
Chapter 1

The Riemann Integral

The Riemann integral is a fundamental part of calculus and an essential
precursor to the Lebesgue integral. In this chapter we define the Riemann
integral of a bounded function on an interval I = [a, b] on the real line.
To do this, we partition I into smaller intervals. A partition P of I is a
finite collection of subintervals {Jk : 0 ≤ k ≤ N}, disjoint except for their
endpoints, whose union is I. We can order the Jk so that Jk = [xk, xk+1],
where

(1.1) x0 < x1 < · · · < xN < xN+1, x0 = a, xN+1 = b.

We call the points xk the endpoints of P. We set

(1.2)

`(Jk) = xk+1 − xk, maxsize (P) = max
0≤k≤N

`(Jk),

minsize (P) = min
0≤k≤N

`(Jk).

We then set

(1.3)

IP(f) =
∑

k

sup
Jk

f(x) `(Jk),

IP(f) =
∑

k

inf
Jk

f(x) `(Jk).

Note that IP(f) ≤ IP(f). These quantities should approximate the Riemann
integral of f, if the partition P is sufficiently “fine.”

To be more precise, if P and Q are two partitions of I, we say P refines

Q, and we write P � Q, if P is formed by partitioning each interval in Q.
Equivalently, P � Q if and only if all the endpoints of Q are also endpoints
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2 1. The Riemann Integral

of P. It is easy to see that any two partitions have a common refinement;
just take the union of their endpoints to form a new partition. Note also
that

(1.4) P � Q =⇒ IP(f) ≤ IQ(f) and IP (f) ≥ IQ(f).

Consequently, if Pj are any two partitions and Q is a common refinement,
we have

(1.5) IP1
(f) ≤ IQ(f) ≤ IQ(f) ≤ IP2

(f).

Now, whenever f : I → R is bounded, the following quantities are well
defined:

(1.6) I(f) = inf
P∈Π(I)

IP(f), I(f) = sup
P∈Π(I)

IP(f),

where Π(I) is the set of all partitions of I. Clearly, by (1.5), I(f) ≤ I(f).
We then say that f is Riemann integrable provided I(f) = I(f), and in such
a case, we set

(1.7)

∫

I

f(x) dx = I(f) = I(f).

We will denote the set of Riemann integrable functions on I by R(I).

We derive some basic properties of the Riemann integral.

Proposition 1.1. If f, g ∈ R(I), then f + g ∈ R(I), and

(1.8)

∫

I

(f + g) dx =

∫

I

f dx +

∫

I

g dx.

Proof. If Jk is any subinterval of I, then

sup
Jk

(f + g) ≤ sup
Jk

f + sup
Jk

g,

so, for any partition P, we have IP(f + g) ≤ IP(f) + IP(g). Also, using
common refinements, we can simultaneously approximate I(f) and I(g) by
IP(f) and IP(g). Thus the characterization (1.6) implies I(f + g) ≤ I(f) +
I(g). A parallel argument implies I(f +g) ≥ I(f)+I(g), and the proposition
follows.

Next, there is a fair supply of Riemann integrable functions.
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Proposition 1.2. If f is continuous on I, then f is Riemann integrable.

Proof. Any continuous function on a compact interval is uniformly contin-
uous; let ω(δ) be a modulus of continuity for f, so

(1.9) |x − y| ≤ δ =⇒ |f(x) − f(y)| ≤ ω(δ), ω(δ) → 0 as δ → 0.

Then

(1.10) maxsize (P) ≤ δ =⇒ IP(f) − IP(f) ≤ ω(δ) · `(I),

which yields the proposition.

This argument, showing that every continuous function is Riemann in-
tegrable, also provides a criterion on a partition P guaranteeing that IP(f)
and IP(f) are close to

∫
I f dx, when f is continuous. The following is a

useful extension. Let f ∈ R(I), take ε > 0, and let P0 be a partition such
that

(1.11) IP0
(f) − ε ≤

∫

I

f dx ≤ IP0
(f) + ε.

Let

(1.12) M = sup
I

|f(x)|, δ = minsize(P0).

