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Abstract

We obtain regularity results for solutions to Pu = f when P is a kth order elliptic
differential operator with the property that both P and P t have coefficients that are
continuous, with a modulus of continuity satisfying a Dini-type condition. Operators
of this form arise in the study of regularity of functions that are known to be regular
along the leaves of several foliations, such as arise in Anosov systems. The results here
complement some previous results of the author and J. Rauch.

1 Introduction

In [11] the following elliptic regularity result was established.

Theorem 1.1 Let P be an elliptic differential operator of order k on an open set O ⊂ Rn

(perhaps an N ×N system). Assume

P and P t have coefficients in L∞ ∩ vmo . (1.1)

Let 1 < q ≤ p < ∞. Then

u ∈ Lq
loc(O), Pu ∈ Lp

loc(O) =⇒ u ∈ Hk,p
loc (O). (1.2)

By ellipticity here, we mean the following. The principal symbol of P , Pk(x, ξ), is an
N × N matrix-valued function, which is a polynomial in ξ, homogeneous of degree k. To
say that P is elliptic is to say that Pk(x, ξ) is invertible whenever ξ 6= 0, and

‖Pk(x, ξ)−1‖ ≤ C|ξ|−k. (1.3)
∗Key words. elliptic equation, regularity, Sobolev spaces, Besov spaces, pseudodifferential operator,

foliations
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The work in [11] was motivated by the appearance in [10] and [9] of elliptic operators
that were produced to apply to a function u that was assumed to be smooth of order k
along the leaves of N foliations Fj of O. The ellipticity arises when, for each x ∈ O,

Rn = Span{TxFj : 1 ≤ j ≤ N}. (1.4)

Such a family of foliations arises, for example, as the pair of stable and unstable foliations
of a Ck+2 Anosov map. Typically, the leaves of such foliations are individually smooth, but
they vary in a much less smooth fashion. The elliptic operators P arising in these last two
papers are scalar, have continuous coefficients and even order, and satisfy P t = P . For the
reader’s convenience, and also to help motivate the study of this somewhat unusual class
of elliptic operators, we briefly sketch how such foliations give rise to such operators P ,
referring to [10], [9], and [11] for more details.

Each foliation Fj has the property that there is a homeomorphism

Γj : Uj × Vj −→ Oj ⊃ O, (1.5)

where Uj ⊂ Rn−mj , Vj ⊂ Rmj are open sets, such that for each x ∈ Uj , {Γj(x, y) : y ∈ Vj}
is a leaf in Fj . As for regularity of Fj , we fix r ∈ [0,∞) and k ∈ N, and assume

∂α
y Γj ∈ Cr(Uj × Vj), ∀ |α| ≤ k. (1.6)

Here C0(Uj × Vj) denotes the space of continuous functions on Uj × Vj . If r = ` + α, ` ∈
Z+, 0 < α < 1, Cr(Uj × Vj) denotes the space of functions with derivatives of order
≤ ` Hölder continuous of exponent α. We also assume that for each fixed x, the map
y 7→ Γj(x, y) is a Ck immersion of Vj into Oj , and that Γj is absolutely continuous in the
sense that for Borel sets E ⊂ Uj , F ⊂ Vj , the measure of Γj(E × F ) ⊂ Oj is given by

∫

E

∫

F

Jj(x, y) dy dx, (1.7)

and we assume Jj > 0 on Uj × Vj and

∂α
y Jj ∈ Cr(Uj × Vj), ∀ |α| ≤ k. (1.8)

If these conditions hold, we say Fj is regular of order (k, r). The papers [10], [9], and [11]
paid particular attention to cases where r = 0.

Given a function u on Oj , we say

u ∈ Hk,p
Fj

(Oj) ⇐⇒ ∂α
y (u ◦ Γj) ∈ Lp(Uj × Vj), ∀ |α| ≤ k. (1.9)
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A basic problem had been to establish regularity for u on O, given that u satisfies (1.9) for
each j, and given the spanning hypothesis (1.4). An approach, suggested in [9], proceeds
as follows. Take k = 2`. We define the operator Pj by

(Pju) ◦ Γj =
∑

|β|=`

(−∂y)β(∂β
y )(Jju ◦ Γj), (1.10)

for each j a differential operator of order 2` = k. Then set

P =
∑

j

Pj . (1.11)

The hypothesis (1.4) implies that P is an elliptic differential operator on O, of order k. The
hypothesis that each Fj is regular of order (k, 0) implies P has continuous coefficients, i.e.,

P =
∑

|α|≤k

aα(x)∂α, aα ∈ C0(O). (1.12)

Furthermore, we have (with z = Γ(x, y))
∫

u(Pjv) dz =
∑

|β|=`

∫
∂β

y (Jju ◦ Γj)∂β
y (Jjv ◦ Γj) dx dy

=
∫

(Pju)v dz,

(1.13)

so
P = P t. (1.14)

If (1.9) holds for all j, we have
u, Pu ∈ Lp(O). (1.15)

In [11], the authors were challenged to establish the regularity result (1.2), which appar-
ently did not follow from such classical treatments as in [1]. With the techniques developed
in [11] to establish this regularity result, the additional generality for the class of operators
treated in Theorem 1.1 arose naturally, the passage from continuous coefficients to L∞∩vmo
facilitated by work of [4]. There are several motivations to establish Theorem 1.1 in the
setting of N ×N systems, rather than simply the scalar case. For one, the techniques work
in this more general setting. In fact, as the reader will see in the arguments given here, even
if we start with a scalar equation, we produce systems. Another reason to be interested
in the systems case is that we can get results, not just for real-valued functions smooth
along foliations, in the sense of (1.9), but also for sections of a smooth vector bundle, with
estimates on k-fold covariant derivatives along the leaves of such foliations.
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So far, we have emphasized foliations regular of order (k, 0). However, the foliation set-
up also allows for such operators P with mildly regular coefficients. Such mild regularity
allows the possibility to establish some endpoint cases extending (1.2). In this connection,
it was also shown in [11] that if to (1.1) one adds the hypothesis

