤

We are ready to present the

Proof of Theorem 6.2.1. Recall (6.2.1). By relying on (3.6.43), we may then further transform
formula (3.6.31) into

∂j

(
Df

)

γ
(X) =

∫

∂Ω
νj(Y )aβα

rs (∂rEγβ)(X − Y )(∇tanfα)s(Y ) dσ(Y )

−
∫

∂Ω
νs(Y )aβα

rs (∂rEγβ)(X − Y )(∇tanfα)j(Y ) dσ(Y ).

= aβα
rs ∂rSγβ

(
νj(∇tanfα)s

)
(X) +

(
D

(
(∇tanf)j

))

γ
(X), (6.2.4)

where (∇tanf)j is a vector whose component of order α is (∇tanfα)j . As a consequence of
Lemma 3.6.1, (6.2.4) and jump relations, we then have
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∂τjk
(Kf)γ(X) = ∂τjk

(1
2f + Kf)γ(X) − 1

2∂τjk
fγ(X)

= νj(∂kDf)γ

∣∣∣
∂Ω

(X) − νk(∂jDf)γ

∣∣∣
∂Ω

(X) − 1
2∂τjk

fγ(X)

= lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

νj(X)νk(Y )aβα
rs (∂rEγβ)(X − Y )(∇tanfα)s(Y ) dσ(Y )

+νj(X)
(
K

(
∇tanf

)k
)

γ
(X)

+1
2νj(X)(∇tanfγ)k(X) − 1

2νj(X)νk(X)νr(X)aβα
rs bγβ(∇tanfα)s(X)

− lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

νk(X)νj(Y )aβα
rs (∂rEγβ)(X − Y )(∇tanfα)s(Y ) dσ(Y )

−νk(X)
(
K

(
∇tanf

)j
)

γ
(X)

−1
2νj(X)(∇tanfγ)k(X) + 1

2νj(X)νk(X)νr(X)aβα
rs bγβ(∇tanfα)s(X)

−1
2∂τjk

fγ(X)

= − lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

νk(X)νj(Y )aβα
rs (∂rEγβ)(X − Y )(∇tanfα)s(Y ) dσ(Y )

+ lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

νj(X)νk(Y )aβα
rs (∂rEγβ)(X − Y )(∇tanfα)s(Y ) dσ(Y )

+
([

K, Mνk

](
∇tanf

)j
)

γ
(X) −

([
K, Mνj

](
∇tanf

)k
)

γ
(X)

+
(
K

(
νj(∇tanf)k − νk(∇tanf)j

))

γ
(X), (6.2.5)

where, generally speaking, [A, B] := AB − BA and Mh is the operator of multiplication by the
function h. Note that the terms in the 5th, 6th and 8th line above cancel. Also, by (3.6.43), in the
last line of (6.2.5) we may write νj(∇tanf)k − νk(∇tanf)j = ∂τjk

f . Thus, if ∇tanf is regarded as a
matrix-valued function whose (α, s) entry is the s-th component of ∇tanfα, then the above identity
can be summarized as

∂τjk
(Kf) = K(∂τjk

f) + Tjk(∇tanf) (6.2.6)

where, if g = (gαs)α,s is an arbitrary matrix valued function with components in Lp(∂Ω, dσ),
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(Tjkg)γ(X) := − lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

[νk(X) − νk(Y )]νj(Y )aβα
rs (∂rEγβ)(X − Y )gαs(Y ) dσ(Y )

+ lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

[νj(X) − νj(Y )]νk(Y )aβα
rs (∂rEγβ)(X − Y )gαs(Y ) dσ(Y )

+ lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

[νk(Y ) − νk(X)]νs(Y )aβα
rs (∂rEγβ)(X − Y )gαj(Y ) dσ(Y )

− lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

[νj(Y ) − νj(X)]νs(Y )aβα
rs (∂rEγβ)(X − Y )gαk(Y ) dσ(Y ) (6.2.7)

for every index γ and σ-a.e. point X ∈ ∂Ω. Upon noticing that, by Theorem 2.4.5, Tjk is a compact
operator on Lp(∂Ω, dσ), the desired conclusion now follows from (6.2.6) and Theorem 4.5.1. ¤

Compared to the case of Lebesgue spaces, for Sobolev spaces it is not clear whether ν close to
VMO (∂Ω, dσ) implies that K is close to Cp (Lp

1(∂Ω, dσ)). Nonetheless, the following holds.

Theorem 6.2.3 Assume that Ω ⊂ Rn+1 is an open set satisfying a two-sided local John condition
and such that ∂Ω is Ahlfors regular and compact. Let L, E, K be defined as before and suppose
that the double layer operator K has the form (4.5.3). Also, fix p ∈ (1,∞) and λ ∈ R \ {0}. Then
there exists a small δ > 0, depending only on L, n, p, λ and the geometry of Ω, with the property
that

dist (ν , VMO (∂Ω, dσ)) < δ =⇒ λI + K is Fredholm with index zero on Lp
1(∂Ω, dσ), (6.2.8)

where the distance is measured in BMO(∂Ω, dσ).

Proof. Fix λ ∈ R with λ 6= 0 along with p ∈ (1,∞). From Theorem 4.5.1 we know that there exists
δ > 0 such that

dist (ν , VMO (∂Ω, dσ)) < δ =⇒ K = K0 + K1

with ‖K0‖L(Lp(∂Ω,dσ)) < |λ|/2 and K1 ∈ Cp (Lp(∂Ω, dσ)).
(6.2.9)

In particular, ‖(λI + K0)
−1‖L(Lp(∂Ω,dσ)) < 2/|λ| which further entails

|λ|‖f‖Lp(∂Ω,dσ) ≤ 2‖(λI + K)f‖Lp(∂Ω,dσ) + 2‖K1f‖Lp(∂Ω,dσ), ∀ f ∈ Lp(∂Ω, dσ). (6.2.10)

Next, introduce T := (Tjk)1≤j,k≤n+1, where Tjk : Lp(∂Ω, dσ) → Lp(∂Ω, dσ) is defined in (6.2.7).
For each such operator, Theorem 2.4.5 ensures that there exists Kjk ∈ Cp (Lp(∂Ω, dσ)) with the
property that

‖Tjk − Kjk‖L(Lp(∂Ω,dσ)) ≤ C dist (ν, VMO(∂Ω, dσ)), (6.2.11)
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where C depends only on Ω, L, p and n. Also, the identity (6.2.6) gives

∂τjk

[
(λI + K)f

]
= (λI + K)(∂τjk

f) + Tjk(∇tanf), ∀ f ∈ Lp(∂Ω, dσ). (6.2.12)

Set K2 := (Kjk)1≤j,k≤n+1. Together, (6.2.10) and (6.2.12) then prove that

‖f‖Lp
1(∂Ω,dσ) ≤ C‖(λI + K)f‖Lp

1(∂Ω,dσ) + ‖K2(∇tanf)‖Lp(∂Ω,dσ), ∀ f ∈ Lp
1(∂Ω, dσ), (6.2.13)

where C = C(Ω, L, λ, n, p) > 0, granted that dist (ν, VMO(∂Ω, dσ)) < δ, with δ > 0 sufficiently
small. The fact that λI + K is bounded from below, modulo compact operators, on Lp

1(∂Ω, dσ)
can then be used, in conjunction with the homotopic invariance of the index, to show that in fact
λI + K is Fredholm with index zero on Lp

1(∂Ω, dσ). ¤

Our next result can be viewed as a quantitative version of Theorem 6.2.3.

Proposition 6.2.4 Retain the same hypotheses as in Theorem 6.2.3. Then for every ε > 0 there
exist a small δ > 0 and a large N ∈ N such that

dist (ν , VMO(∂Ω, dσ)) < δ =⇒
[
dist

(
Km, Cp (Lp

1(∂Ω, dσ))
)]1/m

< ε (6.2.14)

for each m ∈ N satisfying m ≥ N (above, Km denotes the m-fold composition of K with itself).

Proof. The same type of argument as in the proof of Theorem 6.2.3 shows that for every ε > 0 there
exists δ > 0 with the property that the essential spectrum of K on Lp

1(∂Ω, dσ) (i.e., the set of com-
plex numbers λ for which λI−K is not Fredholm) is included in B(0, ε) if dist (ν , VMO(∂Ω, dσ)) <
δ. As is well-known, the essential spectrum of an operator T acting on a Banach space X is just
the ordinary spectrum of [T ], the class of T in the Calkin Algebra L(X )/Cp (X ). Then the the
spectral radius formula gives

lim sup
m→∞

m

√
‖[K]m‖L(Lp

1(∂Ω,dσ))/Cp (Lp
1(∂Ω,dσ)) < ε, (6.2.15)

from which the desired conclusion follows. ¤

Let us now turn our attention to the double layers associated with the Stokes system (cf.
the discussion in §6.1). First, from (6.1.24)-(6.1.25), for each γ ∈ R, j ∈ {1, ..., n + 1} and ~g ∈[
Lp(∂Ω, dσ)

]n+1
, 1 < p < ∞, we have

(
Dγ~g

)

j
(X) =

∫

∂Ω

(
να(Y )(∂αEjk)(X − Y ) + γ να(Y )(∂jEαk)(X − Y )

−νj(Y )qk(X − Y )
)
gk(Y ) dσ(Y ), X ∈ Rn+1 \ ∂Ω. (6.2.16)

Then for each ~g ∈
[
Lp

1(∂Ω, dσ)
]n+1

, 1 < p < ∞, r, j ∈ {1, ..., n + 1}, and X ∈ Ω we may write
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∂r

(
Dγ~g

)

j
(X) =

∫

∂Ω

(
να(Y )(∂r∂αEjk)(X − Y ) + γ να(Y )(∂r∂jEαk)(X − Y )

−νj(Y )(∂rqk)(X − Y )
)
gk(Y ) dσ(Y )

=

∫

∂Ω

(
−∂ταr(Y )[(∂αEjk)(X − Y )] − γ ∂ταr(Y )[(∂jEαk)(X − Y )]

+∂τjr(Y )[qk(X − Y )]
)
gk(Y ) dσ(Y )

+

∫

∂Ω

(
νr(Y )(∆Ejk)(X − Y ) + γ νr(Y )(∂j∂αEαk)(X − Y )

−νr(Y )(∂jqk)(X − Y )
)
gk(Y ) dσ(Y )

=

∫

∂Ω

(
−∂ταr(Y )[(∂αEjk)(X − Y )] − γ ∂ταr(Y )[(∂jEαk)(X − Y )]

+∂τjr(Y )[qk(X − Y )]
)
gk(Y ) dσ(Y ), (6.2.17)

where we have used the fact that, by (6.1.22)-(6.1.23), the integrands in the 5-th and 6-th lines of
(6.2.17) vanish. By further integrating by parts (cf. (3.6.4) the tangential derivatives in (6.2.17)
we arrive at the identity

∂r

(
Dγ~g

)

j
(X) =

∫

∂Ω

{[
(∂αEjk)(X − Y ) + γ (∂jEαk)(X − Y )

]
(∂ταrgk)(Y )

+qk(X − Y )(∂τrjgk)(Y )
}

dσ(Y ). (6.2.18)

Proposition 6.2.5 Let Ω ⊂ Rn+1 be a bounded UR domain. Also, recall the hydrostatic double
layer potential operator (6.1.24) and the pressure potential (6.1.26). Then for every γ ∈ R and
p ∈ (1,∞), there exists a finite constant C = C(Ω, γ, p) > 0 such that

‖N (∇Dγ~g)‖Lp(∂Ω,dσ) ≤ C‖~g‖[
Lp

1(∂Ω,dσ)
]n+1 , (6.2.19)

and

‖N (P~g)‖Lp(∂Ω,dσ) ≤ C‖~g‖[
Lp

1(∂Ω,dσ)
]n+1 , (6.2.20)

for every ~g ∈
[
Lp

1(∂Ω, dσ)
]n+1

.

Furthermore, for each ~g ∈
[
Lp

1(∂Ω, dσ)
]n+1

, the nontangential boundary traces P~g
∣∣∣
∂Ω

, ∂jD~g
∣∣∣
∂Ω

,

1 ≤ j ≤ n + 1, exist at σ-a.e. point on ∂Ω.

Proof. The estimate (6.2.19) and the well-definiteness of ∂jD~g
∣∣∣
∂Ω

, 1 ≤ j ≤ n + 1, are consequences

of the identity (6.2.18) and Theorem 3.5.2. The same type of reasoning applies to (6.2.20) once we
notice that, if E is as in (3.3.24),
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P~g(X) =

∫

∂Ω

νj(Y )(∂j∂kE)(X − Y )gk(Y ) dσ(Y )

=

∫

∂Ω

∂τkj
(Y )[(∂jE)(X − Y )]gk(Y ) dσ(Y )

=

∫

∂Ω

(∂jE)(X − Y )(∂τjk
gk)(Y ) dσ(Y ) (6.2.21)

for each ~g ∈
[
Lp

1(∂Ω, dσ)
]n+1

and each X ∈ Ω. ¤

Corollary 6.2.6 Let Ω ⊂ Rn+1 be a bounded UR domain, and recall the principal value hydrostatic
double layer potential operator Kγ from (6.1.28). Then

Kγ :
[
Lp

1(∂Ω, dσ)
]n+1

−→
[
Lp

1(∂Ω, dσ)
]n+1

(6.2.22)

is well-defined and bounded each γ ∈ R and p ∈ (1,∞).

Proof. This is an immediate consequence of Proposition 6.2.5, Lemma 3.6.1 and Theorem 3.5.2. ¤

Theorem 6.2.7 Let Ω ⊂ Rn+1 be a bounded regular SKT domain, and let Kslip be slip hydrostatic
double layer defined as in (6.1.28) for γ = 1. Then

Kslip :
[
Lp

1(∂Ω, dσ)
]n+1

−→
[
Lp

1(∂Ω, dσ)
]n+1

(6.2.23)

is compact for every p ∈ (1,∞).

Proof. To begin with, for each γ ∈ R, we may use (3.6.43) to further transform (6.2.18) into

∂r

(
Dγ~g

)

j
(X) =

∫

∂Ω

{[
(∂αEjk)(X − Y ) + γ (∂jEαk)(X − Y )

]

×
[
να(Y )(∇tangk)r(Y ) − νr(Y )(∇tangk)α(Y )

]

+qk(X − Y )
[
νr(Y )(∇tangk)j(Y ) − νj(Y )(∇tangk)r(Y )

]}
dσ(Y )

=
(
Dγ(∇tan~g)r

)

j
(X)

+

∫

∂Ω
νr(Y )

[
(∂αEjk)(X − Y ) + γ (∂jEαk)(X − Y )

]
(∇tangk)α(Y ) dσ(Y )

+

∫

∂Ω
νr(Y )qk(X − Y )(∇tangk)j(Y ) dσ(Y ), (6.2.24)

where (∇tan~g)r is the vector whose component of order k is (∇tangk)r. By relying on Lemma 3.6.1,
(6.2.24) and Theorem 3.5.2, for any r, s, j ∈ {1, ..., n + 1} we may then write
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∂τrs(Kγ~g)j(X) = ∂τrs(
1
2~g + Kγ~g)j(X) − 1

2∂τrsgj(X)

= νr(∂sDγ~g)j

∣∣∣
∂Ω

(X) − νs(∂rDγ~g)j

∣∣∣
∂Ω

(X) − 1
2∂τrsgj(X)

= lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

[
νr(Y )νs(X) − νs(Y )νr(X)

]

×
[
(∂αEjk)(X − Y ) + γ (∂jEαk)(X − Y )

]
(∇tangk)α(Y ) dσ(Y )

+ lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

[
νr(X)νs(Y ) − νs(X)νr(Y )

]
qk(X − Y )(∇tangk)j(Y ) dσ(Y )

+νr(X)
(
Kγ

(
(∇tan~g)s

))

j
(X) − νs(X)

(
Kγ

(
(∇tan~g)r

))

j
(X)

= lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

[
νr(Y )νs(X) − νs(Y )νr(X)

]

×
[
(∂αEjk)(X − Y ) + γ (∂jEαk)(X − Y )

]
(∇tangk)α(Y ) dσ(Y )

+ lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

[
νr(X)νs(Y ) − νs(X)νr(Y )

]
qk(X − Y )(∇tangk)j(Y ) dσ(Y )

+νr(X)
(
Kγ

(
∇tan~g

)s
)

j
(X) − νs(X)

(
Kγ

(
∇tan~g

)r
)

j
(X), (6.2.25)

where we regard ∇tan~g as a matrix-valued function whose (j, k) entry is the k-th component of the
vector ∇tangj . The last line in (6.2.25) can be further transformed into

(
Kγ

(
νr(∇tan~g)s − νs(∇tan~g)r

))

j
(X)

−
([

Kγ , Mνr

](
∇tan~g

)r
)

j
(X) +

([
Kγ , Mνs

](
∇tan~g

)s
)

j
(X)

=
(
Kγ

(
∂τrs~g

))

j
(X) −

([
Kγ , Mνr

](
∇tan~g

)r
)

j
(X)

+
([

Kγ , Mνs

](
∇tan~g

)s
)

j
(X) (6.2.26)

since, by (3.6.43), we have νr(∇tan~g)s − νs(∇tan~g)r = ∂τrs~g. Thus, altogether, the identity (6.2.25)
can be summarized in the form

∂τrs

(
Kγ~g

)
= Kγ

(
∂τrs~g

)
+ Rrs

γ (∇tan~g), (6.2.27)

where, for f = (fαβ)α,β , we have set
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(Rrs
γ )jf(X) := lim

ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

[
(νr(Y ) − νr(X))νs(X) − (νs(Y ) − νs(X))νr(X)

]

×
[
(∂αEjk)(X − Y ) + γ (∂jEαk)(X − Y )

]
fkα(Y ) dσ(Y )

+ lim
ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

[
(νr(X) − νr(Y ))νs(Y ) − (νs(X) − νs(Y ))νr(Y )

]

×qk(X − Y )fkj(Y ) dσ(Y ) (6.2.28)

−
([

Kγ , Mνr

](
fαr

)
1≤α≤n+1

)

j
(X) +

([
Kγ , Mνs

](
fαs

)
1≤α≤n+1

)

j
(X).

