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Abstract. Given a second-order, strongly elliptic, negative, self-adjoint differen-
tial operator L on a compact Riemannian manifold M with smooth boundary, we
establish conditions under which ϕ(

√−L) is bounded on Lp(M), for p ∈ (1,∞).

1. Introduction

Let M be a compact, n-dimensional, Riemannian manifold with smooth bound-
ary, and let L be a strongly elliptic, second-order differential operator on M (possi-
bly a system), with smooth coefficients. We assume a coercive boundary condition
makes L a negative, self-adjoint operator, with domain D(L) ⊂ H2(M). Then,
given a bounded continuous function ϕ : R → R, the spectral theorem defines
ϕ(
√−L) as a bounded operator on L2(M). The purpose of this paper it to estab-

lish results of the form

(1.1) ϕ(
√
−L) : Lp(M) −→ Lp(M), ∀ p ∈ (1,∞),

and

(1.2) ϕ(
√
−L) is of weak type (1, 1).

We will deal with functions ϕ of symbol type,

(1.3) ϕ ∈ S0
1(R), i.e., |ϕ(k)(λ)| ≤ Ck(1 + |λ|)−k, k = 0, 1, 2, . . . .

See (1.9) and (1.23) below for more general conditions on ϕ that will allow us to
establish (1.1)–(1.2). We will also assume ϕ(λ) is an even function of λ, which
involves no loss of generality, since Spec

√−L is a discrete subset of [0,∞).
We mention some previous results giving rise to (1.1)–(1.2). In case L = ∆,

the Laplace operator on M (or more generally L has scalar principal symbol),
results of [Str] and [T1] (see also [T2], Chapter 12) yield ϕ(

√−L) ∈ OPS0
1,0(M),

when M is compact without boundary and (1.3) holds. Such pseudodifferential
operators satisfy (1.1)–(1.2). In such a setting, [SeS] established (1.1)–(1.2) under
the following weaker hypothesis on ϕ: for some s > n/2,

(1.4) sup
µ>0

‖βϕµ‖Hs(R) < ∞,
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given β ∈ C∞0 ((1/2, 2)), β = 1 on [1, 3/2], and ϕµ(λ) = ϕ(µλ). The condition (1.3)
is equivalent to the hypothesis that ϕ is smooth and (1.4) holds for all s < ∞. An
alternative proof was given in [Xu1], and another in [DOS]. (See Appendix B for
more on the work of [DOS].)

Going further, [Xu2] and [Xu3] treated compact manifolds with boundary, in
case L = ∆, first for the Dirichlet boundary condition, and then for the Neumann
boundary condition. In these papers, (1.1)–(1.2) were established for ϕ satisfying
(1.4). We make further comments on the work of [Xu1]–[Xu3] in Appendix A,
but here mention that maximum principle arguments play a major role. For many
systems to which our results apply, maximum principle arguments would not be
available.

In the works [T1], [T2], and [SeS] (following seminal work of [H2]), an important
role was played by the representation of ϕ(

√−L) as

(1.5) ϕ(
√
−L) =

1√
2π

∫ ∞

−∞
ϕ̂(t) cos t

√
−Ldt,

for even ϕ, where ϕ̂ is the Fourier transform of ϕ, and cos t
√−L is a solution

operator to the wave equation:

(1.6) u(t, x) = cos t
√
−Lf(x),

where

(1.7) (∂2
t − L)u = 0, u(0, x) = f(x), ∂tu(0, x) = 0.

It is then useful to split ϕ̂(t) into two pieces, using a partition of unity. Given
a > 0, take χ ∈ C∞0 ((−a, a)), even, such that χ(t) = 1 for |t| ≤ a/2, and set

(1.8) ϕ̂#(t) = χ(t)ϕ̂(t), ϕ̂b(t) = (1− χ(t))ϕ̂(t).

