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Abstract

This paper analyzes Riemann-Hilbert problems in the following multidimensional
setting. Let M be a compact, n-dimensional Riemannian manifold, D a first order
elliptic differential operator on M , acting on sections of a vector bundle. Let Ω± be open
subsets of M , with common boundary Σ. Under various conditions on the multiplier
function Ψ, we seek functions u± on Ω±, annihilated by D, such that Ψu+−u− is given
in Lp(Σ), and u± satisfy appropriate bounds, putting them in certain Hardy spaces.

We pursue this via singular integral operator techniques, when Ω+ and Ω− are
uniformly rectifiable domains. This is essentially the maximal class of domains on
which such singular integral operators act naturally on Lp(Σ). The analysis brings in
multidimensional Cauchy integrals, Hardy spaces, and Toeplitz operators.
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1 Introduction

In this paper we tackle Riemann-Hilbert problems in the following setting. Let M be a
compact, n-dimensional Riemannian manifold, D a first order elliptic differential operator
(between sections of vector bundles E0, E1) on M . Let Ω± ⊂ M be open sets, with a common
boundary Σ := ∂Ω+ = ∂Ω−. The formulation of the Riemann-Hilbert problem can be
naturally nuanced as to take into account a desired level of regularity for the boundary
data and solutions. For instance, one may seek determining two functions u± defined in Ω±
and taking values in E0 ⊗ C` (for some given ` ∈ N) such that

Du± = 0 in Ω±, Ψu+

∣∣n.t.

Σ
− u−

∣∣n.t.

Σ
= g on Σ, (1.0.1)

where ·|n.t.

Σ denotes the nontangential boundary trace on Σ (considered either from within
Ω+ or from within Ω−, as appropriate; cf. (2.1.7)) and the multiplier function Ψ satisfies
certain regularity and nondegeneracy conditions, such as

Ψ, Ψ−1 ∈ C0(Σ,M(`,C)). (1.0.2)

Here and below, M(`,C) denotes the space of `× ` complex matrices. Given p ∈ (1,∞), we
may take g ∈ Lp(Σ, E0 ⊗ C`) in which scenario it is natural to ask that

u± ∈ Hp(Ω±, D) (1.0.3)

where, generally speaking,

Hp(Ω, D) :=
{
u ∈ C0(Ω, E0 ⊗ C`) :Du = 0 in Ω, Nu ∈ Lp(∂Ω),

and there exists u
∣∣n.t.

∂Ω
a.e. on ∂Ω

}
,

(1.0.4)

with Nu denoting the nontangential maximal function of u (see (2.1.7)).
Originally such problems were set in the complex plane (which one can compactify to

the Riemann sphere) with D = ∂, and Σ was a smooth curve. Treating such problems
played a big role in the development of singular integral operators acting on functions on Σ.
It became useful to work on more singular interfaces. For example, treating the Boussinesq
equation by the inverse scattering method (cf. [13]) yields a Riemann-Hilbert problem on C
(compactifiable to S2) where Σ consists of 6 rays, meeting at the origin (and at ∞). Thus
M \ Σ has 6 connected components. One can write M \ Σ = Ω+ ∪ Ω−, where Ω+ and Ω−
each have 3 connected components.

We desire to work in multidimensional domains, under the hypothesis that Ω+ and Ω−
are uniformly rectifiable domains. Uniformly rectifiable sets Σ, introduced in [10], form
a maximal class of sets for which one has a viable theory of the sort of singular integral
operators associated with layer potentials, in the category of Lp(Σ).
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Let us briefly define a uniformly rectifiable domain as follows. (See [16], [21] for more
details.) Let Ω be a relatively compact open subset of an n-dimensional Riemannian mani-
fold M . We assume Ω has finite perimeter. Concretely, if d stands for the exterior derivative
operator on M , acting in the sense of distributions, then

dχΩ = µ (1.0.5)

is a finite, vector-valued measure. To avoid pathologies, we assume Hn−1(∂Ω \ ∂∗Ω) = 0,
where Hn−1 is the (n − 1)-dimensional Hausdorff measure on M and ∂∗Ω is the measure-
theoretic boundary of Ω. Then (thanks to fundamental results of De Giorgi and Federer)
σ, the total variation measure associated to µ, is equal to (n − 1)-dimensional Hausdorff
measure on M restricted to ∂Ω. In this situation, the Radon-Nikodym theorem permits
one to write

µ = −ν σ, (1.0.6)

where the T ∗M -valued function ν is viewed as the (geometric measure theoretic) outward-
pointing unit conormal to ∂Ω, defined σ-a.e. on ∂Ω. In fact, we shall impose what turns
out to be a stronger condition on Ω than mere finite perimeter, namely we shall assume
that ∂Ω is an Ahlfors regular set. This means that there exist c0, c1 ∈ (0,∞) such that

c0r
n−1 ≤ σ(Br(x)) ≤ c1r

n−1, (1.0.7)

for all x ∈ ∂Ω, 0 < r ≤ diamΩ (where Br(x) stands for the geodesic ball of radius r
centered at x). Then we call Ω an Ahlfors regular domain provided Ω ⊂ M is open, ∂Ω is
an Ahlfors regular set, and Hn−1(∂Ω \ ∂∗Ω) = 0.

Such a domain is a UR domain provided ∂Ω is a uniformly rectifiable set, meaning that
it contains big pieces of Lipschitz images, at all length scales and all locations, satisfying
uniform Lipschitz bounds. In more detail, there exist ε, L ∈ (0,∞) such that, for each
x ∈ ∂Ω, R ∈ (0, 1], there is a Lipschitz map ϕ : Bn−1

R → M (where Bn−1
R is a ball of radius

R in Rn−1) with Lipschitz constant ≤ L, such that

Hn−1(∂Ω ∩BR(x) ∩ ϕ(Bn−1
R )) ≥ εRn−1. (1.0.8)

The setting of UR domains, just described, allows for the following analytical results.
Assume E ∈ OPS−1(M) is a pseudodifferential operator of order −1, with odd principal
symbol, and integral kernel E(x, y), so

Eu(x) =
∫

M

E(x, y)u(y) dV (y), u ∈ C∞
0 (M), (1.0.9)

where dV is the volume element on M . Consider the (boundary-to-boundary) “principal
value” singular integral operator

Bf(x) := PV
∫

∂Ω

E(x, y)f(y) dσ(y)

:= lim
ε→0+

∫

∂Ω\Bε(x)

E(x, y)f(y) dσ(y), x ∈ ∂Ω,

(1.0.10)
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sending functions defined on ∂Ω into functions defined on ∂Ω. Then B induces a well-
defined, linear and bounded mapping

B : Lp(∂Ω) −→ Lp(∂Ω), ∀ p ∈ (1,∞). (1.0.11)

This was demonstrated in [10] when M = Rn and E is a convolution operator. Also [10]
established associated Lp-estimates on the maximal operator sending f into the function

sup
0<ε≤1

∣∣∣∣∣
∫

∂Ω\Bε(x)

E(x, y)f(y) dσ(y)

∣∣∣∣∣, x ∈ ∂Ω, (1.0.12)

in the convolution setting. In [16] this was extended to the variable coefficient setting, and
to manifolds. Also [16] studied the (boundary-to-domain) “double layer” potential

Bf(x) :=
∫

∂Ω

E(x, y)f(y) dσ(y), x ∈ Ω, (1.0.13)

complemented estimates on (1.0.12) with the nontangential maximal function estimate

‖N (Bf)‖Lp(∂Ω) ≤ cp‖f‖Lp(∂Ω), 1 < p < ∞, (1.0.14)

and established the jump-formula

Bf
∣∣∣
n.t.

∂Ω
(x) =

1
2i

σE(x, ν(x))f(x) + Bf(x), σ-a.e. x ∈ ∂Ω, (1.0.15)

for each f ∈ Lp(∂Ω), 1 < p < ∞, where σE(x, ξ) is the principal symbol of E and B is as
in (1.0.10)–(1.0.11).

Here we apply certain layer potentials to the study of spaces (1.0.4) of solutions to
Du = 0 in Ω, when Ω is a UR domain and D is a first-order elliptic differential operator
on M , acting between sections of vector bundles Ej , j = 0, 1. If D is invertible, say as a
mapping

D : H1,2(M, E0) −→ L2(M, E1) (1.0.16)

where, generally speaking, Hs,p(M) stands for the Lp-based Sobolev space of fractional
smoothness s, we can take E = D−1 in (1.0.9). However, in many interesting cases, D will
not be invertible, though the ellipticity of D implies the existence of a parametrix which
serves as an inverse modulo compact operators for D in (1.0.16). Hence, while D may fail
to be invertible, it is always a Fredholm operator in the context of (1.0.16), albeit it often
has nonzero index. One the other hand, under mild conditions on D, one can construct
E ∈ OPS−1(M) such that, for some neighborhood O of Ω,

suppu ⊂ O =⇒ EDu = u. (1.0.17)

Indeed, this is the case when D and D∗ have the unique continuation property (henceforth
abbreviated UCP). Specifically, D has UCP provided if u ∈ H1,2(M) is such that Du = 0
on M and u vanishes on some nonempty open subset of M then u = 0 everywhere on
M . In the scenario when D and D∗ have UCP, we can take a ∈ C∞

0 (M \ Ω) satisfying
a ≥ 0 everywhere and a > 0 in a nonempty open set, which then implies that the auxiliary
operator

D :=
(

ia D∗

D ia

)
(1.0.18)
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is invertible as a mapping

D : H1,2(M, E0 ⊕ E1) −→ L2(M, E0 ⊕ E1) (1.0.19)

with inverse D−1 ∈ OPS−1(M). Invertibility is a consequence of the following facts. First,
since D is obtained as a lower order perturbation of an elliptic, self-adjoint operator, it is
Fredholm of index zero. Second, elements in KerD vanish in the set where a > 0 given that
for every u ∈ H1,2(M, E0 ⊕ E1) we have

Im (Du, u)L2(M) =
∫

M

a |u|2 dV. (1.0.20)

In light of the structure ofD and UCP for D and D∗, any function u ∈ KerD then necessarily
vanishes on all of M (this is actually true even in the case when the coefficients of D have
only a limited amount of smoothness; see [21, Corollary A.1.4]). From such D−1, we obtain

D−1 =
(

E11 E12

E21 E22

)
=⇒ E12D = I − iE11a, (1.0.21)

giving (1.0.17) with E := E12. Similarly, DE12 = I − iaE22, so

suppu ⊆ M \ Ω =⇒ DEu = 0 on Ω. (1.0.22)

See [21] for more details.
For applicability to the Riemann-Hilbert problem (1.0.1), it is convenient to pass from

B and B to the “Cauchy integral operators” C and C, obtained by applying B and B to
iσD(·, ν(·))f in place of just f . In §2 we analyze this and show that

Cf
∣∣∣
n.t.

∂Ω
=

1
2
f + Cf, (1.0.23)

in the sense of nontangential a.e. convergence, and (with I denoting the identity)

P :=
1
2
I + C =⇒ P2 = P. (1.0.24)

The operator P is a Calderón projector. It yields a projection of Lp(∂Ω, E0 ⊗ C`) onto the
space Hp(∂Ω, D) of nontangential boundary values of functions from Hp(Ω, D). Given also
a multiplier function Φ ∈ C0(∂Ω,M(`,C)), then we can define the Toeplitz operator

TΦ := PΦP + (I − P). (1.0.25)

In §2 we provide results on such Cauchy integrals, Calderón projectors, and Toeplitz opera-
tors. We show that such Toeplitz operators are Fredholm if Φ takes values in GL(`,C) (the
general linear group, consisting of invertible elements from M(`,C)), and discuss properties
of the index. We also consider the more general case when the continuity assumption on
the multiplier function Φ is relaxed to

Φ ∈ L∞ ∩ vmo(∂Ω, GL(`,C)), (1.0.26)

treating simultaneously extensions to higher dimensions and to domains with rough bound-
ary of index results of Brezis-Nirenberg [7]. Results of §2, which are distilled from the
authors’ paper [21], provide background for the analysis of the Riemann-Hilbert problem.
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Here is a first indication of the relevance of Toeplitz operators to the Riemann-Hilbert
problem. Assume D is invertible. Then one can take f ∈ Lp(Σ, E0 ⊗ C`) and define Bf(x)
(and hence Cf(x)) for x ∈ M \ Σ = Ω+ ∪ Ω−, and then

u± = Cf in Ω± (1.0.27)

satisfies
u+

∣∣n.t.

Σ
= Pf, u−

∣∣n.t.

Σ
= (P − I)f, (1.0.28)

so the transmission condition (1.0.1) becomes

T̃Ψf := ΨPf + (I − P)f = g, (1.0.29)

an integral equation which turns out to differ from TΨf = g by the application of a compact
operator.

If D is not invertible, which, as mentioned above, is frequently the case, a more elaborate
construction is needed. We start this in §3. We take a pair of non-negative functions a±,
supported in M \ Ω±, to give, in place of (1.0.23), two Cauchy-type operators

C± : Lp(Σ) −→ Hp(Ω±, D), (1.0.30)

satisfying
C±f

∣∣n.t.

Σ
= P±f, (1.0.31)

for projections P± on Lp(Σ, E0). The range Hp
±(Σ, D) of P± is equal to the image of

Hp(Ω±, D) under the nontangential boundary trace map τ(u) := u
∣∣n.t.

Σ
. When D is invert-

ible, the construction indicated in (1.0.23)–(1.0.28) yields P− = I − P+, and

Lp(Σ, E0) = Hp
+(Σ, D)⊕Hp

−(Σ, D). (1.0.32)

In general, this is not the case. The modification of (1.0.32) that results is studied in §3.
This involves an analysis of the operators

Jp : Hp
+(Σ, D)⊕Hp

−(Σ, D) −→ Lp(Σ, E0),

Γp : Lp(Σ, E0) −→ Hp(Σ, D)⊕Hp
−(Σ, D),

(1.0.33)

given by
Jp(f+, f−) := f+ − f− and Γpf := (P+f,−P−f). (1.0.34)

We show that Jp and Γp are Fredholm inverses of each other, and that

IndexJp = − IndexΓp = IndexD, (1.0.35)

where D is viewed as a global mapping on M , say D : H1,2(M, E0) → L2(M, E1). A related
operator is

Ap : Lp(Σ, E0) −→ Hp(Ω+, D)⊕Hp(Ω−, D),

Apf := (C+f, C−f), ∀ f ∈ Lp(Σ, E0),
(1.0.36)

which we show is Fredholm, with IndexAp = − IndexD. If D is invertible, then Jp and
Γp are actually genuine inverses of each other, and hence are isomorphisms in (1.0.33), and
then Ap is an isomorphism in (1.0.36).
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We also study analogues of (1.0.33)–(1.0.36), involving Lp
1(Σ, E0), the Lp-based Sobolev

spaces of order one on Σ, and the correspondingly more regular Hardy spaces

H1,p(Ω±, D) :=
{
u ∈ C1(Ω±, E0) : Du = 0 in Ω±, N (u),N (∇u) ∈ Lp(Σ), and

there exist u
∣∣n.t.

Σ
, (∇u)

∣∣n.t.

Σ
σ-a.e. on Σ

}
,

(1.0.37)

as well as the associated spaces H1,p
± (Σ, D) of their nontangential boundary traces, which

also turn out to be the images of Lp
1(Σ, E0) under P±.

In §4 we apply results of §§2–3 to the Riemann-Hilbert problem. In operator terms, the
problem (1.0.1) is the study of

RΨ : Hp(Ω+, D)⊕Hp(Ω−, D) −→ Lp(Σ, E0 ⊗ C`),

RΨ(u, v) := Ψu
∣∣n.t.

Σ
− v

∣∣n.t.

Σ
, ∀ (u, v) ∈ Hp(Ω+, D)⊕Hp(Ω−, D).

(1.0.38)

We show that
RΨ Ãp = T̃Ψ, (1.0.39)

where T̃Ψ is as in (1.0.29) and Ãp, given by Ãpf = (C+f,−C−f), is a slight variant of Ap in
(1.0.36), also Fredholm with index equal to − IndexD, when acting on sections of E0. For
the action of Ãp on sections of E0⊗C`, we multiply the index by `. If Ψ satisfies (1.0.2), or
more generally (1.0.26), then T̃Ψ is Fredholm, with the same index as TΨ, and we have

IndexRΨ = IndexTΨ + ` · IndexD. (1.0.40)

If D is invertible, then Ãp is an isomorphism, and one gets the tight relation

KerRΨ ≈ Ker T̃Ψ, RangeRΨ = Range T̃Ψ. (1.0.41)

In §4.2 we obtain such results in the Lp-Sobolev space context,

RΨ : H1,p(Ω+, D)⊕H1,p(Ω−, D) −→ Lp
1(Σ, E0 ⊗ C`), (1.0.42)

given
Ψ ∈ Lq

1(Σ, GL(`,C)), q ∈ (n− 1,∞), p ∈ (1, q], (1.0.43)

provided Ω± satisfy a two-sided John condition (discussed in §A.2).
In §4.3 we show how to apply the results of §§4.1–4.2 to Riemann-Hilbert problems on

UR domains in the complex plane C, by compactifying C and passing to a Riemann-Hilbert
problem on the Riemann sphere S2. In this setting, it is natural to treat the unknowns
as sections of a holomorphic line bundle over S2. In §4.4 we consider Riemann-Hilbert
problems on more general compact Riemann surfaces, involving sections of holomorphic
vector bundles.

We end with some appendices, providing useful background material. In §A.1 we give
definitions and basic properties of Lp-Sobolev spaces Lp

1(∂Ω), in the setting that Ω is an
Ahlfors regular domain. In §A.2 we discuss a subclass of domains, those satisfying a two-
sided John condition, for which one has additional results on Lp

1(∂Ω). In §A.3 we discuss
a refined divergence theorem, of crucial value for several technical analytical results. In
§A.4 we present material on holomorphic line bundles and vector bundles over a compact
Riemann surface, the associated ∂-operator, ∂L, and a formula for its index, the celebrated
Riemann-Roch formula.
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2 Cauchy integrals, Calderón projectors, and Toeplitz oper-
ators

Here we present basic ingredients for the analysis of the Riemann-Hilbert problem, starting
with Cauchy integrals. The key results are distilled from [21], to which we refer for detailed
proofs.

In §2.1 we pass from B and B, as in (1.0.13)–(1.0.15), to the multidimensional Cauchy
integral operators C and C, obtained by applying B and B to iσD(y, ν(y))f(y); see (2.1.10)
and (2.1.13). We approach these operators from two different perspectives, first via a
reproducing formula, and then via the goal to obtain from (1.0.15) an operator such that
the first term on the right side of (1.0.15) gets replaced by (1/2)f(x). Comparison of these
two approaches yields the basic result that

P :=
1
2
I + C =⇒ P2 = P. (2.0.1)

The operator P is a Calderón projector. It is a projection of Lp(∂Ω, E0 ⊗ C`) onto the
space Hp(∂Ω, D) of nontangential boundary values of functions from Hp(Ω, D), defined as
in (1.0.4). Using P we define Toeplitz operators

TΦ := PΦP + (I − P). (2.0.2)

In §2.2 we analyze (2.0.2) for Φ ∈ C0(∂Ω, M(`,C)), obtain compactness of TΦΨ − TΦTΨ on
Lp(∂Ω), 1 < p < ∞, whenever Ψ ∈ L∞(∂Ω,M(`,C)), and deduce that (2.0.2) is Fredholm
on Lp(∂Ω), 1 < p < ∞, when Φ ∈ C0(∂Ω,GL(`,C)). We note that the index of TΦ on
Lp(∂Ω) is independent of p and that ι(Φ) = IndexTΦ produces a group homomorphism

ι : [∂Ω;GL(`,C)] −→ Z, (2.0.3)

where [∂Ω;GL(`,C)] is the group of homotopy classes of continuous maps from ∂Ω to
GL(`,C).

In §2.3 we extend the scope of our analysis by relaxing the continuity assumption on
the multiplier function Φ to

Φ ∈ L∞ ∩ vmo(∂Ω,M(`,C)). (2.0.4)

If also Φ−1 satisfies (2.0.4), then TΦ is Fredholm on Lp(∂Ω) for 1 < p < ∞. The appropriate
homotopy invariance in this setting is more subtle than that in §2.2. We discuss a result that
extends the scope of some work of [7], both to higher dimensions and to rough boundaries.

