
Chapter 2

Lebesgue Measure on

the Line

In this chapter we discuss the concept of Lebesgue measure of subsets of
the real line R. It is convenient to begin with a discussion of the measure of
subsets of a bounded interval.

If S is a subset of an interval I = [a, b], then, as indicated in Chapter 1,
we define the outer measure of S by

(2.1) m∗(S) = inf
{

∑

k≥0

`(Jk) : S ⊂
⋃

k≥0

Jk

}

, Jk intervals.

It is easy to see that the result is not affected if one insists that all the
intervals Jk be open in I or that they all be closed (or half-open, etc.). We
can let Jk be intervals in R, or we can require Jk ⊂ I. In particular, if
O ⊂ (a, b) is open, then O is a disjoint union of a countable collection of
open intervals Ok, and (see Exercise 1 at the end of this chapter)

(2.2) m∗(O) =
∑

`(Ok).

Furthermore, for any S ⊂ (a, b),

(2.3) m∗(S) = inf
{

m∗(O) : O ⊃ S, O open
}

.

Replacing I by a slightly larger interval, we see that (2.3) holds for any
S ⊂ I.

Obviously the outer measure of a single point p ∈ I is zero. Under the
most liberal allowance for intervals in (2.1), p itself is an interval, of length
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14 2. Lebesgue Measure on the Line

zero. If we insist on open intervals, then let Jε be an interval of length ε
centered at p. More generally, if C = {c1, c2, c3, . . . } is a countable subset
of I, write C ⊂

⋃

Jk(ε), where Jk(ε) is an open interval of length 2−kε,
centered at ck. Thus m∗(C) ≤

∑

2−kε = ε, so

(2.4) C ⊂ I countable =⇒ m∗(C) = 0.

Note that, if {J1k : k ≥ 0} covers S1 and {J2k : k ≥ 2} covers S2, then
{J1k, J2k : k ≥ 0} is a cover of S1 ∪ S2, so

(2.5) m∗(S1 ∪ S2) ≤ m∗(S1) + m∗(S2).

This subadditivity property is shared by upper content, defined in Chapter
1, but outer measure is distinguished from upper content by also having the
property of countable subadditivity:

Proposition 2.1. If {Sj : j ≥ 0} is a countable family of subsets of I, then

(2.6) m∗
(

⋃

j

Sj

)

≤
∑

j

m∗(Sj).

Proof. Pick ε > 0. Each Sj has a countable cover {Jjk : k ≥ 0}, by intervals,
such that m∗(Sj) ≥

∑

k `(Jjk) − 2−jε. Then {Jjk : j, k ≥ 0} is a countable

cover of
⋃

j Sj by intervals, so m∗
(
⋃

Sj

)

≤
∑

m∗(Sj) + 2ε, for all ε > 0.

Letting ε ↘ 0, we get (2.6).

Our main goal in this section is to produce a large class (call it L) of
subsets of I with the property that m∗ is “countably additive” on L, in
the sense that if Sj ∈ L is a countable collection of mutually disjoint sets
(indexed by j ∈ Z+), then

m∗
(

⋃

j≥1

Sj

)

=
∑

j≥1

m∗(Sj).

We will pursue this in stages, showing first that such an identity holds when
S1 = K is compact and S2 = I \K. In preparation for this, we take a closer
look at the outer measure of a compact set K ⊂ I. Since any open cover of
K has a finite subcover, we can say that

(2.7) K compact =⇒ m∗(K) = inf
{

N
∑

k=1

`(Jk) : K ⊂
N
⋃

k=1

Jk

}

,

where Jk are open intervals (which we are free to close up). This coincides
with the definition of upper content given in Chapter 1. It implies that,
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given ε > 0, one can pick a finite collection of disjoint open intervals {Jk :
1 ≤ k ≤ N} such that O =

⋃

k Jk ⊃ K and such that we have

(2.8) m∗(K) ≤ m∗(O) =

N
∑

k=1

`(Jk) ≤ m∗(K) + ε.

The following result is sharper than (2.8).

Lemma 2.2. Given ε > 0, we can construct O =
⋃N

k=1 Jk ⊃ K such that

(2.9) m∗(O \ K) ≤ ε.

Proof. Start with the O described above. Then O\K = A is open, so write
A =

⋃

k≥1 Ak, a countable disjoint union of open intervals. To achieve (2.9),

we need to arrange that
∑

k≥1 `(Ak) ≤ ε, at least after possibly shrinking
O.

To do this, pick M large enough that

∑

k>M

`(Ak) ≤
ε

2
.