Proposition 1.3. Under the hypotheses above, if P is any partition of I
satisfying

(1.13) maxsize (P) ≤
δ

k
,

then

(1.14) IP(f) − ε1 ≤

∫

I

f dx ≤ IP(f) + ε1, with ε1 = ε +
2M

k
`(I).

Proof. Consider on the one hand those intervals in P that are contained
in intervals in P0, and on the other hand those intervals in P that are not

contained in intervals in P0 (whose lengths sum to ≤ `(I)/k). Let P1 be the
minimal common refinement of P and P0. We obtain

IP(f) ≤ IP1
(f) +

2M

k
`(I), IP(f) ≥ IP1

(f) −
2M

k
`(I).

Since also IP1
(f) ≤ IP0

(f) and IP1
(f) ≥ IP0

(f), this implies (1.14).

The following corollary is sometimes called Darboux’s Theorem.
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Corollary 1.4. Let Pν be any sequence of partitions of I into ν intervals

Jνk, 1 ≤ k ≤ ν, such that

maxsize (Pν) = δν → 0,

and let ξνk be any choice of one point in each interval Jνk of the partition

Pν . Then, whenever f ∈ R(I),

(1.15)

∫

I

f(x) dx = lim
ν→∞

ν∑

k=1

f(ξνk) `(Jνk).

The sum on the right side of (1.15) is called a Riemann sum. One should
be warned that, once such a specific choice of Pν and ξνk has been made,
the limit on the right side of (1.15) might exist for a bounded function f
that is not Riemann integrable. This and other phenomena are illustrated
by the following example of a function which is not Riemann integrable. For
x ∈ I, set

(1.16) ϑ(x) = 1 if x ∈ Q, ϑ(x) = 0 if x /∈ Q,

where Q is the set of rational numbers. Now every interval J ⊂ I of positive
length contains points in Q and points not in Q, so for any partition P of I
we have IP(ϑ) = `(I) and IP(ϑ) = 0, and hence

(1.17) I(ϑ) = `(I), I(ϑ) = 0.

Note that, if Pν is a partition of I into ν equal subintervals, then we could
pick each ξνk to be rational, in which case the limit on the right side of
(1.15) would be `(I), or we could pick each ξνk to be irrational, in which
case this limit would be zero. Alternatively, we could pick half of them to
be rational and half to be irrational, and the limit would be `(I)/2.

Let fk ∈ R(I) be a uniformly bounded, monotonically increasing se-
quence of functions. Then there is a bounded function f on I such that, as
k → ∞,

(1.18) fk(x) ↗ f(x), ∀x ∈ I.

It would be desirable to conclude that f is integrable and

(1.19)

∫

I

fk(x) dx →

∫

I

f(x) dx.
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A shortcoming of the Riemann integral is that such a limit might not belong
to R(I). For example, since I ∩ Q is countable, let I ∩ Q = {c1, c2, c3, . . . },
and let

(1.20) ϑk(x) = 1 if x ∈ {c1, . . . , ck}, 0 otherwise.

It is easy to see that I(ϑk) = I(ϑk) = 0, so each ϑk ∈ R(I). But, as k → ∞,

(1.21) ϑk(x) ↗ ϑ(x),

defined by (1.16), which is not in R(I). The Lebesgue theory of integra-
tion remedies this defect. If fk are Lebesgue integrable, and if one uses
in (1.19) the Lebesgue integral (which coincides with the Riemann integral
for functions in R(I)), then (1.18) ⇒ (1.19). This is known as the Mono-
tone Convergence Theorem, and it will be seen to be a central result in the
Lebesgue theory.

Associated to the Riemann integral is a notion of size of a set S, called
content. If S is a subset of I, define the “characteristic function”

(1.22) χS(x) = 1 if x ∈ S, 0 if x /∈ S.

We define “upper content” cont+ and “lower content” cont− by

(1.23) cont+(S) = I(χS), cont−(S) = I(χS).

We say S “has content,” or “is contented” if these quantities are equal,
which happens if and only if χS ∈ R(I), in which case the common value of
cont+(S) and cont−(S) is

(1.24) m(S) =

∫

I

χS(x) dx.