With (6.2.27) in hand, the fact that the operator (6.2.23) is compact follows from Theorem 4.5.1,
and the observation that, due the commutator structure of the operators Rrs

γ in (6.2.28), Theo-
rem 2.4.5 shows that these are compact on Lp(∂Ω, dσ), for each γ ∈ R and 1 < p < ∞. ¤

Theorem 6.2.8 Suppose that Ω ⊂ Rn+1 is a domain satisfying a two-sided local John condition
and whose boundary is Ahlfors regular and compact. Also, fix p ∈ (1,∞) and λ ∈ R \ {0}. Then
there exists a small δ > 0, depending only on L, n, p, λ and the geometry of Ω, with the property
that

dist (ν , VMO (∂Ω, dσ)) < δ

and 1 − δ < γ ≤ 1

}
=⇒

λI + Kγ is Fredholm with

index zero on Lp
1(∂Ω, dσ),

(6.2.29)

where, as usual, the distance is measured in BMO(∂Ω, dσ).

Proof. This is justified much as in the proof of Theorem 6.2.3, with the help of (6.2.27). ¤

6.3 The invertibility of boundary double layer potentials

One important consequence of Theorem 2.3.1 is the fact that Green’s formula continues to hold for
functions representable in the form of layer potentials. To state this in a proper form, assume that L
is a constant (real) coefficient, second order operator as in (3.6.20), for which Legendre-Hadamard
condition (3.6.21) holds. As before, denote by E ∈ C∞(Rn+1 \ {0}) a (matrix-valued) fundamental
solution for L which is even and homogeneous of degree −(n − 1). Let us also set

A :=
(
aαβ

rs

)

α,β,r,s
(6.3.1)

and introduce

〈Aξ, ζ〉 := aαβ
rs ξα

r ζβ
s , ∀ ξ := (ξα

r )α,r, ∀ ζ := (ζβ
s )β,s. (6.3.2)

In particular, 〈A∇u,∇v〉 = aαβ
rs ∂ruα∂svβ. We shall then call A symmetric if 〈Aξ, ζ〉 = 〈Aζ, ξ〉 for

every ξ, ζ, i.e., if
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aαβ
rs = aβα

sr , ∀α, β, r, s. (6.3.3)

Moreover, call A semi-positive definite if

〈Aξ, ξ〉 ≥ 0 ∀ ξ, (6.3.4)

and positive definite if

〈Aξ, ξ〉 ≥ κ|ξ|2 ∀ ξ, (6.3.5)

for some κ > 0. Finally, given a UR domain Ω ⊂ Rn+1 with outward unit normal ν, call

(
∂A

ν u
)
α

:= νra
αβ
rs ∂suβ (6.3.6)

the conormal derivative associated with the writing of the operator L as in (3.6.20). Recall next
the single and double layers, as well as their boundary versions from (3.6.22), and (3.6.24)-(3.6.25).
Also, denote by K∗ the adjoint of K and recall the convention (3.6.26).

Proposition 6.3.1 In the above context,

∂A
ν Sf

∣∣∣
∂Ω±

= (∓1
2I + K∗)f, (6.3.7)

for each f ∈ Lp(∂Ω, dσ), p ∈ (1,∞).

Proof. This is a consequence of (6.2.3) and (6.3.6). ¤

Proposition 6.3.2 Assume that Ω ⊂ Rn+1 is a bounded UR domain. As usual, set σ := Hn⌊∂Ω
and denote by ν the (measure theoretic) outward unit normal to ∂Ω. Let L, E, S, S, K, K∗ be
as above. Next, let f be an arbitrary vector-valued function (with components) in L2(∂Ω, dσ) and
consider

u±(X) := Sf(X), X ∈ Ω±. (6.3.8)

Then

∫

Ω+

〈A∇u+,∇u+〉 dX =

∫

∂Ω

〈
Sf ,

(
−1

2I + K∗
)
f
〉

dσ, (6.3.9)

and, if either
∫
∂Ω f dσ = 0 or n ≥ 2,

∫

Ω−

〈A∇u−,∇u−〉 dX =

∫

∂Ω

〈
Sf ,

(
−1

2I − K∗
)
f
〉

dσ. (6.3.10)
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Proof. Consider the vector field

v :=
(
u+

α aαβ
rs ∂su

+
β

)

1≤r≤n+1
∈ C0(Ω) (6.3.11)

which, thanks to Theorem 3.4.2, Proposition 3.2.3 Corollary 4.3.11, and our hypotheses, satisfies
the conditions listed in (2.3.3). Theorem 2.3.1 applied to v gives

∫

Ω
〈A∇u+,∇u+〉 dX =

∫

∂Ω
u+

α (X) νr(X)aαβ
rs ∂su

+
β (X) dσ(X). (6.3.12)

Then (6.3.9) follows from this and the jump-relations (3.6.27), (6.3.7). Formula (6.3.10) when n ≥ 2
is proved in a similar manner by working in the domain BR \ Ω̄, where BR is the ball centered at
the origin and having a sufficiently large radius R, then passing to the limit R → ∞. Given that
the outward unit normal for Ω− is −ν and that, from (6.3.8),

|u−(X)| + |X||∇u−(X)| = O(|X|1−n) as |X| → ∞, (6.3.13)

the desired conclusion follows. In the case when n = 2 and
∫
∂Ω f dσ = 0, the proof follows the same

pattern since, this time, we have the improved decay condition

|u−(X)| + |X||∇u−(X)| = O(|X|−n) as |X| → ∞, (6.3.14)

in place of (6.3.13). ¤

Let W 1,p
loc (Rn+1), p ∈ (1,∞), denote the local version of the usual scale of Lp-based Sobolev

spaces of order one in Rn+1.

Proposition 6.3.3 Assume that Ω ⊂ Rn+1 is a UR domain. Then for every p ∈ (1,∞), the
operator

S : Lp(∂Ω, dσ) −→ W
1,p(n+1)/n
loc (Rn+1), (6.3.15)

is well-defined and bounded.

Proof. This follows from Proposition 3.2.7, Theorem 2.3.1, and the fact that the single layer ‘does

not jump’ across ∂Ω (cf. (3.6.27)) which gives that, in the distributional sense, [∂j(Sf)]
∣∣∣
Ω±

= u±
j

for each f ∈ Lp(∂Ω, dσ) and 1 ≤ j ≤ n + 1, where u±
j (X) := (∂jSf)(X) for X ∈ Ω±. ¤

To state our next result, define

Lp
0(∂Ω, dσ) :=

{
f ∈ Lp(∂Ω, dσ) :

∫

∂Ω
f dσ = 0

}
, 1 < p < ∞. (6.3.16)

Proposition 6.3.4 Retain the same notation and hypotheses as in Proposition 6.3.2 and, in addi-
tion, assume that the coefficient tensor A (introduced in (6.3.1)) is semi-positive definite. Then the
operator λI + K∗ is injective on L2(∂Ω, dσ) for any λ ∈ R \ [−1

2 , 1
2 ]. On the other hand, assuming

that A is positive definite, it follows that 1
2I+K∗ is injective on L2(∂Ω, dσ) if Rn+1\Ω̄ is connected,

and that −1
2I + K∗ is injective on L2

0(∂Ω, dσ) when Ω is connected, and on L2(∂Ω, dσ) when Ω is
connected and n ≥ 2.
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Proof. Let λ ∈ R \ [−1
2 , 1

2 ] and f ∈ L2(∂Ω, dσ) be such that (λI + K∗)f = 0. Based on this and
Green’s formula we may then write

∫

∂Ω
f dσ = − 2

1+2λ

∫

∂Ω
(−1

2I + K∗)f dσ = − 2
1+2λ

∫

∂Ω
∂A

ν Sf dσ = 0 (6.3.17)

which shows that f ∈ L2
0(∂Ω, dσ). Thus, if u± := Sf in Ω± it follows that (6.3.14) holds. Also, if

we set

u :=

{
u+ in Ω+,

u− in Ω−,
(6.3.18)

then from Proposition 6.3.3 we may deduce that for all ε > 0

u ∈ W
1,2(n+1)/n−ε
loc (Rn+1). (6.3.19)

On the other hand, our current hypotheses and Proposition 6.3.2, allow us to write

0 =

∫

∂Ω
〈(λI + K∗)f, Sf〉 dσ

=

∫

∂Ω

〈
(−λ + 1

2)(−1
2I + K∗)f + (λ + 1

2)(1
2I + K∗)f, Sf

〉
dσ

= (−λ + 1
2)

∫

Ω+

〈A∇u,∇u〉 dX + (−λ − 1
2)

∫

Ω−

〈A∇u,∇u〉 dX. (6.3.20)

Consequently,

∫

Rn+1

〈A∇u,∇u〉 dX = 0, (6.3.21)

since −λ − 1
2 and −λ + 1

2 have the same sign and the integrands in the last line in (6.3.20) are
nonnegative.

Next, pick a function ϕ ∈ C∞
0 (Rn+1) which is identically one in a neighborhood of the origin

and set ϕj(X) := ϕ(X/j), j ∈ N. We may then write

lim
j→∞

∫

Rn+1

〈A∇(ϕju),∇(ϕju)〉 dX = lim
j→∞

∫

Rn+1

ϕ2
j 〈A∇u,∇u〉 dX

+ lim
j→∞

∫

Rn+1

O
(
|ϕj ||∇ϕj ||u||∇u| + |∇ϕj |2|u|2

)
dX

= 0, (6.3.22)

thanks to (6.3.21) and the decay of u at infinity (cf. (6.3.13)). Since, by (6.3.19), ϕju ∈ W 1,2(Rn+1),
Plancherel’s formula (used twice) and the Legendre-Hadamard condition (3.6.21) then give
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0 = lim
j→∞

∫

Rn+1

〈A∇(ϕju),∇(ϕju)〉 dX ≥ κ lim
j→∞

∫

Rn+1

|∇(ϕju)|2 dX

= κ

∫

Rn+1

|∇u|2 dX. (6.3.23)

Thus, u is a constant in Rn+1 and, ultimately,

u = 0 in Rn+1 (6.3.24)

by (6.3.14). Recall now (6.3.6) and observe that

∂A
ν u± = (∓1

2I + K∗)f. (6.3.25)

In concert with (6.3.24), this gives f = ∂A
ν u− − ∂A

ν u+ = 0, proving that λI + K∗ is injective on
L2(∂Ω, dσ).

Consider now the case when the coefficient tensor A is positive definite and f ∈ L2(∂Ω, dσ) is
such that (1

2I + K∗)f = 0. Now, as before, f = −(−1
2I + K∗)f ∈ L2

0(∂Ω, dσ), so that (6.3.14)
holds. Thus, we may write

0 = −
∫

∂Ω
〈(1

2I + K∗)f, Sf〉 dσ =

∫

Ω−

〈A∇u,∇u〉 dX ≥ κ

∫

Ω−

|∇u|2 dX, (6.3.26)

so that u = 0 in Ω−, by (6.3.14) and the fact that Ω− is connected. In turn, this entails Sf =

u−
∣∣∣
∂Ω

= 0 and, further,

0 =

∫

∂Ω
〈(−1

2I + K∗)f, Sf〉 dσ =

∫

Ω+

〈A∇u,∇u〉 dX ≥ κ

∫

Ω+

|∇u|2 dX. (6.3.27)

It follows that ∇u = 0 in Ω+, so once again f = ∂A
ν u− − ∂A

ν u+ = 0. Hence the operator 1
2I + K∗

is, as claimed, injective when acting on the space L2(∂Ω, dσ).
Finally, assume that Ω is connected, A is positive definite, that the function f ∈ L2(∂Ω, dσ)

satisfies (−1
2I + K∗)f = 0 and that either n ≥ 2 or f has vanishing moment. Then

0 =

∫

∂Ω
〈(−1

2I + K∗)f, Sf〉 dσ =

∫

Ω+

〈A∇u,∇u〉 dX ≥ κ

∫

Ω+

|∇u|2 dX, (6.3.28)

hence, since Ω+ is connected, there exists a constant c such that u ≡ c in Ω. We may thus conclude

that Sf = u+
∣∣∣
∂Ω

= c and, hence, (1
2I + K∗)f = (−1

2I + K∗)f + f = f . Consequently, since when

either n ≥ 2, or f has vanishing moment, the exterior Green’s formula holds, we may write

0 = −
〈
c,

∫

∂Ω
f dσ

〉
= −

∫

∂Ω
〈(1

2I + K∗)f, Sf〉 dσ =

∫

Ω−

〈A∇u,∇u〉 dX ≥ κ

∫

Ω−

|∇u|2 dX.(6.3.29)

Thus, ∇u = 0 in Ω− which then gives ∂A
ν u− = 0. The same argument based on jump relations now

shows that f = 0, and the desired conclusion follows. ¤
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Theorem 6.3.5 Let p ∈ (1,∞) be given and assume that Ω ⊂ Rn+1 is a bounded domain satisfying
a two-sided John condition and whose boundary is Ahlfors regular. Also, assume that L is as in
(3.6.20)-(3.6.21) and recall the double layer potential operator K from (3.6.25).

Then there exists ε > 0 which depends only on p, n and the John and Ahlfors regularity constants
of Ω, such that if Ω is an ε-regular SKT domain then the following operators are invertible:

λI + K∗ : Lp(∂Ω, dσ) −→ Lp(∂Ω, dσ) ∀λ ∈ R \ [−1
2 , 1

2 ], if A ≥ 0, (6.3.30)

−1
2I + K∗ : Lp

0(∂Ω, dσ) −→ Lp
0(∂Ω, dσ) if A > 0 and Ω is connected, (6.3.31)

−1
2I + K∗ : Lp(∂Ω, dσ) −→ Lp(∂Ω, dσ) if A > 0, Ω is connected, n ≥ 2, (6.3.32)

1
2I + K∗ : Lp(∂Ω, dσ) −→ Lp(∂Ω, dσ) if A > 0 and Rn+1 \ Ω̄ is connected. (6.3.33)

If, in addition, the double layer potential operator K (originally defined in (3.6.25)) can be
represented as in (4.5.3) then the following operators are also invertible:

λI + K : Lp
1(∂Ω, dσ) −→ Lp

1(∂Ω, dσ) ∀λ ∈ R \ [−1
2 , 1

2 ], if A ≥ 0, (6.3.34)

−1
2I + K : Lp

1(∂Ω, dσ)
/

R −→ Lp
1(∂Ω, dσ)

/
R if A > 0 and Ω is connected, (6.3.35)

−1
2I + K : Lp

1(∂Ω, dσ) −→ Lp
1(∂Ω, dσ) if A > 0, Ω is connected, n ≥ 2, (6.3.36)

1
2I + K : Lp

1(∂Ω, dσ) −→ Lp
1(∂Ω, dσ) if A > 0 and Rn+1 \ Ω̄ is connected. (6.3.37)

Proof. The claims in the first part of the theorem are immediate consequences of Theorem 4.5.1,
Proposition 6.3.4 and classical Fredholm theory (compare the proof of Proposition 5.4.2). The
claims in the second part of the theorem then follow from this, duality, the extra assumption on K
and Theorem 6.2.3. ¤

Theorem 6.3.5 applies directly to the case of the Laplacian. This time, however, given the
explicit nature of the differential operator in question, the results become more specific. To state
them, for an open set Ω ⊂ Rn+1 and k ∈ N introduce

Rk
∂Ω :=

{∑

j

cj1Σj : cj ∈ Rk and Σj connected component of ∂Ω
}

, (6.3.38)

Rk
∂Ω±

:=
{∑

j

cj1∂Oj : cj ∈ Rk and Oj bounded connected component of Ω±
}

,(6.3.39)

Rk
Ω±

:=
{∑

j

cj1Oj : cj ∈ Rk and Oj bounded connected component of Ω±
}

, (6.3.40)

with the convention that, when k = 1, we agree to drop it as a superscript. In particular, we have

Rk
∂Ω±

= (Rk
Ω±

)
∣∣∣
∂Ω

and Rk
∂Ω = Rk

∂Ω+
⊕ Rk

∂Ω−
, (6.3.41)

where the sum is direct (but not orthogonal). Let us also point out here that
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dim Rk
Ω+

= dim Rk
∂Ω+

= k · b0, dim Rk
Ω−

= dim Rk
∂Ω−

= k · bn,

dim Rk
∂Ω = k · (b0 + bn),

(6.3.42)

where the Betti numbers b0, bn represent the number of bounded connected components of Ω+ and
Ω−, respectively. Therefore, the intuitive interpretation of bn is the number of (n + 1)-dimensional
“holes” of Ω+. Granted Theorem 4.5.1, by arguing as in [84] and the proof of Proposition 6.3.4 we
then obtain:

Theorem 6.3.6 Let p ∈ (1,∞) be given and assume that Ω ⊂ Rn+1 is a bounded domain satisfying
a two-sided John condition and whose boundary is Ahlfors regular. Also, let K be as in (3.3.2)–
(3.3.3). Then there exists ε > 0 which depends only on p, n and the John and Ahlfors regularity
constants of Ω, such that if Ω is an ε-regular SKT domain then the following operators are invertible:

λI + K∗ : Lp(∂Ω, dσ) −→ Lp(∂Ω, dσ) if λ ∈ R \ [−1
2 , 1

2 ], (6.3.43)

±1
2I + K∗ mapping

{
f ∈ Lp(∂Ω, dσ) :

∫
∂Ωfψ dσ = 0, ∀ψ ∈ R∂Ω

}
onto itself, (6.3.44)

±1
2I + K∗ mapping

{
f ∈ Lp(∂Ω, dσ) :

∫
∂Ωfψ dσ = 0, ∀ψ ∈ R∂Ω∓

}
onto itself, (6.3.45)

±1
2I + K : Lp(∂Ω, dσ)

/
R∂Ω −→ Lp(∂Ω, dσ)

/
R∂Ω, (6.3.46)

±1
2I + K : Lp(∂Ω, dσ)

/
R∂Ω∓ −→ Lp(∂Ω, dσ)

/
R∂Ω∓ , (6.3.47)

λI + K : Lp
1(∂Ω, dσ) −→ Lp

1(∂Ω, dσ) if λ ∈ R \ [−1
2 , 1

2 ], (6.3.48)

±1
2I + K : Lp

1(∂Ω, dσ)
/

R∂Ω −→ Lp(∂Ω, dσ)
/

R∂Ω, (6.3.49)

±1
2I + K : Lp

1(∂Ω, dσ)
/

R∂Ω∓ −→ Lp
1(∂Ω, dσ)

/
R∂Ω∓ . (6.3.50)

Below, we record a suitable version of Theorem 6.3.6 which holds in a slightly different geomet-
rical measure theoretic setting.

Proposition 6.3.7 Assume that Ω ⊂ Rn+1 is a bounded UR domain, for which the outward unit
normal ν belongs to VMO(∂Ω, dσ). Also, recall the harmonic double layer K introduced in (3.3.2)–
(3.3.3). Then there exists ε = ε(Ω) > 0 such that the operators (6.3.43)–(6.3.50) are invertible for
each p ∈ (2 − ε, 2 + ε).