The hypothesis (1.3) implies ϕb is smooth and rapidly decreasing. More generally,
we impose the hypothesis

(1.9) |ϕb(λ)| ≤ C(1 + |λ|)−m, for some m >
n

2
,

where n = dim M . In such a case, the ellipticity hypothesis implies

(1.10) ϕb(
√
−L) : L2(M) −→ Hm(M) ⊂ C(M),

and, by duality,

(1.11) ϕb(
√
−L) : L1(M) −→ L2(M).

The considerations (1.10)–(1.11) apply to our current setting, with ∂M 6= ∅.
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It remains to analyze

(1.12) ϕ#(
√
−L) =

1√
2π

∫ a

−a

ϕ̂#(t) cos t
√
−Ldt.

When L = ∆ (or more generally, L has scalar principal symbol) and ∂M = ∅, one
can use the method of geometrical optics to construct a parametrix for the solution
to the hyperbolic equation (1.7), valid for |t| ≤ a, given a > 0 suffciently small.
Such a parametrix is given by an oscillatory integral, and the papers [T1] and [SeS]
used analyses of such operators to establish desired results on ϕ#(

√−L). When
∂M 6= ∅, such parametrix constructions (for L = ∆) range from somewhat subtle
(in the diffractive and gliding cases) to terra incognita (for more general boundary
geometry). Furthermore if L does not have a scalar principal symbol, parametrix
constructions for (1.7) are sometimes lacking, even when ∂M = ∅.

Before tackling the study of ϕ#(
√−L) when M is compact with nonempty

boundary, we mention some studies of ϕ(
√−L) for various classes of noncom-

pact, complete Riemannian manifolds (with L = ∆), made in [CGT], [DST], [T3],
[MMV], and [T4], as some techniques brought to bear in these papers will influence
how we analyze the case of nonempty boundary. In these papers, one also splits ϕ
as in (1.8). The analysis of ϕb(

√−L) becomes somewhat more elaborate, because
when M has infinite volume, (1.11) does not imply that ϕb(

√−L) is bounded on
L1(M). In fact, spaces treated in these papers include examples, such as hyper-
bolic space, whose balls of radius R grow exponentially in volume with R, and one
requires that ϕ be holomorphic on a horizontal strip, satisfying bounds of the form
(1.3). We omit details here, but mention that a critical role is played by finite
propagation speed:

(1.13) supp f ⊂ K =⇒ supp cos t
√
−∆f ⊂ K|t|,

where

(1.14) K|t| = {x ∈ M : dist(x,K) ≤ |t|}.

This enables one to get a good hold on ϕb(
√−∆), when ϕ has such symbol proper-

ties on a horizontal strip, of appropriate width, about R ⊂ C. As for ϕ#(
√−∆), in

[CGT] this was analyzed as a pseudodifferential operator, when M has C∞ bounded
geometry, via a parametrix construction for (1.7).

The papers [MMV] and [T4] dealt with Lp estimates under much weaker geomet-
ric bounds on M , namely lower bounds on the Ricci tensor and injectivity radius.
The analyses in these papers avoided the task of producing a parametrix for the
wave equation (1.7). The key was to replace (1.5) by

(1.15) ϕ(
√
−L) =

1
2

∫ ∞

−∞
ϕk(t)Jk−1/2(t

√
−L) dt,
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where

(1.16) Jν(λ) = λ−νJν(λ),

Jν(λ) denoting the standard Bessel function, and

(1.17) ϕk(t) =
k∏

j=1

(
−t

d

dt
+ 2j − 2

)
ϕ̂(t).

As is classical,

(1.18) J−1/2(λ) =

√
2
π

cosλ,

and then (1.15) follows from (1.5) by an integration by parts argument, using the
inductive formula

(1.19)
(
t
d

dt
+ 2ν

)
Jν(t

√
−L) = Jν−1(t

√
−L).

Compare (3.7)–(3.9) of [T4].
Similarly, we have

(1.20) ϕ#(
√
−L) =

1
2

∫ ∞

−∞
ψk(t)Jk−1/2(t

√
−L) dt,

with

(1.21) ψk(t) =
k∏

j=1

(
−t

d

dt
+ 2j − 2

)
ϕ̂#(t).