In §2.4 we extend the scope in another direction, allowing Φ to be a section of EndC,
when C → M is a vector bundle, yielding “twisted” Toeplitz operators.

In §2.5 we introduce cobordism invariance as a useful tool to apply to the problem of
computing the index of a Toeplitz operator. This is applied in §2.6, in conjunction with
some topological results of Bott and index results of [33], [6], and [2], to compute the index
for a certain interesting class of Toeplitz operators. In §2.7 we record results on Toeplitz
operators acting on Lp

1(∂Ω), the Lp-based Sobolev spaces of order one on Σ. See §A.1 for a
description of these spaces.
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2.1 Reproducing formulas, Cauchy integrals, and Calderón projectors

We start with a sequence of reproducing formulas, valid for progressively less smooth func-
tions u and for progressively less rough domains Ω. To begin with, assume

u ∈ C0(M, E0), Du ∈ L1(M, E1). (2.1.1)

We let f ∈ Lip(M) be scalar and note the Leibniz type formula

D(fu) = fDu + (D0f)u, D0f(x) =
1
i
σD(x)df(x), (2.1.2)

where the principal symbol of the operator D is written as σD(x, ξ) = σD(x)ξ, linear in
ξ ∈ T ∗xM . Assume supp f ⊂ O, with O as in (1.0.17). Then

fu(x) = E
(
(D0f)u

)
+ E(f Du). (2.1.3)

Now, assume Ω ⊂ M is a finite perimeter domain, and replace f in (2.1.3) by a sequence
fk ∈ Lip(M), supported in O, and satisfying

fk −→ χΩ, boundedly and a.e.,

dfk −→ dχΩ = µ = −νσ, weak∗ as measures on M.
(2.1.4)

Passing to the limit then gives

u(x) = i

∫

∂Ω

E(x, y) σD(y, ν(y))u(y) dσ(y)

+
∫

Ω

E(x, y)Du(y) dV (y), x ∈ Ω.

(2.1.5)

This is our basic reproducing formula. Note that the second integral vanishes if Du = 0
on Ω. At this point we have (2.1.5) for Ω with finite perimeter, provided u satisfies (2.1.1).
We will need this formula for much rougher functions u.

The following is established in §2.2 of [21], extending a Green formula given in §2.3 of
[16]. To state it, we bring in the spaces

Lp(Ω) :=
{
u ∈ C0(Ω, E0) : Nu ∈ Lp(∂Ω), and

there exists u
∣∣n.t.

∂Ω
σ-a.e. on ∂Ω

}
.

(2.1.6)

Here and elsewhere, the nontangential maximal function and nontangential trace of u are
defined for x ∈ ∂Ω as

(Nu)(x) := sup
y∈Γ(x)

|u(y)|,
(
u
∣∣n.t.

∂Ω

)
(x) := lim

Γ(x)3z→x
u(z). (2.1.7)

where, for some fixed, sufficiently large number co ∈ (1,∞), the nontangential approach
regions are given by

Γ(x) :=
{
y ∈ Ω : dist(x, y) < co dist(y, ∂Ω)

}
, x ∈ ∂Ω. (2.1.8)
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Proposition 2.1.1 Assume Ω ⊂ M is an Ahlfors regular domain and that, for some p > 1,

u ∈ Lp(Ω), and Du ∈ L1(Ω, E1). (2.1.9)

Then (2.1.5) holds (with u
∣∣n.t.

∂Ω
replacing u in the boundary integral).

A sharper extension of Green’s formula, allowing p = 1 in (2.1.9), is discussed in §A.3.
We now specialize to the case that Ω ⊂ M is a UR domain. As stated in §1, the layer

potential operator B defined by (1.0.13) satisfies (1.0.14)–(1.0.15), with B as in (1.0.10)–
(1.0.11). Given the nontangential limit result (1.0.15), it follows that if

Cf(x) := i

∫

∂Ω

E(x, y)σD(y, ν(y))f(y) dσ(y), x ∈ Ω, (2.1.10)

then
‖N (Cf)‖Lp(∂Ω) ≤ cp‖f‖Lp(∂Ω), 1 < p < ∞, (2.1.11)

and, since σE(x, ξ)σD(x, ξ) = I, we have nontangential σ-a.e. convergence

Cf
∣∣∣
n.t.

∂Ω
(x) =

1
2
f(x) + Cf(x), x ∈ ∂Ω, (2.1.12)

where
Cf(x) := i PV

∫

∂Ω

E(x, y)σD(y, ν(y))f(y) dσ(y), x ∈ ∂Ω. (2.1.13)

It follows that if 1 < p < ∞ and f ∈ Lp(∂Ω, E0), then

u = Cf =⇒ u ∈ Hp(Ω, D), (2.1.14)

defined in (1.0.4) (for now, with ` = 1). Also (2.1.5) applies, with Du = 0 on Ω, hence

u = Cf =⇒ u = C(u∣∣n.t.

∂Ω

)
. (2.1.15)

Comparing (2.1.12), we deduce that

P :=
1
2
I + C =⇒ P2 = P. (2.1.16)

By (1.0.11), we have

P : Lp(∂Ω, E0) −→ Lp(∂Ω, E0), 1 < p < ∞. (2.1.17)

The integral (2.1.10) is a multidimensional generalization of the familiar Cauchy integral,
obtained when M = C and D = ∂.

When ∂Ω is smooth, P is a classical Calderón-type projector. By the definition of
Hp(Ω, D) in (1.0.4), there is a bounded trace map

τ : Hp(Ω, D) −→ Lp(∂Ω, E0), τ(u) := u
∣∣n.t.

∂Ω
, (2.1.18)

and Proposition 2.1.1 together with (2.1.10)–(2.1.15) imply that, when Ω is a UR domain,

τ : Hp(Ω, D) −→ Hp(∂Ω, D), (2.1.19)
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with
Hp(∂Ω, D) = PLp(∂Ω, E0). (2.1.20)

It follows from Proposition 2.1.1 that τ in (2.1.18) is injective, hence τ in (2.1.19) is an
isomorphism.

In [21] the authors also treat a “Calderón-Szegö projector” S, defined initially on
L2(∂Ω, E0) as the orthogonal projection onto H2(∂Ω, D). Extensions of S to Lp(∂Ω, E0), for
a range of p, and relations with P, are discussed there. Space considerations motivate us
to pass over this topic here, so we point the reader to §3.2 of [21].

Remark. It is natural to consider the following variant of (1.0.4):

H̃p(Ω, D) :=
{
u ∈ C0(Ω, E0) : Du = 0 in Ω, Nu ∈ Lp(∂Ω)

}
, (2.1.21)

dropping the hypothesis that the nontangential trace u
∣∣n.t.

∂Ω
exists. The assertion that

H̃p(Ω, D) = Hp(Ω, D) (2.1.22)

is known as a Fatou theorem. Such a result is classical when Ω is smoothly bounded. In
[22] it is shown that (2.1.22) holds when Ω is a Lipschitz domain, and also when Ω is a
regular SKT domain (a class of domains defined in [16, §4.1]).

2.2 Toeplitz operators – Fredholmness

Here, Ω will be a UR domain.
The maps C, C, and P, defined in (2.1.10), (2.1.13), and (2.1.16), extend naturally from

acting on sections of E0 to acting on sections of E0 ⊗ C`, giving rise to projections

P : Lp(∂Ω, E0 ⊗ C`) −→ Lp(∂Ω, E0 ⊗ C`), 1 < p < ∞, (2.2.1)

and we have (2.1.19)–(2.1.20), with Hp(Ω, D) as in (1.0.4) for general ` ≥ 1.
For notational simplicity, we will henceforth typically denote Lp(∂Ω, E0⊗C`) by Lp(∂Ω),

unless we need to explicitly specify the relevant vector bundle.
If Φ ∈ L∞(∂Ω,M(`,C)), then multiplication by Φ also naturally acts on sections of

E0 ⊗ C`, and we have the following Toeplitz operator:

TΦ := PΦP + (I − P). (2.2.2)

If also Ψ ∈ L∞(∂Ω,M(`,C)), then

TΦTΨ − TΦΨ = PΦ[P,Ψ]P (2.2.3)

which is then compact on Lp(∂Ω) as long as the commutator [P, Ψ] is. Note that

[P, Ψ]f(x) = [C, Ψ]f(x) = i PV
∫

∂Ω

E(x, y){Ψ(y)−Ψ(x)}g(y) dσ(y), (2.2.4)

where g := σD(·, ν(·))f . If the multiplier function Ψ is Hölder continuous, say

Ψ ∈ Cα(∂Ω,M(`,C)), α > 0, (2.2.5)
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then the integral in (2.2.4) is weakly singular, and compactness on Lp(∂Ω) for 1 < p < ∞
is elementary. If mere continuity is assumed,

Ψ ∈ C0(∂Ω,M(`,C)), (2.2.6)

then we can take a sequence Ψk ∈ Cα(∂Ω, M(`,C)) such that Ψk → Ψ uniformly, and
deduce that [P,Ψ] is compact, hence

Ψ ∈ L∞(∂Ω,M(`,C)), Φ ∈ C0(∂Ω, M(`,C))

=⇒ TΦTΨ − TΦΨ compact on Lp(∂Ω), 1 < p < ∞.
(2.2.7)

From here we readily get the following result.

Proposition 2.2.1 Let Ω be a UR domain in M , and assume

Φ : ∂Ω −→ GL(`,C) (2.2.8)

is continuous. Then TΦ−1TΦ− I and TΦTΦ−1 − I are compact on Lp(∂Ω) for all p ∈ (1,∞),
so

TΦ : Lp(∂Ω) −→ Lp(∂Ω) is Fredholm, ∀ p ∈ (1,∞). (2.2.9)

In §4.1 of [21] it is shown that

ι(Φ) = ι(Φ;D) := IndexTΦ on Lp(∂Ω) (2.2.10)

is independent of p. In fact, KerTΦ on Lp(∂Ω) and KerT ∗Φ on Lp′(∂Ω) are both independent
of p. (This can be interpreted as a regularity result.) From (2.2.7), we have that, if also
Ψ : ∂Ω → GL(`,C) is continuous, then

ι(ΦΨ) = ι(Φ) + ι(Ψ). (2.2.11)

Here and below, GL(`,C) denotes the group of invertible `× ` complex matrices.
Note that if Φt is a continuous family of elements of C0(∂Ω, GL(`,C)), then TΦt is a

norm continuous family of Fredholm operators, so has a constant index. That is, Index TΦ

depends only on the homotopy class of Φ in [∂Ω;GL(`,C)], the group of homotopy classes
of continuous maps ∂Ω → GL(`,C). By (2.2.11), we obtain a group homomorphism

ι : [∂Ω;GL(`,C)] −→ Z. (2.2.12)

We return to this in §2.6.

2.3 Toeplitz operators with coefficients in L∞ ∩ vmo(∂Ω)

We begin by defining some relevant function spaces. We take Ω to be a relatively compact
UR domain, with boundary ∂Ω, and define bmo(∂Ω) and vmo(∂Ω). These definitions extend
to a broader class of measured metric spaces; cf. [16, §2.4]. We have the BMO-seminorm

‖Φ‖BMO := sup
B

1
σ(B)

‖Φ− ΦB‖L1(B), (2.3.1)

where B runs over all “surface” balls in ∂Ω and

ΦB :=
1

σ(B)

∫

B

Φ dσ. (2.3.2)
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This is only a seminorm since ‖Φ‖BMO = 0 whenever Φ is constant. We use the norm

‖Φ‖bmo := ‖Φ‖BMO + ‖Φ‖L1(∂Ω). (2.3.3)

The space vmo(∂Ω) is the closure in bmo-norm of C0(∂Ω).
Here we study Toeplitz operators TΦ associated with a multiplier function Φ satisfying

Φ ∈ L∞ ∩ vmo(∂Ω). (2.3.4)

The following is proved in [28, p. 81], for scalar functions. It extends readily to functions
with values in End(C`).

Lemma 2.3.1 L∞∩vmo(∂Ω) is a closed linear subspace of L∞(∂Ω), closed under products,
hence a closed ∗-subalgebra of the C∗-algebra L∞(∂Ω).

Generally, if A is a C∗-algebra with unit 1 and B a C∗-subalgebra containing 1, then an
element ϕ ∈ B is invertible in B if and only if it is invertible in A. This has the following
consequence:

Φ ∈ L∞ ∩ vmo(∂Ω,GL(`,C)) and Φ−1 ∈ L∞(∂Ω, EndC`)

=⇒ Φ−1 ∈ L∞ ∩ vmo(∂Ω, EndC`).
(2.3.5)

When Φ satisfies the conditions in the first line of (2.3.5), we say

Φ ∈ L∞inv ∩ vmo(∂Ω, GL(`,C)). (2.3.6)

In particular, if U(`) denotes the group of unitary `× ` complex matrices, we have

L∞ ∩ vmo(∂Ω, U(`)) ⊂ L∞inv ∩ vmo(∂Ω, GL(`,C)). (2.3.7)

The following extends the compactness result on [P, Ψ] in §2.2.

Lemma 2.3.2 If Ψ ∈ L∞ ∩ vmo(∂Ω, EndC`), then the commutator

[P, Ψ] : Lp(∂Ω) −→ Lp(∂Ω) is compact, ∀ p ∈ (1,∞). (2.3.8)

Proof. The assertion is that (2.2.4) is compact on Lp(∂Ω) for such Ψ. This is established
in [16, §4.2], building on a fundamental commutator estimate of [9]. ¤

This leads to the following extension of Proposition 2.2.1.

Theorem 2.3.3 If Ω is a UR domain and the multiplier function Φ satisfies (2.3.6), then
TΦ−1TΦ − I and TΦTΦ−1 − I are compact on Lp(∂Ω) for all p ∈ (1,∞), so the operator

TΦ : Lp(∂Ω) −→ Lp(∂Ω) is Fredholm, ∀ p ∈ (1,∞). (2.3.9)

Again the index ι(Φ) = ι(Φ; D) = IndexTΦ is independent of p ∈ (1,∞). Also, we have

ι(ΦΨ) = ι(Φ) + ι(Ψ), (2.3.10)

when Φ, Ψ ∈ L∞inv ∩ vmo(∂Ω,GL(`,C)).
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The appropriate homotopy invariance is a bit more subtle in this setting than in §2.2.
As a first step, given Φ as in (2.3.6), bring in the polar decomposition

Φ = AU, A = (ΦΦ∗)1/2,

U = A−1Φ ∈ L∞ ∩ vmo(∂Ω, U(`)).
(2.3.11)

Then
ι(Φ) = ι(U) + ι(A). (2.3.12)

Now (1− t)A + tI ∈ L∞inv ∩ vmo(∂Ω,GL(`,C)) for every t ∈ [0, 1], and the identity

T(1−t)A+tI = (1− t)TA + tTI (2.3.13)

yields
ι(A) = 0, hence ι(Φ) = ι(U). (2.3.14)

Hence to examine the index of TΦ, it suffices to consider Φ ∈ L∞ ∩ vmo(∂Ω, U(`)). The
following two propositions are established in [21, §4.2].

Proposition 2.3.4 Assume Φt ∈ L∞ ∩ vmo(∂Ω, U(`)) for each t ∈ [0, 1] and

t 7→ Φt is continuous from [0, 1] to bmo(∂Ω, EndC`). (2.3.15)

Then ι(Φt) is independent of t ∈ [0, 1].

The following result reduces index computations for TΦ to the continuous case.

Proposition 2.3.5 Given Φ ∈ L∞∩vmo(∂Ω, U(`)), there exists an explicit approximation
procedure, producing

Φt ∈ C0(∂Ω, U(`)), t > 0, (2.3.16)

such that
‖Φt − Φ‖bmo −→ 0, as t → 0. (2.3.17)

Moreover, there exists ε1 > 0 such that

ι(Φ) = ι(Φt), ∀ t ∈ (0, ε1]. (2.3.18)

In the special case where Ω ⊂ C is the unit disk (hence has smooth boundary) and
D = ∂ (and ` = 1), such results are obtained in [7], making use of the homotopy theory
of BMO maps X → Y obtained in [7] when X and Y are smooth compact manifolds.
The analysis in [21] requires extending the homotopy theory to allow X to be a compact,
Ahlfors regular set. Among other things, a somewhat more complicated approximation
procedure is required to produce Φt in (2.3.16)–(2.3.18). The arguments needed to prove
Propositions 2.3.4–2.3.5 are fairly elaborate, so we refer to [21, §4.2] for details.
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2.4 Twisted Toeplitz operators

We extend the setting of Toeplitz operators from (2.2.1) to

TΦ : Lp(∂Ω, E0 ⊗ C) −→ Lp(∂Ω, E0 ⊗ C), 1 < p < ∞, (2.4.1)

where C → M is a smooth vector bundle and

Φ ∈ C0(∂Ω, End C) (2.4.2)

is a continuous section of End C over ∂Ω. The case treated in §2.2 amounts to taking C
to be the trivial bundle of rank `. In that setting, P was extended to act on sections of
E0 ⊗ C` = E0 ⊕ · · · ⊕ E0 componentwise. The current setting requires a more elaborate
construction.

To begin, we move from D to

DC : Hs+1,2(M, E0 ⊗ C) −→ Hs,2(M, E1 ⊗ C), (2.4.3)

such that
σDC(x, ξ) = σD(x, ξ)⊗ IC . (2.4.4)

To do this, we provide C with a smooth connection ∇. Then, to define (2.4.3), we take a
cue from (2.1.2) and seek to set

DC(u⊗ v) = Du⊗ v + (D0v)u, (2.4.5)

where u is a section of E0 and v a section of C. We need to define (D0v)u, as a section of
E1 ⊗ C, again taking a cue from (2.1.2). Now σD(x, ξ) = σD(x)ξ is linear in ξ, and we have

σD(x) : T ∗x −→ Hom(E0x, E1x), (2.4.6)

or equivalently
σD(x) : E0x ⊗ T ∗x −→ E1x. (2.4.7)

Tensoring with IC gives

σD(x) : E0x ⊗ T ∗x ⊗ Cx −→ E1x ⊗ Cx, (2.4.8)

and it is natural to set

(D0v)u(x) =
1
i
σD(x)

(
u(x)⊗∇v(x)

)
. (2.4.9)

The symbol identity (2.4.4) is readily verified, and the analysis of §§2.1–2.2 is applicable to
DC , yielding the projection

PC : Lp(∂Ω, E0 ⊗ C) −→ Lp(∂Ω, E0 ⊗ C). (2.4.10)

Actually, in light of (2.4.9), this operator depends on the choice of connection ∇ on C, but
we will not burden the notation with this. Instead, we lighten the notation and simply
use P to denote (2.4.10), and again (usually) denote the Lp-spaces in (2.4.10) simply by
Lp(∂Ω). Thus we set

TΦ := PΦP + (I − P), (2.4.11)

acting on sections of E0⊗C, then (2.4.1) holds, for Φ of the form (2.4.2), and more generally
for

Φ ∈ L∞ ∩ vmo(∂Ω, End C). (2.4.12)

Parallel to Lemma 2.3.2, we have:
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Lemma 2.4.1 If Ψ ∈ L∞ ∩ vmo(∂Ω, End C), then

[P, Ψ] : Lp(∂Ω) −→ Lp(∂Ω) is compact, ∀ p ∈ (1,∞). (2.4.13)

This time, the identity (2.2.4) does not quite hold, but, via an argument involving
(2.4.4), the difference between the left and the right sides of (2.2.4) is given by a weakly
singular integral, whose compactness is elementary. See [21, §4.5] for details.

This leads to the following extension of Theorem 2.3.3.

Theorem 2.4.2 Assume Ω is a UR domain and

Φ, Φ−1 ∈ L∞ ∩ vmo(∂Ω, End C), (2.4.14)

a condition which we also abbreviate as

Φ ∈ L∞inv ∩ vmo(∂Ω, GL(C)). (2.4.15)

Then TΦ−1TΦ − I and TΦTΦ−1 − I are compact on Lp(∂Ω) for p ∈ (1,∞), so

TΦ : Lp(∂Ω) −→ Lp(∂Ω) is Fredholm, ∀ p ∈ (1,∞). (2.4.16)

Thus we can set

ι(Φ) := IndexTΦ on Lp(∂Ω, E0 ⊗ C), p ∈ (1,∞). (2.4.17)

As before, this index is independent of p ∈ (1,∞). If Ψ also satisfies (2.4.15), then

ι(ΦΨ) = ι(Φ) + ι(Ψ). (2.4.18)

It is useful to have the following.