We want to replace O by O\
⋃M

k=1 A
#

k , which should still be a cover of K by a

finite number of open intervals. It would be tempting to take A#

k = Ak, but

note that the endpoints of Ak might belong to K. Instead, let A#

k ⊂ Ak be a

closed interval with the same center as Ak, such that `(A#

k ) ≥ `(Ak)−ε/2M.
With the new O we have the lemma.

Using Lemma 2.2, we can establish the following important result, ad-
vertised above.

Proposition 2.3. If K ⊂ I is compact, then

(2.10) m∗(K) + m∗(I \ K) = `(I).

Proof. To begin, we note that if O =
⋃N

k=1 Jk is a cover of K satisfying the
conditions of Lemma 2.2, then I \ O is a finite disjoint union of intervals,
say I \ O =

⋃ν
j=1 J ′

j , and clearly m∗(I \ O) =
∑ν

j=1 `(J ′
j), so

(2.11) m∗(O) + m∗(I \ O) = `(I).

Furthermore, I \ K = (I \ O) ∪ (O \ K), so by (2.5) and (2.9),

(2.12) m∗(I \ K) ≤ m∗(I \ O) + ε.
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It follows that

(2.13) m∗(K) + m∗(I \ K) ≤ m∗(O) + m∗(I \ O) + ε = `(I) + ε,

for all ε > 0, which implies that the left side of (2.10) is ≤ `(I). The reverse
inequality is automatic from the subadditivity property (2.5).

The additivity property, that m∗(S1 ∪ S2) = m∗(S1) + m∗(S2) when S1

and S2 are disjoint, just verified for S1 = K compact and S2 = I \ K, does
not hold for all disjoint sets Sj, though it holds for the “measurable” ones,
as we will see below. At this point we record three easy cases of additivity.

Lemma 2.4. If O1 and O2 are two disjoint open sets, then

(2.14) m∗(O1 ∪ O2) = m∗(O1) + m∗(O2).

If S1, S2 ⊂ I and

(2.15) ρ = ρ(S1, S2) = inf {|x1 − x2| : xj ∈ Sj} > 0,

then

(2.16) m∗(S1 ∪ S2) = m∗(S1) + m∗(S2).

Furthermore, if Kj, 1 ≤ j ≤ N , is a finite collection of mutually disjoint
compact subsets of I, then

(2.17) m∗
(

N
⋃

j=1

Kj

)

=

N
∑

j=1

m∗(Kj).

Proof. The identity (2.14) is immediate from (2.2). To establish (2.16),
given δ > 0, pick an open set O ⊃ S1∪S2 such that m∗(O) ≤ m∗(S1∪S2)+δ.
Note that each open set

Oj = O ∩
{

x : dist(x, Sj) <
ρ

2

}

contains Sj. We see that O1 ∩ O2 = ∅, so (2.14) applies. Thus

m∗(S1) + m∗(S2) ≤ m∗(O1) + m∗(O2) = m∗(O1 ∪ O2) ≤ m∗(S1 ∪ S2) + δ,

for all δ > 0. Thus m∗(S1)+m∗(S2) ≤ m∗(S1 ∪S2), when (2.15) holds. The
reverse inequality follows from (2.5), so we have (2.16).

Finally, to establish (2.17), it suffices to treat the case N = 2, but two
disjoint compact sets Sj = Kj necessarily satisfy (2.15), so the lemma is
proved.

Granted this result, we can establish the important property of countable
additivity of m∗ on disjoint compact sets.
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Proposition 2.5. If Kj , j ≥ 1, is a countable collection of mutually dis-
joint compact sets in I, then

(2.18) m∗
(

⋃

j≥1

Kj

)

=
∑

j≥1

m∗(Kj).

Proof. The left side of (2.17) is ≤ the left side of (2.18) for all N, while the
right side of (2.17) converges to the right side of (2.18). Hence the left side
of (2.18) is ≥ the right side. The reverse inequality follows from (2.6).

We now define inner measure: if S ⊂ I, we set

(2.19) m∗(S) = `(I) − m∗(I \ S).

By (2.5), m∗(S) ≤ m∗(S) for all S. Using the characterization (2.3) of outer
measure together with Proposition 2.3, we have

(2.20) m∗(S) = sup
{

m∗(K) : K ⊂ S,K compact
}

.

Definition. S ⊂ I is measurable if and only if m∗(S) = m∗(S).

If S is measurable, we set

(2.21) m(S) = m∗(S) = m∗(S).