Given (1.8), we have

(1.22) supp ψk ⊂ [−a, a].

Furthermore, the hypothesis (1.3) implies

(1.23)
∣∣(t∂t)jϕ̂(t)

∣∣ ≤ Cj |t|−1, ∀ j ∈
{

0, 1, . . . ,
[n

2

]
+ 2

}
,

in fact, for all j ∈ Z+, but we only need the range j given in (1.23). This in turn
implies

(1.24) |ψk(t)| ≤ Ck|t|−1, 0 ≤ k ≤
[n

2

]
+ 2.
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Other important ingredients for the analysis of ϕ#(
√−L) arise from the classical

integral representation

(1.25) Jν(λ) = cν

∫ 1

−1

(1− s2)ν−1/2 cos sλ ds, ν > −1
2
.

One consequence is the estimate

(1.26) |Jk−1/2(λ)| ≤ Ck(1 + |λ|)−k, k > 0.

Another follows from

(1.27) Jk−1/2(t
√
−L) = ck−1/2

∫ 1

−1

(1− s2)k−1 cos st
√
−Lds.

We will posit that finite propagation speed holds for (1.7), so, parallel to (1.13), for
some α < ∞,

(1.28) supp f ⊂ K =⇒ supp cos t
√
−Lf ⊂ Kα|t|.

Then (1.27) gives

(1.29) supp f ⊂ K =⇒ suppJk−1/2(t
√
−L) ⊂ Kα|t|.

We have assembled most of the ingredients needed to state our main result. The
operator analysis of Jk−1/2(t

√−L) done in §2 will also make use of the following
heat kernel bound:

(1.30) ‖∇etLf‖L∞ ≤ C(t−n/4−1/2 + 1)‖f‖L2 , t > 0,

accompanying the bound

(1.31) ‖etLf‖L∞ ≤ C(t−n/4 + 1)‖f‖L2 .

Here is our main result.

Theorem 1.1. Let M be a compact, n-dimensional, Riemannian manifold with
smooth boundary ∂M , L a second-order, strongly elliptic differential operator, with
a coercive boundary condition, defining L as a negative, self-adjoint operator, with
domain D(L) ⊂ H2(M). Assume the finite propagation speed result (1.28) and the
heat kernel bound (1.30).

Let ϕ be a smooth, bounded function on R. Assume ϕ is even and that (with
ϕ = ϕ# + ϕb as in (1.8)) the estimates (1.9) and (1.23) hold. Then (1.1)–(1.2)
hold.

The proof of Theorem 1.1 uses the decomposition ϕ(
√−L) = ϕ#(

√−L) +
ϕb(

√−L), and we already have the estimates (1.10)–(1.11) on ϕb(
√−L). It re-

mains to show that ϕ#(
√−L) is weak type (1, 1). Details of this are given in §2. In

§3, we discuss conditions guaranteeing that the finite propagation speed hypothesis
(1.28) holds. In §4 we discuss heat kernel bounds, including (1.30)–(1.31). In §5
we establish estimates on e−t

√−L, which provide another proof of (1.30)–(1.31).
In Appendix A, we make some comments on the approach to Lp-boundedness

given in [SeS] and [Xu1]–[Xu3]. In Appendix B we discuss some of the work of
[DOS], which establishes results more general than Theorem 1.1.
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2. Analysis of ϕ#(
√−L) and proof of Theorem 1.1

Our goal in this section is to prove the following.

Proposition 2.1. In the setting of Theorem 1.1, ϕ#(
√−L) is of weak type (1, 1).

Given this, it follows from (1.11) that ϕ(
√−L) is of weak type (1, 1). Then,

interpolation with the obvious L2 estimate gives (1.1) for 1 < p ≤ 2, and duality
gives it for 2 ≤ p < ∞.

The approach to Proposition 2.1 is to analyze the integral kernel K#(x, y) for
ϕ#(

√−L), given by

(2.1) ϕ#(
√
−L)f(x) =

∫

M

K#(x, y)f(y) dV (y),

and show that it satisfies certain Hörmander-type estimates.
To simplify the notation, we scale L to arrange that (1.28) holds with α = 1.