Proposition 2.4.3 Given Φ satisfying (2.4.15), the index of TΦ is independent of the choice
of connection on C.
Proof. Two connections on C give two elliptic operators DC that differ by an operator of
order zero. Hence the integral kernels of E(x, y) differ by a weakly singular term, and so
the two versions of TΦ differ by a compact operator. ¤

2.5 Localization and cobordism invariance

Tools developed in [21] to analyze the index of TΦ include localization and cobordism
invariance. We describe these here. To begin, suppose

∂Ω =
J⋃

j=1

Γj , disjoint, closed subsets. (2.5.1)

For each j define the operator Cj : Lp(Γj) → Lp(Γj) by restricting the integral (2.11) to
Γj , and set Pj := (1/2)I + Cj , so that Pj : Lp(Γj) → Lp(Γj). We have

P −
J⊕

j=1

Pj compact on Lp(∂Ω), P2
j − Pj compact on Lp(Γj). (2.5.2)
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Thus, with
TΓj ,Ω,Φf = PjΦPjf + (I − Pj)f, f ∈ Lp(Γj), (2.5.3)

we have

TΦ −
J⊕

j=1

TΓj ,Ω,Φ compact on Lp(∂Ω), (2.5.4)

for p ∈ (1,∞), if Φ ∈ L∞ ∩ vmo(∂Ω, End C). Clearly TΓj ,Ω,Φ depends only on Φ|Γj . If

Φ ∈ L∞ ∩ vmo(∂Ω, GL(C)), (2.5.5)

then each operator TΓj ,Ω,Φ is Fredholm on Lp(Γj , E0 ⊗ C), and

IndexTΦ =
J∑

j=1

IndexTΓj ,Ω,Φ. (2.5.6)

Here is a related localization. Given the UR domain Ω ⊂ M , assume there is another
Riemannian manifold M̃ , a neighborhood O of Ω in M , and an open Õ ⊂ M̃ , isometric
to O. (From here on, we identify O and Õ.) Assume there exists a first order elliptic
differential operator D̃ on M̃ acting on sections of Ẽ0⊗C̃ → M̃ , these bundles agreeing with
E0 ⊗ C on Õ = O, such that D̃ = D on O. Then we have the Toeplitz operator

T
M̃,Φ

: Lp(∂Ω) −→ Lp(∂Ω), (2.5.7)

and
Φ ∈ L∞ ∩ vmo(∂Ω, End C) =⇒ TΦ − T

M̃,Φ
compact on Lp(∂Ω), (2.5.8)

for p ∈ (1,∞), so

Φ ∈ L∞inv ∩ vmo(∂Ω, GL(C)) =⇒ IndexTΦ = IndexT
M̃,Φ

. (2.5.9)

The following cobordism result is established in [21, §4.7].

Proposition 2.5.1 If Φ ∈ C0(Ω, GL(C)), then

IndexTΦ = 0. (2.5.10)

This proposition applies in the following setting. Take an open set O ⊂ Ω such that

O is a UR domain, and ∂O = ∂Ω ∪ Γ, disjoint closed sets. (2.5.11)

Let
Φ ∈ C0(O, GL(C)). (2.5.12)

Then we have TΦ : Lp(∂Ω) → Lp(∂Ω). Also, we have an analogue, which we denote TO,Φ,
defined by replacing Ω by O. Proposition 6.1, with O in place of Ω, implies

IndexTO,Φ = 0. (2.5.13)

Furthermore,
Ω̃ = Ω \ O =⇒ ∂Ω̃ = Γ, (2.5.14)
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and via (2.5.13) and a localization argument, one gets

IndexTΦ = IndexT
Ω̃,Φ

. (2.5.15)

See §4.7 of [21] for details.
The result (2.5.15) sometimes applies in cases where ∂Ω is rough but ∂Ω̃ is smooth.

There are tools available for calculating the right side of (2.5.15), including the Atiyah-
Singer index formula, when ∂Ω̃ is smooth, so the identity (2.5.15) provides a path for the
calculation of the index of TΦ, in many cases where ∂Ω is rough.

2.6 Further results on index computations

As usual, Ω is a relatively compact UR domain. For simplicity, we assume here that
Φ ∈ C0(∂Ω,GL(`,C)). In fact, going further, as in (2.3.11)–(2.3.14), we may as well take

Φ ∈ C0(∂Ω, U(`)). (2.6.1)

As in (2.2.12), the assignment Φ 7→ ι(Φ) := IndexTΦ induces a group homomorphism

ι : [∂Ω; U(`)] −→ Z. (2.6.2)

When (2.6.1) holds, we can write

Φ(x) = Φ0(x)Φ1(x), (2.6.3)

with

Φ0(x) =
(

ϕ
I

)
, ϕ(x) = det Φ(x), Φ1 ∈ C0(∂Ω, SU(`)), (2.6.4)

and
ι(Φ) = ι(Φ0) + ι(Φ1) = ι(ϕ) + ι(Φ1), (2.6.5)

with ϕ ∈ C0(∂Ω, S1), S1 ⊂ C. Here, SU(`) denotes the subgroup of U(`) with determinant
1. We have

[∂Ω;S1] = 0 =⇒ ι(Φ) = ι(Φ1), (2.6.6)

and
[∂Ω; SU(`)] = 0 =⇒ ι(Φ) = ι(ϕ). (2.6.7)

Note that the implication in (2.6.6) holds when ∂Ω is simply connected while the implication
in (2.6.7) holds if ` = 2 and dimΩ ≤ 3.

We now specialize to the case where ∂Ω is homeomorphic to a sphere:

∂Ω ≈ Sm, m = n− 1 (n = dimΩ). (2.6.8)

In such a case, [∂Ω;U(`)] ≈ πm(U(`)), where, by definition, πm(Y ) is the group of homotopy
classes of maps from the sphere Sm to a space Y (and here Y = U(`)). Classical results of
Bott (cf. [19]) imply

m = 2µ− 1 =⇒ πm(U(`)) ≈ Z, if ` ≥ µ. (2.6.9)

By contrast,
m /∈ {1, 3, . . . , 2`− 1} =⇒ πm(U(`)) is finite. (2.6.10)

When (2.6.9) holds, let
ϑ : [∂Ω; U(`)] ≈−→ Z (2.6.11)

denote the induced isomorphism (uniquely defined up to sign). We have the following.
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Proposition 2.6.1 Assume Ω is a UR domain and (2.6.8) holds. If m = 2µ−1 and ` ≥ µ,
there exists α = α(Ω, D) ∈ Z such that

ι(Φ; D) = αϑ([Φ]), ∀Φ ∈ C0(∂Ω, U(`)). (2.6.12)

If m /∈ {1, 3, . . . , 2`− 1}, then

ι(Φ; D) = 0, ∀Φ ∈ C0(∂Ω, U(`)). (2.6.13)

An extra argument is required to show that α in (2.6.12) is independent of ` (up to sign,
when ` satisfies ` ≥ µ, m = 2µ − 1). See [21, §4.8] for details. This argument also yields
the following.

Corollary 2.6.2 In the setting of Proposition 2.6.1, if m = 2µ−1 and `1 ≥ µ, and if there
exists Φ1 ∈ C0(∂Ω, U(`1)) such that

IndexTΦ1 = 1, (2.6.14)

then (2.6.12) holds with α = ±1, for all ` ≥ µ.

In fact, we see that α must be a nonzero integer of magnitude ≤ 1.
We aim to produce some cases where Corollary 2.6.2 applies. We begin with an apparent

digression. Let B ⊂ Cµ be the unit ball. Assume µ ≥ 2. Let Sh : L2(∂B) → L2(∂B) be the
Szegö projector onto the space of boundary values of functions holomorphic on B. Since
holomorphic functions satisfy an overdetermined elliptic system, this is a different sort of
projector from what we have been considering. For example,

Sh ∈ OPS0
1/2,1/2(∂B). (2.6.15)

This is sufficient to imply that operators τΦ = ShΦSh + (I − Sh) are Fredholm provided
Φ ∈ C0(∂B,U(`)), and one has an analogue of (2.6.12):

Index τΦ = αhϑ([Φ]). (2.6.16)

In [33], it is shown that (2.6.16) holds with αh = ±1. An alternative treatment of such
an index formula, in a more general setting, was done by Boutet de Monvel in [6]. His
formula, valid when B ⊂ Cµ is a smoothly bounded, strongly pseudoconvex domain, can
be described as follows. Consider

D = ∂ + ∂
∗ : Λ0,even(Cµ) −→ Λ0,odd(Cµ). (2.6.17)

This is an operator of Dirac type. Then

Index τΦ = ι(Φ;D). (2.6.18)

See also [2] for a proof of (2.6.18) using K-homology. We have the following consequence.

Proposition 2.6.3 When Ω = B is the unit ball in Cµ and D is given by (2.6.17), then
(2.6.12) holds with α = ±1, provided ` ≥ µ.

From here, we obtain the following.
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Proposition 2.6.4 Let Ω ⊂ Cµ be a bounded UR domain and let D be given by (2.6.17).
Let ` ≥ µ. Then

there exists Φ1 ∈ C0(∂Ω, U(`)) such that IndexTΦ1 = 1. (2.6.19)

Proof. We can assume 0 ∈ B ⊂ B ⊂ Ω. Take Φ1 ∈ C0(∂B, U(`)) such that TB,Φ1 has index
1, using Proposition 2.6.3. Then extend Φ1 to an element of C0(Cµ \0, U(`)), homogeneous
of degree 0, and restrict to ∂Ω. The cobordism argument of §2.5 implies

IndexTΩ,Φ1 = IndexTB,Φ1 , (2.6.20)

so we have (2.6.19). ¤

Corollary 2.6.5 Let Ω ⊂ Cµ be a bounded UR domain and let D be given by (2.6.17). If
∂Ω is homeomorphic to S2µ−1, then (2.6.12) holds, with α = ±1.

2.7 Toeplitz operators on Lp-Sobolev spaces

Here we record some results from §4.3 of [21], regarding the behavior of operators TΦ on
Lp

1(∂Ω), the Lp-based Sobolev spaces of order one on ∂Ω. One natural focus is on

Φ ∈ Lip(∂Ω, EndC`), (2.7.1)

the space of Lipschitz continuous maps from ∂Ω to EndC` = M(`,C). As shown in [21],
for such multiplier functions Φ, the associated Toeplitz operator TΦ induces a bounded
mapping

TΦ : Lp
1(∂Ω) −→ Lp

1(∂Ω), 1 < p < ∞. (2.7.2)

We seek conditions under which

TΨTΦ − TΨΦ is compact on Lp
1(∂Ω), (2.7.3)

given also Ψ ∈ Lip(∂Ω, EndC`). A related issue is when

TΨTΦ − TΨΦ : Lp(∂Ω) −→ Lp
1(∂Ω). (2.7.4)

Clearly (2.7.4) implies compactness on Lp
1(∂Ω) provided the natural injection

Lp
1(∂Ω) ↪→ Lp(∂Ω) is compact. (2.7.5)

As shown in [16, Corollary 4.31], (2.7.5) holds for each p ∈ (1,∞) provided Ω is a UR
domain and, in addition,

Ω satisfies a two-sided John condition. (2.7.6)

See §A.2 for the definition and some basic properties of this class of domains.
As shown in [21, Proposition 4.3.2], if Ψ ∈ Lip(∂Ω,EndC`) and Φ ∈ C1+r(M, EndC`),

with r > 0, then (2.7.4) holds, whenever Ω is a UR domain. Hence, if (2.7.5) holds, then
(2.7.3) holds. Consequently, as noted in [21, Proposition 4.3.3], by a limiting argument,
(2.7.3) holds provided

Ψ ∈ Lip(∂Ω,EndC`), Φ ∈ C1(∂Ω, EndC`) :=
{
Φ̃

∣∣
∂Ω

: Φ̃ ∈ C1(M, EndC`)
}
, (2.7.7)
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as long as Ω is a UR domain for which (2.7.5) holds, in particular if Ω is an Ahlfors regular
domain satisfying (2.7.6). As a corollary, for such a domain Ω, if

Φ ∈ C1(∂Ω, GL(`,C)), (2.7.8)

then, for each p ∈ (1,∞),

TΦ : Lp
1(∂Ω) −→ Lp

1(∂Ω) is Fredholm. (2.7.9)

This does not quite capture the desired Fredholm result for Φ as in (2.7.1). However, [21,
§4.3] goes further, making use of results recalled in §A.1 of this paper. The following is
established in [21, Proposition 4.3.5]. Recall that n := dimM .

Proposition 2.7.1 Assume Ω ⊂ M is Ahlfors regular and satisfies a two-sided John con-
dition. Take p ∈ (1,∞) and assume

Φ,Ψ ∈ Lq
1(∂Ω,M(`,C)), q ≥ p, q ∈ (n− 1,∞). (2.7.10)

Then (2.7.3) holds. Consequently, if

Φ ∈ Lq
1(∂Ω, GL(`,C)), q ≥ p, q ∈ (n− 1,∞), (2.7.11)

then TΦ is Fredholm in (2.7.9), with Fredholm inverse TΦ−1.

As shown in [21, §4.3], for p ∈ (1, q],

IndexTΦ on Lp
1(∂Ω) = IndexTΦ on Lp(∂Ω)

= ι(Φ),
(2.7.12)

with ι(Φ) as in §2.2. Also

KerTΦ on Lp
1(∂Ω) = KerTΦ on Lp(∂Ω)

Ker(TΦ)∗ on Lp
1(∂Ω)∗ = Ker(TΦ)∗ on Lp(∂Ω)∗.

(2.7.13)

Material of this section can also be developed for the action of twisted Toeplitz operators
on Lp

1(∂Ω). We omit the details.

3 Bojarski-type index formulas

Here we assume the compact Riemannian manifold M is partitioned:

M = Ω+ ∪ Ω− ∪ Σ, (3.0.1)

where
Ω+ and Ω− are UR domains, ∂Ω+ = ∂Ω− = Σ. (3.0.2)

We study the interaction of Hp(Ω+, D) and Hp(Ω−, D), and of the associated spaces of
nontangential boundary values Hp

+(Σ, D) and Hp
−(Σ, D). As usual, D : E0 → E1 is a first

order elliptic differential operator, hence

D : Hs+1,p(M, E0) → Hs,p(M, E1) (3.0.3)

21



boundedly for each p ∈ (1,∞) and s ∈ R. We assume D and D∗ satisfy UCP.
With ν± denoting the (geometric measure theoretic) outward unit conormals for Ω±,

and σ the surface measure on Σ, we have the Cauchy integral operators

C±f(x) := i

∫

Σ

E±(x, y)σD(y, ν±(y))f(y) dσ(y), x ∈ M \ Σ, (3.0.4)

satisfying

C+f
∣∣∣
n.t.

∂Ω±
(x) = ±1

2
f(x) + C+f(x),

C−f
∣∣∣
n.t.

∂Ω∓
(x) = ±1

2
f(x) + C−f(x),

(3.0.5)

at σ-a.e. point x ∈ Σ, with

C±f(x) := i PV
∫

Σ

E±(x, y)σD(y, ν±(y))f(y) dσ(y), x ∈ Σ. (3.0.6)

Here, to define E+(x, y), we take a+ ∈ C∞
0 (M\Ω+), which is nonnegative and not identically

zero, which then implies that the auxiliary operator

D+ :=
(

ia+ D∗

D ia+

)
(3.0.7)

is invertible (say, as a mapping from H1,2(M) into L2(M)), as discussed in the introduction,
and define E+(x, y) by the analogue of (1.0.21). We similarly consider some nonnegative
function a− ∈ C∞

0 (M \ Ω−) which is not identically zero in order to define E−(x, y). In
(3.0.4) and (3.0.6), ν+ points outward from Ω+ and ν− points outward from Ω−, so we
have ν− = −ν+. In (3.0.5), C±f

∣∣n.t.

∂Ω+
denotes the nontangential limit from within Ω+ and

C±f
∣∣n.t.

∂Ω−
that from within Ω−.

The maps

P± :=
1
2
I + C± (3.0.8)

are projections of Lp(Σ, E0) onto
Hp
±(Σ, D), (3.0.9)

the image of Hp(Ω±, D) under the nontangential boundary trace isomorphism τ . Note
that the leading singularities of E+(x, y) and E−(x, y) agree, since D+ and D− have the
same principal symbol and hence the same leading parametrix, so E+(x, y)− E−(x, y) has
a weaker singularity. It follows that

C+ + C− = K : Lp(Σ) −→ Lp(Σ) is compact, (3.0.10)

for 1 < p < ∞. Consequently,

P+ + P− = I + K, K compact on Lp(Σ), ∀ p ∈ (1,∞). (3.0.11)

If D is invertible, we can take a± = 0, so then E+ = E− and hence K = 0 in (3.0.11). In
such a case,

Lp(Σ, E0) = Hp
+(Σ, D)⊕Hp

−(Σ, D). (3.0.12)
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Here we want to see how (3.0.12) is altered when D is not invertible, particularly when
Index D 6= 0.

We bring in the following notion of a Fredholm pair. Let X be a Banach space, and Y1

and Y2 closed linear subspaces. Assume that dimY1 ∩ Y2 < ∞ and that Y1 + Y2 is closed in
X and has finite codimension. Then we say (Y1, Y2) is a Fredholm pair of subspaces of X,
and

Index(Y1, Y2) := dim(Y1 ∩ Y2)− codim(Y1 + Y2). (3.0.13)

One goal here is to show that, for each p ∈ (1,∞), the spaces Hp
+(Σ, D) and Hp

−(Σ, D)
form a Fredholm pair for Lp(Σ, E0), of index equal to the index of D (viewed as a global
mapping on M). We will go further, and separately establish isomorphisms

KerD ≈ Hp
+(Σ, D) ∩Hp

−(Σ, D)

KerD∗ ≈ [Hp
+(Σ, D) +Hp

−(Σ, D)]⊥,
(3.0.14)

where if Z is a linear subspace of X, Z⊥ denotes its annihilator in the dual space X ′, so if
Z is closed, codimZ = dim Z⊥.

The Fredholm pair property and (3.0.14) are proved in §3.2, following a duality argument
in §3.1 that allows us to deduce the second isomorphism in (3.0.14) from the first. Section
3.3 continues these Fredholm results. Work in §§3.2–3.3 involves analysis of the operators

Jp : Hp
+(Σ, D)⊕Hp

−(Σ, D) −→ Lp(Σ, E0),

Γp : Lp(Σ, E0) −→ Hp
+(Σ, D)⊕Hp

−(Σ, D),
(3.0.15)

given by
Jp(f+, f−) = f+ − f− and Γpf = (P+f,−P−f). (3.0.16)

We show that Jp and Γp are Fredholm inverses of each other, and

IndexJp = IndexD, IndexΓp = − IndexD. (3.0.17)

In §3.4 we derive analogous results in the Lp-Sobolev space setting. In this case, we
consider

J1,p : H1,p
+ (Σ, D)⊕H1,p

− (Σ, D) −→ Lp
1(Σ, E0),

Γ1,p : Lp
1(Σ, E0) −→ H1,p

+ (Σ, D)⊕H1,p
− (Σ, D),

(3.0.18)

given as in (3.0.16). Here
H1,p
± (Σ, D) = P±Lp

1(Σ, E0), (3.0.19)

are the spaces of boundary values of

H1,p(Ω±, D) :=
{
u ∈ C1(Ω±, E0) : Du = 0 in Ω±, N (u),N (∇u) ∈ Lp(Σ), and

there exist u
∣∣n.t.

Σ
, (∇u)

∣∣n.t.

Σ
σ-a.e. on Σ

}
.