P t has Hölder continuous coefficients, (1.16)

then
u ∈M(O), Pu ∈ Lp

loc(O) =⇒ u ∈ Hk,p
loc (O), (1.17)

and if to (1.1) one adds the hypothesis

P has Hölder continuous coefficients, (1.18)

then
u ∈ Lp

loc(O), Pu ∈ bmo(O) =⇒ u ∈ h
k,∞
loc (O). (1.19)

Here M(O) denotes the space of locally finite Borel measures on O, bmo the localized
John-Nirenberg space, and

hk,∞(O) = {u ∈ bmo(O) : ∂αu ∈ bmo(O), |α| ≤ k}. (1.20)

As usual Hk,p denotes an Lp-Sobolev space. The localized space bmo was introduced in
[6], making use of results on BMO in [5]. The space vmo in (1.1) is the corresponding
localization of D. Sarason’s subspace VMO ⊂ BMO.

In this paper we want to prove such regularity results as (1.17) and (1.19), and others,
under Dini-type hypotheses on the coefficients of P and P t. Such a situation would arise in
the foliation context if (1.6) and (1.8) were replaced by inclusion in spaces with Dini-type
modulus of continuity, for example. The study of elliptic operators with Dini continuous
coefficients has a rich history, starting with classical constructions of isothermal coordinates
on 2D surfaces with Dini continuous metric tensor (by contrast, [7] presents a C0 metric
tensor for which there are no C1 isothermal coordinates; see also [8]). The necessity for
having a Dini-type condition to obtain the implication (1.19) can be traced to the fact that
bmo is not a module over C0, but it is a module over the ring of Dini continuous functions
(cf. [13], Chapter 1, (2.63)).

We work with spaces C(λ), introduced in Chapter I of [13], defined by

u ∈ C(λ) ⇐⇒ ‖ψj(D)u‖L∞ ≤ Cλ(j). (1.21)

Here {ψj : j ∈ Z+} is a Littlewood-Paley partition of unity, with ψj(ξ) supported on
|ξ| ∼ 2j . We will take

λ(j) = 〈j〉−s, (1.22)
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where 〈x〉 = (2 + |x|2)1/2. As long as s > 1, an element u ∈ C(λ) will be continuous, and
satisfy

|u(x + y)− u(x)| ≤ Cω(|y|), (1.23)

with
ω(h) =

(
log

1
h

)−s+1
, (1.24)

for 0 < h ≤ 1/e. On the other hand, a function u satisfying (1.23) with ω(h) = (log 1/h)−s

will belong to C(λ) with λ(j) given by (1.22). Otherwise said, with

σ(h) =
(
log

1
h

)−s
(1.25)

for 0 < h ≤ 1/e, we have
Cσ ⊂ C(λ) ⊂ Cω, (1.26)

as shown in (1.30) in Chapter I of [13]. We recall that a function is said to be Dini continuous
if it has a modulus of continuity β(h) satisfying

∫ 1

0

β(h)
h

dh < ∞. (1.27)

Note that ω(h), given by (1.24), has this property if and only if s > 2.
One of our goals is to establish the following.

Theorem 1.2 In the setting of Theorem 1.1, assume

P and P t have coefficients in C(λ), λ(j) = 〈j〉−s, s > 1. (1.28)

Then the implication (1.17) holds. If in addition P has Dini continuous coefficients, then
(1.19) holds.

A key ingredient in the proof of Theorem 1.2 is the following result, of independent
interest, involving regularity in Besov spaces Bs

p,q.

Theorem 1.3 Let P be an elliptic differential operator of order k on O, and assume (1.28)
holds. Take p, q, p1, q1 ∈ [1,∞]. Then

u ∈ B0
p1,q1 (loc)(O), Pu ∈ B0

p,q (loc)(O) =⇒ u ∈ Bk
p,q (loc)(O). (1.29)

More generally, for 1 ≤ j ≤ k,

u ∈ B0
p1,q1 (loc)(O), Pu ∈ B−k+j

p,q (loc)(O) =⇒ u ∈ Bj
p,q (loc)(O). (1.30)
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The applicability of Besov space estimates to the proof of Theorem 1.2 arises from the
inclusions

B0
1,1 ⊂ L1 ⊂M ⊂ B0

1,∞, B0
∞,1 ⊂ L∞ ⊂ bmo ⊂ B0

∞,∞. (1.31)

For example, if (1.28) holds, we can apply (1.29) with p1 = 1, q1 = ∞, p = p, q = ∞, to get

u ∈M ⊂ B0
1,∞(loc), Pu ∈ Lp

loc ⊂ B0
p,∞(loc) ⇒ u ∈ Bk

p,∞(loc) ⊂ Lp
loc, (1.32)

the last inclusion holding whenever k ≥ 1. From here, (1.2) applies to give u ∈ Hk,p
loc (O),

yielding the implication (1.17). As for the implication (1.19), we can apply (1.29) with
p1 = p, q1 = ∞, p replaced by ∞, and q = ∞, to get

u ∈ Lp
loc ⊂ B0

p,∞(loc), Pu ∈ bmo ⊂ B0
∞,∞(loc) ⇒ u ∈ Bk

∞,∞(loc). (1.33)

Thus the proof of Theorem 1.2 is finished with the following result.

Theorem 1.4 Let P be an elliptic differential operator of order k on O, and assume

P has coefficients in C(λ), λ(j) = 〈j〉−s, s > 1, (1.34)

and also that P has Dini continuous coefficients. Then

u ∈ Bk
∞,∞ (loc)(O), Pu ∈ bmo(O) =⇒ u ∈ h

k,∞
loc (O). (1.35)

We are left with the task of proving Theorems 1.3–1.4. Theorem 1.4 is proven via a
parametrix construction. More precisely, we split P into two pieces, P = P# + P b, where
P# has a parametrix E# that is smoothing of order k on a wide variety of function spaces,
while E#P b maps certain strategically chosen function spaces to spaces with ever so slightly
greater regularity. This proof will be done in §4.