Proof. Consider first the operators (6.3.43)-(6.3.47). That the operators in question are Fredholm
with index zero when p = 2 can be seen as in (4.4.11) and the subsequent analysis. Then the
extension to 2 − ε < p < 2 + ε follows from this and well-known stability results (cf. [106] and the
discussion in [61]).

Next, we treat the operator in (6.4.2) for some fixed λ ∈ R with |λ| > 1
2 . From what we have

proved already we know that that there exists ε = ε(Ω) > 0 such that for each 2 − ε < p < 2 + ε
one can find C = C(Ω, p) > 0 with the property that

‖f‖Lp(∂Ω,dσ) ≤ C‖(λI + K)f‖Lp(∂Ω,dσ), ∀ f ∈ Lp(∂Ω, dσ). (6.3.51)
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Next, introduce T := (Tjk)1≤j,k≤n+1, where Tjk : Lp(∂Ω, dσ) → Lp(∂Ω, dσ) is defined in (6.2.7).
Given that we are assuming ν ∈ VMO(∂Ω, dσ), these operators are compact for every p ∈ (1,∞).
Also, the identity (6.2.6) gives

∂τjk

[
(λI + K)f

]
= (λI + K)(∂τjk

f) + Tjk(∇tanf), ∀ f ∈ Lp(∂Ω, dσ). (6.3.52)

Together, (6.3.51) and (6.3.52) prove that

‖f‖Lp
1(∂Ω,dσ) ≤ C‖(λI + K)f‖Lp

1(∂Ω,dσ) + ‖T (∇tanf)‖Lp(∂Ω,dσ), ∀ f ∈ Lp
1(∂Ω, dσ). (6.3.53)

The above analysis shows that there exists ε = ε(Ω) > 0 with the property that if 2−ε < p < 2+ε
then the operator λI + K is injective and semi-Fredholm on the space Lp

1(∂Ω, dσ) for each λ ∈ R

with |λ| > 1
2 . That this operator is in fact invertible, is now an easy consequence of the homotopic

invariance of the index, along with the simple observation that, if |λ| is large, λI + K can be
inverted on Lp

1(∂Ω, dσ) (via a Neumann series). This completes the proof of the claim made in the
statement of the proposition about the operator (6.4.2).

In a similar fashion, the operators (6.3.49), (6.3.50), can be shown to be injective and semi-
Fredholm if 2−ε < p < 2+ε for some small ε = ε(Ω) > 0. When used in concert with the fact that,
for the same range of p’s, the operator (6.3.48) is, as a trivial consequence of we have just proved,
semi-Fredholm when acting on either Lp

1(∂Ω, dσ) or Lp
1(∂Ω, dσ)/R, the same argument based on

index theory can be used to conclude that (6.3.49)-(6.3.50) are invertible in the present context if
p is near 2. ¤

We wish to prove results analogous to Theorem 6.3.6 for the Stokes system (6.1.14). To set
the stage, we momentarily digress for the purpose of introducing notation which will facilitate
stating this result. Let Ψ be the (n+1)(n+2)/2-dimensional linear space of Rn+1-valued functions
ψ = (ψj)1≤j≤n+1 defined in Rn+1 and satisfying

∂jψk + ∂kψj = 0, 1 ≤ j, k ≤ n + 1, (6.3.54)

and note that

Ψ =
{

ψ(X) = AX + ~a : A, (n + 1) × (n + 1) antisymmetric matrix, and ~a ∈ Rn+1
}

. (6.3.55)

Given an open set Ω ⊂ Rn+1 define, as usual, Ω+ := Ω, Ω− := Rn+1 \ Ω̄, and introduce

Ψ(Ω±) :=
{∑

j

ψj1Oj : ψj ∈ Ψ, Oj bounded component of Ω±
}

. (6.3.56)

Then for γ ∈ (−1, 1], we can define

Ψγ(Ω±) :=





Rn+1
Ω±

, |γ| < 1,

Ψ(Ω±), γ = 1,
(6.3.57)

and
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Ψγ(∂Ω±) := {ψ|∂Ω : ψ ∈ Ψγ(Ω±)}, (6.3.58)

so that

dim Ψγ(∂Ω+) =





(n + 1) · b0 if |γ| < 1,

(n+1)(n+2)
2 · b0 if γ = 1,

(6.3.59)

and

dim Ψγ(∂Ω−) =





(n + 1) · bn if |γ| < 1,

(n+1)(n+2)
2 · bn if γ = 1.

(6.3.60)

Finally, assuming that Ω ⊂ Rn+1 is bounded domain of finite perimeter and p ∈ (1,∞), set

Lp
Ψγ

±
(∂Ω, dσ) :=

{
~f ∈

[
Lp(∂Ω, dσ)

]n+1
:

∫
∂Ω〈ψ, ~f〉 dσ = 0, ∀ψ ∈ Ψγ(∂Ω±)

}
, (6.3.61)

Lp
1,ν±

(∂Ω, dσ) :=
{

~f ∈
[
Lp

1(∂Ω, dσ)
]n+1

:
∫
∂Ω〈ψ, ~f〉 dσ = 0, ∀ψ ∈ ν R∂Ω±

}
, (6.3.62)

Lp
1,ν(∂Ω, dσ) :=

{
~f ∈

[
Lp

1(∂Ω, dσ)
]n+1

:
∫
∂Ω〈ψ, ~f〉 dσ = 0, ∀ψ ∈ ν R∂Ω

}
, (6.3.63)

Lp
ν±(∂Ω, dσ) :=

{
~f ∈

[
Lp(∂Ω, dσ)

]n+1
:

∫
∂Ω〈ψ, ~f〉 dσ = 0, ∀ψ ∈ ν R∂Ω±

}
, (6.3.64)

Lp
ν(∂Ω, dσ) :=

{
~f ∈

[
Lp(∂Ω, dσ)

]n+1
:

∫
∂Ω〈ψ, ~f〉 dσ = 0, ∀ψ ∈ ν R∂Ω

}
. (6.3.65)

Recall the hydrostatic double layer potential Kγ from (6.1.28). For this, we have:

Theorem 6.3.8 Let p ∈ (1,∞) be given and assume that Ω ⊂ Rn+1 is a bounded domain satisfying
a two-sided John condition and whose boundary is Ahlfors regular. Then there exists ε > 0 which
depends only on p, n and the John and Ahlfors regularity constants of Ω, such that if Ω is an
ε-regular SKT domain and 1 − ε < γ ≤ 1 then the following operators are invertible:

±1
2I + K∗

γ : Lp
Ψγ

∓
(∂Ω)

/
νR∂Ω± −→ Lp

Ψγ
∓
(∂Ω)

/
νR∂Ω± , (6.3.66)

±1
2I + Kγ : Lp

1,ν±
(∂Ω)

/
Ψγ(∂Ω∓) −→ Lp

1,ν±
(∂Ω)

/
Ψγ(∂Ω∓), (6.3.67)

±1
2I + Kγ : Lp

ν±(∂Ω)
/

Ψγ(∂Ω∓) −→ Lp
ν±(∂Ω)

/
Ψγ(∂Ω∓), (6.3.68)

along with

λI + Kγ :
[
Lp(∂Ω, dσ)

]n+1
−→

[
Lp(∂Ω, dσ)

]n+1
, (6.3.69)

λI + Kγ :
[
Lp

1(∂Ω, dσ)
]n+1

−→
[
Lp

1(∂Ω, dσ)
]n+1

, (6.3.70)

if λ ∈ R \ [−1
2 , 1

2 ].
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Proof. In the case of Lipschitz domains (and p near 2) this has been proved in [94] and, given The-
orem 6.2.8 and the techniques used in the proof of Proposition 6.3.4, the same type of invertibility
results can then be established in the current more general setting. ¤

We also have the following analogue of Theorem 6.3.8 for the case of the Lamé system (6.1.3).
Below, Kr refers to the elastostatic double layer defined in (6.1.9) and we set

Ψr(Ω±) :=





Rn+1
Ω±

, |r| < µ,

Ψ(Ω±), r = µ,
(6.3.71)

and

Ψr(∂Ω±) := {ψ|∂Ω : ψ ∈ Ψr(Ω±)}, (6.3.72)

where λ, µ are as in (6.1.1).

Theorem 6.3.9 Let p ∈ (1,∞) be given and assume that Ω ⊂ Rn+1 is a bounded domain satisfying
a two-sided John condition and whose boundary is Ahlfors regular. Then there exists ε > 0 which
depends only on p, n and the John and Ahlfors regularity constants of Ω, such that if Ω is an
ε-regular SKT domain and

−µ < r ≤ µ is such that
∣∣∣r − µ(µ + λ)

3µ + λ

∣∣∣ < ε, (6.3.73)

then the following operators are invertible:

±1
2I + K∗

r : Lp
Ψr

∓
(∂Ω) −→ Lp

Ψr
∓
(∂Ω), (6.3.74)

±1
2I + Kr :

[
Lp(∂Ω, dσ)

]n+1/
Ψr(∂Ω∓) −→

[
Lp(∂Ω, dσ)

]n+1/
Ψr(∂Ω∓), (6.3.75)

±1
2I + Kr :

[
Lp

1(∂Ω, dσ)
]n+1/

Ψr(∂Ω∓) −→
[
Lp

1(∂Ω, dσ)
]n+1/

Ψr(∂Ω∓), (6.3.76)

along with

ηI + Kr :
[
Lp(∂Ω, dσ)

]n+1
−→

[
Lp(∂Ω, dσ)

]n+1
(6.3.77)

ηI + Kr :
[
Lp

1(∂Ω, dσ)
]n+1

−→ Lp
1(∂Ω, dσ)

]n+1
, (6.3.78)

if η ∈ R \ [−1
2 , 1

2 ].

Proof. This follows along the lines of known results for Lipschitz domains, with the help of Theo-
rem 6.2.3 and the remarks made in § 6.1. ¤
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6.4 The invertibility of boundary single layer potentials

Recall the definitions of the Sobolev spaces of order ±1, i.e., Lp
1(∂Ω, dσ) and Lp

−1(∂Ω, dσ) from
(3.6.10)-(3.6.11) and (3.6.14), respectively. Also, for each p ∈ (1,∞), set

Lp
−1,0(∂Ω, dσ) :=

{
f ∈ Lp

−1(∂Ω, dσ) : 〈f, 1〉 = 0
}

. (6.4.1)

Theorem 6.4.1 Let p ∈ (1,∞) be given and assume that Ω ⊂ Rn+1 is a bounded domain satisfying
a two-sided John condition and whose boundary is Ahlfors regular. Also, recall the (boundary
version) harmonic single layer S introduced in (3.3.35).

Then there exists ε > 0 which depends only on p, n and the John and Ahlfors regularity constants
of Ω, such that if Ω is an ε-regular SKT domain then the following operators are invertible:

S : Lp(∂Ω, dσ) −→ Lp
1(∂Ω, dσ) if n ≥ 2, (6.4.2)

S : Lp
−1(∂Ω, dσ) −→ Lp(∂Ω, dσ) if n ≥ 2, (6.4.3)

S : Lp
0(∂Ω, dσ) −→ Lp

1(∂Ω, dσ)
/

R, (6.4.4)

S : Lp
−1,0(∂Ω, dσ) −→ Lp(∂Ω, dσ)

/
R. (6.4.5)

As opposed to the operators discussed in § 6.3 which are of the form “identity +small pertur-
bation of a compact operator” the case of the (boundary version of the) single layer is different in
nature and main difficulty is establishing that S : Lp(∂Ω, dσ) → Lp

1(∂Ω, dσ) is Fredholm with index
zero. To circumvent this problem, we find it convenient to work with the acoustic layer potentials
associated with Ω, which we now proceed to define. In order to facilitate the subsequent exposi-
tion, we choose to discuss here a few definitions and preliminary results. To get started, denote by
En+1(X; k) the fundamental solution of the Helmholtz operator ∆ + k2 in Rn+1, n ≥ 1, explicitly
given by

En+1(X; k) =





−
√
−1
4

(
2π|X|

k

)(1−n)/2
H

(1)
(n−1)/2

(
k|X|

)
, n ≥ 1, k ∈ C\{0},

1
2π ln |X|, n = 1, k = 0,

− 1
(n−1)ωn

|X|1−n, n ≥ 2, k = 0,

(6.4.6)

for Im k ≥ 0 and X ∈ Rn+1\{0}, where H
(1)
ν (·) denotes the Hankel function of the first kind with

index ν ≥ 0 and ωn represents the area of the unit sphere Sn in Rn+1. In particular,

E3(X; k) = −e
√
−1 k|X|

4π|X| , X ∈ R3 \ {0}, (6.4.7)

is precisely the function Φk(X) introduced in (6.1.34). Next, we record the following useful lemma
which appears in [45].
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Lemma 6.4.2 For each fixed k ∈ C\{0} and R > 0, the function En+1(·; k) satisfies the following
estimates uniformly for 0 < |X| < R:

|En+1(X; k) − En+1(X; 0)| ≤





C, n = 1, 2,

C[1 + |ln |X||], n = 3,

C
[
1 + |X|3−n

]
, n ≥ 4,

(6.4.8)

|∂jEn+1(X; k) − ∂jEn+1(X; 0)| ≤





C, n = 1, 2,

C
[
1 + |X|2−n

]
, n ≥ 3,

(6.4.9)

|(∂i∂jEn+1)(X; k) − (∂i∂jEn+1)(X; 0)| ≤





C[1 + |ln |X||], n = 1,

C
[
1 + |X|2−n

]
, n ≥ 2.

(6.4.10)

Above C = C(R, n, k) > 0, and ∂j = ∂/∂xj for 1 ≤ j ≤ n + 1.

After these preparations we are ready to discuss the

Proof of Theorem 6.4.1. For each k ∈
√
−1R+ define the operators Sk, Dk, Sk, Kk as well as its

adjoint K∗
k , in a similar fashion to (3.3.34), (3.3.1), (3.3.35) and (3.3.2), respectively, by replacing

the fundamental solution for the Laplacian (3.3.24) with (6.4.6). From (6.4.8)-(6.4.10), we may then
conclude that these operators enjoy the same estimates, trace formulas and compactness properties
as their counterparts for k = 0 do. A significant difference is that, for n ≥ 2, Green’s formulas
(6.3.9)-(6.3.10) now read

∫

Ω±

[
|∇u±|2 − k2|u±|2

]
dX = ±

∫

∂Ω
(Skf)c

(
±1

2I + K∗
k

)
f dσ, (6.4.11)

for every f ∈ L2(∂Ω, dσ) and u± := Skf in Ω± (where the superscript c indicates complex conju-
gation). When we run the same type of argument as in the proof of Proposition 6.3.4, the presence
of the positive factor −k2 ensures that the operators

±1
2I + K∗

k , ±1
2I + Kk : Lp(∂Ω, dσ) −→ Lp(∂Ω, dσ), (6.4.12)

±1
2I + Kk : Lp

1(∂Ω, dσ) −→ Lp
1(∂Ω, dσ), (6.4.13)

are injective when p = 2, without any additional topological restrictions imposed on the domain.
Thus, if Ω is as in the statement of the theorem, these operators in fact are invertible.

Next, for an arbitrary function f ∈ Lp
1(∂Ω, dσ), set u := Dkf in Ω. Then (∆ + k2)u = 0 in Ω,

and Nu, N (∇u) ∈ Lp(∂Ω, dσ). Also, in the nontangential limit sense, u|∂Ω, ∇u|∂Ω exist pointwise
σ-a.e. on ∂Ω. These conditions ensure that the following Green’s representation formula holds

u(X) = Dk(u|∂Ω)(X) − Sk(∂νu)(X), X ∈ Ω. (6.4.14)

Since u|∂Ω = (1
2I + Kk)f , letting the point X in (6.4.14) approach nontangentially the boundary

of Ω yields (after some trivial algebra)
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Sk(∂νDkf) =
(

1
2I + Kk

)(
−1

2I + Kk

)
f, ∀ f ∈ Lp

1(∂Ω, dσ). (6.4.15)

From (6.4.15) and the fact that the operators (6.4.13) are invertible, it follows that

Sk : Lp(∂Ω, dσ) −→ Lp
1(∂Ω, dσ) (6.4.16)

is surjective. In a similar fashion (more specifically, by using (6.4.14) with u = Skf , f ∈ Lp(∂Ω, dσ),
and then taking the normal derivatives of both sides), we obtain

∂νDk(Skf) =
(
−1

2I + K∗
k

)(
1
2I + K∗

k

)
f, ∀ f ∈ Lp(∂Ω, dσ). (6.4.17)

In turn, this and the fact that the operators (6.4.12) are invertible ensure that (6.4.16) is injective.
Altogether, Sk in (6.4.16) is both surjective and injective, hence invertible.

Going further, we observe that the estimates in Lemma 6.4.2 imply that

S − Sk : Lp(∂Ω, dσ) −→ Lp
1(∂Ω, dσ) is compact. (6.4.18)

Writing S = Sk + (S − Sk) we see that (6.4.2) is a Fredholm operator, with index zero if n ≥ 1.
Since the same type of argument as for Sk proves that S in (6.4.2) is injective when p = 2 and
n ≥ 2, we may finally conclude that this operator is invertible.

The fact that (6.4.3) is invertible is now an immediate corollary of what we have just proved
and duality. Since the operator (6.4.5) is the dual of (6.4.4), we are finally left with proving
that the latter is an isomorphism. From what we have shown above, it follows that (6.4.3) is
Fredholm with index zero, so it suffices to prove that (6.4.3) is injective when p = 2. To this
end, assume that f ∈ L2(∂Ω, dσ) is such that Sf = c, a constant, on ∂Ω. Set u± := Sf in
Ω± and note that

∫
Ω+

|∇u+|2 dX = c
∫
∂Ω ∂νu

+ dσ = 0, so that ∇u+ = 0 in Ω+. In particular,

f = ∂νu
− − ∂νu

+ = ∂νu
−. Also, since f has mean value zero, Green’s formula continues to work

in the complement of the domain and gives
∫
Ω−

|∇u−|2 dX = −c
∫
∂Ω ∂νu

− dσ = −c
∫
∂Ω f dσ = 0.