(3.0.20)

Again we show that J1,p and Γ1,p are Fredholm inverses of each other, under an additional
condition, such as that Lp

1(Σ) ↪→ Lp(Σ) is compact, which holds, for example, if Ω± satisfy
a two-sided John condition (reviewed in §A.2). In such a case, we have a parallel to (3.0.17).
The proof of this requires a certain regularity result, given in §3.4.
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3.1 Polarity of Hp(∂Ω, D∗) and Hp′(∂Ω, D)

Here, Ω ⊂ M is a UR domain with (geometric measure theoretic) outward unit conormal ν
and surface measure σ, D is as in §1, and we assume D and D∗ have UCP.

Theorem 3.1.1 For p ∈ (1,∞), p′ := p/(1− p), the map γD, defined by

γDf(x) := iσD∗(x, ν(x))f(x), x ∈ ∂Ω, (3.1.1)

gives an isomorphism
γD : Hp(∂Ω, D∗) −→ [Hp′(∂Ω, D)]⊥. (3.1.2)

Here, if X is a Banach space and Y ⊂ X a closed linear subspace, we define Y ⊥ ⊂ X ′

by
Y ⊥ :=

{
g ∈ X ′ : 〈f, g〉 = 0, ∀ f ∈ Y

}
. (3.1.3)

Proof. To show that γD has the mapping property (3.1.2), pick two arbitrary functions
f ∈ Hp(∂Ω, D∗) and g ∈ Hp′(∂Ω, D). Then pick u ∈ Hp(Ω, D∗) and v ∈ Hp′(Ω, D) such
that

u
∣∣n.t.

∂Ω
= f, v

∣∣n.t.

∂Ω
= g, σ-a.e. on ∂Ω. (3.1.4)

We can then apply Proposition A.3.2 to justify the sequence of formulas
∫

∂Ω

〈g, γDf〉 dσ =
1
i

∫

∂Ω

〈σD(x, ν)v, u〉 dσ

=
∫

Ω

[〈Dv, u〉 − 〈v,D∗u〉] dV

= 0,

(3.1.5)

so we have the mapping property (3.1.2). The definition (3.1.1) and ellipticity of D∗ clearly
imply this map is injective. It remains to establish surjectivity.

It is convenient to reduce the proof of this surjectivity to the case of an elliptic operator
D that is invertible and self-adjoint. Thus, with D as in (1.0.18), (with a ∈ C∞

0 (M \ Ω)
which is ≥ 0 and not ≡ 0), we set

D :=
(

0 D∗
D 0

)
. (3.1.6)

With obvious notation,
Hp(Ω,D) = Hp(Ω,D)⊕Hp(Ω,D∗)

= Hp(Ω,D)⊕Hp(Ω,D),
(3.1.7)

the last identity because D = D∗ on a neighborhood of Ω. Using the trace isomorphism
(2.1.19), we then get

Hp(∂Ω,D) = Hp(∂Ω,D)⊕Hp(∂Ω,D)

= Hp(∂Ω, D)⊕Hp(∂Ω, D∗)⊕Hp(∂Ω, D)⊕Hp(∂Ω, D∗).
(3.1.8)
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Hence, for p ∈ (1,∞),

Hp(∂Ω,D)⊥ = [Hp(∂Ω, D)]⊥ ⊕ [Hp(∂Ω, D∗)]⊥

⊕ [Hp(∂Ω, D)]⊥ ⊕ [Hp(∂Ω, D∗)]⊥.
(3.1.9)

Note also that

σD(x, ν) =




0 0 0 σD∗(x, ν)
0 0 σD(x, ν) 0
0 σD∗(x, ν) 0 0

σD(x, ν) 0 0 0


 . (3.1.10)

It follows that the mapping

γD : Hp(∂Ω,D) −→ [Hp′(∂Ω,D)]⊥, (3.1.11)

given by
γDf = iσD(x, ν)f, ∀ f ∈ Hp(∂Ω,D), (3.1.12)

decomposes as

γD =




0 0 0 γD

0 0 γD∗ 0
0 γD 0 0

γD∗ 0 0 0


 , (3.1.13)

where γD∗ is defined as in (3.1.1), with D∗ in place of D. Thus the surjectivity of γD would
imply surjectivity of γD.

To proceed, let E be the integral kernel of D−1, and form

CDf(x) := i PV
∫

∂Ω

E(x, y)σD(y, ν(y))f(y) dσ(y), x ∈ ∂Ω,

PD :=
1
2
I + CD.

(3.1.14)

Since D = D∗, hence σD(y, ξ)∗ = σD(y, ξ), it follows that the adjoint of CD is

C∗
D = −σD(·, ν) CD σD(·, ν)−1. (3.1.15)

Since PD = (1/2)I + CD entails I − PD = (1/2)I − CD, we have

P∗D = σD(·, ν)(I − PD)σD(·, ν)−1. (3.1.16)

Hence, on Lp(∂Ω),
KerP∗D = Ker(I − PD)σD(·, ν)−1

= σD(·, ν) Ker(I − PD)

= σD(·, ν)Hp(∂Ω,D).

(3.1.17)

It follows that the range of γD in (3.1.11) is

σD(·, ν)Hp(∂Ω,D) = KerP∗D
= [PDLp′(∂Ω)]⊥

= [Hp′(∂Ω,D)]⊥.

(3.1.18)

This yields the surjectivity of the mapping γD in (3.1.11) and completes the proof of Theo-
rem 3.1.1. ¤

25



3.2 Hp
+(Σ, D) and Hp

−(Σ, D) as a Fredholm pair

We are in the setting of (3.0.1)–(3.0.2), and we assume D and D∗ satisfy UCP. Our goal is
to prove the following.

Theorem 3.2.1 For each p ∈ (1,∞),

(Hp
+(Σ, D),Hp

−(Σ, D)) is a Fredholm pair for Lp(Σ, E0), (3.2.1)

and, with D viewed as a mapping from H1,2(M) into L2(M),

Index(Hp
+(Σ, D),Hp

−(Σ, D)) = IndexD. (3.2.2)

In fact, there are natural isomorphisms

Hp
+(Σ, D) ∩Hp

−(Σ, D) ≈ KerD, (3.2.3)

and
Lp(Σ, E0)/(Hp

+(Σ, D) +Hp
−(Σ, D)) ≈ KerD∗. (3.2.4)

Consequently, the decomposition (3.0.12) holds if and only if D is invertible.

Proof. Take C±, C±, and P± as in (3.0.4)–(3.0.8). As seen in (3.0.11),

P+ + P− = I + K, K compact on Lp(Σ), ∀ p ∈ (1,∞). (3.2.5)

Clearly
(P+ + P−)Lp(Σ) ⊂ Hp

+(Σ, D) +Hp
−(Σ, D). (3.2.6)

By (3.2.5), the range of P+ + P− on Lp(Σ) is closed and has finite codimension. It follows
that the right side of (3.2.6) has finite codimension, and also that it is a closed subspace of
Lp(Σ, E0).

Next, if f ∈ Hp
+(Σ, D) ∩Hp

−(Σ, D), then there exist unique functions

u± ∈ Hp(Ω±, D) such that u+

∣∣n.t.

Σ
= f = u−

∣∣n.t.

Σ
. (3.2.7)

Define uf ∈ Lp(M, E0) by

uf :=





u+ in Ω+,

u− in Ω−.
(3.2.8)

We claim
Duf = 0 in D′(M). (3.2.9)

(Clearly Duf is supported on Σ.) In fact, given ψ ∈ C1(M, E1), we have

(Duf , ψ) = (uf , D∗ψ)

=
∫

Ω+

〈u+, D∗ψ〉 dV +
∫

Ω−

〈u−, D∗ψ〉 dV.
(3.2.10)
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Now, parallel to (3.1.5), we can apply Proposition A.3.2, to write
∫

Ω±

〈u±, D∗ψ〉 dV =
∫

Ω±

〈u±, D∗ψ〉 dV −
∫

Ω±

〈Du±, ψ〉 dV

=
∫

Σ

〈u±, σD∗(·, ν±)ψ〉 dσ.

(3.2.11)

Since ν− = −ν+, this gives

(Duf , ψ) =
∫

Σ

〈f, σD∗(·, ν+)ψ〉 dσ −
∫

Σ

〈f, σD∗(·, ν+)ψ〉 dσ

= 0,

(3.2.12)

as desired. Given UCP for D, a similar argument shows that

KerD 3 u 7→ u
∣∣n.t.

Σ
is injective, (3.2.13)

and this proves (3.2.3). Since KerD is finite dimensional, at this point we also have (3.2.1).
The argument proving (3.2.3), with D∗ in place of D and p′ in place of p, gives

KerD∗ ≈ Hp′
+(Σ, D∗) ∩Hp

−(Σ, D∗). (3.2.14)

Now Theorem 3.1.1, applied to Ω+ and to Ω−, gives

γD : Hp′
±(Σ, D∗) ≈−→ Hp

±(Σ, D)⊥, (3.2.15)

so
KerD∗ ≈ Hp

+(Σ, D)⊥ ∩Hp
−(Σ, D)⊥

= [Hp
+(Σ, D) +Hp(Σ, D)]⊥.

(3.2.16)

This proves (3.2.4), and (3.2.2) follows. ¤

Here is a restatement of Theorem 3.2.1. Define the operator

Jp : Hp
+(Σ, D)⊕Hp

−(Σ, D) −→ Lp(Σ, E0),

Jp(f+, f−) := f+ − f−, ∀ (f+, f−) ∈ Hp
+(Σ, D)⊕Hp

−(Σ, D).
(3.2.17)

Then
KerJp ≈ Hp

+(Σ, D) ∩Hp
−(Σ, D), (3.2.18)

and
RangeJp = Hp

+(Σ, D) +Hp
−(Σ, D). (3.2.19)

Thus Theorem 3.2.1 yields:

Corollary 3.2.2 For each p ∈ (1,∞), the operator Jp in (3.2.17) is Fredholm and

IndexJp = IndexD. (3.2.20)

In fact,
KerJp ≈ KerD and CokerJp ≈ KerD∗. (3.2.21)
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3.3 Implications for Hp(Ω+, D) and Hp(Ω−, D)

Theorem 3.2.1 has a natural application to the following transmission problem.

Proposition 3.3.1 In the setting of Theorem 3.2.1, given p ∈ (1,∞), the transmission
problem

u± ∈ Hp(Ω±, D), u+

∣∣n.t.

Σ
− u−

∣∣n.t.

Σ
= f ∈ Lp(Σ, E0) (3.3.1)

is Fredholm solvable, and its index is equal to the index of the Fredholm pair

(Hp
+(Σ, D),Hp

−(Σ, D)), (3.3.2)

hence to IndexD. Furthermore, (3.3.1) is uniquely solvable for each f ∈ Lp(Σ, E0) if and
only if D is invertible.

The proof is straightforward from the arguments of §3.2.

The problem (3.3.1) is a special case of the more general Riemann-Hilbert problem that
we will tackle in §4. For now, we use Theorem 3.2.1 to prove the following Fredholmness
result, which will be useful in §4. Let Ω±,Σ, D, and C± be as in (3.0.1)–(3.0.7), assuming
D and D∗ have UCP. For p ∈ (1,∞), define

Ap : Lp(Σ, E0) −→ Hp(Ω+, D)⊕Hp(Ω−, D),

Apf := (C+f, C−f), ∀ f ∈ Lp(Σ, E0).
(3.3.3)

Proposition 3.3.2 For each p ∈ (1,∞), the operator Ap in (3.3.3) is Fredholm, and

IndexAp = − IndexD. (3.3.4)

Proof. We bring in Jp, defined by (3.2.17), and also the nontangential boundary trace
isomorphisms

τ± : Hp(Ω±, D) ≈−→ Hp
±(Σ, D), (3.3.5)

yielding

τ+ ⊕ (−τ−) : Hp(Ω+, D)⊕Hp(Ω−, D) ≈−→ Hp
+(Σ, D)⊕Hp

−(Σ, D). (3.3.6)

We have
Jp ◦ (τ+ ⊕ (−τ−)) ◦ Ap = P+ + P− = I + K, (3.3.7)

with K compact on Lp(Σ). Hence the left side of (3.3.7) is Fredholm of index zero. The
Fredholmness of the operator Ap and index calculation (3.3.4) then follow from (3.3.6) and
Corollary 3.2.2. ¤

To forge another tie to Corollary 3.2.2, for p ∈ (1,∞) let us define

Γp : Lp(Σ, E0) −→ Hp
+(Σ, D)⊕Hp

−(Σ, D) (3.3.8)

by setting Γp := (τ+ ⊕ (−τ−)) ◦ Ap, i.e.,

Γpf = (P+f,−P−f), ∀ f ∈ Lp(Σ, E0). (3.3.9)
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Then (3.3.7) is equivalent to

JpΓp = P+ + P− = I + K. (3.3.10)

Note also that ΓpJp, acting on Hp
+(Σ, D)⊕Hp

−(Σ, D), is given by

ΓpJp(f+, f−) = (P+(f+ − f−),−P−(f+ − f−))

= (f+ −P+P−f−, f− − P−P+f+),
(3.3.11)

hence
ΓpJp(f+, f−) = (f+, f−)− (Kf−, Kf+), (3.3.12)

since
P+P− = P+K = KP−,

P−P+ = P−K = KP+.
(3.3.13)

These considerations establish the following result.

Proposition 3.3.3 If D is invertible, so one can arrange K = 0 in (3.3.10) and (3.3.12),
then Jp and Γp are two-sided inverses of each other.

3.4 Lp-Sobolev variants

Here we work on the Lp-based Sobolev spaces of order one, defined and discussed in §A.1.
The first step in this regard is to note that that Cauchy operator considered earlier behaves
naturally on this scale.

Theorem 3.4.1 Assume that Ω ⊂ M is an UR domain satisfying ∂Ω = ∂(Ω). Then for
each p ∈ (1,∞) there exists a constant cp ∈ (0,∞) such that for each function f ∈ Lp

1(∂Ω)
one has

‖N (∇Cf)‖Lp(∂Ω) ≤ cp‖f‖Lp
1(∂Ω). (3.4.1)

Moreover, for each f ∈ Lp
1(∂Ω), 1 < p < ∞, the nontangential boundary limit

(∇Cf)
∣∣∣
n.t.

∂Ω
exists σ-a.e. on ∂Ω. (3.4.2)

Proof. Recall the Cauchy operator C from (2.1.10). For the present purposes, let us agree
to regard the fundamental solution E as a E1 ⊗ E0-valued function. With this convention,
we may express

Cf(x) = i

∫

∂Ω

〈
E(x, y), σD(y, ν(y))f(y)

〉
dσ(y), x ∈ Ω. (3.4.3)
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Assume now that some f ∈ Lp
1(∂Ω) = Lp

1(∂Ω, E0), with 1 < p < ∞, has been fixed, and
pick an arbitrary vector field X on M . Then, from (3.4.3) we have that for each x ∈ Ω,

∇X(Cf)(x) = −i

∫

∂Ω

〈
σD>(y, ν(y))∇X,xE(x, y), f(y)

〉
dσ(y)

= i

∫

∂Ω

〈
σD>(y, ν(y))∇X,yE(x, y), f(y)

〉
dσ(y)

− i

∫

∂Ω

〈
σD>(y, ν(y))

(∇X,xE(x, y) +∇X,yE(x, y)
)
, f(y)

〉
dσ(y)

:= If (x) + IIf (x),

(3.4.4)

where D> stands for the transposed of D, and we have written ∇X,x,∇X,y in order to
indicate the variable in which the directional derivative ∇X is taken. Bearing in mind that

D>
y E(x, y) = 0 for x 6= y, near Ω, (3.4.5)

and relying on the boundary integration by parts formula (A.3.17), presently used with
P := D> (see the remark following the proof of Proposition A.3.4), for each fixed x ∈ Ω we
may write

If (x) = i

∫

∂Ω

〈(
σD>(y, ν(y))∇y − σ∇X

(y, ν(y))D>
y

)
E(x, y), f(y)

〉
dσ(y)

= −
∫

∂Ω

〈
E(x, y),

(
σD(y, ν(y))∇>X − σ∇>X (y, ν(y))D

)
f(y)

〉
dσ(y)

−
∫

∂Ω

〈
E(x, y), σ[D>,∇X ](y, ν(y))f(y)

〉
dσ(y).

(3.4.6)

In this context, the fact that f ∈ Lp
1(∂Ω) ensures

(
σD(·, ν)∇>X − σ∇>X (·, ν)D

)
f ∈ Lp(∂Ω), (3.4.7)

given that Q := σD(·, ν)∇>X − σ∇>X (·, ν)D is a tangential first-order differential operator on
∂Ω, as its principal symbol vanishes at ν:

σQ(·, ν) = σD(·, ν)σ∇>X (·, ν)− σ∇>X (·, ν)σD(·, ν) = 0. (3.4.8)

Consequently, (3.4.6) permits us to conclude that

‖N (If )‖Lp(∂Ω) ≤ cp‖f‖Lp
1(∂Ω) and If

∣∣∣
n.t.

∂Ω
exists σ-a.e. on ∂Ω, (3.4.9)

To handle IIf (x) in (3.4.4), we claim that

k(x, y) := ∇X,xE(x, y) +∇X,yE(x, y) (3.4.10)

is a (variable coefficient) Calderón-Zygmund kernel, of the sort to which the theory outlined
in §1 applies. Specifically, with

T g(x) :=
∫

∂Ω

〈k(x, y), g(y)〉 dσ(y), x ∈ Ω, (3.4.11)
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then for each g ∈ Lp(∂Ω) we have

‖N (T g)‖Lp(∂Ω) ≤ cp‖g‖Lp(∂Ω) and T g
∣∣∣
n.t.

∂Ω
exists σ-a.e. on ∂Ω. (3.4.12)

To see that this is the case, consider first the case when D is invertible. In such a scenario,
the first observation is that the Schwartz kernels of D−1∇X and ∇XD−1 are, respectively,

∇X,xE(x, y) and ∇>X,yE(x, y), (3.4.13)

and the latter differs from −∇X,yE(x, y) by a zero-th order operator acting on E(x, y) in the
variable y, which suits our purposes. Consequently, if [·, ·] stands for the usual commutator
bracket, up to a harmless additive adjustment, k(x, y) may be regarded as the Schwartz
kernel of

[
D−1,∇X

]
. Now, if q(x, ξ) ∈ S−1

cl is the principal symbol of D−1 and if

{
p1, p2

}
:=

∑

j

(
∂ξjp1∂xjp2 − ∂xjp1∂ξjp2

)
(3.4.14)

denotes the Poisson bracket, then for each fixed j ∈ {1, . . . , n} the principal symbol of
Pj :=

[
D−1,∇∂j

] ∈ OPS−1
cl is (cf., e.g., [30, Vol. 2, pp. 13])

pj(x, ξ) = i
{
ξj , q(x, ξ)

}
= i(∂xjq)(x, ξ). (3.4.15)

Since pj(x, ξ) ∈ S−1
cl is odd in ξ, the results established in [16, § 3.5] apply, finishing the

proof of the claim made in connection with (3.4.10)-(3.4.12) when D is invertible.
At this stage, (3.4.1)-(3.4.2) follow from (3.4.4), (3.4.9), and (3.4.12), at least when D is

invertible. The general case is handled similarly working with the auxiliary operator D from
(1.0.18) in place of the original D, and paying attention to what happens to the individual
components in this matrix formalism. ¤

From Theorem 3.4.1 it follows that when Ω± are UR domains with a common boundary
Σ, we have

‖N (∇C±f)‖Lp(Σ) ≤ cp‖f‖Lp
1(Σ), (3.4.16)

for 1 < p < ∞, and consequently

C± : Lp
1(Σ) −→ H1,p(Ω±, D), (3.4.17)

where

H1,p(Ω±, D) :=
{
u ∈ C1(Ω±, E0) : Du = 0 in Ω±, N (u),N (∇u) ∈ Lp(Σ), and

there exist u
∣∣n.t.

Σ
, (∇u)

∣∣n.t.

Σ
σ-a.e. on Σ

}
.

