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The solution to the wave equation

(1)
∂2w

∂t2
−∆w = 0, w(0, x) = f(x), wt(0, x) = g(x),

on R× Rn, is given by w(t, x) = u(t, x) + v(t, x), where

(2) u(t, x) = cos t
√
−∆ f(x), v(t, x) =

sin t
√
−∆√

−∆
g(x).

We will derive formulas for these solution operators, in case

(3) n = 2k + 1,

by comparing two formulas for et∆f(x).
The first formula for et∆ is

(4)

et∆f(x) = (4πt)−n/2

∫
Rn

e−|y|2/4tf(x− y) dy

= (4πt)−n/2An−1

∫ ∞

0

fx(r)r
n−1e−r2/4t dr,

where An−1 is the area of the unit sphere Sn−1 in Rn, and

fx(r) =
1

An−1

∫
Sn−1

f(x+ rω) dS(ω).

Note that fx(r) is well defined for all r ∈ R, and fx(−r) = fx(r). The first identity
in (4) follows, via Fourier analysis, from the evaluation of the Gaussian integral

(5)

∫
Rn

e−t|ξ|2+ix·ξ dξ =
(π
t

)n/2

e−|x|2/4t.

The second identity in (4) follows by switching to spherical polar coordinates, y =
rω, and using dy = rn−1 dr dS(ω).
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The second formula for et∆ is

(6)

et∆f(x) =
1√
2π

∫ ∞

−∞
ĥt(s) cos s

√
−∆ f(x) ds

=
1√
2π

∫ ∞

−∞
ĥt(s)u(s, x) ds,

with ht(σ) = e−tσ2

, hence, by (5), ĥt(s) = (2t)−1/2e−s2/4t. This follows from

e−t|ξ|2 =
1√
2π

∫ ∞

−∞
ĥt(s) cos s|ξ| ds,

(itself an example of the Fourier inversion formula), by applying these Fourier
multipliers to f .

Setting 4t = 1/λ and comparing the formulas (4) and (6), we have

(7)

∫ ∞

0

u(s, x)e−λs2 ds =
An−1

2

(λ
π

)(n−1)/2
∫ ∞

0

fx(r)r
n−1e−λr2 dr,

for all λ > 0. The key to getting a formula for u(s, x) from this is to make the factor
λ(n−1)/2 on the right side of (7) disappear.

Bringing in the hypothesis (3), we use the identity

(8) − 1

2r

d

dr
e−λr2 = λe−λr2

to write the right side of (7) as

(9) Cn

∫ ∞

0

r2kfx(r)
(
− 1

2r

d

dr

)k

e−λr2 dr.

Repeated integration by parts shows that this is equal to

(10) Cn

∫ ∞

0

r
( 1

2r

d

dr

)k[
r2k−1fx(r)

]
e−λr2 dr.

Now it follows from uniqueness of Laplace transforms that

(11) u(t, x) = Cnt
( 1

2t

d

dt

)k[
t2k−1fx(t)

]
,

for well behaved functions f on Rn, when n = 2k + 1. By (7), we have

(12) Cn =
1

2
π−(n−1)/2An−1.
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We can also compute Cn directly in (11), by considering f = 1. Then fx = 1 and
u = 1, so

(13) 1 = Cnt
( 1

2t

d

dt

)k

t2k−1 = Cn

(
k − 1

2

)(
k − 3

2

)
· · · 1

2
,

i.e.,

(14) Cn =
1

(k − 1
2 )(k − 3

2 ) · · ·
1
2

, n = 2k + 1.

This simply means

(15) A2k =
2πk

(k − 1
2 )(k − 3

2 ) · · ·
1
2

,

a formula that is frequently derived by looking at Gaussian integrals.
To compute (sin t

√
−∆)/

√
−∆, we use

(16)
sin t

√
−∆√

−∆
g(x) =

∫ t

0

cos s
√
−∆ g(x) ds.

From (11), if k ≥ 1,

(17) cos t
√
−∆ g(x) =

Cn

2

d

dt

( 1

2t

d

dt

)k−1[
t2k−1gx(t)

]
,

so (16) becomes

(18)
sin t

√
−∆√

−∆
g(x) =

Cn

2

( 1

2t

d

dt

)k−1[
t2k−1gx(t)

]
.

The formulas (11) and (18) are for t > 0. For arbitrary t ∈ R, use

(19) cos t
√
−∆ = cos(−t)

√
−∆, sin t

√
−∆ = − sin(−t)

√
−∆.

The case k = 0 is exceptional. Then (17) does not work. Instead, we have

(20) cos t
√
−∆ g(x) =

1

2
[g(x+ t) + g(x− t)],

and (16) gives

(21)

sin t
√
−∆√

−∆
g(x) =

1

2

∫ t

0

[g(x+ s) + g(x− s)] ds

=
1

2

∫ t

−t

g(x+ s) ds,
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for n = 1.
Let us turn to k = 1, when n = 3. From (14), C2 = 2, and then (18) gives

(22)

sin t
√
−∆√

−∆
g(x) = tgx(t)

=
t

4π

∫
S2

g(x+ tω) dS(ω)

=
1

4πt

∫
|y|=|t|

g(x+ y) dS(y).

The formulas (17) and (18) (and also (22)) exhibit both finite propagation speed
and the strong Huyghens principle: the left sides depend on f(y) and g(y) only for

(23) y ∈ Rn such that |x− y| = |t|,

when n is odd and ≥ 3. For n = 1, (20) also depends on f(y) only for |x− y| = |t|,
but (21) depends on g(y) for |x−y| ≤ |t|. In this case, we still have finite propagation
speed, but not the strong Huyghens principle.
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