Also, we take a = 1 in the specification of χ in (1.8), and hence in (1.22). Thus,
from (1.20),

(2.2) K#(x, y) =
∫ 1

0

ψk(t)Bk(t, x, y) dt,

where Bk(t, x, y) is the integral kernel of Jk−1/2(t
√−L):

(2.3) Jk−1/2(t
√
−L)f(x) =

∫

M

Bk(t, x, y)f(y) dV (y).

The following result is analogous to Proposition 2.2 of [MMV].

Lemma 2.2. If k > n/2 + 1,

(2.4) ‖∇yBk(t, ·, y)‖L2(M) ≤ Ct−n/2−1, for t ∈ (0, 1], y ∈ M.

Let us see how (2.4) leads to desired estimates on K#(x, y). By (1.29) (with
α = 1), for s ∈ (0, 1],

(2.5)
∫ s

0

ψk(t)Bk(t, x, y) dt is supported on {(x, y) ∈ M ×M : dist(x, y) ≤ s}.

Hence

(2.6) K#(x, y) =
∫ 1

s

ψk(t)Bk(t, x, y) dt on {(x, y) ∈ M ×M : dist(x, y) ≥ s}.
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Using (2.4) plus the fact that Bk(t, ·, y) is supported on the ball B|t|(y) in M of
radius |t|, centered at y (by (1.29)), we have

(2.7) ‖∇yBk(t, ·, y)‖L1 ≤ C
(
Vol

(
B|t|(y)

))1/2
t−n/2−1 ≤ C

t
.

Hence, from (2.6) and (1.24), we have, for k = [n/2] + 2,

(2.8)

‖∇yK#(·, y)‖L1(B1(y)\Bs(y)) ≤
∫ 1

s

C

t
‖∇yB(t, ·, y)‖L1 dt

≤ C

∫ 1

s

dt

t2

≤ C

s
.

This leads to the following.

Lemma 2.3. There exists C < ∞, independent of s ∈ (0, 1] and of y, y′ ∈ M , such
that

(2.9) dist(y, y′) ≤ s

2
=⇒ ‖K#(·, y)−K#(·, y′)‖L1(B1(y)\Bs(y)) ≤ C.

We now have:
Proof of Proposition 2.1. Given that ϕ#(

√−L) is bounded on L2(M) and its
integral kernel satisfies (2.9), the weak type (1,1) property is a consequence of
Proposition 3.1 of [MMV], which in turn is a natural variant of Theorem 2.4 in
Chapter III of [CW].

It remains to prove Lemma 2.2. In light of (1.26), this result is a special case of
the following.

Lemma 2.4. If G : R→ R satisfies

(2.10) |G(λ)| ≤ C(1 + |λ|)−γ−1, γ >
n

2
,

then

(2.11) ‖G(t
√
−L)‖L(L2,Lip) ≤ Ct−n/2−1, t ∈ (0, 1].

From Lemma 2.4, we have that, if

(2.12) G(t
√
−L)f(x) =

∫

M

g(t, x, y)f(y) dV (y),
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then

(2.13) ‖∇xg(t, x, ·)‖L2 ≤ Ct−n/2−1, t ∈ (0, 1], x ∈ M.

To apply this to Lemma 2.2, note that g(t, x, y) = g(t, y, x)∗, so (2.13) yields

(2.14) ‖∇yg(t, ·, y)‖L2 ≤ Ct−n/2−1, t ∈ (0, 1], y ∈ M,

as asserted in (2.4).

Thus, it remains to prove Lemma 2.4. For this, we bring in the heat kernel
estimate (1.30), i.e.,

(2.15) ‖etL‖L(L2,Lip) ≤ C(t−n/4−1/2 + 1).