The proof of Theorem 1.3 involves two steps, as did the proof of Theorem 1.1 given in
[11]. The first step is a globalization argument, in which we produce an elliptic operator L
on the torus Tn which is shown to be invertible from Bs+k

p,q (Tn) to Bs
p,q(Tn), for p, q ∈ [1,∞]

and −k ≤ s ≤ 0. The second step is a localization argument, obtaining results of the form
(1.29) and (1.30) from the corresponding global results for L, via cutoffs and commutator
estimates.

In order to obtain such L, we make some preliminary transformations of P . Clearly the
local regularity results (1.29) and (1.30) hold for P if they hold for the 2N × 2N system

P2 =
(

0 P t

P 0

)
. (1.36)

We begin to construct an operator on the torus. Without loss of generality, we can assume
O ⊂ Rn is bounded. Put this set in a box and identify opposite edges, to regard O ⊂ Tn.
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If we want to establish local regularity on a neighborhood Ω of x0 ∈ O, pick ϕ ∈ C∞
0 (O),

equal to 1 on Ω, satisfying 0 ≤ ϕ ≤ 1, set ψ = 1− ϕ, and form

L2u = ϕP2(ϕu) + iψ(−∆)k/2(ψu), (1.37)

where u takes values in C2N and (−∆)k/2 acts on ψu componentwise. This is a differential
operator if k is even, and otherwise not, but in any case, for a variety of function spaces X,

u ∈ X(Tn) =⇒ L2u = P2u on Ω. (1.38)

Hence, to obtain the desired local regularity (1.29) and (1.30), on Ω, it suffices to establish

u ∈ B0
p1,q1 (loc)(Ω), L2u ∈ B−k+j

p,q (loc)(Ω) =⇒ u ∈ Bj
p,q (loc)(Ω), (1.39)

for 1 ≤ j ≤ k, p, q, p1, q1 ∈ [1,∞]. The operator L2 is a pseudodifferential operator with
rough symbol; more precisely,

L2 ∈ OPC(λ)Sk
cl(Tn). (1.40)

The symbol class C(λ)Sk
cl, introduced in Chapter I of [13], is defined in Appendix A of this

paper. Furthermore, since P2 = P t
2 and (−∆)k/2 is scalar, it is readily established that L2

is elliptic. In addition, it is important (and easily seen) that we have

Lt
2 ∈ OPC(λ)Sk

cl(Tn). (1.41)

We again desire formal self-adjointness, so we form the 4N × 4N system

L1 =
(

0 Lt
2

L2 0

)
, (1.42)

and note that it suffices to establish the result (1.39) with L2 replaced by L1, which is also
elliptic in OPC(λ)Sk

cl(Tn).
The operator L will be of the form L = L1 − λI, with appropriately chosen λ ∈ R.

This construction will be made in §2, where we proceed from Fredholm results on L1 to
invertibility results on L. From here we derive the proof of Theorem 1.3 in §3. In §4 we
prove Theorem 1.4 and also a related result, namely that under the hypotheses of (1.28),

u ∈ B0
1,∞ (loc)(O), Pu ∈ B−k

1,1 (loc)(O) =⇒ u ∈ B0
1,1 (loc)(O), (1.43)

which is needed in the proof of one case of Proposition 2.2.
Our arguments require some results on boundedness of rough pseudodifferential opera-

tors on B0
p,q, which we establish in Appendix B, following Appendix A, where we recall the

definitions of several classes of rough pseudodifferential operators from [13], including classes
like (1.40), and other classes, obtained from (1.40) by the process of “symbol smoothing.”
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2 Global results

We begin with some Fredholm results on the operator L1 constructed in §1. More generally,
we take

L1 ∈ OPC(λ)Sk
cl(Tn), elliptic, L1 = Lt

1. (2.1)

Here we assume
λ(j) = 〈j〉−s, s > 1. (2.2)

Here, ellipticity of L1 means the principal symbol of L1 is invertible for |ξ| ≥ 1 and satisfies
an estimate parallel to (1.3).

Proposition 2.1 For such L1, and with p, q ∈ [1,∞], we have

L1 : Bk
p,q(Tn) −→ B0

p,q(Tn) (2.3)

and
L1 : B0

p,q(Tn) −→ B−k
p,q (Tn), (2.4)

Fredholm, of index 0.

Proof. First take A = L1(1−∆)−k/2, elliptic in OPC(λ)S0
cl. The Fredholm property in (2.3)

is equivalent to the statement that

A : B0
p,q(Tn) −→ B0

p,q(Tn) (2.5)

is Fredholm. To show this, we use symbol smoothing, writing

A = A# + Ab, A# ∈ OPS0
1,δ, elliptic, (2.6)

where δ is chosen in (0, 1), and
Ab ∈ OPC(λ)S−ψ

1,(τ), (2.7)

where, upon choosing γ ∈ (0, s− 1), we can set

〈ξ〉−ψ(ξ) =
(
log2〈ξ〉

)−(s−1−γ)
, τ(ξ) =

(
log2〈ξ〉

)s−1−γ
. (2.8)

Cf. [13], Chapter I, §3, especially Proposition 3.2 and (3.28)–(3.32). The definition of the
symbol class in (2.7) is recalled in Appendix A. Mapping properties on Besov spaces given
in [13], Chapter I, §12 (cf. also Appendix B of this paper) show that A# is Fredholm on
B0

p,q(Tn), so it remains to show that

Ab is compact on B0
p,q(Tn), (2.9)
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to establish that A is Fredholm in (2.5). In fact, Proposition B.1 gives

OPC(λ)S0
1,(τ) : B0

p,q(Tn) −→ B0
p,q(Tn), (2.10)

when (2.2) and (2.8) hold and 0 < γ < s− 1, so it remains to show that, for

q(ξ) =
(
log2〈ξ〉

)−(s−1−γ)
, 0 < s− 1− γ,

q(D) : B0
p,q(Tn) −→ B0

p,q(Tn) is compact.
(2.11)

To see this, take ϕ ∈ C∞
0 (Rn), equal to 1 on a neighborhood of 0, and consider

qε(ξ) = ϕ(εξ)q(ξ).