Thus ∇u− = 0 in Ω−, which forces f = 0. ¤

Similar invertibility results to those contained in Theorem 6.4.1 are valid for the single layer
associated with the Lamé and Stokes systems. More specifically, define

SLame
~f(X) :=

∫

∂Ω
E(X − Y )~f(Y ) dσ(Y ), X ∈ ∂Ω, (6.4.19)

if E(X) = (Ejk(X))1≤j,k≤n+1 with Ejk(X) as in (6.1.6), and

SStokes
~f(X) :=

∫

∂Ω
E(X − Y )~f(Y ) dσ(Y ), X ∈ ∂Ω, (6.4.20)

if E(X) = (Ejk(X))1≤j,k≤n+1 with Ejk(X) as in (6.1.20). Also, recall the space Lp
1,ν(∂Ω, dσ) from

(6.3.63). We then have:
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Theorem 6.4.3 Let p ∈ (1,∞) be given and assume that Ω ⊂ Rn+1, with n ≥ 2, is a bounded
domain satisfying a two-sided John condition and whose boundary is Ahlfors regular. Then there
exists ε > 0 which depends only on p, n and the John and Ahlfors regularity constants of Ω, such
that if Ω is an ε-regular SKT domain then

SLame :
[
Lp(∂Ω, dσ)

]n+1
−→

[
Lp

1(∂Ω, dσ)
]n+1

, (6.4.21)

SLame :
[
Lp
−1(∂Ω, dσ)

]n+1
−→

[
Lp(∂Ω, dσ)

]n+1
, (6.4.22)

as well as

SStokes :
[
Lp(∂Ω, dσ)

]n+1/
ν R∂Ω −→ Lp

1,ν(∂Ω, dσ), (6.4.23)

SStokes :
[
Lp
−1(∂Ω, dσ)

]n+1/
ν R∂Ω −→ Lp

ν(∂Ω, dσ), (6.4.24)

are isomorphisms.

The proof of this theorem relies on the results developed in § 6.3 and proceeds along the same
lines as the proof of Theorem 6.4.1. In the process, we are free to select any type of conormal
derivative and we choose one corresponding to a coefficient tensor which is positive definite (a
slight adaptation is needed in the case of the Stokes system). We leave the details to the interested
reader.

6.5 The invertibility of the magnetostatic layer potential

Here we shall work in the three-dimensional setting. Given k ∈ C, playing the role of the wave
number, recall the standard fundamental solution (6.1.34) for the Helmholtz operator ∆ + k2 in
R3. Let the scatterer occupy a region Ω ⊂ R3 which, for now, we assume to be a bounded domain
of finite perimeter whose boundary is Ahlfors regular (of dimension 2) and for which (2.3.1) holds.
The single layer acoustic potential operator and its boundary versions are then defined by

Skf(X) :=

∫

∂Ω
Φk(X − Y )f(Y ) dσ(Y ), X ∈ R3 \ ∂Ω,

Skf(X) :=

∫

∂Ω
Φk(X − Y )f(Y ) dσ(Y ), X ∈ ∂Ω. (6.5.1)

The action of the operators Sk, Sk on vector fields is then defined component-wise. It follows that
for every f ∈ Lp(∂Ω, dσ), 1 < p < ∞,

Skf
∣∣∣
∂Ω

(X) = Skf(X), X ∈ ∂Ω, (6.5.2)

and

∂νSkf
∣∣∣
∂Ω

(X) =
(
−1

2I + K∗
k

)
f(X) (6.5.3)

at σ-almost any X ∈ ∂Ω. Above, K∗
k is the formal transpose of the principal-value integral operator
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Kkf(X) :=
1

4π
lim

ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

〈ν(Y ), Y − X〉
|X − Y |3 e

√
−1k|X−Y |(1 −

√
−1k|X − Y |)f(Y ) dσ(Y ), (6.5.4)

where X ∈ ∂Ω, i.e., the so-called (boundary-version) double layer acoustic potential operator. As
a consequence of the jump relations of §3.4, we have the following.

Proposition 6.5.1 Assume that Ω ⊂ R3 is a bounded UR domain. Then for each vector field ~f

in
[
Lp(∂Ω, dσ)

]3
, 1 < p < ∞, we have

div (Sk
~f)

∣∣∣
∂Ω±

(X) = ∓1
2〈ν(X), ~f(X)〉 + lim

ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

〈(∇Φk)(X − Y ), ~f(Y )〉 dσ(Y ), (6.5.5)

and

(curlSk
~f)

∣∣∣
∂Ω±

(X) = ∓1
2ν(X) × ~f(X) + lim

ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

(∇Φk)(X − Y ) × ~f(Y ) dσ(Y ), (6.5.6)

at σ-almost any X ∈ ∂Ω. In particular, if Mk is the magnetostatics (or, magnetic dipole) layer
potential defined in (6.1.36), then

ν × (curlSk
~f)

∣∣∣
∂Ω±

= (±1
2 + Mk)~f, ∀ ~f ∈ Lp

tan(∂Ω, dσ), (6.5.7)

whenever 1 < p < ∞.

We shall now define function spaces which are well suited to the Maxwell system. To this end,
recall the space Lp

tan(∂Ω, dσ) introduced in (6.1.32) and then set

Lp,Div
tan (∂Ω, dσ) := {~f ∈ Lp

tan(∂Ω, dσ) : Div ~f ∈ Lp(∂Ω, dσ)}. (6.5.8)

For each p ∈ (1,∞), this becomes a Banach space when equipped with the natural norm,

‖~f‖
Lp,Div

tan (∂Ω,dσ)
:= ‖~f‖[

Lp(∂Ω,dσ)
]3 + ‖Div ~f‖Lp(∂Ω,dσ). (6.5.9)

Above, Div is the surface divergence operator which we now proceed to define. Specifically, if
~f ∈ Lp

tan(∂Ω, dσ), consider the functional Div ~f acting on {ϕ|∂Ω : ϕ ∈ C1 near ∂Ω} according to

〈Div ~f, (ϕ|∂Ω)〉 := −
∫

∂Ω
〈~f,∇tan(ϕ|∂Ω)〉 dσ. (6.5.10)

In particular, whenever ~f ∈ Lp,Div
tan (∂Ω, dσ) and ϕ is a scalar function, of class C1 near ∂Ω,

∫

∂Ω
(Div ~f)ϕ dσ = −

∫

∂Ω
〈~f,∇tanϕ〉 dσ. (6.5.11)
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Lemma 6.5.2 If ~u ∈ C1(Ω, R3) is a vector field satisfying

N (~u), N (curl ~u) ∈ Lp(∂Ω, dσ), ∃ ~u
∣∣∣
∂Ω

, ∃ (curl ~u)
∣∣∣
∂Ω

, (6.5.12)

for some p ∈ (1,∞), then ν × (~u|∂Ω) ∈ Lp,Div
tan (∂Ω, dσ) and

Div
[
ν × (~u|∂Ω)

]
= −〈ν, (curl ~u)|∂Ω〉. (6.5.13)

Proof. For each scalar-valued function ϕ which is of class C1 near Ω̄, we may use Proposition 3.2.5
and Theorem 2.3.1 in order to write

∫

∂Ω
〈ν × (~u|∂Ω),∇tanϕ〉 dσ =

∫

∂Ω
〈ν × (~u|∂Ω),∇ϕ〉 dσ

=

∫

Ω
〈curl ~u,∇ϕ〉 dX

=

∫

∂Ω
〈ν, (curl ~u)|∂Ω〉ϕ dσ. (6.5.14)

This proves (6.5.13). ¤

Next we study the action of the surface divergence operator in connection with the boundary
integral operators introduced above.

Proposition 6.5.3 Let Ω, k, p, be as before. Then for each ~f ∈ Lp,Div
tan (∂Ω, dσ) we have

div (Sk
~f) = Sk(Div ~f) in R3 \ ∂Ω, (6.5.15)

and

Div (Mk
~f) = −k2〈ν, Sk

~f〉 − K∗
k(Div ~f) on ∂Ω. (6.5.16)

In particular, for every k ∈ C, the operator Mk is well-defined and bounded on the space (6.5.8).

Proof. For an arbitrary point X ∈ R3 \ ∂Ω we may write, based on the tangentiality of ~f and
(6.5.10),

(divSk
~f)(X) = −

∫

∂Ω
〈(∇Φk)(X − Y ), ~f(Y )〉 dσ(Y )

= −
∫

∂Ω
〈(∇tanΦk)(X − Y ), ~f(Y )〉 dσ(Y )

=

∫

∂Ω
Φk(X − Y )(Div ~f)(Y ) dσ(Y )

= Sk(Div ~f)(X), (6.5.17)

which proves (6.5.15). As for (6.5.16), if ~u := curl (Sk
~f) in Ω, then
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N (~u) ∈ Lp(∂Ω, dσ) and ~u
∣∣∣
∂Ω

exists, (6.5.18)

by the jump relations of §3. In fact, by Proposition 6.5.1,

ν × ~u
∣∣∣
∂Ω

= (1
2I + Mk)~f. (6.5.19)

Next, making use of the identity

curl curl = −∆ + ∇ div (6.5.20)

and (6.5.15), we compute

curl ~u = −∆Sk
~f + ∇ divSk

~f = k2 Sk
~f + ∇Sk(Div ~f). (6.5.21)

Thus, in addition to (6.5.18), ~u also satisfies

N (curl ~u) ∈ Lp(∂Ω, dσ) and (curl ~u)
∣∣∣
∂Ω

exists. (6.5.22)

Let us also note here that, as a consequence of (6.5.21) and (6.5.2)-(6.5.3),

〈ν, (curl ~u)|∂Ω〉 = k2 〈ν, Sk
~f〉 + (−1

2I + K∗
k)(Div ~f). (6.5.23)

In turn, properties (6.5.18), (6.5.22) allow us to employ Lemma 6.5.2. In concert with (6.5.19) and
(6.5.23), this implies that Mk

~f ∈ Lp,Div
tan (∂Ω, dσ) and the identity (6.5.16) holds. ¤

Lemma 6.5.4 Let Ω and k be as before. Then for each f ∈ Lp
1(∂Ω, dσ), 1 < p < ∞,

curlSk(fν) = Sk(ν ×∇tanf) in R3 \ ∂Ω. (6.5.24)

Furthermore, for any f ∈ Lp
1(∂Ω, dσ), 1 < p < ∞, we have that

ν ×∇tanKkf = k2 ν × Sk(fν) + Mk(ν ×∇tanf). (6.5.25)

Proof. If f ∈ Lp
1(∂Ω, dσ) then

ν ×∇tanf =
[
ν2(∇tanf)3 − ν3(∇tanf)2

]
e1 +

[
ν3(∇tanf)1 − ν1(∇tanf)3

]
e2

+
[
ν1(∇tanf)2 − ν2(∇tanf)1

]
e3

=
(
∂τ23f , ∂τ31f , ∂τ12f

)
, (6.5.26)

where the first equality is the definition of the cross-product in R3 (with ej , 1 ≤ j ≤ 3, the
canonical orthonormal basis there), while the second one follows from (3.6.43). Consequently, for
each X ∈ R3 \ ∂Ω,
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(
Sk(ν ×∇tanf)

)

1
(X) =

∫

∂Ω
Φk(X − Y )(∂τ23f)(Y ) dσY

=

∫

∂Ω
[ν2(Y )(∂3Φk)(X − Y ) − ν3(Y )(∂2Φk)(X − Y )]f(Y ) dσY ,

(
Sk(ν ×∇tanf)

)

2
(X) =

∫

∂Ω
Φk(X − Y )(∂τ31f)(Y ) dσY (6.5.27)

=

∫

∂Ω
[ν3(Y )(∂1Φk)(X − Y ) − ν1(Y )(∂3Φk)(X − Y )]f(Y ) dσY ,

(
Sk(ν ×∇tanf)

)

3
(X) =

∫

∂Ω
Φk(X − Y )(∂τ12f)(Y ) dσY

=

∫

∂Ω
[ν1(Y )(∂2Φk)(X − Y ) − ν2(Y )(∂1Φk)(X − Y )]f(Y ) dσY ,

so that

Sk(ν ×∇tanf)(X) =

∫

∂Ω

[
(∇Φk)(X − Y ) × ν(Y )

]
f(Y ) dσY

= curlSk(fν)(X), (6.5.28)

proving (6.5.24). With this in hand, we may then compute

∇Dkf = −∇divSk(fν) = −(∆ + curl curl)Sk(fν)

= k2 Sk(fν) + curlSk(ν ×∇tanf), (6.5.29)

where the last equality uses (6.5.24). Going to the boundary and taking ν× of both sides of (6.5.29)
yields (6.5.25). ¤

Proposition 6.5.5 Assume that Ω ⊂ R3 is a bounded UR domain. Then the operator λI + Mk is
injective on L2,Div

tan (∂Ω, dσ) granted that either

k ∈ C has Im k > 0 and λ ∈ R has |λ| ≥ 1
2 , (6.5.30)

or

k ∈ R \ {0} and λ ∈ (−∞,−1
2) ∪ (1

2 ,∞). (6.5.31)

Proof. Let ~f ∈ L2,Div
tan (∂Ω, dσ) be such that (λI + Mk)~f = 0. Our goal is to show that ~f = 0.

We shall prove this by analyzing several cases. Assume first that k ∈ C has Im k > 0 and that
λ ∈ (1

2 ,∞). Set

E± := curlSk
~f, H± := 1√

−1k
curlE± in Ω±, (6.5.32)
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so that

(∆ + k2)E± = (∆ + k2)H± = 0 in Ω±, (6.5.33)

H± = 1√
−1k

(
k2Sk

~f + ∇Sk(Div ~f)
)

in Ω±, (6.5.34)

N (E±), N (H±) ∈ L2(∂Ω, dσ) and ∃E±
∣∣∣
∂Ω

, ∃H±
∣∣∣
∂Ω

, (6.5.35)

curlE± =
√
−1kH± and curlH± = −

√
−1kE± in Ω±. (6.5.36)

In particular, from (6.5.32), (6.5.34), and the fact that Im k > 0, the fields E−, H− decay exponen-
tially at infinity, so that Green’s formula works both in Ω+ and Ω−. Thus Theorem 2.3.1, whose
applicability is ensured by (6.5.33), (6.5.35) and (6.5.36), then allows us to write

±
∫

∂Ω
〈ν × (E±)c, curlE±〉 dσ =

∫

Ω±

[
|curlE±|2 − k2|E±|2

]
dX, (6.5.37)

±
∫

∂Ω
〈ν × (H±)c, curlH±〉 dσ =

∫

Ω±

[
|curlH±|2 − k2|H±|2

]
dX, (6.5.38)

where the superscript c indicates complex conjugation. We continue by noting that (6.5.34) implies

ν × H+
∣∣∣
∂Ω

= ν × H−
∣∣∣
∂Ω

on ∂Ω. (6.5.39)

Furthermore, if

µ :=
2λ − 1

2λ + 1
∈ (0, 1) (6.5.40)

then

ν × E+
∣∣∣
∂Ω

−µ ν × E−
∣∣∣
∂Ω

= (1
2I + Mk)~f − µ(−1

2I + Mk)~f

= (1 − µ)(λI + Mk)~f = 0 on ∂Ω. (6.5.41)

Hence, for the choice (6.5.40),

ν × E+
∣∣∣
∂Ω

= µ ν × E−
∣∣∣
∂Ω

on ∂Ω. (6.5.42)

Using (6.5.37), (6.5.39), (6.5.42), we may now write

∫

Ω+

[
|curlE+|2 − k2|E+|2

]
dX =

∫

∂Ω
〈ν × (E+)c, curlE+〉 dσ

= µ

∫

∂Ω
〈ν × (E−)c, curlE−〉 dσ

= −µ

∫

Ω−

[
|curlE−|2 − k2|E−|2

]
dX. (6.5.43)
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Thus,

∫

Ω+

[
|curlE+|2 − k2|E+|2

]
dX = −µ

∫

Ω−

[
|curlE−|2 − k2|E−|2

]
dX, (6.5.44)

and, similarly,

∫

Ω+

[
|curlH+|2 − k2|H+|2

]
dX = −µ

∫

Ω−

[
|curlH−|2 − k2|H−|2

]
dX. (6.5.45)

Use now (6.5.36) to re-write (6.5.45) in terms of the electric fields E±, obtaining

∫

Ω+

[
|k2||E+|2 − k2

|k|2 |curlE+|2
]
dX = −µ

∫

Ω−

[
|k|2|E−|2 − k2

|k|2 |curlE−|2
]
dX. (6.5.46)

Finally, combining (6.5.44) with (6.5.46) we arrive at

k2
[∫

Ω+

|E+|2 dX + µ

∫

Ω−

|E−|2 dX
]

=

∫

Ω+

|curlE+|2 dX + µ

∫

Ω−

|curlE−|2 dX

=
|k|2
k2

[∫

Ω+

|E+|2 dX + µ

∫

Ω−

|E−|2 dX
]

(6.5.47)

or, equivalently,

(k4 − |k|4)
[∫

Ω+

|E+|2 dX + µ

∫

Ω−

|E−|2 dX
]

= 0. (6.5.48)

If, on the one hand, the expression in the brackets vanishes then E± = 0 in Ω± and, hence,

0 = ν × E+
∣∣∣
∂Ω

−ν × E−
∣∣∣
∂Ω

= ~f, (6.5.49)

as desired. If, on the other hand, k4 − |k|4 = 0, then since Im k > 0 it follows that k ∈
√
−1R+.

In this scenario, we return to (6.5.37) and denote by A± the right-hand side of this identity. The
assumption k ∈

√
−1R+ entails A± ≥ 0 and we may also assume that A+ + A− > 0 (otherwise

(6.5.49) holds). Since ν × (E±|∂Ω) = (±1
2I + Mk)~f = (−λ ± 1

2)~f , this becomes

(∓λ + 1
2)

∫

∂Ω
〈~f, curlE±〉 dσ = A±. (6.5.50)

Going further, we note that by (6.5.36) and (6.5.39) the vector fields (curlE+)|∂Ω and (curlE−)|∂Ω

have the same tangential components. Thus,
∫
∂Ω〈~f, curlE+〉 dσ =

∫
∂Ω〈~f, curlE−〉 dσ, since ~f is

tangential. If these integrals vanish, then A± = 0 and we may once again conclude that ~f = 0 as
in (6.5.49). If they are different from zero, taking the quotient of the two versions of (6.5.50) gives,
after some elementary algebra,
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λ =
1

2

A− − A+

A+ + A−
. (6.5.51)

Thus, necessarily, λ ≤ 1
2 , contradicting our original assumption.