We can use

(2.16) G(t
√
−L) = (1− t2L)−σ(1− t2L)σG(t

√
−L), 2σ = γ + 1,

to reduce our task to showing that

(2.17) ‖(1− t2L)−σ‖L(L2,Lip) ≤ C(t−n/2−1 + 1), if σ >
n

4
+

1
2
.

To prove (2.17), we use the identity

(2.18) (1− t2L)−σ =
1

Γ(σ)

∫ ∞

0

e−sest2Lsσ−1 ds.

Then, by (2.15),

(2.19)

‖(1− t2L)−σ‖L(L2,Lip) ≤ C

∫ t−2

0

e−s(st2)−n/4−1/2sσ−1 ds

+ C

∫ ∞

t−2
e−ssσ−1 ds

≤ C1(t−n/2−1 + 1),

with C1 < ∞ if σ > n/4 + 1/2.
This proves Lemma 2.4, and hence completes the proof of Proposition 2.1.
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3. Finite propagation speed

As before, L is a strongly elliptic, second-order, negative, self-adjoint operator
on M , a compact Riemannian manifold wih smooth boundary. We seek conditions
that guarantee the finite propagation speed property (1.28). The situation when
∂M = ∅ is well known, as is the case L = ∆ with the Dirichlet or Neumenn
boundary condition. Here, we give further results, in case

(3.1) −L = D∗D,

where D : Hs+1(M, E0) → H2(M, E1) is a first-order differential operator (between
sections of vector bundles). We assume that the symbol σD(x, ξ) : E0x → E1x is
injective for each x ∈ M , ξ ∈ T ∗x M \ 0. One has the domain D(L) = {u ∈ D(D) :
Du ∈ D(D∗)}. We assume D(D) is given by a local boundary condition:

(3.2) u ∈ D(D) =⇒ β(x)u(x) = 0, ∀x ∈ ∂M.

We assume β(x) is an orthogonal projection on E0x for each x ∈ ∂M . In light of
the identity

(3.3)
∫

M

[〈Dv, w〉 − 〈v,D∗w〉] dV =
1
i

∫

∂M

〈σD(x, ν)v, w〉 dS,

for sufficiently smooth v, w, we have, for smooth w,

(3.4) w ∈ D(D∗) =⇒ (I − β(x))σD(x, ν)∗w(x) = 0, ∀x ∈ ∂M.

Here, ν(x) ∈ T ∗x M is the outward unit normal to ∂M . Hence, for smooth v and w,

(3.5) v ∈ D(D), w ∈ D(D∗) =⇒ 〈σD(x, ν)v, w〉 = 0 on ∂M.

Let Ω ⊂ R×M . We assume ∂Ω has three pieces,

(3.6) ∂Ω = T ∪ B ∪ L,

where B = {(t, x) ∈ Ω : t = 0} is the bottom part, L = {(t, x) ∈ Ω : x ∈ ∂M} is
the lateral part, and T is the top part. We seek a condition guaranteeing that, for
sufficiently smooth u on R×M satisfying

(3.7) (∂2
t − L)u = 0, u(t), ∂tu(t) ∈ D(L),
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we have the implication

(3.8) u, ut = 0 on B =⇒ u = 0 on Ω.

The “energy integral” method we use to establish (3.8) goes as follows. We have,
for sufficiently smooth u,

(3.9)

∫

Ω

ut(utt − Lu) dV dt

=
1
2

∫

Ω

∂t|ut|2 dV dt +
∫

Ω

ut D∗Du dV dt

=
∫

Ω

[1
2
∂t|ut|2 + 〈Dut, Du〉

]
dV dt− 1

i

∫

∂Ω

〈σD(x, ν)ut, Du〉 dSt dt

=
1
2

∫

∂Ω

[
|ut|2 + |Dxu|2

]
Nt dS − 1

i

∫

∂Ω

〈σD(x,Nx)ut, Dxu〉 dS.

Hence, for smooth u satisfying (3.7),

(3.10)
1
2

∫

∂Ω

[
|ut|2 + |Dxu|2

]
Nt dS − 1

i

∫

∂Ω

〈σD(x,Nx)ut, Dxu〉 dS = 0.