It is readily verified that, as ε → 0, q(ξ)−qε(ξ) → 0 in S0
1,0, a Fréchet space with seminorms

implicitly recorded in (A.6). Now elements of OPS0
1,0 are bounded on the Besov spaces

B0
p,q(Tn) (this is a classical result, of which Proposition B.1 is a refinement). Hence qε(D) →

q(D) in operator norm on these Besov spaces. Since qε(D) has finite rank for each ε > 0,
compactness of q(D) follows.

Thus we have Fredholmness in (2.5) and hence in (2.3). The index 0 calculation in (2.3)
then follows from the standard homotopy argument involving

Aτ = τA + (1− τ)iI, 0 ≤ τ ≤ 1, (2.12)

which, we note, is elliptic in OPC(λ)S0
cl for each τ ∈ [0, 1], since the principal symbol of A

is self-adjoint and elliptic and the principal symbol of the identity I is scalar and elliptic.
The proof that L1 is Fredholm of index 0 in (2.4) is similar. This time write A =

(1−∆)−k/2L1 ∈ ØPC(λ)S0
cl, elliptic. (See also Appendix A for definitions of this operator

class and the ones appearing in (2.13)–(2.14).) We have a decomposition of the form (2.6),
with

Ab ∈ ØPC(λ)S−ψ
1,(τ), (2.13)

and (2.8) holding. Parallel to (2.10), we have

ØPC(λ)S0
1,(τ) : B0

p,q(Tn) −→ B0
p,q(Tn). (2.14)

This can be deduced from the result

OPC(λ)S0
1,(τ) : B0

p′,q′(T
n) −→ B0

p′,q′(T
n), (2.15)

and the duality (cf. [15], p. 178)

B0
p,q(Tn)′ = B0

p′,q′(T
n), 1 ≤ p, q < ∞. (2.16)
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In fact, (2.14) then follows directly if p > 1 and q > 1. If either p = 1 or q = 1 it follows from
the duality together with the fact that C∞(Tn) is a dense linear subspace of B0

p,q(Tn), with
the sole exception of B0

1,∞(Tn), in which B0
2,∞(Tn) is dense. This establishes (2.14). The

result (2.11) again applies to give (2.9) in this context. This yields Fredholmness in (2.4),
and the same argument given above applies to the index calculation, so we have Proposition
2.1. ¤

To proceed further, we will make use of a result established in [11], Lemma 3.2, (even
for less regular coefficients). Namely, there is a discrete set C ⊂ R such that, if we take
λ ∈ R \ C and set

L = L1 − λI, (2.17)

then, for p ∈ (1,∞), we have isomorphisms (indicated by the “≈” atop the arrows)

L : Hk,p(Tn) ≈−→ Lp(Tn),

L : Lp(Tn) ≈−→ H−k,p(Tn).
(2.18)

We will now prove the following.

Proposition 2.2 With λ ∈ R\C and L as in (2.18), we have for p, q ∈ [1,∞] isomorphisms

L : Bk
p,q(Tn) ≈−→ B0

p,q(Tn), (2.19)

L : B0
p,q(Tn) ≈−→ B−k

p,q (Tn), (2.20)

Proof. In each case, L is a compact perturbation of L1, so we know that L is Fredholm of
index 0. By (2.18) we know that the null space of L in Lp(Tn) is zero for each p > 1. This
shows that L is injective in (2.19), hence an isomorphism in this case. The isomorphism in
(2.20) follows from (2.19) and duality (since L = Lt), unless p = 1 or q = 1.

To treat q = 1 in (2.20), note that B0
p,1(Tn) ⊂ Lp(Tn), so if p > 1 injectivity in (2.20)

follows from (2.18). To treat the case p = 1 in (2.20), note that the annihilator of the range
of L in this case coincides with the null space of L in Bk

∞,q′(T
n), as long as q < ∞, and we

have isomorphism then.
This leaves the case (p, q) = (1,∞) in (2.20). For this case, we can use Proposition 4.1

to deduce that elements of the null space of L in (2.20) actually belong to B0
1,1(Tn), so we

also have injectivity there. The proof of Proposition 2.2 is complete, modulo the proof of
Proposition 4.1, which we will give in §4. ¤

The operators in (2.19)–(2.20) have inverses:

E : B0
p,q(Tn) −→ Bk

p,q(Tn),

E : B−k
p,q (Tn) −→ B0

p,q(Tn).
(2.21)
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It is readily verified that these maps coincide on elements in their common domains. Hence
we can apply interpolation, to get:

Proposition 2.3 The operator L has an inverse E, satisfying

E : Bs
p,q(Tn) −→ Bs+k

p,q (Tn), −k ≤ s ≤ 0. (2.22)

Remark. Here is an alternative proof of (2.22), valid for

1 < p < ∞, −k < s < 0. (2.23)

Namely, parallel to (2.21), we have, from (2.18),

E : Lp(Tn) −→ Hk,p(Tn),

E : H−k,p(Tn) −→ Lp(Tn),
(2.24)

coinciding on elements in their common domain. We also have

(Hs0,p,Hs1,p)θ,q = Bs(θ)
p,q , (2.25)

valid for

s0 6= s1, p ∈ (1,∞), q ∈ [1,∞], θ ∈ (0, 1), s(θ) = (1− θ)s0 + θs1. (2.26)

See [2], p. 153. Thus (2.22) follows via this interpolation from (2.24), as long as (2.23) holds.
To be sure, it is the endpoint cases, not covered by (2.23), that are of greatest interest to
us here.