Clearly, by (2.19), S ⊂ I is measurable if and only if I \S is measurable. In
view of (2.20), we see that any compact K ⊂ I is measurable. Hence any
open O ⊂ I is measurable.

One useful measurability result follows easily from Proposition 2.5:

Proposition 2.6. If Kj , j ≥ 1, is a countable collection of mutually dis-
joint compact subsets of I, then L =

⋃

j≥1 Kj is measurable, and

(2.22) m(L) =
∑

j≥1

m(Kj).

Proof. Since
⋃N

j=1 Kj = LN ⊂ L for all N < ∞, we have

m∗(L) ≥ m
(

N
⋃

j=1

Kj

)

=

N
∑

j=1

m(Kj).

Hence m∗(L) ≥
∑

j≥1 m(Kj). In view of (2.18) and the inequality m∗(L) ≤
m∗(L), we have the proposition.

In general, in counterpoint to countable subadditivity of outer measure,
we have countable superadditivity of inner measure:
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Proposition 2.7. Let Sk ⊂ I be a countable family of mutually disjoint
sets. Then

(2.23) m∗

(

⋃

k≥1

Sk

)

≥
∑

k≥1

m∗(Sk).

Proof. Pick ε > 0; then pick Kk ⊂ Sk, compact, such that m(Kk) ≥
m∗(Sk) − 2−kε. Then

⋃

k≥1 Kk = L ⊂
⋃

k≥1 Sk, and, by Proposition 2.6,

m∗(L) = m∗(L) =
∑

k≥1

m(Kk).

Since m∗(L) ≤ m∗(S), where S =
⋃

Sk, we have

m∗(S) ≥
∑

k≥1

m(Kk) ≥
∑

k≥1

m∗(Sk) − ε,

for all ε > 0, yielding (2.23).

We have the following important conclusion, extending Proposition 2.6.

Theorem 2.8. If Sk, k ≥ 1, is a countable family of mutually disjoint
measurable subsets of I, then S =

⋃

k≥1 Sk is measurable, and

(2.24) m(S) =
∑

k≥1

m(Sk).

Proof. Using Proposition 2.1 and Proposition 2.7, we have

m∗(S) ≤
∑

k≥1

m∗(Sk) =
∑

k≥1

m∗(Sk) ≤ m∗(S),

and since m∗(S) ≤ m∗(S), we have m∗(S) = m∗(S) and the identity (2.24).

The identity (2.24) asserts countable additivity of m and is at the heart
of Lebesgue measure theory.

We will derive some further sufficient conditions for a set to be measur-
able. The following criterion for measurability is useful.

Lemma 2.9. A set S ⊂ I is measurable if and only if, for each δ > 0, there
exist a compact K and an open O such that K ⊂ S ⊂ O and m(O\K) < δ.

Since both K (compact) and O \ K (open) are measurable, we have
m(O) − m(K) = m(O \ K) by Theorem 2.8, so the proof of Lemma 2.9 is
straightforward. Here is an application.
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Proposition 2.10. If S1 and S2 are measurable subsets of I, the following
are also measurable:

(2.25) S1 ∪ S2, S1 ∩ S2, S1 \ S2.

Proof. Given δ > 0, take Kj compact, Oj open, so that Kj ⊂ Sj ⊂ Oj and
m(Oj \ Kj) < δ/2. Then K = K1 ∪ K2 is compact, O = O1 ∪ O2 is open,
K ⊂ S1 ∪ S2 ⊂ O, and O \ K ⊂

(

O1 \ K1

)

∪
(

O2 \ K2

)

, so subadditivity
implies m(O \ K) < δ. This shows that S1 ∪ S2 is measurable.

We know that Sj is measurable ⇔ I \ Sj is measurable, so, by the last
argument, (I \ S1) ∪ (I \ S2) = I \ (S1 ∩ S2) is measurable; hence S1 ∩ S2 is
measurable.

Finally, S1 \ S2 = S1 ∩ (I \ S2), so this is measurable.

There is a more incisive countable counterpart.

Theorem 2.11. If Sj, j ≥ 1, is a countable collection of measurable subsets
of I, the following are measurable:

(2.26)
⋃

j≥1

Sj,
⋂

j≥1

Sj.

Proof. To treat U =
⋃

j≥1 Sj, let S′
j =

⋃j
`=1 Sj , which is measurable by

Proposition 2.10. Then S ′
1 ⊂ S′

2 ⊂ · · · and U =
⋃

j≥1 S′
j. Now let T1 = S′

1 =

S1 and Tj = S′
j \ S′

j−1 for j ≥ 2, also measurable by Proposition 2.10. Thus

U =
⋃

j≥1 Tj. Since the Tj are mutually disjoint, we can apply Theorem 2.8,

to conclude that U is measurable. Finally,
⋂

j≥1 Sj is the complement in I

of
⋃

j≥1(I \ Sj), so the theorem is proved.

