The Heat Kernel and the Wave Kernel

(Adapted from Appendix B of [PT])
Michael Taylor

The solution to the wave equation

$$
\begin{equation*}
\frac{\partial^{2} w}{\partial t^{2}}-\Delta w=0, \quad w(0, x)=f(x), w_{t}(0, x)=g(x) \tag{1}
\end{equation*}
$$

on $\mathbb{R} \times \mathbb{R}^{n}$, is given by $w(t, x)=u(t, x)+v(t, x)$, where

$$
\begin{equation*}
u(t, x)=\cos t \sqrt{-\Delta} f(x), \quad v(t, x)=\frac{\sin t \sqrt{-\Delta}}{\sqrt{-\Delta}} g(x) . \tag{2}
\end{equation*}
$$

We will derive formulas for these solution operators, in case

$$
\begin{equation*}
n=2 k+1, \tag{3}
\end{equation*}
$$

by comparing two formulas for $e^{t \Delta} f(x)$.
The first formula for $e^{t \Delta}$ is

$$
\begin{align*}
e^{t \Delta} f(x) & =(4 \pi t)^{-n / 2} \int_{\mathbb{R}^{n}} e^{-|y|^{2} / 4 t} f(x-y) d y \tag{4}\\
& =(4 \pi t)^{-n / 2} A_{n-1} \int_{0}^{\infty} \bar{f}_{x}(r) r^{n-1} e^{-r^{2} / 4 t} d r
\end{align*}
$$

where A_{n-1} is the area of the unit sphere S^{n-1} in \mathbb{R}^{n}, and

$$
\bar{f}_{x}(r)=\frac{1}{A_{n-1}} \int_{S^{n-1}} f(x+r \omega) d S(\omega) .
$$

Note that $\bar{f}_{x}(r)$ is well defined for all $r \in \mathbb{R}$, and $\bar{f}_{x}(-r)=\bar{f}_{x}(r)$. The first identity in (4) follows, via Fourier analysis, from the evaluation of the Gaussian integral

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{-t|\xi|^{2}+i x \cdot \xi} d \xi=\left(\frac{\pi}{t}\right)^{n / 2} e^{-|x|^{2} / 4 t} \tag{5}
\end{equation*}
$$

The second identity in (4) follows by switching to spherical polar coordinates, $y=$ $r \omega$, and using $d y=r^{n-1} d r d S(\omega)$.

The second formula for $e^{t \Delta}$ is

$$
\begin{align*}
e^{t \Delta} f(x) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{h}_{t}(s) \cos s \sqrt{-\Delta} f(x) d s \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{h}_{t}(s) u(s, x) d s, \tag{6}
\end{align*}
$$

with $h_{t}(\sigma)=e^{-t \sigma^{2}}$, hence, by (5), $\hat{h}_{t}(s)=(2 t)^{-1 / 2} e^{-s^{2} / 4 t}$. This follows from

$$
e^{-t|\xi|^{2}}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \hat{h}_{t}(s) \cos s|\xi| d s
$$

(itself an example of the Fourier inversion formula), by applying these Fourier multipliers to f.

Setting $4 t=1 / \lambda$ and comparing the formulas (4) and (6), we have

$$
\begin{equation*}
\int_{0}^{\infty} u(s, x) e^{-\lambda s^{2}} d s=\frac{A_{n-1}}{2}\left(\frac{\lambda}{\pi}\right)^{(n-1) / 2} \int_{0}^{\infty} \bar{f}_{x}(r) r^{n-1} e^{-\lambda r^{2}} d r \tag{7}
\end{equation*}
$$

for all $\lambda>0$. The key to getting a formula for $u(s, x)$ from this is to make the factor $\lambda^{(n-1) / 2}$ on the right side of (7) disappear.

Bringing in the hypothesis (3), we use the identity

$$
\begin{equation*}
-\frac{1}{2 r} \frac{d}{d r} e^{-\lambda r^{2}}=\lambda e^{-\lambda r^{2}} \tag{8}
\end{equation*}
$$

to write the right side of (7) as

$$
\begin{equation*}
C_{n} \int_{0}^{\infty} r^{2 k} \bar{f}_{x}(r)\left(-\frac{1}{2 r} \frac{d}{d r}\right)^{k} e^{-\lambda r^{2}} d r . \tag{9}
\end{equation*}
$$

Repeated integration by parts shows that this is equal to

$$
\begin{equation*}
C_{n} \int_{0}^{\infty} r\left(\frac{1}{2 r} \frac{d}{d r}\right)^{k}\left[r^{2 k-1} \bar{f}_{x}(r)\right] e^{-\lambda r^{2}} d r . \tag{10}
\end{equation*}
$$