3 Local regularity, I

In this section we use the results of §2 to prove Theorem 1.3. As noted in §1, we are reduced
to proving (1.39), with L2 replaced by L1, which in turn can clearly be replaced by L, given
by (2.17). The following accomplishes most of the remaining work.

Proposition 3.1 Let P be as in Theorem 1.3, and let L be derived from P as discussed
above. Given Ω ⊂ Tn as in (1.39), 1 ≤ j ≤ k, and p, q ∈ [1,∞],

u ∈ B0
p,q (loc)(Ω), Lu ∈ B−k+j

p,q (loc)(Ω) =⇒ u ∈ Bj
p,q (loc)(Ω). (3.1)

The key to proving this is to combine (2.22) with the following commutator estimates.
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Lemma 3.2 Given U ⊂⊂ Ω and ρ ∈ C∞
0 (U), we have

[L, ρ] : Bσ
p,q(U) −→ Bσ−(k−1)

p,q (Tn), 0 ≤ σ ≤ k − 1. (3.2)

Proof. From (1.37) we have that L coincides with a differential operator on Ω. Hence

[L, ρ]u =
∑

|α|≤k

bα(x) [∂α, ρ]u, bα ∈ C(λ), (3.3)

which gives (3.2) for σ = k − 1. (The fact that B0
p,q is a C(λ)-module is a special case of

Proposition B.1.) Since L = Lt, we also have

[L, ρ]u =
∑

|α|≤k

[(−∂)α, ρ](b∗αu), (3.4)

which gives (3.2) for σ = 0. The rest follows by interpolation. ¤

To begin the proof of Proposition 3.1, assume u ∈ B0
p,q (loc)(Ω), Lu ∈ B−k+j

p,q (loc)(Ω) and
pick ρ ∈ C∞

0 (Ω). Pick U ⊂⊂ Ω such that ρ ∈ C∞
0 (U). We have

L(ρu) = ρLu + [L, ρ]u, (3.5)

with
ρLu ∈ B−k+j

p,q (Tn), [L, ρ]u ∈ B−k+1
p,q (Tn), (3.6)

and hence
ρu = E(ρLu + [L, ρ]u) ∈ B1

p,q(Tn). (3.7)

This allows us to replace the hypothesis in (3.1) by

u ∈ B1
p,q (loc)(Ω), Lu ∈ B−k+j

p,q (loc)(Ω). (3.8)

Now if k ≥ 2 and j ≥ 2, we see that (3.5) holds with

ρLu ∈ B−k+j
p,q (Tn), [L, ρ]u ∈ B−k+2

p,q (Tn), (3.9)

and hence
ρu = E(ρLu + [L, ρ]u) ∈ B2

p,q(Tn). (3.10)

Thus we can say u ∈ B2
p,q (loc)(Ω). Iterating this argument (if k > 2 and j > 2) we arrive at

a proof of (3.1).
We almost have Theorem 1.3, which is as in Proposition 3.1 but with (3.1) extended to

u ∈ B0
p1,q1 (loc)(O), Pu ∈ B−k+j

p,q (loc)(O) =⇒ u ∈ Bj
p,q (loc)(O). (3.11)
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In the worst case, one has p1 = 1, q1 = ∞. Then one pass through Proposition 3.1 gives

u ∈ Bj
1,∞ (loc)(O) ⊂ B0

p2,q2 (loc)(O), (3.12)

with p2 > 1, q2 < ∞. If B0
p2,q2

⊂ B0
p,q we are done. Otherwise, repeated applications of

Proposition 3.1 yield u ∈ B0
pν ,qν (loc)(O) and after a finite number of iterations one obtains

u ∈ B0
p,q (loc)(O); then one final iteration of Proposition 3.1 finishes the proof of (3.11).

4 Local regularity, II

In this section we establish two local regularity results that were used in §§1–2. The first
result completes the proof of Proposition 2.2.

Proposition 4.1 Assume P is an elliptic differential operator of order k on O, and that

P t has coefficients in C(λ), (4.1)

with
λ(j) = 〈j〉−s, s > 1. (4.2)

Then
u ∈ B0

1,∞ (loc)(O), Pu ∈ B−k
1,1 (loc)(O) =⇒ u ∈ B0

1,1 (loc)(O). (4.3)

Proof. The hypothesis says

Pu =
∑

|α|≤k

∂α(aα u), aα ∈ C(λ). (4.4)

We use symbol smoothing to write

P = P# + P b, (4.5)

where P# ∈ OPSk
1,δ is elliptic, with parametrix E# ∈ OPS−k

1,δ and

P b =
∑

|α|≤k

∂αAb
α, Ab

α ∈ OPC(λ)S−ψ
1,(τ). (4.6)

Here ψ and τ are as in (2.8), with 0 < γ < s− 1. We have

u = E#Pu−
∑

|α|≤k

E#∂αAb
αu, mod C∞. (4.7)

Note that
Pu ∈ B−k

1,1 =⇒ E#Pu ∈ B0
1,1. (4.8)
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(For notational simplicity we drop the “loc” notation.) We claim

Ab
α ∈ OPC(λ)S−ψ

1,(τ) =⇒ Ab
α : B0

1,∞ → B0
1,p1

, (4.9)

as long as
p1(s− 1− γ) > 1, (4.10)

and more generally

Ab
α ∈ OPC(λ)S−ψ

1,(τ) =⇒ Ab
α : B0

1,pν
→ B0

1,pν+1
, (4.11)

where we pick

pν =
1 + ε

ν(s− 1− γ)
, (4.12)

and adjust ε ∈ (0, 1) so that for some integer µ, pµ = 1. The mapping properties (4.11)
hold for ν < µ. Given this, we see that

u ∈ B0
1,∞, |α| ≤ k =⇒ E#∂αAb

αu ∈ B0
1,p1

=⇒ u ∈ B0
1,p1

,
(4.13)

and then that, for ν < µ,

u ∈ B0
1,pν

, |α| ≤ k =⇒ E#∂αAb
αu ∈ B0

1,pν+1

=⇒ u ∈ B0
1,pν+1

,
(4.14)

which gives the desired conclusion (4.3) in Proposition 4.1.
Turning to the proof of (4.9) and (4.11), we have from Proposition B.1 that