In summary, the above reasoning shows that the operator λI +Mk is injective on L2,Div
tan (∂Ω, dσ)

whenever λ ∈ (1
2 ,∞). The case λ ∈ (−∞,−1

2) can be treated similarly, and we now turn to the task

of proving that ±1
2I+Mk are injective on L2,Div

tan (∂Ω, dσ) while retaining the assumption that Im k >
0. We shall consider in detail the case of the operator 1

2I + Mk since, again, −1
2I + Mk is handled

analogously. To this end, if ~f ∈ L2,Div
tan (∂Ω, dσ) is such that (1

2I + Mk)~f = 0, define E±, H± as in

(6.5.32) and notice that, this time, ν×E+ = 0. Then (6.5.37) gives
∫
Ω

[
|k|2|H+|−k2|E+|2

]
dX = 0

and by inspecting the real and imaginary parts, it follows that either H+ = 0 or E+ = 0 in Ω+.
Based on this and (6.5.36), we then have E+ = H+ = 0 in Ω+. Next, (6.5.39) gives ν × H− = 0
in Ω− and by performing the same type of analysis and before we arrive at the conclusion that
E− = H− = 0 in Ω−. Hence, ultimately, ~f = 0 from (6.5.42). This finishes the proof of the
proposition under the hypotheses listed in (6.5.30).

Next, assume that the conditions in (6.5.31) hold. In this scenario, the expression exp (
√
−1k|X|)

intervening in (6.1.34) is only oscillatory in nature. Hence the decay of E−, H− at infinity, far from
being exponential, is more subtle and this prevents us from writing the versions of the identities
(6.5.37)-(6.5.38) for the unbounded domain Ω−. Indeed, if k ∈ R \ {0}, then (6.5.32), (6.5.34) only
give

H−(X) × (X/|X|) − |X|E−(X) = o(1),

E−(X) × (X/|X|) + |X|H−(X) = o(1),
as |X| → ∞, (6.5.52)

uniformly in all directions in R3. These are the so-called Silver-Müller radiation conditions and are
known to be equivalent (cf. the discussion on pp. 154-156 of [25]) to

∫

|X|=R
|E− × ν + H−|2 dσ = o(1),

∫

|X|=R
|H− × ν − E−|2 dσ = o(1) as R → ∞, (6.5.53)

and even to the seemingly much weaker conditions

∫

|X|=R
|E−|2 dσ = O(1),

∫

|X|=R
|H−|2 dσ = O(1), as R → ∞. (6.5.54)

To illustrate the delicate balance between various radiation-type conditions, it is worth comparing
(6.5.54) with the celebrated Rellich lemma (cf., e.g., Lemma 2.11 on p. 31 in [25]) according to
which

(∆ + k2)u = 0 in a connected, open neighborhood of infinity

where k ∈ R \ {0} and

∫

|X|=R
|u|2 dσ = o(1) as R → ∞,





=⇒ u ≡ 0. (6.5.55)

Returning to the mainstream discussion, we write
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lim
R→∞

∫

|X|=R

[
|H− × ν|2 + |E−|2

]
dσ

= lim
R→∞

(∫

|X|=R
|H− × ν − E−|2 dσ + 2 Re

∫

|X|=R
〈ν × (E−)c, H−〉 dσ

)

= lim
R→∞

2 Re

∫

|X|=R
〈ν × (E−)c, H−〉 dσ

= lim
R→∞

2 Re
(∫

∂Ω
〈ν × (E−)c, H−〉 dσ +

√
−1k

∫

B(0,R)\Ω̄

[
|H−|2 − |E−|2

]
dX

)

= 2 Re

∫

∂Ω
〈ν × (E−)c, H−〉 dσ

= 2µRe

∫

∂Ω
〈ν × (E+)c, H+〉 dσ

= 2µRe
(√

−1k−1

∫

Ω

[
|curlE+|2 − k2|E+|2

]
dX

)

= 0. (6.5.56)

The first equality above is obtained by expanding |H− × ν − E−|2, while the second one is a
consequence of (6.5.53). The third equality is a consequence of (6.5.36) and the version of (6.5.37)
written for the bounded domain B(0, R) \ Ω̄ (here, Theorem 2.3.1 and Proposition 3.2.5 are also
implicitly used). The forth equality rests on the observation that the solid integral, as well as the
wave number k are real. The fifth equality employs the identities (6.5.39) and (6.5.42). The sixth
equality is the version of (6.5.37) corresponding to the sign plus. Finally, the last equality uses
once again the fact that the solid integral, along with the wave number k, are real numbers.

Having justified (6.5.56), we may now deduce from this and (6.5.55) that E− vanishes in Ω−, at
least if Ω− is connected. The general case (i.e., when no topological assumption is made on Ω−) is
proved in a similar manner by working with the connected components of Ω− and using the unique
continuation property for the Helmholtz operator ∆ + k2. See the proof of Theorem 2.1 in [85] for
details in somewhat similar circumstances.

Altogether, the above reasoning shows that E− = 0 in Ω−. This, (6.5.42) and (6.5.49) now
prove that ~f = 0, as wanted. This concludes the proof of the proposition. ¤

Theorem 6.5.6 Assume that Ω ⊂ R3 is a bounded domain satisfying a two-sided John condition
and whose boundary is Ahlfors regular. Then for every k ∈ C with Im k ≥ 0, p ∈ (1,∞) and
λ ∈ R \ {0} there exists a small δ > 0, depending only on λ, k, p and the geometry of Ω, with the
property that

dist (ν , VMO (∂Ω, dσ)) < δ =⇒
λI + Mk is Fredholm with index zero on Lp,Div

tan (∂Ω, dσ). (6.5.57)

Furthermore, under the same background hypotheses, the following implication is valid for every
p ∈ (1,∞):
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Ω is a regular SKT domain =⇒
Mk : Lp,Div

tan (∂Ω, dσ) −→ Lp,Div
tan (∂Ω, dσ) is a compact operator. (6.5.58)

Proof. The claim in (6.5.57) is proved much as in Theorem 6.2.3, with the help of the identity
(6.5.16) and Theorem 4.5.1. The claim in (6.5.58) is a direct consequence of the identity (6.5.16)
and Theorem 4.5.1. ¤

Theorem 6.5.7 Assume that Ω ⊂ R3 is a bounded domain satisfying a two-sided John condition
and whose boundary is Ahlfors regular. Also, fix p ∈ (1,∞) along with some λ ∈ (−∞,−1

2 ]∪ [12 ,∞).
Then there exist ε > 0 and a sequence of complex numbers {ζj}j (depending only on p, λ and the
geometry of Ω) with Im ζj ≤ 0 and no finite accumulation points, and such that for each k ∈ C\{ζj}j

the operator

λI + Mk : Lp,Div
tan (∂Ω, dσ) −→ Lp,Div

tan (∂Ω, dσ) (6.5.59)

is invertible if Ω is an ε-regular SKT domain. Moreover, when λ ∈ (−∞,−1
2) ∪ (1

2 ,∞), then all
ζj’s satisfy Im ζj < 0.

Proof. To begin with, Theorem 6.5.6, Proposition 6.5.5 and standard Fredholm theory give that
the operator (6.5.59) is an isomorphism when p = 2 for every k ∈ C with Im k > 0. Next, fix ko ∈ C

with Im ko > 0, λ ∈ R with |λ| ≥ 1
2 and, for each k ∈ C write

λI + Mk = λI + Mko + (Mk − Mko) = (λI + Mko)
−1

[
I + (λI + Mko)(Mk − Mko)

]
, (6.5.60)

regarded as operators on L2,Div
tan (∂Ω, dσ). A useful observation is that λI + Mk is invertible on this

space if and only if I + (λI + Mko)(Mk − Mko) is. Now, Mk − Mko has a weakly singular kernel
(since Φk − Φko is, in fact, bounded). Also, from (6.5.16),

Div (Mk − Mko)
~f = −k2〈ν, Sk

~f〉 + k2
o〈ν, Sko

~f〉 − (K∗
k − K∗

ko
)(Div ~f) (6.5.61)

for every ~f ∈ L2,Div
tan (∂Ω, dσ). Since Sk, Sko and K∗

k−K∗
ko

are also weakly singular integral operators,

it follows that Mk−Mko is compact on L2,Div
tan (∂Ω, dσ). Hence, so is (λI+Mko)(Mk−Mko). Consider

next the operator-valued holomorphic function

C ∋ k 7→ A(k) := (λI + Mko)(Mk − Mko) ∈ L
(
L2,Div

tan (∂Ω, dσ)
)

(6.5.62)

and note that A(ko) = 0. From the Analytic Fredholm Theorem (cf., e.g., [62]), it follows that
I + A(k) has a bounded inverse on L2,Div

tan (∂Ω, dσ) except at isolated points k ∈ C which, in fact,
are poles for the meromorphic function (I + A(k))−1. By Proposition 6.5.5 (and an observation
made earlier in the proof), these poles belong to the closed lower-half complex plane. Thus, the
conclusion in the theorem corresponding to the case when p = 2 follows.

Finally, having established the theorem in the case p = 2, the general case p ∈ (1,∞) follows
from this, Theorem 6.5.6 and standard Fredholm theory. ¤
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7 Second order elliptic systems: specific cases

With the material of §6 in place, we are ready to tackle the various elliptic boundary problems
introduced there. Section 7.1 deals with boundary problems for the scalar Laplace operator, in-
cluding the Dirichlet problem and the Neumann problem. In these cases, existence arguments are
special cases of those in §5.5–§5.6. The major effort here is devoted to uniqueness proofs. Also
the regularity problem, given Dirichlet data in Lp

1(∂Ω, dσ), is analyzed. In addition, §7.1 treats
transmission problems.

Section 7.2 is devoted to natural boundary problems for Stokes systems, §7.3 to boundary prob-
lems for Lamé systems, and §7.4 to boundary problems for Maxwell’s equations. These subsections
make heavy use of the material from §6.

7.1 Boundary value problems for the Laplacian

For a chord-arc domain Ω in the plane R2 ≡ C, Laurentiev [73] has proved, in effect, that the
harmonic measure and the arc-length measure on the boundary are A∞ equivalent. This fact, as
is well-known, is equivalent to the well-posedness of the Dirichlet problem





∆u = 0 in Ω,

N (u) ∈ Lp(∂Ω, dσ),

u
∣∣∣
∂Ω

= f ∈ Lp(∂Ω, dσ), given,

(7.1.1)

whenever p is sufficiently large. By further combining this with certain conformal mapping tech-
niques developed in [63], it has been observed in [54] that one may also obtain the solvability of
the Neumann and Regularity problems for the dual range of indices.

In the higher dimensional setting, if Ω is a bounded NTA domain whose boundary is Ahlfors
regular, by combining the A∞ equivalence of the surface and harmonic measures on ∂Ω (cf. Proposi-
tion 3.1.16) with Theorem 5.8 on p. 105 in [55], it follows that (7.1.1) is well-posed if p is sufficiently
large.

The goal of this subsection is to explore the extent to which such results hold in the higher
dimensional setting. In this context, as a substitute for the conformal mapping and harmonic
measure techniques alluded to above, we shall rely on the method of boundary layer potentials.
Our first result in this regard is as follows.

Theorem 7.1.1 Let po ∈ (1,∞) be given and assume that Ω ⊂ Rn+1 is a bounded domain satisfying
a two-sided John condition and whose boundary is Ahlfors regular. Then there exists ε > 0 which
depends only on po, n and the John and Ahlfors regularity constants of Ω, such that if Ω is an
ε-regular SKT domain then the interior Dirichlet boundary value problem (7.1.1) is well-posed for
every p > po.

Proof. This is a consequence of Theorem 7.1.2 below and interpolation with the case p = ∞, when
the Maximum Principle applies. ¤

Theorem 7.1.2, which is our main result here, treats the interior and exterior Dirichlet problems
with data from Lp(∂Ω, dσ) and Lp

1(∂Ω, dσ), 1 < p < ∞, in the case when Ω is either a bounded
ε-regular SKT domain, or the complement of the closure of such a domain.
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Theorem 7.1.2 Assume that p ∈ (1,∞) is given and that Ω ⊂ Rn+1 is a bounded domain satisfying
a two-sided local John condition and whose boundary is Ahlfors regular. Then there exists ε > 0
which depends only on p, n and the John and Ahlfors regularity constants of Ω with the following
significance.

If Ω is an ε-regular SKT domain then the interior Dirichlet boundary value problem (7.1.1) has a
unique solution. In addition, there exists a finite constant C > 0 such that, for each f ∈ Lp(∂Ω, dσ),
the solution u of (7.1.1) obeys the natural estimate

‖N (u)‖Lp(∂Ω,dσ) ≤ C‖f‖Lp(∂Ω,dσ), (7.1.2)

and has the following regularity property:

f ∈ Lp
1(∂Ω, dσ) =⇒ N (∇u) ∈ Lp(∂Ω, dσ)

and ‖N (∇u)‖Lp(∂Ω,dσ) ≤ C‖f‖Lp
1(∂Ω,dσ).

(7.1.3)

Similar results are valid for the exterior Dirichlet problem. When n ≥ 2, this reads as follows.
Given a function f ∈ Lp(∂Ω, dσ) find u ∈ C0(Rn+1 \ Ω̄) such that





∆u = 0 in Rn+1 \ Ω̄,

N (u) ∈ Lp(∂Ω, dσ), u
∣∣∣
∂Ω

= f,

u(X) = O(|X|1−n) as |X| → ∞.

(7.1.4)

In the case when n = 1, the above decay condition should be changed to

u(X) = a log |X| + O(1) as |X| → ∞, (7.1.5)

for some a priori given constant a ∈ R. Also, the standard nontangential maximal operator N in
(7.1.2) should be replaced by its truncated version N δ (defined as in (2.3.26) but for the domain
Ω− in place of Ω), for some arbitrary, fixed δ > 0, in which case the constant C in (7.1.2) depends
on δ as well.

Proof. We divide the proof into several steps, starting with

Step 1. The above interior and exterior Dirichlet problems are formulated in a meaningful fashion.
By combining Theorem 6.4 on p. 81 in [55] with Theorem 2 on p. 842 in [31], it follows that the
nontangential boundary trace u|∂Ω exists for every harmonic function u in a domain Ω, as in the
statement of the theorem, for which Nu ∈ Lp(∂Ω, dσ). This shows that (7.1.1) is meaningful as
stated. The argument for (7.1.4) is similar.

Step 2. Existence of a solution for the interior Dirichlet problem obeying the natural estimate
(7.1.2) and the regularity property (7.1.3), in the case when n ≥ 2. Relying on the fact that the
operator (6.4.3) is invertible, we may take

u(X) := S
(
S−1f

)
(X), X ∈ Ω. (7.1.6)
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The fact that this is a solution of (7.1.1) which satisfies the estimate (7.1.2) is now a consequence
of Proposition 3.6.4. When f ∈ Lp

1(∂Ω, dσ), we may invoke (6.4.2) and Theorem 3.5.2 in order to
conclude that, for the solution (7.1.6), the estimate (7.1.3) holds.

Step 3. Uniqueness for the interior Dirichlet problem when n ≥ 2. To start the proof, fix X ∈ Ω
and consider the following Green function

G(X, Y ) := E(X − Y ) − S
(
S−1(E(X − ·)|∂Ω)

)
(Y ), Y ∈ Ω. (7.1.7)

Then

G(X, ·) ∈ C∞(Ω \ {X}), ∆Y G(X, Y ) = δX(Y ) in Ω, G(X, ·)
∣∣∣
∂Ω

= 0, (7.1.8)

N δ(∇Y G(X, ·)), N δ(G(X, ·)) ∈ Lp′(∂Ω, dσ), if 0 < δ < 1
4 dist (X, ∂Ω), (7.1.9)

where the truncated nontangential maximal function N δ has been introduced in (2.3.26), and
1/p + 1/p′ = 1. Also, as in (2.3.6), for each 0 < δ < diam (Ω), consider the (one-sided) δ-collar of
the boundary, i.e., Oδ := {Z ∈ Ω : dist (Z, ∂Ω) ≤ δ}, and pick a family of functions ψδ, indexed by
0 < δ < 1

4 dist (X, ∂Ω), with the following properties

ψδ ∈ C∞
0 (Ω), 0 ≤ ψδ ≤ 1, |∂αψδ| ≤ Cαδ−|α| ∀α, (7.1.10)

ψδ ≡ 1 on Ω \ Oδ and ψδ ≡ 0 on Oδ/2. (7.1.11)

Such a family can be constructed by, e.g., further regularizing the functions χδ introduced in
(2.3.37). Let now u be a solution for the homogeneous version of (7.1.1). Then, if 0 < δ <
1
4 dist (X, ∂Ω), ψδu ∈ C∞

0 (Ω) and successive integrations by parts give, for X ∈ Ω \ Oδ,

u(X) = (ψδu)(X) =

∫

Ω
G(X, Y )∆Y (ψδu)(Y ) dY

= 2

∫

Ω
G(X, Y )〈∇ψδ(Y ),∇u(Y )〉 dY +

∫

Ω
G(X, Y )(∆ψδ)(Y )u(Y ) dY

= −2

∫

Ω
〈∇Y G(X, Y ), (∇ψδ)(Y )〉u(Y ) dY −

∫

Ω
G(X, Y )(∆ψδ)(Y )u(Y ) dY

=: I + II, (7.1.12)

since ∆u = 0 in Ω and ψδ ≡ 0 near ∂Ω. Next, if 1 < p′ < ∞ is such that 1/p + 1/p′ = 1, based on
(7.1.10)-(7.1.11) and (2.3.25), we may estimate

|I| ≤ C

δ

∫

Oδ

|∇Y G(X, Y )||u(Y )| dY ≤ C

∫

∂Ω
N δ(∇Y G(X, ·)u) dσ

≤ C

∫

∂Ω
N δ(∇Y G(X, ·))N δ(u) dσ

≤ C‖N δ(∇Y G(X, ·))‖Lp′ (∂Ω,dσ)‖N δ(u)‖Lp(∂Ω,dσ) (7.1.13)
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and note that, by (7.1.9) and the same type of reasoning as in the justification of (2.3.61),

‖N δ(∇Y G(X, ·))‖Lp′ (∂Ω,dσ) = O(1) and ‖N δ(u)‖Lp(∂Ω,dσ) = o(1) as δ → 0+. (7.1.14)

This proves that, for each fixed X ∈ Ω,

lim
δ→0+

|I| = 0. (7.1.15)

Next, we turn our attention to II in (7.1.12). To set the stage, let {Ik}k be a decomposition of
Ω into nonoverlapping Whitney cubes and, for each fixed δ > 0, set

Jδ := {k : Iδ
k := Ik ∩ Oδ 6= ∅}. (7.1.16)

It follows that the side-length of each Iδ
k is comparable with δ. Going further, since ∂Ω (equipped

with the measure σ and the Euclidean distance) is a space of homogeneous type, there exists a
decomposition of ∂Ω into a grid of dyadic boundary “cubes” Qδ, of side-length comparable with δ.
For each k ∈ Jδ, select one such boundary dyadic cube Qδ

k with the property that

dist (Iδ
k , ∂Ω) = dist (Iδ

k , Qδ
k). (7.1.17)

Matters can be arranged so that the concentric dilates of these boundary dyadic cubes have bounded
overlap. That is, for every c ≥ 1 there exists a finite constant C > 0 such that

∑

k∈Jδ

1c Qδ
k
≤ C on ∂Ω. (7.1.18)

Next, fix X ∈ Ω, and assume that δ > 0 is much smaller than dist (X, ∂Ω). We may then write

1

δ2

∫

δ
2≤dist(Y,∂Ω)≤δ

Y ∈Ω

|G(X, Y )| |u(Y )| dY ≤
∑

k∈Jδ

1

δ2

∫

Iδ
k

|G(X, Y )| |u(Y )| dY

≤
∑

k∈Jδ

(
1

δ

∫

Iδ
k

( |G(X, Y )|
δ

)p′

dY

)1/p′ (
1

δ

∫

Oδ

|(1Iδ
k
u)(Y )|p dY

)1/p

. (7.1.19)

Using G(X, ·)|∂Ω = 0, the fact that there exists c ≥ 1 such that

supp N δ(1Iδ
k
u) ⊂ c Qδ

k (7.1.20)

and (2.3.25), we then obtain
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1

δ2

∫

δ
2≤dist(Y,∂Ω)≤δ

Y ∈Ω

|G(X, Y )| |u(Y )| dY ≤
∑

k∈Jδ

1

δ2

∫

Iδ
k

|G(X, Y )| |u(Y )| dY

≤
∑

k∈Jδ

1

δ

(
1

δ

∫

Iδ
k

∣∣∣G(X, Y ) −
∫
−

Qδ
k

G(X, ·) dσ
∣∣∣
p′

dY

)1/p′ (∫

c Qδ
k

|N δu|p dσ

)1/p

.