A nonempty family F of subsets of some set X is called a σ-algebra if it
is closed under the formation of countable unions, countable intersections,
and complements. Thus we see that the family L of measurable subsets of
I is a σ-algebra. The smallest σ-algebra of subsets of a topological space X
containing all the closed sets is called the algebra of Borel sets. (Cf. Exercises
11–12 for the existence of such a smallest σ-algebra.) We see that each Borel
set in I is measurable.

We record a criterion for measurability that, while first perhaps appear-
ing curious, will actually serve as a convenient definition of measurability,
in the more general construction of measures to be discussed in Chapter 5.



20 2. Lebesgue Measure on the Line

Proposition 2.12. A set S ⊂ I is measurable if and only if, for all Y ⊂ I
(measurable or not),

(2.27) m∗(Y ) = m∗(Y ∩ S) + m∗(Y \ S).

Proof. Since the validity of (2.27) for Y = I was the definition of measur-
ability, via (2.19), it remains only to show that (2.27) holds whenever S is
measurable. Of course, we always have m∗(Y ) ≤ m∗(Y ∩ S) + m∗(Y \ S).
Now take ε > 0 and pick an open set O ⊃ Y such that m(O) ≤ m∗(Y ) + ε.
We know that O ∩ S and O \ S are measurable if S is, and thus

m(O) = m(O ∩ S) + m(O \ S) ≥ m∗(Y ∩ S) + m∗(Y \ S).

Hence m∗(Y ∩S) +m∗(Y \S) ≤ m∗(Y ) + ε for all ε > 0, and (2.27) follows.

We now discuss Lebesgue measure on the line, which is very much like
that on a bounded interval, except that now some sets can have measure
+∞. Let us partition R into a countable set of bounded intervals (of positive
length):

(2.28) R =
⋃

k

Ik,

so two different intervals can intersect at most at one point. We say a subset
S ⊂ R is measurable if and only if S ∩ Ik is measurable, for all k. If this
holds, we then set

(2.29) m(S) =
∑

k

m(S ∩ Ik).

Note that possibly m(S) = +∞; for example, R is measurable and m(R) =
+∞. It is easy to show that this characterization is independent of the choice
of partition and to extend the results established above, to show that the
family of measurable subsets of R is a σ-algebra and Lebesgue measure is
countably additive, as in Theorem 2.8. We leave the job as an exercise.

We mention that (2.1) could still be used to define outer measure, and
one has, for all S ⊂ R,

(2.30) m∗(S) =
∑

k

m∗(S ∩ Ik).

Also, (2.20) could be used to define inner measure. Furthermore, provided
m∗(S) < ∞, then S ⊂ R is measurable ⇔ m∗(S) = m∗(S). However,
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if m∗(S) = ∞, then certainly m∗(S) = ∞, but S might possibly not be
measurable.

There is also a natural Lebesgue measure on the circle T, which can be
identified with R/Z. In fact, we have a natural 1-1 correspondence between
T and I = [0, 1], with 0 and 1 identified, and Lebesgue measure on T is
simply the same as that on I. We note that T is a group, and it acts on
itself in a measure-preserving fashion. That is, if S ⊂ T and α ∈ T, we can
form Sα = S + α = {x + α : x ∈ S}, where “+” denotes addition mod 1,
and

(2.31) m∗(Sα) = m∗(Sβ), m∗(Sα) = m∗(Sβ),

for all α, β ∈ T.

We end this section with a standard example of a subset S of I = [0, 1]
that is not measurable. Actually, it is convenient to construct S as a subset
of T. As noted above, T is a group. It has a subgroup Q = Q/Z, acting on
T as a countable family of measure-preserving transformations. We form S
by picking one element from each orbit of Q in T. Doing this requires the
“axiom of choice.” Now, for each α ∈ Q, consider Sα = S + α = {x + α :
x ∈ S}, as in the previous paragraph. Note that

(2.32)
⋃

α∈Q

Sα = T, α 6= β ∈ Q ⇒ Sα ∩ Sβ = ∅.

Also (2.31) holds, for all α, β ∈ Q. Now respective applications of countable
subadditivity of m∗ and countable superadditivity of m∗ to T =

⋃

α Sα yield
1 ≤

∑

α m∗(Sα) and 1 ≥
∑

α

m∗(Sα). Hence

(2.33) m∗(Sα) > 0 and m∗(Sα) = 0, ∀ α ∈ Q.