OPC(λ)S0
1,(τ) : B0

p,q −→ B0
p,q, (4.15)

under our hypotheses. To obtain (4.9)–(4.11) it hence suffices to note that

q(D) : B0
1,∞ −→ B0

1,p1
, q(D) : B0

1,pν
−→ B0

1,pν+1
, (4.16)

when
q(ξ) =

(
log2〈ξ〉

)−(s−1−γ)
, s− 1− γ > 0, (4.17)

which can be arranged as long as s > 1. This proves Proposition 4.1. ¤

Finally, we prove Theorem 1.4, whose statement we recall:
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Proposition 4.2 Assume P is an elliptic differential operator of order k on O, and that

P has coefficients in C(λ), λ(j) = 〈j〉−s, s > 1, (4.18)

and that
P has Dini continuous coefficients. (4.19)

Then
u ∈ Bk

∞,∞ (loc)(O), Pu ∈ bmo(O) =⇒ u ∈ h
k,∞
loc (O). (4.20)

Proof. The hypothesis says

Pu =
∑

|α|≤k

aα ∂αu, aα ∈ C(λ). (4.21)

We use symbol smoothing to write P = P# + P b, where P# ∈ OPSk
1,δ is elliptic, with

parametrix E# ∈ OPS−k
1,δ , and

P b =
∑

|α|≤k

Ab
α ∂α, Ab

α ∈ OPC(λ)S−ψ
1,(τ). (4.22)

Here ψ and τ are as in (4.6), i.e., as in (2.8), with 0 < γ < s− 1. We have

u = E#Pu−
∑

|α|≤k

E#Ab
α∂αu, mod C∞. (4.23)

Of course
Pu ∈ bmo =⇒ E#Pu ∈ hk,∞, (4.24)

while
u ∈ Bk

∞,∞ =⇒ ∂αu ∈ B0
∞,∞, |α| ≤ k. (4.25)

We claim that
Ab

α ∈ OPC(λ)S−ψ
1,(τ) =⇒ Ab

α : B0
∞,∞ → B0

∞,p1
, (4.26)

and more generally

Ab
α ∈ OPC(λ)S−ψ

1,(τ) =⇒ Ab
α : B0

∞,pν
→ B0

∞,pν+1
, (4.27)

with pν as in (4.12), so that pµ = 1 for some integer µ. The proof is the same as that of
(4.9)–(4.11). Given this, it follows that

u ∈ Bk
∞,∞, |α| ≤ k =⇒ E#Ab

α∂αu ∈ Bk
∞,p1

=⇒ u ∈ hk,∞ + Bk
∞,p1

,
(4.28)
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the last line by (4.24). To continue, we iterate this argument, and use the fact that

P b = P − P# : hk,∞ −→ bmo, (4.29)

itself a consequence of results in Chapter I, §2 of [13]. It is at this point that we make use
of the assumption that the coefficients of P are Dini continuous. To wit, the space bmo is
a module over the algebra of Dini continuous functions, but results just cited require s > 2
for bmo to be a module over C(λ). We conclude that, for ν < µ,

u ∈ hk,∞ + Bk
∞,pν

=⇒ E#P bu ∈ hk,∞ + Bk
∞,pν+1

=⇒ u ∈ hk,∞ + Bk
∞,pν+1

.
(4.30)

This gives the conclusion (4.20) in Proposition 4.2.

Remark. We can replace the hypothesis (4.19) in Proposition 4.2 by the hypothesis

P has coefficients in Cσ, σ(h) =
(
log

1
h

)−1
for h << 1, (4.31)

since bmo is a module over such Cσ (cf. [14], Proposition 3.1).
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A Rough pseudodifferential operators and their symbol classes

A pseudodifferential operator P = p(x,D) with symbol p(x, ξ) is given by

Pu(x) = (2π)−n

∫∫
p(x, ξ)ei(x−y)·ξu(y) dy dξ. (A.1)

There are various symbol classes of interest, such as

Sm
1,0, Sm

cl , Sm
1,δ,

C(λ)Sm
1,0, C(λ)Sm

cl ,

C(λ)Sm
1,(τ), C(λ)S−ψ

1,(τ),

(A.2)

which we will define below. If S is such a symbol class, and p(x, ξ) ∈ S, we say P , defined
by (A.1), belongs to OPS. Thus we have the operator classes OPSm

1,0, OPC(λ)Sm
cl , etc. If

p(x, ξ) ∈ S, the operator P̃ , given by

P̃ u(x) = (2π)−n

∫∫
p(y, ξ)ei(x−y)·ξu(y) dy dξ, (A.3)
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is said to belong to ØPS. Adjoints of operators of the form (A.1) have the form (A.3).
The first three symbol classes listed in (A.2) are classes of smooth symbols. By definition,

given m ∈ R, one has

p(x, ξ) ∈ Sm
1,0 ⇔ |Dβ

xDα
ξ p(x, ξ)| ≤ Cαβ〈ξ〉m−|α|. (A.4)

Here and below we set 〈ξ〉 = (2 + |ξ|2)1/2. We say p(x, ξ) ∈ Sm
cl provided p(x, ξ) ∈ Sm

1,0 and
there is an asymptotic expansion

p(x, ξ) ∼
∑

j≥0

pm−j(x, ξ), (A.5)

where pm−j(x, ξ) ∈ Sm−j
1,0 and, for |ξ| ≥ 1, r ≥ 1, pm−j(x, rξ) = rm−jpm−j(x, ξ). The

meaning of (A.5) is that the difference between p(x, ξ) and the sum over j < k belongs to
Sm−k

1,0 . Next, given δ ∈ (0, 1),

p(x, ξ) ∈ Sm
1,δ ⇔ |Dβ

xDα
ξ p(x, ξ)| ≤ Cαβ〈ξ〉m−|α|+δ|β|. (A.6)

We have Sm
cl ⊂ Sm

1,0 ⊂ Sm
1,δ. Operators with such symbols have good mapping properties on

Lp-Sobolev spaces, for 1 < p < ∞, on bmo-Sobolev spaces, on various Besov spaces, etc. A
more detailed discussion can be found in Chapter I of [13].