Here dSt is the area element of ∂Ωt ⊂ M , where Ωt = {(s, x) ∈ Ω : s = t}, and dS
is the area element on ∂Ω. We have

(3.11) dS = Nt dV dt = |Nx| dSt dt.

where N = (Nt, Nx) is the unit normal to ∂Ω ⊂ R×M .
If u, ut = 0 on B, the integrands in (3.10) vanish on B. Also, since Nt = 0 on L

and (3.5) holds, these integrands vanish on L. Then the left side of (3.10) is

(3.12) ≥ 1
2
(1− α)

∫

T

[
|ut|2 + |Dxu|2

]
Nt dS,

in absolute value, provided

(3.13) |〈σD(x,Nx)ut, Dxu〉| ≤ α

2

[
|ut|2 + |Dxu|2

]
Nt,

on T , for some α ∈ (0, 1). Now the left side of (3.13) is

(3.14) ≤ |σD(x,Nx)ut| · |Dxu|,
so (3.12) holds for some α ∈ (0, 1) provided

(3.15) |σD(x,Nx)| < Nt, x ∈ T .

This “spacelike” condition on T then yields the implication

(3.16) u, ut = 0 on B =⇒ ut, Dxu = 0 on T .

If Ω can be swept out by such spacelike surfaces, one gets u, ut = 0 on B ⇒ ut ≡ 0
on Ω, hence (3.8).
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4. Heat kernel estimates

We discuss estimates on etL that lead to (1.30)–(1.31). It suffices to treat the
case t ∈ (0, 1]. If we denote the integral kernel of etL by p(t, x, y), so

(4.1) etLf(x) =
∫

M

p(t, x, y)f(y) dV (y),

then (1.31) is a consequence of

(4.2)
∫

M

|p(t, x, y)|2 dV (y) ≤ Ct−n/2, t ∈ (0, 1], x ∈ M,

and (1.30) is a consequence of

(4.3)
∫

M

|∇xp(t, x, y)|2 dV (y) ≤ Ct−n/2−1, t ∈ (0, 1], x ∈ M.

In turn, (4.2) is a consequence of the following pointwise estimate: for some C, κ ∈
(0,∞),

(4.4) |p(t, x, y)| ≤ Ct−n/2e−κ dist(x,y)2/t, t ∈ (0, 1], x, y ∈ M,

and (4.3) is a consequence of

(4.5) |∇xp(t, x, y)| ≤ Ct−n/2−1/2e−κ dist(x,y)2/t, t ∈ (0, 1], x, y ∈ M.

We note that (4.5) also implies (A.4).
Modulo small error terms that do not affect (4.2)–(4.3), the pointwise estimates

(4.4)–(4.5) follow from parametrix constructions for p(t, x, y) on (0, 1] × M × M ,
which can be carried out in substantial generality.

In case ∂M = ∅, such a parametrix construction can be done using the special
class of non-isotropic pseudodifferential operators associated to the parabolic op-
erator ∂t − L. When ∂M 6= ∅, this is augmented by a theory of parabolic layer
potentials. See, e.g., [Gr]. In the case emphasized here (with m = 2), wave equation
methods can also be brought to bear on (4.4)–(4.5), as in [CGT]. We omit details,
since a different argument, implying (1.30)–(1.31), is given in §5.
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5. Poisson semigroup estimates

As before, we assume L is a second-order, strongly elliptic, negative, self-adjoint
operator, on a compact manifold M with smooth boundary, with domain given by
a coercive local boundary condition. Independently of the heat kernel estimates of
§4, we establish the estimates

(5.1) ‖e−y
√−L‖L(L2,L∞) ≤ Cy−n/2, 0 < y ≤ 1,

and

(5.2) ‖e−y
√−L‖L(L2,Lip) ≤ Cy−n/2−1, 0 < y ≤ 1.