It is easy to see that

(1.25) cont+(S) = inf
{ N∑

k=1

`(Jk) : S ⊂ J1 ∪ · · · ∪ JN

}
,

where Jk are intervals. Here, we require S to be in the union of a finite

collection of intervals.

The key to the construction of Lebesgue measure is to cover a set S by
a countable (either finite or infinite) set of intervals. The outer measure of
S ⊂ I will be defined by

(1.26) m∗(S) = inf
{∑

k≥1

`(Jk) : S ⊂
⋃

k≥1

Jk

}
.
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Here {Jk} is a finite or countably infinite collection of intervals. Clearly

(1.27) m∗(S) ≤ cont+(S).

Note that, if S = I∩Q, then χS = ϑ, defined by (1.16). In this case it is easy
to see that cont+(S) = `(I), but m∗(S) = 0. Zero is the “right” measure of
this set.

We develop a few more properties of the Riemann integral. It is useful
to note that

∫
I f dx is additive in I, in the following sense.

Proposition 1.5. If a < b < c, f : [a, c] → R, f1 = f
∣∣
[a,b]

, f2 = f
∣∣
[b,c]

,

then

(1.28) f ∈ R
(
[a, c]

)
⇐⇒ f1 ∈ R

(
[a, b]

)
and f2 ∈ R

(
[b, c]

)
,

and, if this holds,

(1.29)

∫ c

a
f dx =

∫ b

a
f1 dx +

∫ c

b
f2 dx.

Proof. Since any partition of [a, c] has a refinement for which b is an end-
point, we may as well consider a partition P = P1 ∪ P2, where P1 is a
partition of [a, b] and P2 is a partition of [b, c]. Then

(1.30) IP(f) = IP1
(f1) + IP2

(f2), IP(f) = IP1
(f1) + IP2

(f2),

so

(1.31) IP (f) − IP(f) =
{
IP1

(f1) − IP1
(f1)

}
+

{
IP2

(f2) − IP2
(f2)

}
.

Since both terms in braces in (1.31) are ≥ 0, we have equivalence in (1.28).
Then (1.29) follows from (1.30) upon taking sufficiently fine partitions.

Let I = [a, b]. If f ∈ R(I), then f ∈ R([a, x]) for all x ∈ [a, b], and we
can consider the function

(1.32) g(x) =

∫ x

a
f(t) dt.

If a ≤ x0 ≤ x1 ≤ b, then

(1.33) g(x1) − g(x0) =

∫ x1

x0

f(t) dt,
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so, if |f | ≤ M,

(1.34) |g(x1) − g(x0)| ≤ M |x1 − x0|.

In other words, if f ∈ R(I), then g is Lipschitz continuous on I.

To finish this section, we want to relate the integral and the derivative.
Recall from elementary calculus that a function g : (a, b) → R is said to be
differentiable at x ∈ (a, b) provided there exists the limit

(1.35) lim
h→0

1

h

[
g(x + h) − g(x)

]
= g′(x).

When such a limit exists, g′(x), also denoted dg/dx, is called the derivative
of g at x. Clearly g is continuous wherever it is differentiable.

The next result is part of the Fundamental Theorem of Calculus.

Theorem 1.6. If f ∈ C([a, b]), then the function g, defined by (1.32), is

differentiable at each point x ∈ (a, b), and

(1.36) g′(x) = f(x).

Proof. Parallel to (1.33), we have, for h > 0,

(1.37)
1

h

[
g(x + h) − g(x)

]
=

1

h

∫ x+h

x
f(t) dt.

If f is continuous at x, then, for any ε > 0, there exists δ > 0 such that
|f(t)−f(x)| ≤ ε whenever |t−x| ≤ δ. Thus the right side of (1.37) is within
ε of f(x) whenever h ∈ (0, δ]. Thus the desired limit exists as h ↘ 0. A
similar argument treats h ↗ 0.

The next result is the rest of the Fundamental Theorem of Calculus.