Note that every point Y ∈ Iδ
k is a corkscrew point, relative to any point Z ∈ Qδ

k. Then
Lemma 3.1.13 guarantees the existence of a rectifiable path γ(Z, Y ) from Z to Y , of length bounded
by Cδ and such that for each point P ∈ γ(Z, Y ) we have dist (P, Z) ≈ dist (P, ∂Ω). In particular,
there exists β > 0 such that

γ(Z, Y ) ⊂ Γβ(Z). (7.1.21)

Fix now Y ∈ Iδ
k and, based on the Fundamental Theorem of Calculus and (7.1.21), write

1

δ

∣∣∣∣∣G(X, Y ) −
∫
−

Qδ
k

G(X, Z) dσ(Z)

∣∣∣∣∣ ≤
1

δ

∫
−

Qδ
k

|G(X, Y ) − G(X, Z)| dσ(Z)

≤
∣∣∣∣∣

∫
−

Qδ
k

(
1

δ

∫

γ(Z,Y )
∂sG(X, P ) ds(P )

)
dσ(Z)

∣∣∣∣∣

≤
∫
−

Qδ
k

|Nβ(∇G(X, ·))(Z)| dσ(Z), (7.1.22)

where ds and ∂s denote, respectively, the arc-length measure and tangential derivative along γ(Z, Y )
(considered in the second variable of the function G). Returning with this back in (7.1.21) allows
us to estimate

1

δ2

∫

δ
2≤dist(Y,∂Ω)≤δ

Y ∈Ω

|G(X, Y )| |u(Y )| dY

≤
∑

k∈Jδ

(∫

Qδ
k

|Nβ(∇G(X, ·))|p′ dσ

)1/p′ (∫

c Qδ
k

|N δu|p dσ

)1/p

≤ C

(∫

∂Ω
|Nβ(∇G(X, ·))|p′dσ

)1/p′ (∫

∂Ω
|N δu|p dσ

)1/p

, (7.1.23)

by Hölder’s inequality and (7.1.18). Replacing δ by 2−jδ, with j ≥ 0, in (7.1.23) then yields

1

δ2

∫

2−j−1δ≤dist(Y,∂Ω)≤2−jδ

Y ∈Ω

|G(X, Y )| |u(Y )| dY

≤ C4−j

(∫

∂Ω
|Nβ(∇G(X, ·))|p′dσ

)1/p′ (∫

∂Ω
|N δu|p dσ

)1/p

. (7.1.24)

208



Thus, summing up (7.1.24) for j = 0, 1, ... gives

1

δ2

∫

Oδ

|G(X, Y )| |u(Y )| dY ≤ C

(∫

∂Ω
|Nβ(∇G(X, ·))|p′dσ

)1/p′ (∫

∂Ω
|N δu|p dσ

)1/p

, (7.1.25)

which further entails

|II| ≤ C

δ2

∫

Oδ

|G(X, Y )||u(Y )| dY,

≤ C

(∫

∂Ω
|Nβ(∇G(X, ·))|p′dσ

)1/p′ (∫

∂Ω
|N δu|p dσ

)1/p

. (7.1.26)

Hence, thanks to (7.1.14), we also have

lim
δ→0+

|II| = 0. (7.1.27)

Altogether, (7.1.12) and (7.1.14), (7.1.27), prove that u(X) = 0. Since X ∈ Ω was arbitrary, this
shows that the problem (7.1.1) has a unique solution.

Step 4. Uniqueness for the exterior Dirichlet problem when n ≥ 2. Fix a point X∗ ∈ Ω and, for
each R > 2 diam (Ω), set ΩR

− := B(X∗, 2R) \ Ω̄. Also, much as in (2.3.26), for an arbitrary function
v ∈ C0(Ω−), we define the (exterior) truncated maximal function by

NRv(Q) := sup
{
|v(X)| : X ∈ Ω− has |X − Q| < min {R , 2 dist (X, ∂Ω)}

}
, Q ∈ ∂Ω. (7.1.28)

Then, if u solves (7.1.4) written for f = 0, it follows that for each R as above





u ∈ C0(ΩR
−) with ∆u = 0 in ΩR

−,

NR(u) ∈ Lp(∂ΩR
−, dσ),

u
∣∣∣
∂ΩR

−

∈ ⋂
1<q<∞ Lq

1(∂ΩR
−, dσ).

(7.1.29)

Now, the existence and uniqueness result for bounded domains in Rn+1, n ≥ 2, the regularity
statement (7.1.3) and the integral representation (7.1.6), it follows that

NR(∇u) ∈ L2(∂ΩR
−, dσ). (7.1.30)

In particular, this suffices to justify Green’s formula

∫

ΩR
−

|∇u|2 dX = −
∫

∂ΩR
−

u ∂νu dσ = −
∫

∂Ω
u ∂νu dσ +

∫

∂B(X∗,2R)
u ∂νu dσ. (7.1.31)
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From assumptions, u|∂Ω = 0 and u|∂B(X∗,2R) = O(R1−n) as R → ∞. Furthermore, as is well-
known, if a function u, defined in the complement of a compact set in Rn+1, is harmonic at infinity
then

(∂ru)(rω) =

{
O(r−n) if n ≥ 2,

O(r−2) if n = 1,
as r → ∞, uniformly for ω ∈ Sn. (7.1.32)

Consequently, ∂νu
∣∣∣
∂B(X∗,2R)

= O(R−n) as R → ∞. Thus, from this and (7.1.31), we have that
∫
∂B(X∗,2R) u∂νu dσ = O(R1−n) = o(1) as R → ∞, since n ≥ 2. In turn, this implies

∫

Ω−

|∇u|2 dX = lim
R→∞

∫

ΩR
−

|∇u|2 dX = 0, (7.1.33)

hence, u ≡ 0 in the unbounded component of Ω−. To finish the proof of uniqueness in the current
case, we therefore need to show that u also vanishes in any other bounded component of Ω−. This,
however, is a direct consequence of our uniqueness result for bounded domains, already proved
above.

Step 5. Uniqueness for the interior Dirichlet problem when n = 1. To get started, we make the
claim that, for each p ∈ (1,∞), the operator

Lp(∂Ω, dσ) ⊕ R ∋ (g, c) 7→
(
Sg + c,

∫

∂Ω
g dσ

)
∈ Lp

1(∂Ω, dσ) ⊕ R (7.1.34)

is an isomorphism. Indeed, this is can be written as the sum of two operators, (g, c) 7→ (Sg, 0)

and (g, c) 7→
(
c,

∫
∂Ω g dσ

)
which are, respectively, Fredholm with index zero and compact (in the

context of (7.1.34)). Thus, on the one hand, (7.1.34) is Fredholm with index zero. On the other
hand, the fact that (6.4.4) is invertible ensures that the operator (7.1.34) is injective. Altogether,
this proves the claim made about (7.1.34). As a consequence, given an arbitrary, fixed point X ∈ Ω,
there exist (unique) gX ∈ ⋂

1<q<∞ Lq
0(∂Ω, dσ) and c(X) ∈ R such that SgX + c(X) = E(X − ·)|∂Ω.

If, in place of (7.1.7), we now take

G(X, Y ) := E(X − Y ) − c(X) −
(
SgX

)
(Y ), Y ∈ Ω, (7.1.35)

then this function continues to satisfy all the properties listed in (7.1.8)-(7.1.9). Once such a Green
function has been constructed, the proof of uniqueness for the problem (7.1.1) when n = 1 proceeds
as in the higher dimensional case (cf. Step 3).

Step 6. Existence of a solution for the exterior Dirichlet problem which satisfying a natural esti-
mate and regularity property. In the case when n ≥ 2, the function u(X) := S(S−1f), X ∈ Ω−,
does the job. Assume next that n = 1. The same type of reasoning as for (7.1.34) shows that the
operator

Lp
−1(∂Ω, dσ) ⊕ R ∋ (g, c) 7→

(
Sg + c, 〈g, 1〉

)
∈ Lp(∂Ω, dσ) ⊕ R (7.1.36)
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is an isomorphism whenever 1 < p < ∞. Thus, there exists C > 0 such that for any given function
f ∈ Lp(∂Ω, dσ) and constant a ∈ R one can find g ∈ Lp

−1(∂Ω, dσ) and c ∈ R with

‖g‖Lp
−1(∂Ω,dσ) + |c| ≤ C‖f‖Lp(∂Ω,dσ) and Sg + c = f, 〈g, 1〉 = 2π a. (7.1.37)

If we now set u(X) := (Sg)(X) + c for X ∈ Ω−, it follows that u is a harmonic function for which
‖N δu‖Lp(∂Ω,dσ) ≤ C(Ω, δ)‖f‖Lp(∂Ω,dσ), for every δ > 0, and

u(X) =
1

2π
〈g, 1〉 log |X| + c = a log |X| + O(1) as |X| → ∞. (7.1.38)

Since, by virtue of (7.1.34) being invertible and compatible with (7.1.36), f ∈ Lp
1(∂Ω, dσ) implies

g ∈ Lp(∂Ω, dσ), this function also satisfies (7.1.3).

Step 7. Uniqueness for the exterior Dirichlet problem when n = 1. Let u solve (7.1.4) for f = 0
and a = 0. In particular, u(X) = O(1) as |X| → ∞ so u is harmonic at infinity. Thus, from

(7.1.32), ∂νu(X)
∣∣∣
∂B(X∗,2R)

= O(R−2) as R → ∞ and, hence,
∫
∂B(X∗,2R) u∂νu dσ = O(R−1) = o(1)

as R → ∞. These are the only alterations needed for the reasoning in Step 4 to go through in the
current setting.

This concludes the proof of Theorem 7.1.2. ¤

Theorem 7.1.3 Let p ∈ (1,∞) be given and assume that Ω ⊂ Rn+1 is a bounded domain satisfying
a two-sided John condition and whose boundary is Ahlfors regular. Then there exists ε > 0 which
depends only on p, n and the John and Ahlfors regularity constants of Ω having the following role.

If Ω is an ε-regular SKT domain then the Neumann boundary value problem, which asks to find
a function u ∈ C0(Ω) satisfying





∆u = 0 in Ω,

N (∇u) ∈ Lp(∂Ω, dσ),

∂νu = f ∈ Lp(∂Ω, dσ),

(7.1.39)

has a solution if and only if the datum f satisfies the necessary compatibility conditions

∫

∂D
f dσ = 0, ∀D connected component of Ω. (7.1.40)

Moreover, this solution is unique modulo functions which are locally constant in Ω, and there exists
a finite constant C > 0 such that if f ∈ Lp(∂Ω, dσ) is as in (7.1.40) then any solution u of (7.1.39)
satisfies

‖N (∇u)‖Lp(∂Ω,dσ) ≤ C‖f‖Lp(∂Ω,dσ). (7.1.41)

Finally, similar results are valid for the exterior Neumann problem, i.e., when Ω is replaced by
Ω− := Rn+1 \ Ω̄ in (7.1.40)-(7.1.39), provided this time D in (7.1.40) stands for arbitrary bounded
connected components of Ω−, and a decay condition of the form
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u(X) =





a + O(|X|1−n) as |X| → ∞, for some a ∈ R, if n ≥ 2,

1
2π

(∫
∂D∞

f dσ
)

log |X| + O(1) as |X| → ∞, if n = 1,
(7.1.42)

where D∞ is the unbounded component of Ω−, is incorporated into the statement of the problem.

Proof. For the sake of clarity, we once again choose to divide the treatment of (7.1.39) into a series
of steps. To state our first preliminary result, recall the definition of the truncated nontangential
maximal function from (2.3.26).

Step 1. If u is a harmonic function in Ω which satisfies

N (∇u) ∈ Lp(∂Ω, dσ) for some p ∈ (1,∞), (7.1.43)

then

∃u
∣∣∣
∂Ω

∈ Lp
1(∂Ω, dσ), ∃∇u

∣∣∣
∂Ω

∈ Lp(∂Ω, dσ), and

u(X) = D(u|∂Ω)(X) − S(∂νu)(X) for every X ∈ Ω.
(7.1.44)

The existence of boundary traces is justified by the same type of argument as in Step 1 of the proof
of Theorem 7.1.2. With this in hand, the integral representation formula (7.1.44) can be established
in an analogous fashion to the Cauchy reproducing formula (4.7.13), by using Theorem 2.3.1.

Step 2. Let u be a solution for the homogeneous version of (7.1.39). If Ω is connected, then u is
constant in Ω. From Step 1, we know that

u = D(u|∂Ω) − S(∂νu) = D(u|∂Ω) in Ω, (7.1.45)

since ∂νu = 0. Going nontangentially to the boundary, this now gives (−1
2I +K)(u|∂Ω) = 0. Hence,

from the claim made in Theorem 6.4.1 about the operator (6.3.49), we may conclude that u|∂Ω is
a constant function. Now, D maps constants on ∂Ω to constants in Ω, so (7.1.45) shows that u is
a constant in Ω.

Step 3. Assume that f ∈ Lp
0(∂Ω, dσ) and that Ω is connected. Then the problem (7.1.39) has a

solution u which obeys the estimate (7.1.41). Given f ∈ Lp
0(∂Ω, dσ), we may take

u(X) = S
(
(−1

2I + K∗)−1f
)
(X), X ∈ Ω. (7.1.46)

From the claim made in Theorem 6.3.6 about the operator (6.3.44) we know that this is meaningful.
Also, (7.1.41) holds. Finally, (3.3.40) shows that ∂νu = f so that u solves (7.1.39).

Step 4. Let Ω ⊂ Rn+1 be a domain as in the statement of the theorem, with arbitrary topology.
Then for each f ∈ Lp(∂Ω, dσ) satisfying (7.1.40) the problem (7.1.39) admits a solution which
obeys the estimate (7.1.41). Furthermore, this solution is unique modulo functions which are locally
constant in Ω. Based on Steps 1-3, this is readily seen by working in each connected component
Ωℓ of Ω.
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Steps 1-4 conclude the treatment of the interior Neumann problem (7.1.39).
The argument for the exterior Neumann problem starts by observing that, in the same spirit as

before, matters can be reduced to working in each connected component of Ω− separately. For each
such component which happens to be bounded, our earlier reasoning applies. The only remaining
case is when the bounded chord arch domain Ω ⊂ Rn+1 is such that Rn+1 \ Ω̄ is connected. In this
scenario, D∞ = Ω− and the compatibility conditions (7.1.40) are void. Also, in place of (7.1.46)
we now take

u(X) = (Sg)(X), X ∈ Rn+1 \ Ω̄, where g := (1
2I + K∗)−1f. (7.1.47)

This gives a solution for which the estimate (7.1.41) holds. Also, clearly, u(X) = O(|X|1−n) as
|X| → ∞, if n ≥ 2. Let us also observe that, if v := Sg in Ω+ := Rn+1 \ Ω−, then

∫

∂Ω−

g dσ =

∫

∂Ω−

(1
2I + K∗)g dσ −

∫

∂Ω−

(−1
2I + K∗)g dσ

=

∫

∂Ω−

f dσ −
∫

∂Ω+

∂νv dσ =

∫

∂D∞

f dσ, (7.1.48)

since v is harmonic in Ω+ and satisfies N (∇v) ∈ L2(∂Ω+, dσ). Hence, when n = 1, we have

u(X) = (Sg)(X) =
1

2π

(∫

∂Ω−

g dσ
)

log |X| + O(|X|−1)

=
1

2π

(∫

∂D∞

f dσ
)

log |X| + O(|X|−1) as |X| → ∞, (7.1.49)

which shows that this particular solution satisfies an even stronger decay condition than the one
specified in the statement of the theorem.

Therefore, we are left with the task of proving uniqueness (modulo locally constant functions)
for the exterior Neumann problem. Let then u be a function which which decays as in (7.1.42)
and solves the version of (7.1.39) in which f = 0 and Ω has been replaced by Ω− = Rn+1 \ Ω̄.
By reasoning as before, there is no loss of generality is assuming that the latter is a connected
domain. Also, by subtracting a constant from u if necessary, it can be assumed that u is harmonic
at infinity, in which case (7.1.32) holds. When n ≥ 2, this suffices to prove the following integral
representation formula

u(X) = −D(u|∂Ω)(X) + S(∂νu)(X), X ∈ Ω−. (7.1.50)

Using ∂νu = 0, then going nontangentially to the boundary, we arrive at (1
2I + K)(u|∂Ω) = 0.

Hence, since the operator (6.3.47) in Theorem 6.4.1 is invertible in our setting, this gives u|∂Ω = 0.
Returning with this back in (7.1.50) we obtain u = 0 in Ω−.