The rest of the symbol classes listed in (A.2) are classes of rough symbols. By definition,

p(x, ξ) ∈ C(λ)Sm
1,0 ⇔ |Dα

ξ p(x, ξ)| ≤ Aα〈ξ〉m−|α|, and

‖Dα
ξ p(·, ξ)‖C(λ) ≤ Aα〈ξ〉m−|α|.

(A.7)

Here, C(λ) is the function space defined by (1.21). If λ(j) = 〈j〉−s and s > 1, the first
condition in (A.7) is redundant. We say p(x, ξ) ∈ C(λ)Sm

cl if p(x, ξ) ∈ C(λ)Sm
1,0 and there is

an asymptotic expansion like (A.5). For example, a differential operator P of order m, with
coefficients in C(λ), would have symbol in C(λ)Sm

cl . We mention that, if instead of (1.22),
we took λ(j) = 2−jr, then C(λ) is the space Cr of Hölder continuous functions of exponent
r if r ∈ (0, 1), and it is the Zygmund space Cr∗ for general r > 0. The study of operators
in OPCr∗Sm

1,0 is useful in the study of partial differential equations with Hölder continuous
coefficients. The operator classes OPC(λ)Sm

1,0 are similarly useful in the study of partial
differential equations whose coefficients have weaker moduli of continuity.

The last two symbol classes listed in (A.2) arise from the previous two via the process
of “symbol smoothing,” which we will discuss below. First, we define these symbol classes.
As before, m ∈ R, and now τ and ψ are functions of ξ. The particular cases of interest to
us here are

〈ξ〉−ψ(ξ) =
(
log2〈ξ〉

)−(s−1−γ)
, τ(ξ) =

(
log2〈ξ〉

)s−1−γ
, (A.8)
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with s > 1, γ ∈ (0, s− 1), and, as in (1.22),

λ(j) = 〈j〉−s. (A.9)

We say
p(x, ξ) ∈ C(λ)Sm

1,(τ) ⇔ |Dα
ξ p(x, ξ)| ≤ Aα〈ξ〉m−|α|, and

‖Dα
ξ p(·, ξ)‖C(λ) ≤ Aατ(ξ)〈ξ〉m−|α|.

(A.10)

Furthermore, we say

p(x, ξ) ∈ C(λ)S−ψ
1,(τ) ⇔ |Dα

ξ p(x, ξ)| ≤ Aα〈ξ〉−ψ(ξ)−|α|, and

‖Dα
ξ p(·, ξ)‖C(λ) ≤ Aατ(ξ)〈ξ〉−ψ(ξ)−|α|.

(A.11)

Operators whose symbols have such limited smoothness act on a correspondingly smaller
array of function spaces than those with symbols in Sm

1,δ, but there exist a number of useful
results, given in Chapter I of [13], and supplemented by Appendix B here.

We finally say something about symbol smoothing, which writes

p(x, ξ) = p#(x, ξ) + pb(x, ξ). (A.12)

For this, we choose δ ∈ (0, 1) and set

p#(x, ξ) =
∑

j≥0

Ψ0(2−jδDx)p(x, ξ)ψj(ξ), (A.13)

where {ψj} is a Littlewood-Paley partition of unity, such as used in (1.21), and we pick
Ψ0(ξ) ∈ C∞

0 (Rn), equal to 1 for |ξ| ≤ 1. In (A.12), p#(x, ξ) is the smoothed symbol and
pb(x, ξ) is the remainder. Of use in the study of partial differential equations with Hölder
continuous coefficients is the fact that, for such a decomposition, if r > 0,

p(x, ξ) ∈ Cr
∗S

m
1,0 ⇒ p#(x, ξ) ∈ Sm

1,δ, and

pb(x, ξ) ∈ Cr
∗S

m−rδ
1,δ ,

(A.14)

where (somewhat parallel to (A.11))

q(x, ξ) ∈ Cr
∗S

µ
1,δ ⇔ |Dα

ξ q(x, ξ)| ≤ Aα〈ξ〉µ−|α|, and

‖Dα
ξ q(·, ξ)‖Cr∗ ≤ Aα〈ξ〉µ−|α|+δr.

(A.15)

See [12], Chapter 13, Proposition 9.9. Of use in the current setting is that, if ψ, τ , and λ
are given by (A.8)–(A.9), with s > 1, γ ∈ (0, s− 1), then

p(x, ξ) ∈ C(λ)S0
1,0 ⇒ p#(x, ξ) ∈ S0

1,δ, and

pb(x, ξ) ∈ C(λ)S−ψ
1,(τ).

(A.16)

This is proven in [13], Chapter I, pp. 33–34.
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B Rough pseudodifferential operators on B0
p,q

Here we prove the following result, which played an important role in §§2 and 4.