Thus none of the sets Sα are measurable.

Exercises

1. In order to establish the identity (2.2), start by demonstrating the fol-
lowing:

Claim. If I is a bounded interval and {Jk : k ≥ 1} a countable cover
of I by intervals,

(2.34)
∑

k≥1

`(Jk) ≥ `(I).
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Hint. Reduce to the case where I is closed and Jk are open. Consult
Exercise 13 of Chapter 1.
From here finish the proof of (2.2).
Hint. The definition (2.1) clearly gives m∗(O) ≤

∑

`(Ok). For the
converse inequality, fix ε > 0 and pick a finite number of closed intervals
Jk ⊂ Ok, 1 ≤ k ≤ N , such that

∑N
1 `(Jk) ≥

∑

`(Ok) − ε. Then show

that m∗(O) ≥ m∗(
⋃

k Jk) =
∑N

1 `(Jk).

2. If Sj is an increasing sequence of measurable subsets of I, i.e., S1 ⊂
S2 ⊂ S3 ⊂ · · · , and S =

⋃

j≥1 Sj , show that

(2.35) m(Sj) ↗ m(S), as j → ∞.

Hint. Examine the proof of Theorem 2.11.

3. If Sj is a decreasing sequence of measurable subsets of I, i.e., S1 ⊃ S2 ⊃
S3 ⊃ · · · , and S =

⋂

j≥1 Sj, show that

(2.36) m(Sj) ↘ m(S), as j → ∞.

4. If Sj is an increasing sequence of measurable subsets of R, with union
S, show that (2.35) continues to hold. If Sj is a decreasing sequence
of measurable subsets of R, with intersection S, show that (2.36) holds,
provided m(Sj) < ∞ for some j. Give a counterexample to (2.36) when
this provision does not hold.

5. Show that a nonempty family F of subsets of X which is closed under
countable unions and complements is automatically closed under count-
able intersections and hence is a σ-algebra.

6. A nonempty family F of subsets of X is called a σ-ring if it is closed under
countable unions and under differences (i.e., Sj ∈ F ⇒ S1 \ S2 ∈ F).
Show that a σ-ring is also closed under countable intersections. Show
that such a σ-ring F is a σ-algebra if and only if X ∈ F.

7. Show that every measurable set X ⊂ R with positive measure contains
a non measurable subset.
Hint. If X ⊂ I, consider X ∩Sα, with Sα as in (2.31)–(2.33). Show that
m∗(X ∩ Sα) = 0 for all α, while m∗(X ∩ Sα) > 0 for some α.

8. Form the Cantor middle third set as follows. Let K0 = [0, 1]. Form K1

by removing the open interval in the middle of K0, of length 1/3. Then
K1 consists of two intervals, each of length 1/3. Next, remove from
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each of the intervals making up K1 the open interval in the middle, of
length 1/32, to get K2. Continue this process. Thus Kν is a union of
2ν disjoint closed intervals, each of length 3−ν . Then

K0 ⊃ K2 ⊃ K2 ⊃ K3 ⊃ · · · ↘ K,

and K =
⋂

ν Kν is the Cantor middle third set. Show that

m(K) = 0.

9. Modify the construction in Exercise 8 as follows. Let L0 = [0, 1]. Form
L1 by removing the open interval in the middle of L0 of length 1/5. Next,
remove from each of the intervals making up L1 the open intervals in
the middle, of length 1/52, to get L2. Continue this process. Thus Lν

is obtained from [0, 1] by omitting one open interval of length 1/5, two
of length 1/52, and so on, up to omitting 2ν−1 open intervals of length
5−ν . Then L0 ⊃ L1 ⊃ L2 ⊃ · · · ↘ L, where L =

⋂

ν Lν is a compact
set. Show that

m(L) > 0.

10. With K and L as in Exercises 8–9, show that there is a homeomorphism
F : [0, 1] → [0, 1] such that

F (L) = K.

In Exercises 11–12, let X be a nonempty set and C a nonempty collection
of subsets of X.

11. Show that the collection of σ-algebras of subsets of X that contain C is
nonempty.
Hint. Consider the set of all subsets of X.

12. If {Fα : α ∈ A} is the collection of all σ-algebras of subsets of X that
contain C, show that

⋂

α∈A

Fα = F

is a σ-algebra of subsets of X, containing C, and is in fact the smallest
such σ-algebra. One says F is the σ-algebra generated by C and writes
F = σ(C).