When n = 1, the decay exhibited by u does not, generally speaking, permit us to write (7.1.50).
However, writing (7.1.50) with Ω− replaced by B(R, X∗) ∩ Ω−, with X∗ as before and R large,
then for each j ∈ {1, ..., n + 1} taking ∂j of both sides (in order to enhance the decay) and, finally,
passing to the limit R → ∞ yields (keeping in mind that ∂νu = 0 on ∂Ω) the weaker version
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∇
[
u + D(u|∂Ω)

]
(X) = 0 ∀X ∈ Ω−. (7.1.51)

Consequently, since Ω− is connected,

u = −D(u|∂Ω) + c in Ω−, (7.1.52)

for some constant c. Once again, going to the nontangentially to the boundary in (7.1.52) gives
(1
2I + K)(u|∂Ω) = c, hence zero in Lp

1(∂Ω, dσ)/R. Invoking the fact that (6.3.50) is invertible,
now allows us to conclude that u|∂Ω is a constant. Utilizing this back in (7.1.52) ultimately gives
u ≡ constant in Ω−, as desired. This finishes the proof of the Theorem 7.1.3. ¤

Theorem 7.1.4 Let p ∈ (1,∞) and µ ∈ (0, 1) be given and assume that Ω ⊂ Rn+1 is a bounded
domain satisfying a two-sided John condition and whose boundary is Ahlfors regular. As usual, set
Ω+ := Ω, Ω− := Rn+1 \ Ω̄.

Then there exists ε > 0 which depends only on p, µ, n and the John and Ahlfors regularity
constants of Ω having the following role. If Ω is an ε-regular SKT domain then the transmission
boundary value problem, concerned with finding two functions u± ∈ C0(Ω±) satisfying





∆u± = 0 in Ω±,

N (∇u±) ∈ Lp(∂Ω, dσ),

u+
∣∣∣
∂Ω

−u−
∣∣∣
∂Ω

= f ∈ Lp
1(∂Ω, dσ), given,

∂νu
+ − µ ∂νu

− = g ∈ Lp(∂Ω, dσ), given,

(7.1.53)

and the decay condition

u−(X) =





O(|X|1−n) as |X| → ∞, if n ≥ 2,

− 1
2πµ

(∫
∂Ω g dσ

)
log |X| + O(|X|−1) as |X| → ∞, if n = 1,

(7.1.54)

has a unique solution. In addition, there exists C > 0 such that

‖N (∇u+)‖Lp(∂Ω,dσ) + ‖N (∇u−)‖Lp(∂Ω,dσ) ≤ C‖f‖Lp
1(∂Ω,dσ) + C‖g‖Lp(∂Ω,dσ). (7.1.55)

Proof. To begin with, we would like to point out that, from the proof of Theorem 7.1.3, the
nontangential traces u±|∂Ω, (∇u±)|∂Ω exist. Hence, the formulation of the transmission problem is
meaningful. Next, given that under our current assumptions on Ω, the operator (6.3.43) is invertible
and that λ := 1

2
µ+1
µ−1 ∈ (−∞, 1

2) whenever µ ∈ (0, 1), a solution for (7.1.53)-(7.1.54) can be written
explicitly in the form

u+ := D+f +
1

1 − µ
S+

[(
1
2

µ+1
µ−1I + K∗

)−1(
g − ∂νD+f − µ ∂νD−f

)]
in Ω+, (7.1.56)

u− := D−f +
1

1 − µ
S−

[(
1
2

µ+1
µ−1I + K∗

)−1(
g − ∂νD+f − µ ∂νD−f

)]
in Ω−. (7.1.57)
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Here, for an arbitrary h ∈ Lp(∂Ω, dσ), we have denoted by D±h and S±h, respectively, the double
and single layer potentials associated with Ω viewed as functions defined in Ω±. Then a direct
calculation shows that the conditions in (7.1.53) are satisfied and that the estimate (7.1.55) holds.
Furthermore, it is clear that u−(X) = O(|X|1−n) as |X| → ∞, when n ≥ 2. To compute the decay
at infinity for u− in the case n = 1, we first note that, much as in (7.1.48), the following general
implication is valid

λ ∈ R, h1, h2 ∈ Lp(∂Ω, dσ), (λI + K∗)h1 = h2 =⇒
∫

∂Ω
h2 dσ = (λ + 1

2)

∫

∂Ω
h1 dσ. (7.1.58)

Set now h1 :=
(

1
2

µ+1
µ−1I + K∗

)−1(
g − ∂νD+f − µ ∂νD−f

)
and h2 := g − ∂νD+f − µ ∂νD−f so that

(
1
2

µ+1
µ−1I + K∗

)
h1 = h2. Also, observe that

∫

∂Ω
h2 dσ =

∫

∂Ω
g dσ +

∫

∂Ω
∂νD+f dσ − µ

∫

∂Ω
∂νD−f dσ

=

∫

∂Ω
g dσ + (1 − µ)

∫

∂Ω
∂νD+f dσ

=

∫

∂Ω
g dσ, (7.1.59)

since a calculation based on (3.6.31) shows that

∂νD+f = ∂νD−f, ∀ f ∈ Lp
1(∂Ω, dσ). (7.1.60)

Hence,
∫
∂Ω h1 dσ = µ−1

µ

∫
∂Ω g dσ, by (7.1.58) and (7.1.60). Consequently, when n = 1,

u−(X) = D−f(X) + 1
1−µS−h1(X) =

1

2π(1 − µ)

(∫

∂Ω
h1 dσ

)
log |X| + O(|X|−1)

= − 1

2πµ

(∫

∂Ω
g dσ

)
log |X| + O(|X|−1), as |X| → ∞, (7.1.61)

in agreement with the case n = 1 of (7.1.54).
There remains the issue of proving uniqueness for (7.1.53)-(7.1.54). To this end, assume that

u± solve the homogeneous version of (7.1.53) and that

u−(X) =

{
O(|X|1−n) as |X| → ∞, if n ≥ 2,

O(|X|−1) as |X| → ∞, if n = 1.
(7.1.62)

This shows that the harmonic functions u± are sufficiently well-behaved so that the following
Green’s formulas hold

u± = ±D±
(
u±

∣∣∣
∂Ω

)
∓ S±(∂νu

±) in Ω±. (7.1.63)
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Taking the normal derivatives of both sides of (7.1.63), then adding the two versions corresponding
to choice plus or minus for the sign, gives, keeping in mind that u+|∂Ω = u−|∂Ω and ∂νu

+ = µ∂νu
−,

that (1
2

µ+1
µ−1I + K∗)(∂νu

−) = 0. Thus, ∂νu
− = 0 and, further, ∂νu

+ = 0. In particular, by
Proposition 3.2.5, the function

u :=

{
u+ in Ω+,

u− in Ω−,
(7.1.64)

belongs to L1
loc(R

n+1) and, in the distributional sense, satisfies ∆u = 0 in Rn+1. Furthermore, u
decays at infinity. Hence, u = 0 in Rn+1, as wanted. ¤

7.2 Boundary value problems for the Stokes system

In this subsection we present our main well-posedness results for the Stokes system of hydrostatics
in ε-regular SKT domains. They include the three basic types of boundary conditions: Dirichlet
and its regular version (cf. Theorem 7.2.1), Neumann (Theorem 7.2.2), and transmission (Theo-
rem 7.2.3).

The proof of Theorem 7.2.1 largely parallels that of its harmonic counterpart, Theorem 7.1.2,
and relies in an essential fashion on the invertibility results from Theorem 6.4.3, Theorem 6.3.8.
A similar set of comments apply to Theorem 7.2.2, Theorem 7.2.3, in which we follow strategies
similar to those utilized in the course of the proofs of Theorem 7.1.3, Theorem 7.1.4, as well as [94]
where these problems have been treated in Lipschitz domains. We shall therefore omit including
further details and, instead, confine ourselves to providing the statements of the aforementioned
theorems.

Theorem 7.2.1 Let p ∈ (1,∞) be given and assume that Ω ⊂ Rn+1, n ≥ 1, is a bounded domain
satisfying a two-sided John condition and whose boundary is Ahlfors regular. Then there exists
ε > 0 which depends only on p, n and the John and Ahlfors regularity constants of Ω with the
following property. If Ω is an ε-regular SKT domain then the interior Dirichlet boundary value
problem





∆~u = ∇π, div ~u = 0 in Ω,

N (~u) ∈ Lp(∂Ω, dσ),

~u
∣∣∣
∂Ω

= ~f ∈ Lp
ν+(∂Ω, dσ),

(7.2.1)

has a solution, which is unique modulo adding functions which are locally constant in Ω to the
pressure term. In addition, there exists a finite constant C > 0 such that

‖N (~u)‖Lp(∂Ω,dσ) ≤ C‖~f‖[
Lp(∂Ω,dσ)

]n+1 , (7.2.2)

and the solution satisfies the following regularity property:

~f ∈ Lp
1,ν+

(∂Ω, dσ) =⇒ N (∇~u), N (π) ∈ Lp(∂Ω, dσ)

and ‖N (∇~u)‖Lp(∂Ω,dσ) + ‖N (π)‖Lp(∂Ω,dσ) ≤ C‖~f‖[
Lp

1(∂Ω,dσ)
]n+1 .

(7.2.3)
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Similar results (including (7.2.3)) are valid for the exterior Dirichlet problem, formulated much
as (7.2.1) but for Rn+1 \ Ω̄, with the additional decay conditions

~u(X) =

{
O(|X|1−n) as |X| → ∞, if n ≥ 2,

E(X) ~A + O(1) as |X| → ∞, if n = 1,
(7.2.4)

∂j~u(X) =

{
O(|X|−n) as |X| → ∞, if n ≥ 2,

∂jE(X) ~A + O(|X|−2) as |X| → ∞, if n = 1,
(7.2.5)

π(X) =

{
O(|X|−n) as |X| → ∞, if n ≥ 2,

〈∇E∆(X), ~A〉 + O(|X|−2) as |X| → ∞, if n = 1,
(7.2.6)

where E∆ is the fundamental solution for the Laplacian from (3.3.24), E(X) = (Ejk(X))1≤j,k≤n+1

with Ejk(X) as in (6.1.20), for some a priori given constant ~A ∈ R2. Also, the standard nontan-
gential maximal operator in (7.2.2), (7.2.3) should be replaced by its truncated version.

Theorem 7.2.2 Let p ∈ (1,∞) be given and assume that Ω ⊂ Rn+1, n ≥ 1, is a bounded domain
satisfying a two-sided John condition and whose boundary is Ahlfors regular. Then there exists
ε > 0 which depends only on p, n and the John and Ahlfors regularity constants of Ω with the
following property. If 1− ε < γ ≤ 1 and Ω is an ε-regular SKT domain then the interior Neumann
boundary value problem





∆~u = ∇π, div ~u = 0 in Ω,

N (∇~u), N (π) ∈ Lp(∂Ω, dσ),

∂γ
ν (~u, π) = ~f ∈

[
Lp(∂Ω, dσ)

]n+1
,

(7.2.7)

has a solution if and only if the datum ~f satisfies finitely many (necessary) linear compatibility
conditions; more precisely, if and only if

~f ∈ Im
(
−1

2I + K∗
γ : Lp

Ψγ
+
(∂Ω, dσ) → Lp

Ψγ
+
(∂Ω, dσ)

)
. (7.2.8)

Moreover, this solution is unique modulo adding to the velocity field functions from Ψγ(Ω). In
addition, there exists a finite constant C > 0 such that

‖N (∇~u)‖Lp(∂Ω,dσ) + ‖N (π)‖Lp(∂Ω,dσ) ≤ C‖~f‖[
Lp(∂Ω,dσ)

]n+1 . (7.2.9)

Finally, a similar result holds for the exterior domain Rn+1 \ Ω̄ granted that one includes the
decay conditions
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~u(x) =





O(|X|1−n) as |X| → ∞, if n ≥ 2,

E(X)
(∫

∂Ω
~f dσ

)
+ O(|X|−1) as |X| → ∞, if n = 1,

(7.2.10)

∂j~u(X) = (∂jE)(X)
(∫

∂Ω

~f dσ
)

+ O(|X|−n−1) as |X| → ∞, 1 ≤ j ≤ n + 1, (7.2.11)

π(X) =





O(|X|−n) as |X| → ∞, if n ≥ 2,

(−∇E∆)(X) ·
(∫

∂Ω
~f dσ

)
+ O(|X|−2) as |X| → ∞, if n = 1,

(7.2.12)

where E∆ is the fundamental solution for the Laplacian from (3.3.24), E(X) = (Ejk(X))1≤j,k≤n+1

with Ejk(X) as in (6.1.20). More precisely, a solution to the exterior problem satisfying the above
decay conditions exists if and only if

~f ∈ Im
(

1
2I + K∗

γ : Lp
Ψγ

−
(∂Ω, dσ) → Lp

Ψγ
−
(∂Ω, dσ)

)
, (7.2.13)

and solutions are unique modulo adding to the velocity field functions from Ψγ(Rn+1 \ Ω̄).

Theorem 7.2.3 Let p ∈ (1,∞) and µ ∈ (0, 1) be given and assume that Ω ⊂ Rn+1, n ≥ 1, is a
bounded domain satisfying a two-sided John condition and whose boundary is Ahlfors regular. Set
Ω+ := Ω and Ω− := Rn \ Ω̄.

Then there exists ε > 0 which depends only on p, n, µ and the John and Ahlfors regularity
constants of Ω with the following property. If 1−ε < γ ≤ 1 and Ω is an ε-regular SKT domain then
the transmission problem, concerned with finding two pairs of functions (~u±, π±) in Ω± satisfying





∆~u± = ∇π±, div ~u± = 0 in Ω±,

N (∇~u±), N (π±) ∈ Lp(∂Ω, dσ),

~u+

∣∣∣
∂Ω

−~u−
∣∣∣
∂Ω

= ~g ∈
[
Lp

1(∂Ω, dσ)
]n+1

,

∂γ
ν (~u+, π+) − µ ∂γ

ν (~u−, π−) = ~f ∈
[
Lp(∂Ω, dσ)

]n+1
,

(7.2.14)

and the decay conditions

~u−(X) =





O(|X|1−n) as |X| → ∞, if n ≥ 2,

− 1
µE(X)

(∫
∂Ω

~f dσ
)

+ O(|x|−1) as |x| → ∞, if n = 2,
(7.2.15)

∂j~u−(X) = − 1
µ(∂jE)(X)

(∫

∂Ω

~f dσ
)

+ O(|X|−n−1) as |X| → ∞, (7.2.16)

π−(X) =





O(|X|−n) as |X| → ∞, if n ≥ 2,

1
µ(∇E∆)(X) ·

(∫
∂Ω

~f dσ
)

+ O(|X|−2) as |X| → ∞, if n = 1,
(7.2.17)

where E∆ is the fundamental solution for the Laplacian from (3.3.24), E(X) = (Ejk(X))1≤j,k≤n+1

with Ejk(X) as in (6.1.20), has a unique solution. In addition, there exists C > 0 such that
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‖N (∇~u±)‖Lp(∂Ω,dσ) + ‖N (π±)‖Lp(∂Ω,dσ) ≤ C‖~g‖[
Lp

1(∂Ω,dσ)
]n+1 + C‖~f‖[

Lp(∂Ω,dσ)
]n+1 . (7.2.18)

7.3 Boundary value problems for the Lamé system

Here we collect results for the Lamé system of elastostatics in ε-regular SKT domains in Rn+1 which
are analogous in spirit to those in § 7.2. Theorem 7.3.1, Theorem 7.3.2, Theorem 7.3.3 below deal,
respectively, with Dirichlet (and regularity), Neumann and transmission problems for the Lamé
system (6.1.5). Their proofs are analogous to their counterparts in § 7.2 (relying essentially on the
invertibility results from Theorems 6.3.9, 6.4.3) and we omit the routine details.

Theorem 7.3.1 Let λ, µ, as in (6.1.1), and p ∈ (1,∞) be given and assume that Ω ⊂ Rn+1, n ≥ 1,
is a bounded domain satisfying a two-sided John condition and whose boundary is Ahlfors regular.
Then there exists ε > 0 which depends only on p, n, λ, µ and the John and Ahlfors regularity
constants of Ω with the following property. If Ω is an ε-regular SKT domain then the interior
Dirichlet boundary value problem





µ∆~u + (µ + λ)∇div ~u = 0 in Ω,

~u
∣∣∣
∂Ω

= ~f ∈
[
Lp(∂Ω, dσ)

]n+1
,

N (~u) ∈ Lp(∂Ω, dσ),

(7.3.1)

has a unique solution. In addition, there exists a finite constant C > 0 such that

‖N (~u)‖Lp(∂Ω,dσ) ≤ C‖~f‖[
Lp(∂Ω,dσ)

]n+1 , (7.3.2)

and the solution satisfies the following regularity property:

~f ∈
[
Lp

1(∂Ω, dσ)
]n+1

=⇒ N (∇~u) ∈ Lp(∂Ω, dσ)

and ‖N (∇~u)‖Lp(∂Ω,dσ) ≤ C‖~f‖[
Lp

1(∂Ω,dσ)
]n+1 .

(7.3.3)

Similar results (including (7.3.3)) are valid for the exterior Dirichlet problem, formulated much
as (7.3.1) but for Rn+1 \ Ω̄, with the additional decay conditions

~u(X) =

{
O(|X|1−n) as |X| → ∞, if n ≥ 2,

E(X) ~A + O(1) as |X| → ∞, if n = 1,
(7.3.4)

∂j~u(X) =

{
O(|X|−n) as |X| → ∞, if n ≥ 2,

∂jE(X) ~A + O(|X|−2) as |X| → ∞, if n = 1,
(7.3.5)

where E(X) = (Ejk(X))1≤j,k≤n+1 with Ejk(X) as in (6.1.6), for some a priori given constant
~A ∈ R2. Also, the standard nontangential maximal operator in (7.3.2), (7.3.3) should be replaced
by its truncated version.
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Theorem 7.3.2 Let λ, µ, as in (6.1.1), and p ∈ (1,∞) be given and assume that Ω ⊂ Rn+1, n ≥ 1,
is a bounded domain satisfying a two-sided John condition and whose boundary is Ahlfors regular.
Then there exists ε > 0 which depends only on p, n, λ, µ and the John and Ahlfors regularity
constants of Ω with the following property. If Ω is an ε-regular SKT domain and

−µ < r ≤ µ is such that
∣∣∣r − µ(µ + λ)

3µ + λ

∣∣∣ < ε, (7.3.6)

then the interior Neumann boundary value problem





µ∆~u + (µ + λ)∇div ~u = 0 in Ω,

N (∇~u) ∈ Lp(∂Ω, dσ),

∂r
ν~u = ~f ∈ Lp(∂Ω, dσ),

(7.3.7)

has a solution if and only if the datum ~f satisfies finitely many (necessary) linear compatibility
conditions. Moreover, this solution is unique modulo functions from Ψr(Ω). In addition, there
exists a finite constant C > 0 such that

‖N (∇~u)‖Lp(∂Ω,dσ) ≤ C‖~f‖[
Lp(∂Ω,dσ)

]n+1 . (7.3.8)

Finally, a similar result holds for the exterior domain Rn+1 \ Ω̄ granted that one includes the
decay conditions

~u(x) =





O(|X|1−n) as |X| → ∞, if n ≥ 2,

E(X)
(∫

∂Ω
~f dσ

)
+ O(|X|−1) as |X| → ∞, if n = 1,

(7.3.9)

∂j~u(X) = (∂jE)(X)
(∫

∂Ω

~f dσ
)

+ O(|X|−n−1) as |X| → ∞, 1 ≤ j ≤ n + 1, (7.3.10)

where E(X) = (Ejk(X))1≤j,k≤n+1 with Ejk(X) as in (6.1.6).