Proposition B.1 Assume P ∈ OPC(λ)S0
1,(τ), with

λ(j) = 〈j〉−s, τ(ξ) =
(
log〈ξ〉)s−1−γ

, s > 1, 0 < γ < s− 1. (B.1)

Then
P : B0

p,q −→ B0
p,q, 1 ≤ p, q ≤ ∞. (B.2)

This was proven for q = 1 in Proposition 12.2, Chapter I of [13]. We will recall that
argument, modify it to treat the case q = ∞, and then obtain (B.2) by interpolation. As
in [13] (following a strategy initiated in [3]) it suffices to treat P = p(x,D) when p(x, ξ) is
an “elementary symbol”

p(x, ξ) =
∞∑

k=0

Qk(x)ϕk(ξ) =
∞∑

k,j=0

Qkj(x)ϕk(ξ), (B.3)

where ϕk(ξ) is smooth and supported on 〈ξ〉 ∼ 2k, with ϕk(ξ) = ϕ1(2−k+1ξ) for k ≥ 2, and
Qk satisfies

‖Qk‖L∞ ≤ A1, ‖Qkj‖L∞ ≤ Cλ(j)τ(2k). (B.4)

Here Qkj = ψj(D)Qk, where {ψj} is a Littlewood-Paley partition of unity. We form

Q1
k =

∑

j≤k−4

Qkj , Q2
k =

k+3∑

j=k−3

Qkj , Q3
k =

∑

j≥k+4

Qkj , (B.5)

and separately analyze

pµ(x,D)f =
∞∑

k=0

Qµ
k(x)ϕk(D)f, µ = 1, 2, 3. (B.6)

Recall that

f ∈ B0
p,q(Rn) ⇐⇒

∞∑

`=0

‖ψ`(D)f‖q
Lp < ∞, (B.7)

if 1 ≤ q < ∞, and
f ∈ B0

p,∞(Rn) ⇐⇒ sup
`
‖ψ`(D)f‖Lp < ∞. (B.8)
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To treat the µ = 1 case of (B.6), we use the fact that Q1
kϕk(D)f has Fourier transform

supported in |ξ| ∼ 2k to write

ψ`(D)p1(x,D)f =
`+5∑

k=`−5

ψ`(D)
(
Q1

kϕk(D)f
)
, (B.9)

hence, given ‖Qk‖L∞ ≤ A1,

‖ψ`(D)p1(x,D)f‖Lp ≤ CA1

`+5∑

k=`−5

‖ϕ`(D)f‖Lp . (B.10)

Hence
‖Qk‖L∞ ≤ A1 < ∞ =⇒ p1(x,D) : B0

p,q(Rn) → B0
p,q(Rn), (B.11)

for all p, q ∈ [1,∞].
To treat the µ = 2 case of (B.6), we know that Q2

kϕk(D)f has Fourier transform sup-
ported in |ξ| ≤ C2k, and we can write

ψ`(D)p2(x,D)f =
∑

k≥`−4

ψ`(Q2
kϕk(D)f). (B.12)

Hence
‖ψ`(D)p2(x,D)f‖Lp ≤ C

∑

k≥`−4

‖Q2
k‖L∞‖ϕk(D)f‖Lp . (B.13)

The second estimate in (B.4) gives

‖Q2
k‖L∞ ≤ Cλ(k)τ(2k) ≤ C〈k〉−1−γ , (B.14)

with γ ∈ (0, 1). As in (12.17) in Chapter I of [13], we have the estimate
∑

`

‖ψ`(D)p2(x,D)f‖Lp ≤ C
∑

`≥0

∑

k≥`−4

〈k〉−1−γ‖ϕk(D)f‖Lp

≤ C
∑

k≥0

(k + 4)〈k〉−1−γ‖ϕk(D)f‖Lp ,
(B.15)

and hence
p2(x,D) : B0

p,1 −→ B0
p,1, 1 ≤ p ≤ ∞. (B.16)

Furthermore, we have

sup
`≥0

‖ψ`(D)p2(x,D)f‖Lp ≤ C sup
`≥0

∑

k≥`−4

〈k〉−1−γ‖ϕk(D)f‖Lp

≤ C sup
k≥0

‖ϕk(D)f‖Lp ,
(B.17)
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and hence
p2(x,D) : B0

p,∞ −→ B0
p,∞, 1 ≤ p ≤ ∞. (B.18)

Now there is the interpolation result

(B0
p,1, B

0
p,∞)θ,q = B0

p,q,
1
q

= 1− θ, (B.19)

cf. [2], p. 153. Hence (B.16) and (B.18) imply

p2(x, D) : B0
p,q −→ B0

p,q, p, q ∈ [1,∞]. (B.20)

Now we treat the µ = 3 case of (B.6). For j ≥ k + 4, Qkjϕk(D)f has Fourier transform
with support in |ξ| ∼ 2j . Hence

ψ`(D)p3(x,D)f =
∑

k≤`+5

`+5∑

j=`−5

ψ`(D)(Qkjϕk(D)f), (B.21)

so

‖ψ`(D)p3(x,D)f‖Lp ≤ C
∑

k≤`+5

`+5∑

j=`−5

‖Qkj‖L∞‖ϕk(D)f‖Lp

≤ C
∑

k≤`+5

λ(`)τ(2k)‖ϕk(D)f‖Lp .

(B.22)

Summing over `, we interchange the order of (`, k) summation and use
∑

`≥k−5

λ(`)τ(2k) ≤ A2 < ∞, (B.23)

which follows from (B.1), to obtain

∑

`≥0

‖ψ`(D)p3(x,D)f‖Lp ≤ CA2

∞∑

k=0

‖ϕk(D)f‖Lp , (B.24)

and hence
p3(x,D) : B0

p,1 −→ B0
p,1, 1 ≤ p ≤ ∞. (B.25)

To handle q = ∞, we have

sup
`≥0

‖ψ`(D)p3(x, D)f‖Lp ≤ C sup
`≥0

∑

k≤`+5

λ(`)τ(2k)‖ϕk(D)f‖Lp

≤ CA3 sup
k≥0

‖ϕk(D)f‖Lp ,
(B.26)
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with
A3 = sup

`≥0

∑

k≤`+5

τ(2k)λ(`) < ∞, (B.27)

by (B.1). Hence
p3(x,D) : B0

p,∞ −→ B0
p,∞, 1 ≤ p ≤ ∞, (B.28)

and another application of (B.19) yields

p3(x, D) : B0
p,q −→ B0

p,q, p, q ∈ [1,∞]. (B.29)

This completes the proof of Proposition B.1.
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