
Appendix G

Integration of
Differential Forms

The calculus of differential forms provides a convenient setting for integra-
tion on manifolds, as we will explain in this appendix, due to the efficient
way it keeps track of changes of variables.

A k-form β on an open set O ⊂ Rn has the form

(G.1) β =
∑

j

bj(x) dxj1 ∧ · · · ∧ dxjk
.

Here j = (j1, . . . , jk) is a k-multi-index. We write β ∈ Λk(O). The wedge
product used in (G.1) has the anti-commutative property

(G.2) dx` ∧ dxm = −dxm ∧ dx`,

so that if σ is a permutation of {1, . . . , k}, we have

(G.3) dxj1 ∧ · · · ∧ dxjk
= (sgnσ) dxjσ(1)

∧ · · · ∧ dxjσ(k)
.

In particular, an n-form α on Ω ⊂ Rn can be written

(G.4) α = A(x) dx1 ∧ · · · ∧ dxn.

If A ∈ L1(O, dx), we write

(G.5)
∫

O
α =

∫

O
A(x) dx,
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294 Appendix G. Integration of Differential Forms

the right side being the usual Lebesgue integral, developed in Chapter 7.
Suppose now Ω ⊂ Rn is open and there is a C1 diffeomorphism F : Ω →

O. We define the pull-back F ∗β of the k-form β in (G.1) as

(G.6) F ∗β =
∑

j

bj(F (x)) (F ∗dxj1) ∧ · · · ∧ (F ∗dxjk
),

where

(G.7) F ∗dxj =
∑

`

∂Fj

∂x`
dx`,

the algebraic computation in (G.6) being performed using the rule (G.3).
If B = (b`m) is an n× n matrix, then, by (G.3) and the formula for the

determinant given in (7.77) (and (7.83)),

(G.8)

(∑
m

b1m dxm

)
∧

(∑
m

b2m dxm

)
∧ · · · ∧

(∑
m

bnm dxm

)

=
(∑

σ

(sgnσ) b1σ(1)b2σ(2) · · · bnσ(n)

)
dx1 ∧ · · · ∧ dxn

= (detB) dx1 ∧ · · · ∧ dxn.

Hence, if F : Ω → O is a C1 map and α is an n-form on O, as in (G.4), then

(G.9) F ∗α = detDF (x)A(F (x)) dx1 ∧ · · · ∧ dxn.

This formula is especially significant in light of the change of variable formula

(G.10)
∫

O
A(x) dx =

∫

Ω

A(F (x)) |det DF (x)| dx,

when F : Ω → O is a C1 diffeomorphism, given in Theorem 7.2. The
only difference between the right side of (G.10) and

∫
Ω F ∗α is the absolute

value sign around detDF (x). We say a C1 map F : Ω → O is orientation
preserving when detDF (x) > 0 for all x ∈ Ω. In such a case, Theorem 7.2
yields

Proposition G.1. If F : Ω → O is a C1 orientation-preserving diffeomor-
phism and α an integrable n-form on O, then

(G.11)
∫

O
α =

∫

Ω

F ∗α.



Appendix G. Integration of Differential Forms 295

In Appendix H we will present another proof of the change of variable
formula, making direct use of basic results on differential forms developed
in this appendix.

In addition to the pull-back, there are some other operations on differ-
ential forms. The wedge product of dx`’s extends to a wedge product on
forms as follows. If β ∈ Λk(O) has the form (G.1) and if

(G.12) α =
∑

i

ai(x) dxi1 ∧ · · · ∧ dxi` ∈ Λ`(O),

define

(G.13) α ∧ β =
∑

i,j

ai(x)bj(x) dxi1 ∧ · · · ∧ dxi` ∧ dxj1 ∧ · · · ∧ dxjk

in Λk+`(O). We retain the equivalences (G.3). It follows that

(G.14) α ∧ β = (−1)k`β ∧ α.

It is also readily verified that

(G.15) F ∗(α ∧ β) = (F ∗α) ∧ (F ∗β).

Another important operator on forms is the exterior derivative:

(G.16) d : Λk(O) −→ Λk+1(O),

defined as follows. If β ∈ Λk(O) is given by (G.1), then

(G.17) dβ =
∑

j,`

∂bj

∂x`
dx` ∧ dxj1 ∧ · · · ∧ dxjk

.

The antisymmetry dxm ∧ dx` = −dx` ∧ dxm, together with the identity
∂2bj/∂x`∂xm = ∂2bj/∂xm∂x`, implies

(G.18) d(dβ) = 0,

for any smooth differential form β. We also have a product rule:

(G.19) d(α ∧ β) = (dα) ∧ β + (−1)jα ∧ (dβ), α ∈ Λj(O), β ∈ Λk(O).