Theorem 7.3.3 Let λ, µ, as in (6.1.1), and p ∈ (1,∞) be given and assume that Ω ⊂ Rn+1, n ≥ 1,
is a bounded domain satisfying a two-sided John condition and whose boundary is Ahlfors regular.
Set Ω+ := Ω and Ω− := Rn \ Ω̄.

Then there exists ε > 0 which depends only on p, n, λ, µ and the John and Ahlfors regularity
constants of Ω with the following property. If Ω is an ε-regular SKT domain and (7.3.6) holds then
the transmission problem, concerned with finding two pairs of functions (~u±, π±) in Ω± satisfying





µ∆~u± + (µ + λ)∇div ~u± = 0 in Ω,

N (∇~u±) ∈ Lp(∂Ω, dσ),

~u+

∣∣∣
∂Ω

−~u−
∣∣∣
∂Ω

= ~g ∈
[
Lp

1(∂Ω, dσ)
]n+1

,

∂r
ν~u+ − η ∂r

ν~u− = ~f ∈
[
Lp(∂Ω, dσ)

]n+1
,

(7.3.11)

220



and the decay conditions

~u−(X) =





O(|X|1−n) as |X| → ∞, if n ≥ 2,

− 1
ηE(X)

(∫
∂Ω

~f dσ
)

+ O(|x|−1) as |x| → ∞, if n = 2,
(7.3.12)

∂j~u−(X) = − 1
η (∂jE)(X)

(∫

∂Ω

~f dσ
)

+ O(|X|−n−1) as |X| → ∞, (7.3.13)

where E(X) = (Ejk(X))1≤j,k≤n+1 with Ejk(X) as in (6.1.6), has a unique solution. In addition,
there exists C > 0 such that

‖N (∇~u±)‖Lp(∂Ω,dσ) ≤ C‖~g‖[
Lp

1(∂Ω,dσ)
]n+1 + C‖~f‖[

Lp(∂Ω,dσ)
]n+1 . (7.3.14)

7.4 Boundary value problems for Maxwell’s equations

For a given wave number k ∈ C \ {0} with Im k ≥ 0, call a vector field E defined in a neighborhood
of infinity in R3 and satisfying (∆ + k2)E = 0 there, radiating at infinity if

(curlE)(X) × X

|X| + (div E)(X)
X

|X| −
√
−1kE(X) = o(|X|−1) as |X| → ∞, (7.4.1)

uniformly for all directions X/|X| in R3.

Theorem 7.4.1 Let p ∈ (1,∞) be given and assume that Ω ⊂ R3 is a bounded domain satisfying
a two-sided John condition and whose boundary is Ahlfors regular. Then there exists ε > 0 which
depends only on p, n and the John and Ahlfors regularity constants of Ω having the following role.
If Ω is an ε-regular SKT domain and k ∈ C \ {0} with Im k ≥ 0 the exterior Maxwell boundary
value problem





curlE −
√
−1kH = 0 in R3 \ Ω,

curlH +
√
−1kE = 0 in R3 \ Ω,

E, H radiate at infinity,

N (E), N (H) ∈ Lp(∂Ω, dσ) and ∃E
∣∣∣
∂Ω

, ∃H
∣∣∣
∂Ω

,

ν × E
∣∣∣
∂Ω

= ~g ∈
[
Lp(∂Ω, dσ)

]3
,

〈
ν, H

∣∣∣
∂Ω

〉
= h ∈ Lp(∂Ω, dσ),

(7.4.2)

is solvable if and only if

~g ∈ Lp,Div
tan (∂Ω, dσ) and Div~g = −

√
−1k h. (7.4.3)

Granted (7.4.3), the solution is unique, depends analytically on k in R2
+ and continuously on k in

R2
+ \ {0} (the principle of limiting absorption), and satisfies
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‖N (E)‖Lp(∂Ω,dσ) + ‖N (H)‖Lp(∂Ω,dσ) ≤ C‖~f‖
Lp,Div

tan (∂Ω,dσ)
(7.4.4)

for some positive constant C depending only on k, p and Ω. Furthermore, there exists a sequence
of real numbers {kj}j, with no finite accumulation point, with the property that if k ∈ R2

+ \ {kj}j

then a similar result is valid for the interior Maxwell boundary value problem





curlE −
√
−1kH = 0 in Ω,

curlH +
√
−1kE = 0 in Ω,

N (E), N (H) ∈ Lp(∂Ω, dσ) and ∃E
∣∣∣
∂Ω

, ∃H
∣∣∣
∂Ω

,

ν × E
∣∣∣
∂Ω

= ~g ∈
[
Lp(∂Ω, dσ)

]3
,

〈
ν, H

∣∣∣
∂Ω

〉
= h ∈ Lp(∂Ω, dσ),

(7.4.5)

In the case in which k ∈ {kj}j is a nonzero number, the problem (7.4.5) is solvable if and only
(7.4.3) holds and the data ~g, h satisfy finitely many linear conditions (in which case the solution is
unique modulo a finite dimensional space).

Proof. Let us first deal with the exterior boundary value problem (7.4.2). The necessity of (7.4.3)
from (7.4.2) and Lemma 6.5.2, so we turn to the sufficiency part. To show existence, we first remark
that when either Im k > 0, or when k is not of the exceptional values {ζj}j from Theorem 6.5.7

corresponding to λ = ±1
2 , then the operator −1

2I + Mk is invertible on Lp,Div
tan (∂Ω, dσ), so we may

take E := curlSk
~f , H := 1√

−1k
curlE where we have set ~f := (−1

2I + Mk)
−1~g ∈ Lp,Div

tan (∂Ω, dσ).

The treatment of the case when k is one of the exceptional values described above requires an
appropriate modification of this approach on which we now elaborate. The new difficulty is that we
have to show that the problem (7.4.2) remains well-posed even when the integral operator −1

2I+Mk

is no longer invertible. Since this is, nonetheless, Fredholm with index zero, the idea is to add further
source terms (of compact nature) in order to ensure that the resulting perturbed operator has trivial
kernel. More specifically, assume that k ∈ R \ {0}, and for each ~f ∈ Lp,Div

tan (∂Ω, dσ) consider

E := curlSk
~f +

√
−1 curl curlSk(ν × S0(S0(~f)), H := 1√

−1k
curlE in R3 \ Ω. (7.4.6)

It is then not difficult to check that that (E, H) is a radiating solution of the Maxwell system

in R3 \ Ω, for which N (E), N (H) ∈ Lp(∂Ω, dσ), the traces E
∣∣∣
∂Ω

, H
∣∣∣
∂Ω

exist, and such that

ν × E = (−1
2I + Mk +

√
−1Nk ◦ (ν × S2

0))~f , where

Nk
~f := ν ×

(
curl curlSk

~f
∣∣∣
∂Ω

)
= k2ν × Sk

~f + ν ×∇Sk(Div ~f). (7.4.7)

Hence, matters are reduced to proving the invertibility of the operator

−1
2I + Mk +

√
−1Nk ◦ (ν × S2

0) : Lp,Div
tan (∂Ω, dσ) −→ Lp,Div

tan (∂Ω, dσ). (7.4.8)

To this end, we note from Theorem 6.5.6 that the operator −1
2I + Mk is Fredholm with index

zero on Lp,Div
tan (∂Ω, dσ). Since, by Lemma 6.5.2, ν × S2

0 also maps Lp,Div
tan (∂Ω, dσ) compactly into
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itself, it follows that that the operator in (7.4.8) is Fredholm with index zero. Consequently, we
are left with showing that the operator (7.4.8) is injective on Lp,Div

tan (∂Ω, dσ). For p = 2 this has
been proved in [25] p. 167 (there it is assumed that ∂Ω ∈ C2 but for this particular purpose the
reasoning in [25] can be adapted to the current setting, given the results we have proved so far.
Consider now ~f ∈ Lp,Div

tan (∂Ω, dσ) such that (−1
2I + Mk +

√
−1Nk ◦ (ν × S2

0))~f = 0 and fix ko ∈ C

with Im ko > 0. It follows that

~f = −(−1
2I + Mko)

−1[(Mko − Mk)~f +
√
−1Nk(ν × S0(S0(~f))]. (7.4.9)

Recall next that the fractional integration theorem remains valid on spaces of homogeneous type.
For example, a rather general version (as well as references to earlier work) can be found in [76].
In the context of (7.4.9), this gives that ~f ∈ Lp+ε,Div

tan (∂Ω, dσ) for some ε > 0. Iterating this

sufficiently many times we finally arrive at ~f ∈ L2,Div
tan (∂Ω, dσ) and, therefore, by the L2-theory

alluded to above, ~f = 0. Thus, the existence part is proved.
To address the uniqueness issue, assume first that p ≥ 2. The case Im k > 0, when E, H have

exponential decay at infinity, is easier and can be handled much as in [89], so we restrict attention
to k ∈ R \ {0}. First, the radiation condition (6.5.53) implies

0 = lim
R→∞

∫

|X|=R
|H × ν − E|2 dσ

= lim
R→∞

∫

|X|=R

(
|H × ν|2 + |E|2 − 2Re 〈ν × E, Hc〉

)
dσ. (7.4.10)

Since ν × E = 0 on ∂Ω and k ∈ R, integrating by parts gives

Re

∫

|X|=R
〈ν × E, Hc〉 dσ = Re

(
√
−1k

∫

B(0,R)\Ω

[
|H|2 − |E|2

]
dX

)
= 0. (7.4.11)

Next, from this and (7.4.10) we may now deduce that
∫
|X|=R |E|2 dσ = o(1) as R → ∞. Rellich’s

lemma (cf. (6.5.55)) then gives that E and, hence, also H, vanishes in R3\Ω, at least if this domain
in connected. Nonetheless, much as in the proof of Proposition 6.5.5, this argument can be further
refined as to treat domains with arbitrary topology.

We now consider the remaining case, i.e., when 1 < p < 2. First, from the Stratton-Chu formula
(cf. Theorem 6.6 on p. 153 in [25]), which continues to hold in the current setting, we have that

E = ∇Sk(〈ν, E〉) −
√
−1k Sk(ν × H) in R3 \ Ω. (7.4.12)

Thus, after applying curl to both sides of (7.4.12), we arrive at

H = −curlSk(ν × H) in R3 \ Ω. (7.4.13)

Going nontangentially to the boundary and applying ν× to both sides of (7.4.13), then yields
(1
2I + Mk)(ν × H) = 0. Hence, with ko as before,

ν × H = −(−1
2I + Mko)

−1[(Mk − Mko)(ν × H)] ∈ Lp+ε,Div
tan (∂Ω) (7.4.14)
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for some positive ε. Iterating finitely many times then gives ν × H ∈ L2,Div
tan (∂Ω, dσ), so that

N (H) ∈ L2(∂Ω, dσ), by (7.4.13). Finally, since 〈ν, E〉 = − 1√
−1k

Div (ν × H) ∈ L2(∂Ω, dσ), it

follows from (7.4.12) that N (E) ∈ L2(∂Ω, dσ). At this point, the conclusion follows from the case
p = 2.

For the interior boundary value problem (7.4.5), Theorem 6.5.7 shows that there exists a se-
quence of real numbers {kj}j , with no finite accumulation points, such that the operator 1

2I + Mk

is invertible on Lp,Div
tan (∂Ω, dσ) whenever k ∈ R2

+ \ {kj}j . In this situation, the well-posedness of
(7.4.5) is handled as before. Assume now that k ∈ {kj}j is a nonzero number and denote by Uk

the collection of all vector fields of the form ν × E where (E, H) satisfies the first three conditions

in (7.4.5). Since Uk contains (1
2I + Mk)

[
Lp,Div

tan (∂Ω, dσ)
]
, it follows that Uk is a closed, finite co-

dimensional subspace of Lp,Div
tan (∂Ω, dσ). Clearly, the problem (7.4.5) is solvable for the boundary

datum ~g, if and only if ~g ∈ Uk.
Finally, if k ∈ {kj}j is a nonzero number and (E, H) is a null-solution of (7.4.5), then writing

the version of (7.4.12) for Ω and performing the same type of manipulations as before, we arrive at
(−1

2I+Mk)(ν×H) = 0. Now, the application (E, H) 7→ ν×H is injective and takes values in a finite

dimensional space, namely the null-space of the Fredholm operator −1
2I + Mk on Lp,Div

tan (∂Ω, dσ).
Hence, the space of null-solutions for (7.4.5) is finite dimensional. The proof of the theorem is
therefore finished. ¤

Our last results in this subsection deal with the the transmission problem for the Maxwell
equations. This amounts to finding two pairs of vector fields (E±, H±) satisfying the following
boundary value problem:





curlE± −
√
−1kH± = 0 in Ω±,

curlH± +
√
−1kE± = 0 in Ω±,

N (E±), N (H±) ∈ Lp(∂Ω, dσ) and ∃E±
∣∣∣
∂Ω

, ∃H±
∣∣∣
∂Ω

,

ν × E+
∣∣∣
∂Ω

−µ ν × E−
∣∣∣
∂Ω

= ~g ∈ Lp,Div
tan (∂Ω, dσ),

ν × H+
∣∣∣
∂Ω

−ν × H−
∣∣∣
∂Ω

= ~h ∈ Lp,Div
tan (∂Ω, dσ),

E−, H− radiate at infinity.

(7.4.15)

The above problem models the scattering of electro-magnetic waves by a penetrable bounded ob-
stacle Ω. See, e.g., [4], [78], [85], [96] for a more extensive discussion in this regard. Here we only
wish to point out that physical considerations dictate that the transmission parameter µ belongs
to the interval (0, 1).

Theorem 7.4.2 Let Ω ⊂ R3 be a bounded regular SKT domain. Then for every k ∈ C \ {0},
µ ∈ (0, 1) and p ∈ (1,∞), the transmission boundary value problem (7.4.15) is well-posed.

Proof. Using the well-posedness of (7.4.2), it is easy to see that (7.4.15) has a solution if and only
if the problem
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curlE± −
√
−1kH± = 0 in Ω±,

curlH± +
√
−1kE± = 0 in Ω±,

N (E±), N (H±) ∈ Lp(∂Ω, dσ) and ∃E±
∣∣∣
∂Ω

, ∃H±
∣∣∣
∂Ω

,

ν × E+
∣∣∣
∂Ω

−µ ν × E−
∣∣∣
∂Ω

= ~g ∈ Lp,Div
tan (∂Ω, dσ),

ν × H+
∣∣∣
∂Ω

= ν × H−
∣∣∣
∂Ω

,

E−, H− radiate at infinity

(7.4.16)

has a solution. In turn, thanks to Theorem 6.5.7, a solution for (7.4.16) can be found in the form

E± := 1
1−µcurlSk(λI + Mk)

−1~g, H± := 1√
−1k

curlE± in Ω±, (7.4.17)

where λ := 1
2

1+µ
1−µ . Finally, uniqueness for (7.4.15) can be shown by proceeding much as in the proof

of Proposition 6.5.5. ¤
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[28] G.David, Opérateurs d’intégrale singulière sur les surfaces régulières, Ann. Scient. Ecole Norm. Sup.,
21 (1988), 225–258.

[29] G.David, Wavelets and Singular Integrals on Curves and Surfaces, Lecture Notes in Mathematics,
Vol. 1465, Springer-Verlag, Berlin, 1991.

226



[30] G.David, Uniformly Rectifiable Sets, preprint (2004).

[31] G.David and D. Jerison, Lipschitz approximation to hypersurfaces, harmonic measure, and singular
integrals, Indiana Univ. Math. J., 39 (1990), no. 3, 831–845.
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Astérisque No. 193, 1991.

[34] G.David and S. Semmes, Analysis of and on Uniformly Rectifiable Sets, Mathematical Surveys and
Monographs, AMS Series, 1993.

[35] M.Dindos, S. Petermichl, and J. Pipher, The Lp Dirichlet problem for second order elliptic operators
and a p-adapted square function, J. Funct. Anal., 249 (2007), no. 2, 372–392.

[36] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced
Mathematics, CRC Press, Boca Raton, FL, 1992.

[37] E.B. Fabes, M. Jodeit Jr. and N.M. Rivière, Potential techniques for boundary value problems on C1-
domains, Acta Math., 141 (1978), no. 3-4, 165–186.

[38] E.B. Fabes, C.E. Kenig and G.C. Verchota, The Dirichlet problem for the Stokes system on Lipschitz
domains, Duke Math. J., 57 (1988), no. 3, 769–793.

[39] H. Federer, Measure and area, Bull. AMS 58 (1952), 306–378.

[40] H. Federer, The area of a nonparametric surface, Proc. AMS 11 (1960), 436–439.

[41] H. Federer, Geometric Measure Theory, reprint of the 1969 edition, Springer-Verlag, 1996.

[42] C. Fefferman and E.M. Stein, Hp spaces of several variables, Acta Math., 129 (1972), no. 3-4, 137–193.

[43] J. Garcia-Cuerva and J. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North
Holland, Amsterdam, 1985.
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[45] F.Gesztesy and M. Mitrea, Generalized Robin boundary conditions and Robin-to-Dirichlet maps for
Schrödinger operators on bounded Lipschitz domains, preprint (2008).

[46] P. HajÃlasz, Sobolev spaces on an arbitrary metric space, Potential Anal., 5 (1996), no. 4, 403–415.

[47] P. HajÃlasz, Sobolev spaces on metric-measure spaces, pp. 173–218 in Contemp. Math., Vol. 338, Amer.
Math. Soc., Providence, RI, 2003.
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