Theorem 1.7. If G is differentiable and G′(x) is continuous on [a, b], then

(1.38)

∫ b

a
G′(t) dt = G(b) − G(a).

Proof. Consider the function

(1.39) g(x) =

∫ x

a
G′(t) dt.

We have g ∈ C([a, b]), g(a) = 0, and, by Theorem 1.6,

g′(x) = G′(x), ∀ x ∈ (a, b).
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Thus f(x) = g(x) − G(x) is continuous on [a, b], and

(1.40) f ′(x) = 0, ∀ x ∈ (a, b).

We claim that (1.40) implies f is constant on [a, b]. Granted this, since
f(a) = g(a)−G(a) = −G(a), we have f(x) = −G(a) for all x ∈ [a, b], so the
integral (1.39) is equal to G(x) − G(a) for all x ∈ [a, b]. Taking x = b yields
(1.38).

The fact that (1.40) implies f is constant on [a, b] is a consequence of
the following result, the Mean Value Theorem.

Theorem 1.8. Let f : [a, β] → R be continuous, and assume f is differen-

tiable on (a, β). Then ∃ ξ ∈ (a, β) such that

(1.41) f ′(ξ) =
f(β) − f(a)

β − a
.

Proof. Replacing f(x) by f̃(x) = f(x)−κ(x− a), where κ is the right side
of (1.41), we can assume without loss of generality that f(a) = f(β). Then
we claim that f ′(ξ) = 0 for some ξ ∈ (a, β). Indeed, since [a, β] is compact,
f must assume a maximum and a minimum on [a, β]. If f(a) = f(β), one of
these must be assumed at an interior point, ξ, at which f ′ clearly vanishes.

We now show that (1.40) implies f is constant on [a, b]. If not, ∃ β ∈ (a, b]
such that f(β) 6= f(a). Then just apply Theorem 1.8 to f on [a, β]. This
completes the proof of Theorem 1.7.

We mention some useful notation. If a function G is differentiable
on (a, b) and G′ is continuous on (a, b), we say G is a C1 function, and
we write G ∈ C1

(
(a, b)

)
. Inductively, we say G ∈ Ck

(
(a, b)

)
provided

G′ ∈ Ck−1
(
(a, b)

)
. Similarly define Ck

(
[a, b]

)
. Note that the hypothesis

of Theorem 1.7 is that G ∈ C1
(
[a, b]

)
.

Finally, we mention that there are more general versions of the Funda-
mental Theorem of Calculus involving the Riemann integal; see for example
[BS]. Since the Riemann integral is not our main focus here, we have been
content to present the simpler results above. (See, however, Exercise 14
below.) Our main motivation for taking the space to present these results
(which the reader might reasonably be presumed to have seen before) is
provided by their role in the study of weak derivatives, in Chapter 10. Fur-
thermore, we present extensions of Theorems 1.6–1.7, involving the Lebesgue
integral, in Chapter 11, particularly in Propositions 11.11–11.12.
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Exercises

1. Show that, if fk ∈ R(I) and fk → f uniformly on I, i.e.,

sup
I

|fk(x) − f(x)| → 0 as k → ∞,

then f ∈ R(I), and (1.19) holds.

2. Establish the following “monotone convergence theorem” for the Rie-
mann integral. Assume fk and f are continuous on I. Then (1.18) ⇒
(1.19).
Hint. Show that fk → f uniformly on I, under these hypotheses. (This
result is known as Dini’s Theorem.)

3. If I ∩ Q = {c1, c2, c3, . . . } as in the construction of (1.20), set

Θ(x) =
1

k
if x = ck,

0 if x ∈ I \ Q.

Show that Θ ∈ R(I) and compute
∫
I Θ(x) dx.

4. Assume f is bounded on I = [a, b] and continuous on
◦

I = (a, b). Show
that f ∈ R(I) and that

∫
I f(x) dx is independent of the values of f at

x = a and x = b.

5. Let Pν be a sequence of partitions of I satisfying the hypotheses of
Corollary 1.4. Show that, when f : I → R is bounded,

(1.42) lim
ν→∞

IPν
(f) = I(f) and lim

ν→∞
IPν

(f) = I(f).