(3.4.18)

It follows that
P± : Lp

1(Σ) −→ Lp
1(Σ), (3.4.19)

for 1 < p < ∞. As for the weaker singularity for E+ − E−, described below (3.0.8) and
leading to (3.0.11), let us note that, since a+ and a− are supported away from Σ, local elliptic
regularity implies that there is a neighborhoodO of Σ in M such that E+−E− ∈ C∞(O×O).
Hence, in addition to (3.0.11), we have

P+ + P− = I + K, K : Lp(Σ) → Lp
1(Σ), ∀ p ∈ (1,∞). (3.4.20)
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If Ω± satisfy a two-sided John condition, then (3.4.20) implies (3.0.11). However, these two
results are independently true whenever Ω+ and Ω− are mere UR domains.

Now recall the operators J = Jp and Γ = Γp, given by (3.2.17) and (3.3.9). We see
that they also give

J = J1,p : H1,p
+ (Σ, D)⊕H1,p

− (Σ, D) −→ Lp
1(Σ, E0),

Γ = Γ1,p : Lp
1(Σ, E0) −→ H1,p

+ (Σ, D)⊕H1,p
− (Σ, D),

(3.4.21)

again by
J1,p(f+, f−) := f+ − f−,

Γ1,pf := (P+f,−P−f).
(3.4.22)

Here H1,p
± (Σ, D) is the image of H1,p(Ω±, D) under the nontangential boundary trace iso-

morphism, or equivalently
H1,p
± (Σ, D) = P±Lp

1(Σ, E0). (3.4.23)

In view of the mapping properties (3.4.19)–(3.4.20), the identities (3.3.10) and (3.3.12)
restrict to the spaces in (3.4.21), i.e.,

J1,pΓ1,p = P+ + P− = I + K, (3.4.24)

on Lp
1(Σ, E0), and

Γ1,pJ1,p = (f+, f−)− (Kf−,Kf+), (3.4.25)

on H1,p
+ (Σ, D)⊕H1,p

− (Σ, D).
We have the following immediate consequence.

Proposition 3.4.2 Assume Ω± are UR domains, with boundary Σ, and that D in invert-
ible. Then we can take K = 0 in (3.4.20), so, for p ∈ (1,∞), the operators J1,p and Γ1,p,
defined by (3.4.21)–(3.4.22), are two-sided inverses of each other. In particular, J1,p in
(3.4.21) is an isomorphism.

If we know that the natural inclusion

Lp
1(Σ) ↪→ Lp(Σ) is compact, (3.4.26)

then (3.4.20) implies K : Lp
1(Σ) → Lp

1(Σ) is compact, and we have the following.

Proposition 3.4.3 Let Ω± ⊂ M be UR domains, with boundary Σ, and assume (3.4.26)
holds. Then, for each p ∈ (1,∞), the operators J1,p and Γ1,p in (3.4.21)–(3.4.22) are
Fredholm inverses of each other. As such,

IndexJ1,p = − Index Γ1,p. (3.4.27)

In the situation of Proposition 3.4.3, the argument implying (3.2.21) also implies

KerJ1,p ≈ KerD. (3.4.28)

We also have that the range of J1,p in (3.4.21) is a closed linear subspace of Lp
1(Σ, E0), of

finite codimension. Its annihilator is then a finite dimensional linear subspace

V1,p ⊂ Lp′
−1(Σ, E0) :=

(
Lp

1(Σ, E0)
)′ (3.4.29)
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where 1/p + 1p′ = 1, consisting of elements v such that

〈f+ − f−, v〉 = 0, ∀ f± ∈ H1,p
± (Σ, D). (3.4.30)

By comparison, the range of Jp in (3.2.17) is a closed linear subspace of Lp(Σ, E0), of finite
codimension, whose annihilator is

Vp ⊂ Lp′(Σ, E0), (3.4.31)

consisting of elements v such that

〈f+ − f−, v〉 = 0, ∀ f± ∈ Hp
±(Σ, D). (3.4.32)

Clearly
Vp ⊂ V1,p. (3.4.33)

We will establish that these two spaces are equal:

Vp = V1,p. (3.4.34)

A key step will be to show that
V1,p ⊂ Lp′(Σ, E0). (3.4.35)

This is a consequence of the following.

Lemma 3.4.4 Assume p, p′ ∈ (1,∞) satisfy 1/p + 1/p′ = 1. If v ∈ Lp′
−1(Σ, E0) annihilates

(P+ + P−)Lp
1(Σ, E0), then v ∈ Lp′(Σ, E0).

Proof. The hypothesis is equivalent to

v ∈ Lp′
−1(Σ, E0), 〈(I + K)f, v〉 = 0, ∀ f ∈ Lp

1(Σ, E0), (3.4.36)

hence to
(I + K∗)v = 0. (3.4.37)

Now (3.4.20) implies
K∗ : Lp′

−1(Σ, E0) −→ Lp′(Σ, E0), (3.4.38)

which establishes v = −K∗v ∈ Lp′(Σ, E0) and proves the lemma. ¤

Having (3.4.35), we can establish the following.

Proposition 3.4.5 In the setting of Proposition 3.4.3, we have (3.4.34). Hence, in addition
to (3.4.28), we also have

dimCokerJ1,p = dim CokerJp = dimKerD∗. (3.4.39)

Hence,
IndexJ1,p = IndexD, (3.4.40)

so
IndexΓ1,p = − IndexD. (3.4.41)
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Proof. It remains to deduce (3.4.34) from (3.4.35). So take v ∈ V1,p. We have v ∈ Lp′(Σ, E0)
and

〈f+ − f−, v〉 = 0 (3.4.42)

for all f± ∈ H1,p
± (Σ, D). It remains to show that (3.4.42) is true for all f± ∈ Hp

±(Σ, D).
This follows from the assertion that, for p ∈ (1,∞),

H1,p
± (Σ, D) is dense in Hp

±(Σ, D), (3.4.43)

i.e., that
P±Lp

1(Σ, E0) is dense in P±Lp(Σ, E0). (3.4.44)

This in term follows from the fact that

Lp
1(Σ, E0) is dense in Lp(Σ, E0), (3.4.45)

which is elementary. In fact, for p ∈ (1,∞),

Lip(Σ, E0) is dense in Lp(Σ, E0), (3.4.46)

and Lip(Σ) ⊂ Lp
1(Σ). ¤

The following is a restatement of the Fredholm properties of J1,p given in Proposi-
tions 3.4.3 and 3.4.5.

Theorem 3.4.6 The pair (H1,p
+ (Σ, D),H1,p

− (Σ, D)) is a Fredholm pair for Lp
1(Σ, E0), and

Index(H1,p
+ (Σ, D),H1,p

− (Σ, D)) = IndexD. (3.4.47)

For another perspective, we bring in

A1,p : Lp
1(Σ, E0) −→ H1,p(Ω+, D)⊕H1,p(Ω−, D),

A1,pf = (C+f, C−f), ∀ f ∈ Lp
1(Σ, E0),

(3.4.48)

parallel to (3.3.3). Parallel to (3.3.7), we have

J1,p ◦ (τ+ ⊕ (−τ−)) ◦ A1,p = P+ + P− = I + K, (3.4.49)

hence the following.

Proposition 3.4.7 If Ω± are UR domains with boundary Σ and D is invertible, then A1,p

is an isomorphism, for p ∈ (1,∞).

Proposition 3.4.8 In the setting of Proposition 3.4.3, if p ∈ (1,∞), the operator A1,p is
Fredholm, and

IndexA1,p = − IndexD. (3.4.50)
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4 Riemann-Hilbert problems

As in §3, we assume M is a compact Riemannian manifold with a partition

M = Ω+ ∪ Ω− ∪ Σ, (4.0.1)

where
Ω+ and Ω− are UR domains, and ∂Ω+ = ∂Ω− =: Σ. (4.0.2)

We assume D : E0 → E1 is a first order elliptic differential operator and that D and D∗

satisfy UCP. We extend D to act componentwise on sections of E0 ⊗C`. For the Riemann-
Hilbert problem we are given Φ ∈ L∞(Σ,M(`,C)) and f ∈ Lp(Σ, E0 ⊗ C`), and we seek

u± ∈ Hp(Ω±, D) such that Φu+

∣∣n.t.

Σ
− u−

∣∣n.t.

Σ
= f. (4.0.3)

Here, the spaces Hp(Ω±, D) are defined as in (1.0.4).
For an operator formulation of the Riemann-Hilbert problem, we define

RΦ : Hp(Ω+, D)⊕Hp(Ω−, D) −→ Lp(Σ, E0 ⊗ C`),

RΦ(u, v) := Φu
∣∣n.t.

Σ
− v

∣∣n.t.

Σ
, u ∈ Hp(Ω+, D), v ∈ Hp(Ω−, D),

(4.0.4)

so (4.0.3) becomes RΦ(u+, u−) = f . We are interested in obtaining conditions on Φ that
imply RΦ is Fredholm, and seek information on its index. Note that, corresponding to the
case when Φ = I, the identity, we have

RI = Jp on Lp(Σ, E0), (4.0.5)

where Jp is as in (3.2.17). Hence, by (3.2.20),

IndexRI = IndexD. (4.0.6)

More generally, we relate the Fredholm behavior of RΦ to that of the Toeplitz operator

TΦ = P+ΦP+ + (I − P+), (4.0.7)

introduced in §2, with Ω = Ω+, P = P+. In §4.1 we show that RΦ is Fredholm if and only
if TΦ is Fredholm, and if so

IndexRΦ = IndexTΦ + ` · IndexD. (4.0.8)

Here IndexD denotes the index of D acting globally, on sections of E0. Acting on sections
of E0 ⊗ C` multiplies its index by `. We obtain extra information in case D is invertible.

In §4.2 we study Riemann-Hilbert problems on Lp-Sobolev spaces in cases where, in
addition to (4.0.1)–(4.0.2), we assume Ω± satisfy a two-sided John condition (a condition
reviewed in §A.2).

In §4.3 we look at classical Riemann-Hilbert problems on domains in the complex plane
C (but in the more general setting of UR domains). We show how one can transfer these
to problems on the Riemann sphere S2 and how results of §§4.1–4.2 apply. In this transfor-
mation, it is natural to view the unknowns u± as sections of a holomorphic line bundle over
S2. In §4.4 we take up Riemann-Hilbert problems on more general compact Riemann sur-
faces, involving sections of holomorphic line bundles, and also holomorphic vector bundles.
Background material on Riemann surface theory, particularly the Riemann-Roch theorem,
is given in §A.4.
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4.1 Connection with Toeplitz operators

Here we compare the Fredholm properties of the Riemann-Hilbert operator RΦ, defined by
(4.0.4), and the Toeplitz operator TΦ, defined by (4.0.7).

Proposition 4.1.1 For each p ∈ (1,∞), the operator RΦ is Fredholm in (4.0.4) if and only
if TΦ is Fredholm on Lp(Σ, E0 ⊗ C`). In such a case,

IndexRΦ = IndexTΦ + ` · IndexD. (4.1.1)

Proof. We bring in the following variant of Ap from (3.3.3), namely

Ãp : Lp(Σ, E0) −→ Hp(Ω+, D)⊕Hp(Ω−, D),

Ãpf := (C+f,−C−f), ∀ f ∈ Lp(Σ, E0).
(4.1.2)

As in Proposition 3.3.2, we have Ãp Fredholm, and

Index Ãp = − IndexD. (4.1.3)

If Ãp acts on sections of E0 ⊗ C`, multiply the index by `. Now

RΦÃpf = ΦC+f
∣∣n.t.

∂Ω+
+ C−f

∣∣n.t.

∂Ω−

= ΦP+f + P−f

= T̃Φf,

(4.1.4)

where
T̃Φ = ΦP+ + P−. (4.1.5)

It follows that RΦ is Fredholm on Lp(Σ) if and only if T̃Φ is, and, if so,

IndexRΦ = Index T̃Φ + ` · IndexD. (4.1.6)

The proof is completed by comparing T̃Φ and TΦ, a step carried out separately, in the
proposition below. ¤

Proposition 4.1.2 Given Φ ∈ L∞(Σ,M(`,C)), p ∈ (1,∞), the operator TΦ, defined by
(4.0.7), is Fredholm on Lp(Σ) if and only if T̃Φ, defined by (4.1.5), is, and if so,

Index T̃Φ = IndexTΦ. (4.1.7)

Proof. By (3.0.11), TΦ differs from

T̂Φ = P+ΦP+ + P− (4.1.8)

by an operator that is compact on Lp(Σ) for all p ∈ (1,∞). Thus it suffices to compare
Fredholmness of T̃Φ and T̂Φ. To do this, we bring in

Q±
Φ = I ± (I −P+)ΦP+. (4.1.9)

These operators are bounded on Lp(Σ) for each p ∈ (1,∞), and

Q+
ΦQ−

Φ = Q−
ΦQ+

Φ = I. (4.1.10)
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Furthermore, a direct calculation gives

T̂ΦQ+
Φ = T̃Φ + K(I −P+)ΦP+, (4.1.11)

where, as in (3.0.11), K = P+ + P− − I is compact on Lp(Σ) for all p ∈ (1,∞). Since Q+
Φ

is invertible, this establishes the equivalence of T̂Φ and T̃Φ being Fredholm, and that

Index T̃Φ = Index T̂Φ = IndexTΦ. (4.1.12)

This finishes the proof of Proposition 4.1.2 (thus also completing the proof of Proposi-
tion 4.1.1). ¤

To the list of “Toeplitz operators” compared in (4.1.12) it is useful to add another,
namely

T+
Φ : Hp

+(Σ, D) −→ Hp
+(Σ, D),

T+
Φ f := P+Φf, ∀ f ∈ Hp

+(Σ, D).
(4.1.13)

It readily follows that T+
Φ is Fredholm in (4.1.13) if and only if TΦ is Fredholm on Lp(Σ),

and, if so,
IndexT+

Φ = IndexTΦ. (4.1.14)

As seen in §2, the operator TΦ is Fredholm on Lp(Σ) for all p ∈ (1,∞) whenever

Φ, Φ−1 ∈ C0(Σ,M(`,C)) (4.1.15)

and, more generally, when

Φ,Φ−1 ∈ L∞ ∩ vmo(Σ, M(`,C)), (4.1.16)

which is actually equivalent to

Φ ∈ L∞ ∩ vmo(Σ,M(`,C)), Φ−1 ∈ L∞(Σ,M(`,C)). (4.1.17)

In such cases, the index of TΦ on Lp(Σ) is independent of p ∈ (1,∞). Furthermore, KerTΦ

on Lp(Σ) is independent of p ∈ (1,∞), as is KerT ∗Φ on Lp′(Σ) (as usual, 1/p + 1/p′ = 1).
The same holds for T̃Φ, though Ker T̃Φ might differ from KerTΦ.

We next record a refinement of Proposition 4.1.1, which holds if the elliptic operator D
is invertible. In such a case, as noted in §3, we can take E+ = E− to be the integral kernel
of D−1 to define C± in (3.0.5), and then K = 0 in (3.0.11), i.e., P− = I − P+, so (4.1.5)
becomes

T̃Φ = ΦP+ + (I −P+). (4.1.18)

Proposition 4.1.3 In the setting of Proposition 4.1.1, if D is invertible, then there is a
natural isomorphism

KerRΦ ≈ Ker T̃Φ. (4.1.19)

Furthermore, for each p ∈ (1,∞),

RangeRΦ = Range T̃Φ in Lp(Σ, E0 ⊗ C`). (4.1.20)

Proof. Recall
Jp : Hp

+(Σ, D)⊕Hp
−(Σ, D) −→ Lp(Σ, E0 ⊗ C`), (4.1.21)

from (3.2.17), extended componentwise to sections of E0 ⊗ C`. By Corollary 3.2.2, if D is
invertible, then Jp is an isomorphism. In the present case, (3.3.7) holds with K = 0. It
follows that Ap in (3.3.3) is an isomorphism, and similarly Ãp in (4.1.2) is an isomorphism.
Given this, (4.1.19) and (4.1.20) follow directly from (4.1.4). ¤
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4.2 Riemann-Hilbert problems on Lp-Sobolev spaces

Here we take (with n := dimM)

Φ ∈ Lq
1(Σ,M(`,C)), with q ∈ (n− 1,∞). (4.2.1)

We assume (4.0.1)–(4.0.2) hold and

Ω± satisfy a two-sided John condition. (4.2.2)

Then, for p ∈ (1, q], we have (cf. Proposition A.1.5)

RΦ : H1,p(Ω+, D)⊕H1,p(Ω−, D) −→ Lp
1(Σ, E0 ⊗ C`),

RΦ(u, v) := Φu
∣∣n.t.

Σ
− v

∣∣n.t.

Σ
, u ∈ H1,p(Ω+, D), v ∈ H1,p(Ω−, D),

(4.2.3)

with H1,p(Ω±, D) as in (3.4.18), but with E0 replaced by E0 ⊗ C`.
We desire to study the Fredholm properties of this family of operators. Parallel to

(4.1.4), we have
RΦÃ1,p = T̃Φ, (4.2.4)

where Ã1,p is the following variant of A1,p, from (3.4.48):

Ã1,p : Lp
1(Σ, E0 ⊗ C`) −→ H1,p(Ω+, D)⊕H1,p(Ω−, D),

Ã1,pf := (C+f,−C−f), ∀ f ∈ Lp
1(Σ, E0 ⊗ C`).

(4.2.5)

The operator
T̃Φ : Lp

1(Σ, E0 ⊗ C`) −→ Lp
1(Σ, E0 ⊗ C`) (4.2.6)

is given by the same formula as (4.1.5), i.e.,

T̃Φf = ΦP+f + P−f, ∀ f ∈ Lp
1(Σ, E0 ⊗ C`). (4.2.7)

By comparison with

TΦ : Lp
1(Σ, E0 ⊗ C`) −→ Lp

1(Σ, E0 ⊗ C`),

TΦf = P+ΦP+f + (I − P+)f, ∀ f ∈ Lp
1(Σ, E0 ⊗ C`),

(4.2.8)

the analysis from §4.3 of [21] yielding Proposition 2.7.1 now gives

ΦP+ − P+ΦP+ compact on Lp
1(Σ, E0 ⊗ C`), (4.2.9)

for p ∈ (1, q], and, as in §3.4, the hypothesis (4.2.2) implies P− − (I −P+) = K is compact
on Lp

1(Σ, E0 ⊗ C`), so

T̃Φ − TΦ is compact on Lp
1(Σ, E0 ⊗ C`), for p ∈ (1, q]. (4.2.10)

Thus Fredholm results given in §2.7 apply. We have the following.

Theorem 4.2.1 Assume Ω± are UR domains with boundary Σ and (4.2.2) holds. Also,
suppose

Φ ∈ Lq
1(Σ, GL(`,C)), with q ∈ (n− 1,∞). (4.2.11)

Then, for each p ∈ (1, q], the operator RΦ in (4.2.3) is Fredholm, and

IndexRΦ = IndexTΦ + ` · IndexD. (4.2.12)

38



Proof. It follows from Proposition 3.4.8 that Ã1,p in Fredholm in (4.2.5), with index equal to
−` · IndexD. Proposition 2.7.1 implies TΦ is Fredholm in (4.2.8), and (4.2.10) then implies
T̃Φ is also Fredholm, with the same index. The conclusion in (4.2.12) then follows by relying
on (4.2.4). ¤

We also have the following analogue of Proposition 4.1.3.

Proposition 4.2.2 In the setting of Theorem 4.2.1, if the operator D is invertible, then
there is a natural isomorphism

KerRΦ ≈ Ker T̃Φ, (4.2.13)

with T̃Φ acting on Lp
1(Σ, E0 ⊗ C`) as in (4.2.6). Furthermore, for each p ∈ (1, q],

RangeRΦ = Range T̃Φ in Lp
1(Σ, E0 ⊗ C`). (4.2.14)

Proof. Parallel to the proof of Proposition 4.1.3, this time we have J1,p an isomorphism
in (3.4.21), hence A1,p an isomorphism in (3.4.48), hence Ã1,p an isomorphism in (4.2.5).
Thus (4.2.13)–(4.2.14) follow from (4.2.4). ¤

4.3 Planar domains and domains in S2

To start, let Ω = Ω+ be a bounded UR domain in C ≈ R2. Assume

∂Ω = Σ = ∂(C \ Ω). (4.3.1)

We take D := ∂ = ∂/∂z and, for p ∈ (1,∞), consider the Riemann-Hilbert problem

Φu+

∣∣n.t.

Σ
− u−

∣∣n.t.