Now it follows from uniqueness of Laplace transforms that

$$
\begin{equation*}
u(t, x)=C_{n} t\left(\frac{1}{2 t} \frac{d}{d t}\right)^{k}\left[t^{2 k-1} \bar{f}_{x}(t)\right] \tag{11}
\end{equation*}
$$

for well behaved functions f on \mathbb{R}^{n}, when $n=2 k+1$. By (7), we have

$$
\begin{equation*}
C_{n}=\frac{1}{2} \pi^{-(n-1) / 2} A_{n-1} . \tag{12}
\end{equation*}
$$

We can also compute C_{n} directly in (11), by considering $f=1$. Then $\bar{f}_{x}=1$ and $u=1$, so

$$
\begin{equation*}
1=C_{n} t\left(\frac{1}{2 t} \frac{d}{d t}\right)^{k} t^{2 k-1}=C_{n}\left(k-\frac{1}{2}\right)\left(k-\frac{3}{2}\right) \cdots \frac{1}{2}, \tag{13}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
C_{n}=\frac{1}{\left(k-\frac{1}{2}\right)\left(k-\frac{3}{2}\right) \cdots \frac{1}{2}}, \quad n=2 k+1 . \tag{14}
\end{equation*}
$$

This simply means

$$
\begin{equation*}
A_{2 k}=\frac{2 \pi^{k}}{\left(k-\frac{1}{2}\right)\left(k-\frac{3}{2}\right) \cdots \frac{1}{2}}, \tag{15}
\end{equation*}
$$

a formula that is frequently derived by looking at Gaussian integrals.
To compute $(\sin t \sqrt{-\Delta}) / \sqrt{-\Delta}$, we use

$$
\begin{equation*}
\frac{\sin t \sqrt{-\Delta}}{\sqrt{-\Delta}} g(x)=\int_{0}^{t} \cos s \sqrt{-\Delta} g(x) d s \tag{16}
\end{equation*}
$$

From (11), if $k \geq 1$,

$$
\begin{equation*}
\cos t \sqrt{-\Delta} g(x)=\frac{C_{n}}{2} \frac{d}{d t}\left(\frac{1}{2 t} \frac{d}{d t}\right)^{k-1}\left[t^{2 k-1} \bar{g}_{x}(t)\right] \tag{17}
\end{equation*}
$$

so (16) becomes

$$
\begin{equation*}
\frac{\sin t \sqrt{-\Delta}}{\sqrt{-\Delta}} g(x)=\frac{C_{n}}{2}\left(\frac{1}{2 t} \frac{d}{d t}\right)^{k-1}\left[t^{2 k-1} \bar{g}_{x}(t)\right] . \tag{18}
\end{equation*}
$$

The formulas (11) and (18) are for $t>0$. For arbitrary $t \in \mathbb{R}$, use

$$
\begin{equation*}
\cos t \sqrt{-\Delta}=\cos (-t) \sqrt{-\Delta}, \quad \sin t \sqrt{-\Delta}=-\sin (-t) \sqrt{-\Delta} . \tag{19}
\end{equation*}
$$

The case $k=0$ is exceptional. Then (17) does not work. Instead, we have

$$
\begin{equation*}
\cos t \sqrt{-\Delta} g(x)=\frac{1}{2}[g(x+t)+g(x-t)] \tag{20}
\end{equation*}
$$

and (16) gives

$$
\begin{align*}
\frac{\sin t \sqrt{-\Delta}}{\sqrt{-\Delta}} g(x) & =\frac{1}{2} \int_{0}^{t}[g(x+s)+g(x-s)] d s \tag{21}\\
& =\frac{1}{2} \int_{-t}^{t} g(x+s) d s,
\end{align*}
$$

for $n=1$.
Let us turn to $k=1$, when $n=3$. From (14), $C_{2}=2$, and then (18) gives

$$
\begin{align*}
\frac{\sin t \sqrt{-\Delta}}{\sqrt{-\Delta}} g(x) & =t \bar{g}_{x}(t) \\
& =\frac{t}{4 \pi} \int_{S^{2}} g(x+t \omega) d S(\omega) \tag{22}\\
& =\frac{1}{4 \pi t} \int_{|y|=|t|} g(x+y) d S(y) .
\end{align*}
$$

The formulas (17) and (18) (and also (22)) exhibit both finite propagation speed and the strong Huyghens principle: the left sides depend on $f(y)$ and $g(y)$ only for

$$
\begin{equation*}
y \in \mathbb{R}^{n} \text { such that }|x-y|=|t| \tag{23}
\end{equation*}
$$

when n is odd and ≥ 3. For $n=1,(20)$ also depends on $f(y)$ only for $|x-y|=|t|$, but (21) depends on $g(y)$ for $|x-y| \leq|t|$. In this case, we still have finite propagation speed, but not the strong Huyghens principle.

Reference

[PT] M. Pinsky and M. Taylor, Pointwise Fourier inversion: a wave equation approach, J. Fourier Anal. and Appl. 3 (1997), 647-703.