6. Let C(I) denote the set of continuous real-valued functions on I. Show
that, for any bounded function f : I → R,

(1.43) I(f) = inf
{∫

I

g dx : g ≥ f, g ∈ C(I)
}

.

Similarly characterize I(f).
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7. Let c > 0 and let f : [ac, bc] → R be Riemann integrable. Working
directly with the definition of integral, show that

∫ b

a
f(cx) dx =

1

c

∫ bc

ac
f(x) dx.

More generally, show that

∫ b−d/c

a−d/c
f(cx + d) dx =

1

c

∫ bc

ac
f(x) dx.

8. Let f : I × S → R be continuous, where I = [a, b] and S ⊂ Rn. Take
ϕ(y) =

∫
I f(x, y) dx. Show that ϕ is continuous on S.

Hint. If fj : I → R are continuous and |f1(x) − f2(x)| ≤ δ on I, then

∣∣∣
∫

I

f1 dx −

∫

I

f2 dx
∣∣∣ ≤ `(I)δ.

9. With f as in Exercise 8, suppose gj : S → R are continuous and

a ≤ g0(y) < g1(y) ≤ b. Take ϕ(y) =
∫ g1(y)
g0(y) f(x, y) dx. Show that ϕ

is continuous on S.
Hint. Make a change of variables, linear in y, to reduce this to Exercise
8.

10. Let ϕ : [a, b] → [A,B] be C1 on a neighborhood J of [a, b], with ϕ′(x) > 0
for all x ∈ [a, b]. Assume ϕ(a) = A, ϕ(b) = B. Show that the identity

(1.44)

∫ B

A
f(y) dy =

∫ b

a
f
(
ϕ(t)

)
ϕ′(t) dt,

for any f ∈ C(J), follows from the chain rule and the Fundamental
Theorem of Calculus.
Hint. Replace b by x, B by ϕ(x), and differentiate.
Note that this result contains that of Exercise 7.
Try to establish (1.44) directly by working with the definition of the
integral as a limit of Riemann sums.

11. Show that, if f and g are C1 on a neighborhood of [a, b], then

(1.45)

∫ b

a
f(s)g′(s) ds = −

∫ b

a
f ′(s)g(s) ds +

[
f(b)g(b) − f(a)g(a)

]
.

This transformation of integrals is called “integration by parts.”
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12. Let f : (a, b) → R be a Ck+1-function, and take y ∈ (a, b). Show that
for x ∈ (a, b)

(1.46)
f(x) = f(y) + f ′(y)(x − y) +

f ′′(y)

2
(x − y)2

+ · · · +
f (k)(y)

k!
(x − y)k + Rk(x, y),

where

(1.47) Rk(x, y) =
1

k!

∫ x

y
(x − s)kf (k+1)(s) ds.

This is Taylor’s formula with remainder.
Hint. Apply ∂/∂y to both sides of (1.46). The left side becomes 0 and
there is considerable cancellation on the right side, yielding

(1.48)
∂

∂y
Rk(x, y) = −

f (k+1)(y)

k!
(x − y)k, Rk(x, x) = 0.

Integrating then gives (1.47).
Note that a reformulation of (1.47) is

(1.49) Rk(x, y) =
(x − y)k+1

(k + 1)!

∫ 1

0
f (k+1)

(
y + (1 − t1/(k+1))(x − y)

)
dt.

13. Suppose [a, b] is covered by open intervals Jk, 1 ≤ k ≤ N , of length
`(Jk). Show that

b − a ≤
N∑

k=1

`(Jk).

Hint. Show that
∑

k χJk
(x) ≥ χ[a,b](x) and deduce consequences for the

Riemann integrals of these functions.
Alternative. Try an induction on N .

14. Extend Theorem 1.7 to the case where G is differentiable and G′ is
Riemann integrable on [a, b].
Hint. Use

G(b) − G(a) =

n−1∑

k=0

[
G

(
a + (b − a)

k + 1

n

)
− G

(
a + (b − a)

k

n

)]

=
1

n

n−1∑

k=0

G′(ξkn).