Σ
= g on Σ, (4.3.2)

where g is given in Lp(Σ,C`). We want to solve this problem for u+ ∈ Hp(Ω+, ∂) and u− in
some version of Hp(Ω−, ∂), with Ω− = C \Ω. In particular, we want u− to be holomorphic
on Ω−, and satisfy

N (u−) ∈ Lp(Σ), and the non-tangential boundary

limit u−
∣∣n.t.

Σ
exists at σ-a.e. point on Σ.

(4.3.3)

A standard attack (parallel to that in (1.0.27)–(1.0.29)) takes

u± = Cf in Ω±, (4.3.4)

where C is the classical Cauchy integral operator,

Cf(z) :=
1

2πi

∫

Σ

f(ζ)
ζ − z

dζ, ∀ z ∈ C \ Σ. (4.3.5)

Here, as in (A.3.15),
dζ = iν(ζ) dσ(ζ). (4.3.6)

It is clear that the right side of (4.3.5) vanishes as |z| → ∞, so we are motivated to define

Hp(Ω−, ∂) :=
{
u ∈ C0(Ω−,C`) : ∂u = 0, u(z) → 0 as |z| → ∞, N (u) ∈ Lp(Σ),

and u−
∣∣n.t.

Σ
exists at σ-a.e. point on Σ

}
.

(4.3.7)
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Given Φ ∈ L∞(Σ,M(`,C)), we have, for p ∈ (1,∞),

RΦ : Hp(Ω+, ∂)⊕Hp(Ω−, ∂) −→ Lp(Σ,C`),

RΦ(u, v) := Φu
∣∣n.t.

Σ
− v

∣∣n.t.

Σ
, u ∈ Hp(Ω+, ∂), v ∈ Hp(Ω−, ∂).

(4.3.8)

Arguments parallel to those in §4.1 show that, if

Φ,Φ−1 ∈ L∞ ∩ vmo(Σ, M(`,C)), (4.3.9)

then the operator RΦ is Fredholm, with

IndexRΦ = Index T̃Φ, (4.3.10)

where
T̃Φ = ΦP+ + (I −P+). (4.3.11)

Furthermore,
KerRΦ ≈ Ker T̃Φ, RangeRΦ = Range T̃Φ. (4.3.12)

We will recast the current Riemann-Hilbert problem into one to which §4.1 applies
directly. Before getting to this, we mention a variant of the problem formulated above.
Namely, one often wants to solve (4.3.2), not with u(z) → 0 as |z| → ∞, but rather with

u(z) −→ A as |z| → ∞, (4.3.13)

for some A ∈ C`. In such a case, observe that

v := u−A =⇒ v
∣∣
Ω±

∈ Hp(Ω±, ∂). (4.3.14)

Then the task is to solve

Φv+

∣∣n.t.

Σ
− v−

∣∣n.t.

Σ
= g + (I − Φ)A, (4.3.15)

with v± ∈ Hp(Ω±, ∂).
We now transfer our Riemann-Hilbert problem to one for domains in the Riemann sphere

C∪{∞} ≈ S2, obtained as the one-point compactification of C. This will serve not only to
produce a problem to which the results of §4.1 (and §4.2) are directly applicable, but also
to suggest further Riemann-Hilbert problems.

We now have
S2 = Ω+ ∪ Σ ∪ Ω−, (4.3.16)

where we have added p, the point at infinity, to Ω−. In light of (4.3.7), we want to solve
(4.3.2), not for scalar u±, but for sections of the line bundle

L = Ep, (4.3.17)

described in §A.4. Thus, in place of (4.3.8), we consider the operator

RΦ : Hp(Ω+, ∂L)⊕Hp(Ω−, ∂L) −→ Lp(Σ, L⊗ C`),

RΦ(u, v) := Φu
∣∣n.t.

Σ
− v

∣∣n.t.

Σ
, u ∈ Hp(Ω+, ∂L), v ∈ Hp(Ω−, ∂L),

(4.3.18)
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with

Hp(Ω±, ∂L) :=
{
u ∈ C0(Ω±, L⊗ C`) : ∂Lu = 0 in Ω±, Nu ∈ Lp(Σ),

and u
∣∣n.t.

Σ
exists σ-a.e. on Σ

}
.

(4.3.19)

Here, as in §A.4,
∂L : Hs+1,p(S2, L) −→ Hs,p(S2, L⊗ κ). (4.3.20)

We are trying to solve

RΦ(u+, u−) = g, g ∈ Lp(Σ, L⊗ C`), (4.3.21)

with L as in (4.3.17). We continue to assume Φ satisfies (4.3.9). If we denote the functions
of interest in (4.3.15) by v± and g̃ = g0 + (I −Φ)A (relabeling the g in (4.3.15) as g0), they
are related to (u±, g) in (4.3.21) by

u± = v±ψ, g = g̃ψ, (4.3.22)

with ψ ∈M(Ep) as in (A.4.19). Note that the pole of ψ at p cancels the zero of v− at p.
Now, for M = S2, Proposition A.4.2 gives

L = Ep =⇒ ∂L is invertible. (4.3.23)

Consequently, Propositions 4.1.1–4.1.3 apply. We have

IndexRΦ = Index T̃Φ = IndexTΦ, (4.3.24)

with
T̃Φ = ΦP+ + (I − P+), TΦ = P+ΦP+ + (I − P+), (4.3.25)

and also

KerRΦ ≈ Ker T̃Φ, RangeRΦ = Range T̃Φ in Lp(Σ, Ep ⊗ C`), (4.3.26)

for RΦ in (4.3.18). Here, T̃Φ is not identical to the T̃Φ in (4.3.11), which acts on Lp(Σ,C`),
but they are intertwined by the action of multiplication by ψ, and so have the same index.

In particular, the index computation of [21, Proposition 4.1.6] applies. We describe that
result. Assume that the bounded UR domain Ω ⊂ C is connected and has the property
that ∂Ω is a disjoint union

∂Ω =
µ⋃

j=0

γj , each γj a simple closed curve. (4.3.27)

Say γ0 is the outer boundary and γj for j ≥ 1 enclose bounded components of C \ Ω. Let
each γj have the orientation induced as a boundary component of Ω (counterclockwise for
γ0, clockwise for the other γj). First, we assume ` = 1, and

Φ ∈ C0(∂Ω,C \ 0). (4.3.28)

Let wj(Φ) denote the winding number of Φ|γj about 0. Then [21, Proposition 4.1.6] asserts
that, for each p ∈ (1,∞), the index of TΦ on Lp(∂Ω) is given by

IndexTΦ = −
µ∑

j=0

wj(Φ). (4.3.29)

We record the consequence for the Riemann-Hilbert problem.
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Proposition 4.3.1 Let Ω ⊂ C be a bounded, connected UR domain, satisfying (4.3.27),
and assume Φ satisfies (4.3.28). Then

IndexRΦ = −
µ∑

j=0

wj(Φ), (4.3.30)

both for RΦ in (4.3.8) and for RΦ in (4.3.18), with L = Ep.

It is simple enough to extend this result to

Φ ∈ C0(∂Ω, GL(`,C)). (4.3.31)

Parallel to (2.6.4)–(2.6.5), we can write

Φ(x) = Φ0(x)Φ1(x), (4.3.32)

with

Φ0(x) =
(

ϕ(x)
I

)
, ϕ(x) = detΦ(x), Φ1 ∈ C0(∂Ω,SL(`,C)), (4.3.33)

where SL(`,C) consists of elements of GL(`,C) of determinant 1. Then

IndexTΦ = IndexTΦ0 + IndexTΦ1 .

But since SL(`,C) is simply connected, homotopy invariance yields IndexTΦ1 = 0. Hence

IndexTΦ = IndexTϕ, (4.3.34)

so the conclusion (4.3.30) of Proposition 4.3.1 in this setting becomes

IndexRΦ = −
µ∑

j=0

wj(detΦ). (4.3.35)

Methods discussed in §2.3 also allow one to extend Proposition 4.3.1 to the setting (4.3.9). It
is also straightforward to generalize to the case when Ω has several connected components.

On the other hand, if Ω ⊂ C is a bounded UR domain satisfying (4.3.27), and, in
addition

Ω satisfies a two-sided John condition, (4.3.36)

and
Φ ∈ Lq

1(∂Ω, GL(`,C)) for some q ∈ (1,∞), (4.3.37)

then the results of §4.2 apply, and we have (4.3.35) for the action of RΦ on the variant of
(4.3.19),

RΦ : H1,p(Ω+, ∂L)⊕H1,p(Ω−, ∂L) −→ Lp
1(Σ, L⊗ C`), (4.3.38)

for p ∈ (1, q], or equivalently on the variant of (4.3.8),

RΦ : H1,p(Ω+, ∂)⊕H1,p(Ω−, ∂) −→ Lp
1(Σ,C`), (4.3.39)

where, as in (4.3.7), one incorporates vanishing as |z| → ∞ into the definition ofH1,p(Ω−, ∂).
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It is useful to note that, in the setting of (4.3.18), with L = Ep, the analysis of the
Fredholm properties of RΦ, including the identities (4.3.24), works regardless of whether
p ∈ Ω−. One might as well have p ∈ Σ = ∂Ω±. We will illustrate this with the following
example, mentioned in the introduction.

Let Σ ⊂ C consist of six rays:

Σ =
5⋃

k=0

{
rekπi/3 : 0 ≤ r < ∞}

. (4.3.40)

Thus C \ Σ has six connected components. We can set

C \ Σ = Ω+ ∪ Ω−, (4.3.41)

where Ω+ and Ω− each has three connected components. To wit, Ω± =
⋃3

j=1 Ω±,j , with

0 < Arg ζ <
π

3
for ζ ∈ Ω+,1,

2π

3
< Arg ζ < π for ζ ∈ Ω+,2,

4π

3
< Arg ζ <

5π

3
for ζ ∈ Ω+,3,

(4.3.42)

and
Ω−,j = eπi/3Ω+,j . (4.3.43)

We now compactify C to S2, adding the point p = ∞, so Ω± ⊂ S2. Abusing notation
slightly, we add p to Σ, so

S2 = Ω+ ∪ Ω− ∪ Σ. (4.3.44)

It is clear that Ω+ and Ω− are Ahlfors regular and have big pieces of Lipschitz surfaces, so
Ω+ and Ω− are UR domains.

The fact that p ∈ Σ here does create an extra wrinkle in passing from a Riemann-Hilbert
problem in C to one on S2, which we now examine. Let us start with the problem on C:

Φũ+

∣∣n.t.

Σ
− ũ−

∣∣n.t.

Σ
= g0, (4.3.45)

with ũ± holomorphic on Ω±, N (ũ) having certain bounds on Σ, and

ũ±(z) −→ A, as |z| → ∞, (4.3.46)

for some A ∈ C`. As in (4.3.14)–(4.3.15), we set

v± := ũ± −A, (4.3.47)

and seek solutions to
Φv+

∣∣n.t.

Σ
− v−

∣∣n.t.

Σ
= g0 + (I − Φ)A, (4.3.48)

with certain bounds on N (v±) and having v±(z) → 0 as |z| → ∞. The precise conditions
placed on v± will be apparent once we pass to the transformed problem. Namely, as in
(4.3.22), we set

u± = v±ψp, g = (g0 + (I − Φ)A)ψp, (4.3.49)
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with ψp ∈M(Ep) as in (A.4.19), and seek

u± ∈ Hp(Ω±, L), L = Ep, (4.3.50)

satisfying
RΦ(u+, u−) = g, (4.3.51)

with RΦ as in (4.3.18). For this, we need

g = (g0 + (I − Φ)A)ψp ∈ Lp(Σ, L⊗ C`). (4.3.52)

In particular, since one wants to allow g0 = 0, we need (I −Φ)Aψp ∈ Lp(Σ, L⊗C`). Recall
that ψp has a simple pole at p. Hence, a natural condition to place on Φ is

‖I − Φ(z)‖ ≤ cdist(z, p), (4.3.53)

the right side involving the distance in the standard metric on S2. Returning to Φ defined
on C, this hypothesis is

‖I − Φ(z)‖ ≤ c

|z| , for |z| ≥ 1. (4.3.54)

Under these hypotheses, the equation (4.3.51) is again within the framework of §4.1. The
operator RΦ has the form (4.3.18), again with L = Ep, and it is Fredholm, as long as

Φ ∈ C0(Σ, GL(`,C)), (4.3.55)

or more generally Φ satisfies (4.3.9). Keep in mind that in the current setting we do also
want to require (4.3.53).

It is interesting to transform the Riemann-Hilbert problem (4.3.49) one more time.
Namely, pick q ∈ Ω− ⊂ S2, and set

w± = u±ψ−1
q = v±ψpψ

−1
q , h = gψ−1

q , (4.3.56)

with ψq ∈M(Eq), the counterpart to ψp, as in (A.4.19), but this time with q in place of p.
Note that ψ−1

q ∈ O(E−q), and

w± ∈ Hp(Ω±, ∂Ep−q), h ∈ Lp(Σ, Ep−q ⊗ C`). (4.3.57)

Here (4.3.56) becomes RΦ(w+, w−) = h, with

RΦ : Hp(Ω+, ∂Ep−q)⊕Hp(Ω−, ∂Ep−q) −→ Lp(Σ, Ep−q ⊗ C`). (4.3.58)

The significance of this transformation is enhanced by the fact that

Ep−q is holomorphically trivial, (4.3.59)

by (A.4.29). Hence after multiplying w± by the inverse of a nontrivial (necessarily nowhere
vanishing) holomorphic section of Ep−q over S2, in essence obtaining

v±(z)(z − q), (4.3.60)

we get a scalar Riemann-Hilbert problem. If we map S2 to C ∪ {∞} so that q = ∞, then
Ω+ is transformed to a bounded UR domain in C. Thus we are in the setting where this
section started.
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We now produce results on IndexRΦ when Ω± are as in (4.3.42)–(4.3.43), mapped to a
bounded domain in C via such a transformation as indicated above, and Φ satisfies (4.3.55).
As we have seen, this is equivalent to analyzing IndexTΦ. We can do this by applying the
cobordism invariance result, described in §2.5.

In detail, given Φ ∈ C0(Σ,GL(`,C)), we can extend Φ to

Φ ∈ C0(U,GL(`,C)), (4.3.61)

where U is a neighborhood of Σ in C. Now we can take

Ω̃ ⊃ Ω+ (4.3.62)

to be smoothly bounded, ∂Ω̃ having three connected components, such that Ω̃ \ Ω+ ⊂ U ,
let Φ̃ = Φ|

∂Ω̃
, defining

T
Φ̃

: Lp(∂Ω̃,C`) −→ Lp(∂Ω̃,C`), (4.3.63)

and conclude from (2.5.15) that

IndexTΦ = IndexT
Φ̃
. (4.3.64)

Now, as in the proof of Proposition 4.3.1, we may apply [21, Proposition 4.1.6] to IndexT
Φ̃
.

On the other hand, the winding number of det Φ̃ about the three boundary components of
∂Ω̃ coincides with the winding numbers of det Φ about the three loops ∂Ω−,j , 1 ≤ j ≤ 3.
We deduce that

IndexRΦ = −
3∑

j=1

wj(detΦ), (4.3.65)

where wj(ϕ) denotes the winding number of ϕ|∂Ω−,j about 0, with ∂Ω−,j given the appro-
priate orientation. Note that the neighborhood U of Σ and the smoothly bounded domain
Ω̃ need to be chosen in a way that depends on Φ, but the formula (4.3.65) does not depend
on these choices.

We close this section with a brief discussion of results to the effect that, for a certain
class of bounded UR domains Ω+ ⊂ C, and Φ ∈ C0(∂Ω+,C \ 0) (so ` = 1),

IndexRΦ = 0 =⇒ RΦ invertible,

IndexRΦ < 0 =⇒ RΦ injective,

IndexRΦ > 0 =⇒ RΦ surjective.

(4.3.66)

In these cases,
RΦ : Hp(Ω+, ∂)⊕Hp(Ω−, ∂) −→ Lp(Σ), (4.3.67)

and Hp(Ω−, ∂) is as in (4.3.7), with ` = 1. Here, we show that the first implication of
(4.3.66) holds when

Ω ⊂ C is smoothly bounded and simply connected, (4.3.68)

and
Φ ∈ Cα(∂Ω+,C \ 0), with α > 0. (4.3.69)

The argument in this setting is classical. It will serve here to advertise further work of the
authors, which will appear elsewhere.

Here is a formal statement.
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Proposition 4.3.2 If Ω+ ⊂ C is a bounded domain satisfying (4.3.68), and if the function
Φ ∈ Cα(∂Ω+,C\0) has winding number 0 about the origin of the complex plane, the operator
RΦ is bijective in (4.3.67).

Proof. It suffices to show that RΦ is surjective in (4.3.67). To this end, note that the
hypothesis on Φ implies we can define

log
1
Φ
∈ Cα(∂Ω+). (4.3.70)

Now set
ω±(z) =

1
2πi

∫

∂Ω+

log
1

Φ(ζ)
dζ

ζ − z
, z ∈ Ω±. (4.3.71)

Under our hypotheses on Ω+ and Φ, it is classical that ω± are holomorphic on Ω± and
piecewise continuous on Ω+ and Ω−, up to the boundary, that ω−(z) → 0 as |z| → ∞, and
that

ω+

∣∣n.t.

Σ
− ω−

∣∣n.t.

Σ
= log

1
Φ

, (4.3.72)

where Σ = ∂Ω+. Now, to solve RΦ(u+, u−) = g ∈ Lp(Σ), we take

u±(z) =
eω±(z)

2πi

∫

∂Ω+

g(ζ)e−ω+(ζ)

Φ(ζ)
dζ

ζ − z
, z ∈ Ω±, (4.3.73)

i.e.,
u±(z) = eω±(z)C

(
Φ−1ge−ω+

)
(z). (4.3.74)

Clearly
g ∈ Lp(Σ) =⇒ Φ−1ge−ω+ ∈ Lp(Σ), (4.3.75)

from which we deduce that
N (u±) ∈ Lp(Σ). (4.3.76)

Also (4.3.73) readily gives
u−(z) −→ 0 as |z| → ∞. (4.3.77)

Furthermore,

C
(
Φ−1ge−ω+

)∣∣∣
n.t.

∂Ω±
= ±1

2
Φ−1ge−ω+ + C(Φ−1ge−ω+), (4.3.78)

so
Φu+

∣∣n.t.

∂Ω+
− u−

∣∣n.t.

∂Ω−

=
1
2
Φeω+Φ−1ge−ω+ + Φeω+C(Φ−1ge−ω+)

+
1
2
eω−Φ−1ge−ω+ − eω−C(Φ−1ge−ω+)

= g,

(4.3.79)

since (4.3.72) implies
eω−e−ω+ = Φ on ∂Ω±. (4.3.80)
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This proves Proposition 4.3.2. ¤

The first implication in (4.3.66) for smoothly bounded domains Ω+ ⊂ C with several
boundary components is amenable to a more elaborate argument, as are the other implica-
tions in (4.3.66), for such domains, and for Φ satisfying (4.3.69).

We have extended the scope of these implications in the following ways. First, they
hold for bounded UR domains Ω+ ⊂ C of the class treated in Proposition 4.3.1, i.e., with
boundaries as in (4.3.27). Furthermore, they hold not only for Φ as in (4.3.69), but more
generally when

Φ, Φ−1 ∈ L∞ ∩ vmo(∂Ω+). (4.3.81)

Details will be presented in the authors’ work [22].
The implications in (4.3.66) fail for `× ` systems with ` > 1. For example, if ϕ0 and ϕ1

in C0(∂Ω+,C \ 0) have winding numbers +1 and −1, and

Φ =
(

ϕ0

ϕ1

)
, (4.3.82)

then RΦ has index 0, but is certainly not invertible.
One can examine RΦ in (4.3.18) for many other holomorphic line bundles L, and also

holomorphic vector bundles. We turn to this in the next section, in the setting of more
general compact Riemann surfaces.