Having (5.2), we can use

(5.3) (1 + t
√
−L)−σ =

1
Γ(σ)

∫ ∞

0

e−se−st
√−Lsσ−1 ds,

and an aregument similar to (2.19) to establish (via (5.2)) that

(5.4) ‖(1 + t
√
−L)−σ‖L(L2,Lip) ≤ Ct−n/2−1, if σ >

n

2
+ 1, t ∈ (0, 1],

which can be used in place of (2.16) to prove Lemma 2.4. In turn, Lemma 2.4
contains (1.30). Similarly, (1.31) follows from (5.1).

We turn to a proof of (5.1)–(5.2). Given f ∈ L2(M), let us set

(5.5) u(y, x) = e−y
√−Lf(x), y > 0, x ∈ M.

Then u solves

(5.6)
(∂2

y + L)u = 0, on (0,∞)×M,

B(x, ∂x)u = 0, on (0,∞)× ∂M,

where B provides the coercive boundary condition defining the domain of L. We
have

(5.7) ‖u(y, ·)‖L2(M) ≤ ‖f‖L2(M), ∀ y > 0.

Let us pick δ ∈ (0, 1], y0 = δ, and x0 ∈ M . Let U = {x ∈ M : dist(x, x0) < 2δ}.
Let U0 = {x ∈ M : dist(x, x0) < δ}. Let us scale the y variable and the x variable
by a factor of 1/δ, and let v(y, x) denote u in the scaled variables. Then v solves

(5.8)
(∂2

y + L̃)v = 0, on (1/2, 3/2)× Ũ ,

B̃(x, ∂x)v = 0, on (1/2, 3/2)× (Ũ ∩ ∂M),
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which is a coercive elliptic system with uniformly smooth coefficients and uniform
ellipticity bounds. Note that

(5.9) ‖v‖
L2((1/2,3/2)×Ũ)

≈ δ−n/2‖u‖L2((δ/2,3δ/2)×U) ≤ Cδ−n/2‖f‖L2 .

Elliptic regularity gives bounds

(5.10)
‖v(1, ·)‖

L∞(Ũ0)
≤ Cδ−n/2‖f‖L2 ,

‖∇v(1, ·)‖
L∞(Ũ0)

≤ Cδ−n/2‖f‖L2 ,

and scaling back gives

(5.11)
|u(y0, x0)| ≤ Cδ−n/2‖f‖L2 ,

|∇xu(y0, x0)| ≤ Cδ−n/2−1‖f‖L2 .

These estimates prove (5.1)–(5.2).

Remark. In the setting of w(t, x) = etLf(x), one can make a non-isotropic dilation
of variables and appeal to regularity estimates for parabolic equations, with coer-
cive boundary conditions. The elliptic setting (5.6) allows for the use of isotropic
dilations of variables, done here.
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A. Comments on the spectral projection approach

Here we comment on work done in [SeS] and in [Xu1]–[Xu3] on establishing (1.1)–
(1.2), for compact M , under the hypothesis (1.4) on ϕ, with s > n/2 (n = dim M).
One central ingredient in these works is the Hörmander-type estimate

(A.1) ‖Πλf‖L∞ ≤ Cλ(n−1)/2‖f‖L2 , λ ≥ 1,

where Πλ is the spectral projection of
√−L associated with [λ, λ + 1]. This was

established in [H2] when ∂M = ∅ and L has scalar principal symbol, in [Sog2] when
L = ∆ with the Dirichlet boundary condition, and in [Xu3] when L = ∆ with the
Neumann boundary condition. A derived ingredient is

(A.2) ‖∇Πλf‖L∞ ≤ Cλ(n+1)/2‖f‖L2 .

This was deduced from (A.1) when ∂M = ∅ and L = ∆ in [Xu1], when L = ∆ with
the Dirichlet boundary condition in [Xu2], and when L = ∆ with the Neumann
boundary condition in [Xu3]. In [Xu1]–[Xu3], the maximum principle played a key
role. In these papers, (1.1)–(1.2) was deduced from (A.2).

Establishing (A.1) in more general situations, where the maximum principle
would not apply, is a challenging task. Here, we show how to obtain (A.2) from
(A.1), in a fairly general setting, without using maximum principle arguments. Our
strategy will be to use a Littlewood-Paley approach, based on the “heat semigroup”
etL. To wit, we hypothesize that

(A.3) t1/2∇etL : L∞(M) −→ L∞(M) is uniformly bounded, for t ∈ (0, 1].

This is equivalent to the following estimate on the integral kernel p(t, x, y) of etL:

(A.4)
∫

M

|∇xp(t, x, y)| dV (y) ≤ Ct−1/2, ∀ t ∈ (0, 1], x ∈ M.

See §4 for results on this.
Here is how to get from (A.1) to (A.2) when we have (A.3). Take t1/2 = 1/λ.

Then

(A.5)

‖∇Πλf‖L∞ = ‖∇etLΠλe−tLΠλf‖L∞

= λ‖t1/2∇etLΠλe−tLΠλf‖L∞

≤ Cλ‖Πλe−tLΠλf‖L∞ (by (A.3))

≤ Cλ(n+1)/2‖e−tLΠλf‖L2 (by (A.1))

≤ Cλ(n+1)/2‖f‖L2 ,

giving (A.2).
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B. Comments on results of [DOS]

Here we discuss some results of [DOS]. These results are quite general, set in the
context of an open subset X of a measured metric space of homogeneous type. For
simplicity, we take M to be an open subset of a compact, n-dimensional Riemannian
manifold. Let L be a negative, self-adjoint operator on L2(M). The following basic
hypothesis is made on the integral kernel p(t, x, y) of etL. With C, κ ∈ (0,∞) and
some m ≥ 2,

(B.1) |p(t, x, y)| ≤ Ct−n/me−κ dist(x,y)m/(m−1)/t1/(m−1)
, 0 < t ≤ 1,

The case m = 2 coincides with (4.4). Note that (B.1) implies

(B.2) ‖etLf‖L∞ ≤ C(t−n/2m + 1)‖f‖L2 , t > 0,

which for m = 2 is (1.31). A consequence of Theorem 3.1 of [DOS] is that if
ϕ : R→ R is bounded and continuous and satisfies the following variant of (1.4),

(B.3) sup
µ>0

‖βϕµ‖Cs(R) < ∞,

for some s > n/2 (with β and ϕµ as in (1.4)), then ϕ((−L)1/m) is of weak type
(1, 1) and

(B.4) ϕ((−L)1/m) : Lp(M) −→ Lp(M), ∀ p ∈ (1,∞).

Such a result includes Theorem 1.1 as a special case. Note that [DOS] avoids
an hypothesis like (1.30). As explained there, the standard approach to showing
that ϕ((−L)1/m) is of weak type (1,1), involving a gradient estimate on the integral
kernel of this operator, it replaced by the following result, from [DM]:

Lemma B.1. Retain the hypotheses stated above. Let Kt(x, y) denote the integral
kernel of ϕ((−L)1/m)(I − etL). Assume ϕ : R→ R is bounded and continuous, and

(B.5) sup
t>0

sup
y∈M

∫

M\B
t1/m (y)

|Kt(x, y)| dV (x) ≤ C1 < ∞.

Then ϕ((−L)1/m) of of weak type (1, 1).

The paper [DOS] mentions [F] as an antecendent to such a result.
In [DOS] there is a result (Theorem 3.2) guaranteeing (B.4) under an hypothesis

on ϕ of the form

(B.6) sup
µ>1

‖βϕµ‖Hs,q(R) < ∞,
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for some q ∈ [2,∞).
In §7 of [DOS] the estimate (A.1) is used to show that, if M is a compact Rie-

mannian manifold (without boundary) and L = ∆ (m = 2), then this result appies,
with q = 2, to yield an alternative proof of the result of [SeS] on boundedness of
ϕ(
√−L). On the other hand, the results of [DOS] as applied to L = ∆ on a com-

pact manifold with boundary, with the Dirichlet or Neumann boundary condition,
are less sharp than those of [Xu2] and [Xu3].
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