4.4 Riemann-Hilbert problems on compact Riemann surfaces

Let M be a compact Riemann surface, of genus g. Take Ω±, Σ as in (4.0.1)–(4.0.2), and let
L → M be a holomorphic vector bundle. With

Φ ∈ C0(Σ, GL(`,C)), (4.4.1)

or, more generally,
Φ,Φ−1 ∈ L∞ ∩ vmo(Σ, M(`,C)), (4.4.2)

we consider the operator

RΦ : Hp(Ω+, ∂L)⊕Hp(Ω−, ∂L) −→ Lp(Σ, L⊗ C`),

RΦ(u, v) = Φu
∣∣n.t.

Σ
− v

∣∣n.t.

Σ
, u ∈ Hp(Ω+, ∂L), v ∈ Hp(Ω−, ∂L).

(4.4.3)

Results of §4.1 imply that RΦ is Fredholm for each p ∈ (1,∞), and

IndexRΦ = Index T̃Φ + ` · Index ∂L, (4.4.4)

with T̃Φ as in (4.1.5). Recall also that Index T̃Φ = IndexTΦ. Furthermore,

∂L invertible ⇒ KerRΦ ≈ Ker T̃Φ and RangeRΦ = Range T̃Φ. (4.4.5)

As for the index of ∂L, the Riemann-Roch theorem, described in §A.4, gives

Index ∂L = c1(L) + r(1− g), (4.4.6)

if L is a rank-r holomorphic vector bundle. In particular,

Index ∂L = c1(L) + 1− g, (4.4.7)
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if L is a holomorphic line bundle. We see that

∂L is invertible ⇐⇒ c1(L) = r(g − 1) and O(L) = 0. (4.4.8)

We can use (4.4.8) to produce line bundles L such that ∂L is invertible. As seen in §A.4,
if g = 0, L = Ep works, for each p ∈ M , and if g = 1, L = Ep−q works, for distinct p and
q ∈ M . It is useful to know the following.

Proposition 4.4.1 If M has genus g, and r ∈ N is given, there are many holomorphic
vector bundles L → M of rank r such that

c1(L) = r(g − 1) and O(L) = 0, (4.4.9)

so ∂L is invertible.

See §A.4 for particulars on this.
We next take up the following transmission problem. Recalling (4.0.1)–(4.0.2), take

p1, . . . , p`+g−1, q1, . . . , q` ∈ M \ Σ, (4.4.10)

such that
ϑ = p1 + · · ·+ p`+g−1 − q1 − · · · − q` =⇒ O(E−ϑ) = 0. (4.4.11)

Note that c1(E−ϑ) = g − 1, hence ∂E−ϑ
is invertible.

Theorem 4.4.2 Let Ω± and Σ be as in (4.0.1)–(4.0.2), and assume (4.4.10)–(4.4.11) hold.
Let U ⊂ M be a neighborhood of Σ disjoint from {p1, . . . , p`+g−1}. Take p ∈ (1,∞). Then,
given g ∈ Lp(Σ), there exist unique

u± ∈M(Ω±), (4.4.12)

such that
ϑ(u±) ≥ −ϑ, N (

u±
∣∣
U

) ∈ Lp(Σ), (4.4.13)

and
u+

∣∣n.t.

Σ
− u−

∣∣n.t.

Σ
= g. (4.4.14)

Proof. Pick ψ ∈M(Eϑ), satisfying ϑ(ψ) = −ϑ, as in (A.4.19). The relation

v± = u±ψ−1 (4.4.15)

sets up a one-to-one correspondence between u± satisfying (4.4.12)–(4.4.13) and

v± ∈ Hp(Ω±, E−ϑ). (4.4.16)

Under this correspondence, (4.4.14) is equivalent to

v+

∣∣n.t.

Σ
− v−

∣∣n.t.

Σ
= gψ−1 ∈ Lp(Σ, E−ϑ). (4.4.17)

Multiplication by ψ−1 also produces an isomorphism between Lp(Σ) and Lp(Σ, E−ϑ). Now,
unique solvability of (4.4.16)–(4.4.17) follows directly from (4.4.5), with Φ = 1, yielding
T̃Φ = I. Hence we have unique solvability of (4.4.12)–(4.4.14), as asserted. ¤
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Remark. The hypothesis (4.4.11) is equivalent to
{
umeromorphic onM : ϑ(u) ≥ −ϑ

}
= 0, (4.4.18)

by (A.4.21)–(A.4.22), with ϑ replaced by −ϑ. This is clearly necessary for uniqueness of a
solution to (4.4.12)–(4.4.14).

Note that (4.4.17) is equivalent to

Jp(f+, f−) = gψ−1, (4.4.19)

with Jp : Hp
+(Σ, ∂E−ϑ

)⊕Hp
−(Σ, ∂E−ϑ

) → Lp(Σ, E−ϑ), as in (3.2.17). Hence Corollary 3.2.2
provides an alternative end to the proof of Theorem 4.4.2.

Using Corollary 3.2.2, we can expand the scope of Proposition 4.2.2 as follows. Let
L → M be a holomorphic vector bundle, and consider the operator

Jp : Hp
+(Σ, ∂L)⊕Hp

−(Σ, ∂L) −→ Lp(Σ, L),

Jp(f+, f−) := f+ − f−, ∀± ∈ Hp
±(Σ, ∂L).

(4.4.20)

Then
KerJp ≈ Ker ∂L = O(L), CokerJp ≈ Coker ∂L ≈ O(L′ ⊗ κ). (4.4.21)

Meanwhile, by (4.4.6),
IndexJp = c1(L) + r(1− g), (4.4.22)

if L has rank r. This leads to such implications as

c1(L) > r(g − 1) =⇒ Index ∂L > 0 =⇒ KerJp 6= 0,

c1(L) < r(g − 1) =⇒ Index ∂L < 0 =⇒ CokerJp 6= 0.
(4.4.23)

In case L is a line bundle (so r = 1), we also know that

c1(L) < 0 =⇒ O(L) = 0 =⇒ KerJp = 0,

c1(L) > 2g − 2 =⇒ O(L′ ⊗ κ) = 0 =⇒ CokerJp = 0.
(4.4.24)

We return to the setting of RΦ and establish the following index computation.

Theorem 4.4.3 Let M be a compact Riemann surface, L → M a holomorphic vector
bundle of rank r, and take Ω± and Σ as in (4.0.1)–(4.0.2). Assume in addition that

Σ =
µ⋃

j=0

γj , each γj a simple closed curve. (4.4.25)

Orient each γj as a component of ∂Ω+. Let

Φ ∈ C0(Σ, GL(`,C)). (4.4.26)

Finally, define RΦ as in (4.4.3). Then

IndexRΦ = −r

µ∑

j=1

wj(detΦ) + ` · Index ∂L, (4.4.27)

where wj(ϕ) is the winding number of ϕ : γj → C \ 0 about the origin in the complex plane.
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Proof. In light of (4.4.4), our remaining task is to show that

IndexTΦ = −r

µ∑

j=1

wj(detΦ). (4.4.28)

To prove (4.4.28), we use the localization procedure described in §2.5, with particular at-
tention to (2.5.6) and (2.5.9). In implementing this localization, we use the fact that each
γj ⊂ M has a neighborhood Uj that is homeomorphic to an annulus, (0, 1) × S1. Now
any complex vector bundle L over M trivializes over each such Uj , and each annulus Uj is
biholomorphic to an annulus in C. Thus, we obtain

IndexTΦ =
µ∑

j=1

IndexT
Φ̃j

, (4.4.29)

where each Φ̃j : ∂Oj → GL(r`,C) is essentially Φ|γj ⊗ Ir, and Oj ⊂ C is a bounded UR
domain, with boundary ∂Oj ≈ γj . We have

wj(det Φ̃j) = rwj(Φ), (4.4.30)

and the arguments proving Proposition 4.3.1, and remarks following that result, yield
(4.4.28). ¤

A Auxiliary material

A.1 Lp-Sobolev spaces on ∂Ω

Let Ω ⊂ M be a relatively compact, n-dimensional, Ahlfors regular domain. We recall some
definitions and basic results on Lp-Sobolev spaces Lp(∂Ω). Details are given in [16, §3.6]
and [21, §A.2]. For simplicity, we take Ω ⊂ Rn. Passage to more general M is not difficult.

To start, given ϕ ∈ C1
0 (Rn), for each j, k ∈ {1, . . . , n} we set

∂τjk
ϕ := νk(∂jϕ)

∣∣
∂Ω
− νj(∂kϕ)

∣∣
∂Ω

. (A.1.1)

Here ν = (ν1, . . . , νn) is the unit, outward, measure-theoretic normal to ∂Ω. Given any
function ψ ∈ C1

0 (Rn), an argument using Green’s formula (cf. [21, (A.2.2)]) yields
∫

∂Ω

(∂τjk
ϕ)ψ dσ = −

∫

∂Ω

ϕ(∂τjk
ψ) dσ. (A.1.2)

To proceed, given f ∈ Lp(∂Ω), p ∈ [1,∞], we say f ∈ Lp
1(∂Ω) provided that, for each

j, k ∈ {1, . . . , n}, there exists fjk ∈ Lp(∂Ω) such that
∫

∂Ω

(∂τjk
ϕ)f dσ = −

∫

∂Ω

ϕfjk dσ, ∀ϕ ∈ C1
0 (Rn). (A.1.3)

In such a case, we shall employ the notation

∂τjk
f := fjk. (A.1.4)

By (A.1.2), if f = ψ|∂Ω with ψ ∈ C1
0 (Rn), then f ∈ Lp

1(∂Ω) and fjk = νk∂jψ|∂Ω−νj∂kψ|∂Ω.
The following is [21, Proposition A.2.1].
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Proposition A.1.1 For each p ∈ [1,∞], Lp
1(∂Ω) is a Banach space, when equipped with

the norm

‖f‖Lp
1(∂Ω) := ‖f‖Lp(∂Ω) +

n∑

j,k=1

‖∂τjk
f‖Lp(∂Ω). (A.1.5)

As shown in [21, Proposition A.2.2],

Lip(∂Ω) ⊂ L∞1 (∂Ω). (A.1.6)

On this level of generality, the reverse inclusion need not hold.
The following is [21, Proposition A.2.3]. The proof makes use of the Gauss-Green

theorem given in [16, §2.3].

Proposition A.1.2 Assume the function u ∈ C1(Ω) satisfies N (u), N (∇u) ∈ Lp(∂Ω), for
some p ∈ (1,∞), and the nontangential boundary limits

f := u
∣∣n.t.

∂Ω
, fj := (∂ju)

∣∣n.t.

∂Ω
, j ∈ {1, . . . , n}, (A.1.7)

exist σ-a.e. on ∂Ω. Then f ∈ Lp
1(∂Ω) and

∂τjk
f = νkfj − νjfk, ∀ j, k ∈ {1, . . . , n}. (A.1.8)

The next result, Proposition A.2.4 of [21], extends the scope of (A.1.3)–(A.1.4).

Proposition A.1.3 Given f ∈ Lip(∂Ω) and g ∈ Lp
1(∂Ω), one has

∫

∂Ω

(∂τjk
f)g dσ = −

∫

∂Ω

f(∂τjk
g) dσ. (A.1.9)

Proposition A.2.6 of [21] gives the following Leibniz formula.

Proposition A.1.4 Given f ∈ Lip(∂Ω) and g ∈ Lp
1(∂Ω), one has

fg ∈ Lp
1(∂Ω) (A.1.10)

and, for each j, k ∈ {1, . . . , n},
∂τjk

(fg) = (∂τjk
f)g + f(∂τjk

g). (A.1.11)

There is a refinement of Proposition A.1.4, established in [21, Proposition A.2.7], in case
Ω also has the property

Ω satisfies a two-sided John condition. (A.1.12)

This property is discussed further in §A.2.

Proposition A.1.5 Assume the n-dimensional Ahlfors regular domain Ω also satisfies
(A.1.12). Also, suppose

p ∈ (1,∞), q ∈ (n− 1,∞), q ≥ p. (A.1.13)

Then
f ∈ Lq

1(∂Ω), g ∈ Lp
1(∂Ω) =⇒ fg ∈ Lp

1(∂Ω), (A.1.14)

and the Leibniz formula (A.1.11) holds.

51



A.2 Domains with the two-sided John condition

Results for Toeplitz operators and the Riemann-Hilbert problem with data in the Sobolev
space Lp

1(∂Ω) are mostly set in the special class of UR domains that satisfy a two-sided
John condition, which we define and discuss here.

As in [16, §3.1], we say a relatively compact open set Ω ⊂ M satisfies a local John
condition provided there exist θ ∈ (0, 1) and R > 0 (called the John constants of Ω) with
the following properties. For every q ∈ ∂Ω and r ∈ (0, R), we can find qr ∈ Br(q)∩Ω, called
a John center relative to ∆r(q) = Br(q) ∩ ∂Ω, such that

Bθr(qr) ⊂ Ω, (A.2.1)

and with the property that for each x ∈ ∆r(q) one can find a rectifiable path

γx : [0, 1] −→ Ω, of length ≤ r

θ
, (A.2.2)

such that

γx(0) = x, γx(1) = qr, dist(γx(t), ∂Ω) ≥ θdist(γx(t), x), ∀ t ∈ (0, 1]. (A.2.3)

Finally, Ω satisfies a two-sided John condition provided both Ω and M \Ω satisfy a local
John condition.

As shown in [16, §3.1], if Ω is Ahlfors regular and satisfies a two-sided John condition,
then Ω is a UR domain.

The following result is established in [16, §4.3].

Proposition A.2.1 If Ω ⊂ M is a relatively compact, n-dimensional Ahlfors regular do-
main that satisfies a two-sided John condition, then the following hold:

Lp
1(∂Ω) ↪→





Lp∗(∂Ω) for p∗ = (n−1)p
n−n−p , if p ∈ (1, n− 1),

Lq(∂Ω) for all q ∈ (1,∞), if p = n− 1,

Cr(∂Ω) for r = 1− n−1
p , if p ∈ (n− 1,∞).

(A.2.4)

Also,
Lp

1(∂Ω) ↪→ Lp(∂Ω) compactly, for each p ∈ (1,∞). (A.2.5)

Furthermore, the natural map

C∞(M)
∣∣
∂Ω

↪→ Lp
1(∂Ω) (A.2.6)

is well-defined with dense range, for each p ∈ (1,∞).

A.3 Refined divergence theorem

Divergence theorems have the form
∫

Ω

divF dV =
∫

∂Ω

ν · F dσ, (A.3.1)
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where Ω is an open, relatively compact subset of an n-dimensional Riemannian manifold
M , with outward unit conormal ν and “surface measure” σ on ∂Ω. Results of De Giorgi
and Federer give (A.3.1) for any such Ω with finite perimeter, provided the vector field F is
Lipschitz on M . It is easy to extend this to F ∈ C0(M), divF ∈ L1(M), but, as indicated
in §2, such an identity is needed for much rougher F . Furthermore, we have such an identity
for much rougher F , provided we restrict the class of domains Ω. To describe the result of
use to us, we bring in the spaces

Lp(Ω) :=
{
F ∈ C0(Ω) :N (F ) ∈ Lp(∂Ω), and

the nontangential limit F
∣∣n.t.

∂Ω
exists σ-a.e. on ∂Ω

}
.

(A.3.2)

Proposition A.3.1 Assume Ω is a relatively compact, Ahlfors regular domain. Assume F
is a vector field on Ω satisfying

F ∈ L1(Ω), divF ∈ L1(Ω). (A.3.3)

Then (A.3.1) holds (with F on ∂Ω in the right side understood as F
∣∣n.t.

∂Ω
).

This was established in [16, §2.3], under the stronger hypothesis that F ∈ Lp(Ω) for
some p > 1, and divF ∈ L1(Ω). Under the sharper hypothesis (A.3.3), Proposition A.3.1
is proved in [20]. The following consequence of Proposition A.3.1 is directly applicable to
results in this paper.

Proposition A.3.2 Let D : E0 → E1 be a first order differential operator, acting between
the sections of two vector bundles E0, E1 → M , and let Ω ⊂ M a relatively compact, Ahlfors
regular domain, with (geometric measure theoretic) outward unit conormal ν and surface
measure σ. In this context, consider a section u of E0 on Ω along with a section v of E1 on
Ω such that

u ∈ Lp(Ω), v ∈ Lp′(Ω), (A.3.4)

for some p ∈ [1,∞], where p′ denotes its dual exponent. Moreover, assume that, in the
sense of distributions, Du, D∗v ∈ L1

loc(Ω), and

〈Du, v〉 − 〈u,D∗v〉 ∈ L1(Ω). (A.3.5)

Then ∫

Ω

{〈Du, v〉 − 〈u,D∗v〉} dV =
1
i

∫

∂Ω

〈
σD(·, ν)u

∣∣n.t.

∂Ω
, v

∣∣n.t.

∂Ω

〉
dσ. (A.3.6)

Proof. Define the vector field F on Ω via the requirement that at a.e. x ∈ Ω we have

〈ξ, F (x)〉 =
1
i
〈σD(x, ξ)u(x), v(x)〉, ∀ ξ ∈ T ∗xM, (A.3.7)

where the second 〈 , 〉 is the inner product on E1x. The hypothesis (A.3.4) then readily
implies that F ∈ L1(Ω). We claim that, in the sense of distributions,

divF = 〈Du, v〉 − 〈u,D∗v〉. (A.3.8)

Given this, (A.3.6) then follows from Proposition A.3.1.
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To establish (A.3.8), pick an arbitrary test function ψ ∈ C1
0 (Ω). Then

∫

Ω

ψ(x)divF (x) dV (x) = −
∫

Ω

〈dψ(x), F (x)〉 dV (x)

= i

∫

Ω

〈σD(x, dψ)u(x), v(x)〉 dV (x).

(A.3.9)

Now (as in (2.1.2))

D(ψu) = ψDu +
1
i
σD(x, dψ)u, (A.3.10)

so (A.3.9) is equal to
∫

Ω

[〈ψDu, v〉 − 〈D(ψu), v〉] dV

=
∫

Ω

ψ
[〈Du, v〉 − 〈u,D∗v〉] dV,

(A.3.11)

giving (A.3.8), as desired. ¤

To give a significant example, let Ω ⊂ C be a bounded, Ahlfors regular domain. In this
context, consider D = ∂ = (1/2)(∂x +i∂y), so D∗ = −(1/2)(∂x−i∂y). Let u be holomorphic
on Ω, so ∂u = 0, and take v = 1, so D∗v = 0. Assume

Nu ∈ L1(∂Ω), and the nontangential limit u
∣∣n.t.

∂Ω
exists σ-a.e. on ∂Ω. (A.3.12)

Thus u ∈ L1(Ω), and Proposition A.3.2 applies. As such, we obtain
∫

∂Ω

σ∂(z, ν(z))u(z) dσ(z) = 0. (A.3.13)

If we identify ν(z) ∈ T ∗zC with an element of C, we have

σ∂(z, ν(z)) =
i

2
ν(z). (A.3.14)

Extending the classical identity for C1 curves, it is natural to endow ∂Ω with the complex
measure denoted dz, defined by

dz = iν(z) dσ(z). (A.3.15)

Hence we have the following general version of the Cauchy integral theorem.

Corollary A.3.3 If Ω ⊂ C is a bounded Ahlfors regular domain and u is holomorphic on
Ω and satisfies (A.3.12), then ∫

∂Ω

u(z) dz = 0. (A.3.16)

We conclude by proving a versatile boundary integration by parts formula.
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Proposition A.3.4 Let P : E → E be a first order differential operator, acting on the
sections of a vector bundle E on M . Let Ω ⊂ M be a relatively compact Ahlfors regular
domain that satisfies a two-sided John condition, and denote by ν and σ the (geometric
measure theoretic) outward unit conormal and surface measure on ∂Ω.

Then for each functions ϕ ∈ Lp
1(∂Ω, E), ψ ∈ Lp′

1 (∂Ω, E), where p, p′ ∈ (1,∞) satisfy
1
p + 1

p′ = 1, and each vector field X ∈ TM , there holds

∫

∂Ω

〈(
σP (·, ν)∇X − σ∇X

(·, ν)P
)
ϕ,ψ

〉
dσ

= −
∫

∂Ω

〈
ϕ,

(
σP>(·, ν)∇>X − σ∇>X (·, ν)P>)

ψ
〉
dσ

−
∫

∂Ω

〈
ϕ, σ[P,∇X ](·, ν)ψ

〉
dσ.

(A.3.17)

In fact, the same is true for ∇X replaced by a first order differential operator Q : E → E
with the property that the principal symbols σQ and σP commute.

Proof. By the density result recorded in (A.2.6), it suffices to consider the case when
ϕ,ψ ∈ C∞(M, E). With this goal in mind, consider the vector field F : Ω → T ∗M defined
by asking that for every ξ ∈ T ∗M we have

〈ξ, F 〉 =
〈
iσP (·, ξ)∇Xϕ− iσ∇X

(·, ξ)Pϕ,ψ
〉

+
〈
ϕ, iσP (·, ξ)∇Xψ − iσ∇X

(·, ξ)Pψ
〉
.

(A.3.18)

Next, fix a scalar function η ∈ C1
0 (Ω) and compute, in the sense of distributions,

(div F, η) =−
∫

Ω
〈dη, F 〉 dσ = −

∫

Ω

〈
iσP (·, dη)∇Xϕ− iσ∇X

(·, dη)Pϕ,ψ
〉
dV

−
∫

Ω

〈
ϕ, iσP (·, dη)∇Xψ − iσ∇X

(·, dη)Pψ
〉
dV

=−
∫

Ω

〈
[P, η]∇Xϕ− [∇X , η]Pϕ,ψ

〉
dV

−
∫

Ω

〈
ϕ, [P>, η]∇>Xψ − [∇>X , η]P>ψ

〉
dV

= : I + II.

(A.3.19)

We may further integrate by parts and express the above two terms as

I =−
∫

Ω
〈η∇Xϕ, P>ψ〉 dV +

∫

Ω
〈ηP∇Xϕ,ψ〉 dV

+
∫

Ω
〈ηPϕ,∇>Xψ〉 dV −

∫

Ω
〈η∇XPϕ, ψ〉 dV

=
∫

Ω
〈[P,∇X ]ϕ, ηψ〉 dV,

(A.3.20)
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and
II =−

∫

Ω
〈ηPϕ,∇>Xψ〉 dV +

∫

Ω
〈ϕ, ηP>∇>Xψ〉 dV

+
∫

Ω
〈η∇Xϕ,P>ψ〉 dV −

∫

Ω
〈ϕ, η∇>XP>ψ〉 dV

=
∫

Ω
〈ηϕ, [P>,∇>X ]ψ〉 dV = −

∫

Ω
〈ηϕ, [P,∇X ]>ψ〉 dV.

(A.3.21)

Combining (A.3.19), (A.3.20) and (A.3.21), we obtain that

div F = 〈[P,∇X ]ϕ,ψ〉 − 〈ϕ, [P,∇X ]>ψ〉. (A.3.22)

Consequently,
∫

Ω
div F dV =

∫

Ω
〈[P,∇X ]ϕ,ψ〉 dV −

∫

Ω
〈ϕ, [P,∇X ]>ψ〉 dV

=
∫

∂Ω
〈ϕ, σ[P,∇X ](·, ν)ψ〉 dσ.

(A.3.23)

With this in hand, formula (A.3.17) now follows from Proposition A.3.1, bearing in mind
(A.3.18). ¤

Remark. Any Ahlfors regular domain satisfying a two-sided John condition is a UR domain
(as pointed out earlier; cf. [16, §3.1]) which satisfies

∂Ω = ∂(Ω). (A.3.24)

As such, Proposition A.3.4 pertains to a subclass of UR domains satisfying (A.3.24). This
being said, it is possible to establish the boundary integration by parts formula (A.3.17) for
the entire class of UR domains satisfying (A.3.24) provided somewhat stronger conditions
on the functions involved are imposed. Specifically, we claim that (A.3.17) holds whenever

Ω ⊂ M is a relatively compact UR domain satisfying (A.3.24) (A.3.25)

granted that

ϕ ∈ C1(M, E)
∣∣
∂Ω

and ψ ∈ Lp
1(∂Ω, E) for some p ∈ (1,∞). (A.3.26)

Indeed, in this context, Ω+ := Ω and Ω− := M \ Ω are UR domains with a common
boundary, Σ := ∂Ω+ = ∂Ω−. We can then find (see [16, (3.6.46)-(3.6.47), p. 2684]) two
functions u± ∈ C1(Ω±) enjoying the following properties:

N (u±) ∈ Lp(Σ), N (∇u±) ∈ Lp(Σ),

there exist u±
∣∣n.t.

Σ
as well as (∇u±)

∣∣n.t.

Σ
,

and ψ = u+

∣∣n.t.

Σ
− u−

∣∣n.t.

Σ
at σ-a.e. point on Σ.

(A.3.27)
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Since ϕ ∈ C1(M, E)
∣∣
∂Ω

, we may carry out the same type of argument that has produced
(A.3.17) (working separately in Ω+ and Ω−) in order to conclude that

∫

∂Ω

〈(
σP (·, ν)∇X − σ∇X

(·, ν)P
)
ϕ, u±

∣∣n.t.

Σ

〉
dσ

= −
∫

∂Ω

〈
ϕ,

(
σP>(·, ν)∇>X − σ∇>X (·, ν)P>)(

u±
∣∣n.t.

Σ

)〉
dσ

−
∫

∂Ω

〈
ϕ, σ[P,∇X ](·, ν)u±

∣∣n.t.

Σ

〉
dσ.

(A.3.28)

Subtracting these two identities then yields (A.3.17), on account of the last property in
(A.3.27).

A.4 Dirac-type operators ∂L on a compact Riemann surface

Here we collect some concepts and results regarding a natural ∂ operator defined on sections
of a holomorphic line bundle, or more generally a holomorphic vector bundle, L over a
compact Riemann surface M . The material on line bundles follows [29, §9], to which we
refer for further details. Other sources include [14], [25], and, for vector bundles, [15], [3]
and [32].

Some special line bundles over M include the canonical bundle κ → M , and its conjugate
κ. The bundle κ is the cotangent bundle T ∗M , endowed by the complex structure of M
with the structure of a holomorphic line bundle. The bundle κ is an anti-holomorphic line
bundle. We can characterize a holomorphic line bundle as follows. Given a complex line
bundle L → M , let {Uj} be a covering of M . A holomorphic structure on L consists of
nowhere vanishing sections sj of L over Uj such that

sj = σjksk, on Ujk = Uj ∩ Uk, (A.4.1)

with σjk holomorphic, nowhere vanishing, complex-valued functions, called the transition
functions of this line bundle. To define a line bundle, one needs the family {σjk} to satisfy
the cocycle condition

σjkσk` = σj` on Uj ∩ Uk ∩ U`. (A.4.2)

If the functions σjk are anti-holomorphic, L gets the structure of an anti-holomorphic line
bundle. We mention that changing the transition functions to σjk defines the conjugate line
bundle, L.

If L → M is a holomorphic line bundle, we have

∂L : C∞(M, L) −→ C∞(M, L⊗ κ), (A.4.3)

defined as follows. Pick a local coordinate patch U and a local (nowhere-vanishing) holo-
morphic section S of L over U . Then an arbitrary section u over U is of the form u = vS,
with v complex valued, and we set

∂Lu =
∂v

∂z
S ⊗ dz. (A.4.4)

This is independent of the choice of local holomorphic section S and of local holomorphic
coordinate system.
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The operator ∂L is a first order, elliptic differential operator. In addition to (A.4.3), we
also have

∂L : D′(M, L) −→ D′(M, L⊗ κ), (A.4.5)

and, for s ∈ R, p ∈ (1,∞),

∂L : Hs+1,p(M,L) −→ Hs,p(M, L⊗ κ). (A.4.6)

Standard elliptic theory implies ∂L is Fredholm in (A.4.3), (A.4.5), and (A.4.6), and has
the same index in all cases. The fact that ∂L in (A.4.5) has range of finite codimension
(say m) implies that any linear subspace V ⊂ D′(M, L⊗ κ) of dimension > m has nonzero
intersection with the range of ∂L. It follows that there exists a nonzero v ∈ D′(M, L⊗ κ),
supported on a finite point set F , and in the range of ∂L, so v = ∂Lu. Such u is holomorphic
on M \ F , and in fact is a nontrivial meromorphic section of L:

Each holomorphic line bundle over M has a nontrivial meromorphic section. (A.4.7)

We denote by M(L) the space of meromorphic sections of L, and by O(L) the space of
holomorphic sections of L, i.e.,

O(L) = Ker ∂L. (A.4.8)

One also has
Ker ∂

∗
L ≈ O(L′ ⊗ κ), (A.4.9)

where L′ is the dual bundle to L. Hence

Index ∂L = dimO(L)− dimO(L′ ⊗ κ). (A.4.10)

The following formula for the index of ∂L is known as the Riemann-Roch formula. (Cf.,
e.g., [29, Theorem 9.1].)

Proposition A.4.1 If L is a holomorphic line bundle over a compact Riemann surface M ,

Index ∂L = c1(L) + 1− g. (A.4.11)

Here g is the genus of M , related to the Euler characteristic χ(M) by

χ(M) = 2− 2g. (A.4.12)

Thus the Riemann sphere S2 has genus 0 and a torus C/Λ has genus 1.
The integer c1(L) is called the first Chern class of L. For our purposes, the following

characterization will suffice. Take a nontrivial meromorphic section u ∈ M(L). It has a
finite number of zeros and poles. If p is a zero of u, let νu(p) be the order of the zero. If p
is a pole of u, let −νu(p) be the order of the pole. We define the divisor of u ∈M(L) to be
the formal sum

ϑ(u) =
∑

p

νu(p) · p. (A.4.13)

In such a case (cf. [29, Proposition 9.3]),

c1(L) =
∑

p

νu(p). (A.4.14)
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This is independent of the choice of nontrivial u ∈M(L). As a corollary,

c1(L) < 0 =⇒ O(L) = 0. (A.4.15)

Note that if L1 and L2 are holomorphic line bundles over M , with meromorphic sections
u1 and u2, then u1⊗u2 is a meromorphic section of L1⊗L2. The characterization (A.4.14)
readily gives

c1(L1 ⊗ L2) = c1(L1) + c1(L2). (A.4.16)

Generalizing (A.4.13), we say a divisor on M is a finite formal sum

ϑ =
∑

p

ν(p) · p, ν(p) ∈ Z. (A.4.17)

To any divisor ϑ we can associate a holomorphic line bundle, denoted Eϑ. To construct
Eϑ, it is convenient to use the method of transition functions, as in (A.4.1). Cover M with
holomorphic coordinate charts Uj . Pick ψj , meromorphic on Uj , having a pole of order
exactly |ν(p)| at p if ν(p) < 0, a zero of order exactly ν(p) if ν(p) > 0, and no other poles
or zeros. The transition functions

ϕjk = ψ−1
k ψj on Uj ∩ Uk (A.4.18)

define the holomorphic line bundle Eϑ. The collection {ψj , Uj} defines a meromorphic
section

ψ ∈M(Eϑ), ϑ(ψ) = −ϑ. (A.4.19)

Hence
c1(Eϑ) = −

∑
p

ν(p). (A.4.20)

There is a natural isomorphism

M(L, ϑ) ≈ O(L⊗Eϑ), (A.4.21)

where
M(L, ϑ) = {u ∈M(L) : ϑ(u) ≥ ϑ}. (A.4.22)

The isomorphism takes u ∈M(L, ϑ) to uψ, with ψ as in (A.4.19). We also mention that if
u is a nontrivial element of M(L), then we have holomorphically equivalent line bundles

L ≈ E−ϑ(u). (A.4.23)

We now specify some examples where ∂L is invertible.

Proposition A.4.2 If M has genus g = 0 and p ∈ M , then

L = Ep =⇒ ∂L is invertible. (A.4.24)

Proof. By (A.4.20), c1(L) = −1. Hence, by (A.4.11), Index ∂L = 0, and by (A.4.15),
Ker ∂L = 0. ¤

As is well known, if g = 0, then M is holomorphically equivalent to the Riemann sphere
S2. A proof can be found in [29, §9]. We mention that one ingredient is the following.
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Lemma A.4.3 If M is a compact Riemann surface, q ∈ M , and there exists a meromorphic
function u on M with just one pole, a simple pole at q, then M is holomorphically equivalent
to S2. In fact, u : M → C ∪ {∞} provides the equivalence.

We move on to genus g = 1:

Proposition A.4.4 If M has genus g = 1, and p, q are distinct points in M , then

L = Ep−q =⇒ ∂L is invertible. (A.4.25)

Proof. This time, c1(L) = 0, hence, by (A.4.11), Index ∂L = 0. It remains to show that
Ker ∂L = 0, i.e., O(Ep−q) = 0. By (A.4.21)–(A.4.22), with L the trivial line bundle, any
non-trivial element of O(Ep−q) would yield a meromorphic function u on M that vanishes
at p and has at most a simple pole at q. If u actually had a simple pole at q, Lemma A.4.3
would imply M ≈ S2, a contradiction. Otherwise, u must be constant, and hence ≡ 0. ¤

If g = 1, then M is holomorphically equivalent to some torus C/Λ. A proof of this can
also be found in [29, §9].

There are more general classes of holomorphic line bundles L for which ∂L is invertible.
We mention the following easy generalization of Propositions A.4.2 and A.4.4.

Proposition A.4.5 Let L → M be a holomorphic line bundle. If M has genus g = 0, then

c1(L) = −1 =⇒ ∂L is invertible. (A.4.26)

If M has genus g = 1, then

c1(L) = 0 and O(L) = 0 =⇒ ∂L is invertible. (A.4.27)

For general genus g,

c1(L) = g − 1 and O(L) = 0 =⇒ ∂L is invertible. (A.4.28)

In case L = Eϑ, (A.4.20) specifies c1(Eϑ), so one easily sees when the hypothesis of
(A.4.26) is satisfied. One also easily sees when c1(L) = 0.

Given c1(L) = 0, one may or may not have O(L) = 0. For example, if L is the
trivial bundle, constants belong to O(L), so O(L) ≈ C. Conversely, if there is a nontrivial
u ∈ O(L), then, by (A.4.14), u is nowhere vanishing. Hence u provides a holomorphic
trivialization of L. In case L = Eϑ, with ϑ as in (A.4.17) and

∑
ν(p) = 0, one can deduce

from (A.4.21)–(A.4.22) that O(Eϑ) 6= 0 if and only if there exists a meromorphic function u
on M such that ϑ(u) = ϑ. When this holds is settled by a result known as Abel’s Theorem,
which can be found in [25].

One elementary result is that, given p and q distinct points of M ,

O(Ep−q) 6= 0, hence Ep−q is holomorphically trivial ⇐⇒ M ≈ S2. (A.4.29)

The proof of the right-pointing implication follows that of Proposition A.4.4. For the
converse, if p, q ∈ C, take u(z) = (z − p)/(z − q), for which ϑ(u) = p− q.

Regarding the condition (A.4.28), for g ≥ 2, there are many line bundles satisfying this.
In more detail, the space of equivalence classes of holomorphic line bundles L → M with
c1(L) = g − 1 is a Jacobi variety, equivalent to a g-dimensional complex torus:

Jg−1(M) ≈ Cg/Λ, (A.4.30)

60



See [25]. Given L ∈ Jg−1(M), if O(L) 6= 0, then by (A.4.23), L ≈ E−(p1+···+pg−1), for some
points pj ∈ M , 1 ≤ j ≤ g − 1. Now the image of the (g − 1)-fold product of copies of M in
Jg−1(M),

(p1, . . . , pg−1) 7→ E−(p1+···+pg−1), (A.4.31)

is a (g− 1)-dimensional variety, often denoted Θ, in the g-dimensional space Jg−1(M). We
have

If L ∈ Jg−1(M) \Θ, then (A.4.28) holds. (A.4.32)

Moving on to vector bundles, we next record the formula for Index∂L when L → M is a
holomorphic vector bundle, of rank r (so each fiber is a complex vector space of dimension
r). In such a case, σjk in (A.4.2) are r × r matrices. Identity (A.4.10) continues to hold,
and the Riemann-Roch theorem in this setting takes the following form.

Proposition A.4.6 If L is a holomorphic vector bundle of rank r over a compact Riemann
surface M , of genus g,

Index ∂L = c1(L) + r(1− g). (A.4.33)

A proof can be found in [15]. Another proof, using methods from [29], is given in [31].
Here,

c1(L) = c1(ΛrL), (A.4.34)

if L has rank r. We mention that, complementing (A.4.16), if L̃ has rank r̃,

c1(L⊕ L̃) = c1(L) + c1(L̃), c1(L⊗ L̃) = r̃c1(L) + rc1(L̃), (A.4.35)

and, if L′ is the dual bundle to L,

c1(L′) = −c1(L). (A.4.36)

Parallel to Proposition A.4.5, we have:

Proposition A.4.7 In the setting of Proposition A.4.6, the operator ∂L is invertible if and
only if

c1(L) = r(g − 1) and O(L) = 0. (A.4.37)

In case g = 0 or g = 1, each holomorphic vector bundle of rank r is a sum of line bundles,
L = L1 ⊕ · · · ⊕ Lr. See [15] for g = 0 and [1] for g = 1. In case g = 0, (A.4.37) holds if and
only if c1(Lj) = −1 for each j. In case g = 1, (A.4.37) holds if and only if c1(Lj) = 0 and
O(Lj) = 0 for each j.

For g ≥ 2, it is the case that most “semistable” holomorphic vector bundles L of rank
r with c1(L) = r(g − 1) satisfy (A.4.37). Explaining this requires a definition.

Definition. A holomorphic vector bundle of rank r, L → M , is semistable provided that,
if L0 is a subbundle of rank r0, then

c1(L0)
r0

≤ c1(L)
r

. (A.4.38)

If one always has strict inequality in (A.4.38), we say L is stable.

Here is one reason to restrict to semistable vector bundles.
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Lemma A.4.8 If L is not semistable, then (A.4.37) fails.

Proof. Say r = rankL, c1(L) = r(g − 1). If L is not semistable, there is a subbundle L0, of
rank r0, such that (A.4.38) fails, hence

c1(L0) >
c1(L)

r
r0 = r0(g − 1). (A.4.39)

Then the Riemann-Roch formula implies Index ∂L0 > 0, so O(L0) 6= 0, hence O(L) 6= 0. ¤

The class of semistable holomorphic vector bundles L → M , of rank r, with c1(L) = k,
has a well-studied moduli space M(r, k) of equivalence classes. The equivalence at stable
bundles is the usual holomorphic equivalence. It is a bit more subtle at the vector bundles
that are not stable, and we refer to [32] for details. It has been shown that M(r, k) is a
complex projective variety, smooth at the stable bundles (which form a dense open subset).
It has further been shown (cf. [3]) that there is a “theta divisor” Θ ⊂ M(r, r(g − 1)), of
complex codimension 1, such that

L ∈M(r, r(g − 1)) \Θ =⇒ (A.4.37) holds. (A.4.40)
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[26] Y.Rodin, The Riemann Boundary Problem on Riemann Surfaces, D. Reidel, Dor-
drecht, 1988.

[27] S. Semmes, Analysis vs. geometry in a class of rectifiable hypersurfaces in Rn, Indiana
Univ. Math. J., 39 (1990), 1005–1035.

[28] M.Taylor, Tools for PDE, Math. Surv. Monogr. #81, Amer. Math. Soc., Providence
RI, 2000.

[29] M.Taylor, Dirac Operators and Index Theory, Chapter 10 in Partial Differential Equa-
tions, Vol. 2, Springer-Verlag, New York, 1996 (2nd ed., 2011).

63



[30] M.Taylor, Partial Differential Equations, Springer-Verlag, New York, 1996 (2nd ed.,
2011).

[31] M.Taylor, Notes on Compact Riemann Surfaces. Available at
http://www.unc.edu/math/Faculty/met/diffg.html

[32] M.Thaddeus, An introduction to the topology of the moduli space of stable bundles on
a Riemann surface, pp. 71–90 in Geometry and Physics, Lecture Notes in Pure and
Appl. Math. #184, Dekker, New York, 1997.

[33] U.Venugopalkrishna, Fredholm operators associated with strongly pseudoconvex do-
mains, J. Funct. Anal., 9 (1972), 349–373.

[34] G.Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace’s
equation in Lipschitz domains, J. Funct. Anal., 59 (1984), 572–611.

64