The exterior derivative has the following important property under pull-
backs:

(G.20) F ∗(dβ) = dF ∗β,
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if β ∈ Λk(O) and F : Ω → O is a smooth map. To see this, extending (G.19)
to a formula for d(α ∧ β1 ∧ · · · ∧ β`) and using this to apply d to F ∗β, we
have
(G.21)

dF ∗β =
∑

j,`

∂

∂x`

(
bj ◦ F (x)

)
dx` ∧

(
F ∗dxj1

) ∧ · · · ∧ (
F ∗dxjk

)

+
∑

j,ν

(±)bj

(
F (x)

)(
F ∗dxj1

) ∧ · · · ∧ d
(
F ∗dxjν

) ∧ · · · ∧ (
F ∗dxjk

)
.

Now the definition (G.6)–(G.7) of pull-back gives directly that

(G.22) F ∗dxi =
∑

`

∂Fi

∂x`
dx` = dFi,

and hence d(F ∗dxi) = ddFi = 0, so only the first sum in (G.21) contributes
to dF ∗β. Meanwhile,

(G.23) F ∗dβ =
∑

j,m

∂bj

∂xm

(
F (x)

)
(F ∗dxm) ∧ (

F ∗dxj1

) ∧ · · · ∧ (
F ∗dxjk

)
,

so (G.20) follows from the identity

∑

`

∂

∂x`

(
bj ◦ F (x)

)
dx` =

∑
m

∂bj

∂xm

(
F (x)

)
F ∗dxm,

which in turn follows from the chain rule.
Here is another important consequence of the chain rule. Suppose F :

Ω → O and ψ : O → U are smooth maps between open subsets of Rn. We
claim that for any form α of any degree,

(G.24) ψ ◦ F = ϕ =⇒ ϕ∗α = F ∗ψ∗α.

It suffices to check (G.24) for α = dxj . Then (G.7) gives the basic identity
ψ∗ dxj =

∑
(∂ψj/∂x`) dx`. Consequently,

(G.25) F ∗ψ∗ dxj =
∑

`,m

∂F`

∂xm

∂ψj

∂x`
dxm, ϕ∗ dxj =

∑
m

∂ϕj

∂xm
dxm;

but the identity of these forms follows from the chain rule:

(G.26) Dϕ = (Dψ)(DF ) =⇒ ∂ϕj

∂xm
=

∑

`

∂ψj

∂x`

∂F`

∂xm
.
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One can define a k-form on an n-dimensional manifold M as follows. Say
M is covered by open sets Oj and there are coordinate charts Fj : Ωj → Oj ,
with Ωj ⊂ Rn open. A collection of forms βj ∈ Λk(Ωj) is said to define
a k-form on M provided the following compatibility condition holds. If
Oi ∩ Oj 6= ∅ and we consider Ωij = F−1

i (Oi ∩ Oj) and diffeomorphisms

(G.27) ϕij = F−1
j ◦ Fi : Ωij −→ Ωji,

we require

(G.28) ϕ∗ijβj = βi.

The fact that this is a consistent definition is a consequence of (G.24). For
example, if G : M → Rm is a smooth map and γ is a k-form on Rm, then
there is a well-defined k-form β = G∗γ on M , represented in such coordinate
charts by βj = (G ◦Fj)∗γ. Similarly, if β is a k-form on M as defined above
and G : U → M is smooth, with U ⊂ Rm open, then G∗β is a well-defined
k-form on U .

We give an intrinsic definition of
∫
M α when α is an n-form on M , pro-

vided M is oriented, i.e., there is a coordinate cover as above such that
det Dϕjk > 0. The object called an “orientation” on M can be identified
as an equivalence class of nowhere vanishing n-forms on M , two such forms
being equivalent if one is a multiple of another by a positive function in
C∞(Ω). A member of this equivalence class, say ω, defines the orientation.
The standard orientation on Rn is determined by dx1∧· · ·∧dxn. The equiv-
alence class of positive multiples a(x)ω is said to consist of “positive” forms.
A smooth map ψ : S → M between oriented n-dimensional manifolds pre-
serves orientation provided ψ∗σ is positive on S whenever σ ∈ Λn(M) is
positive. We mention that there exist surfaces that cannot be oriented, such
as the famous “Möbius strip.”

We define the integral of an n-form over an oriented n-dimensional man-
ifold as follows. First, if α is an n-form supported on an open set O ⊂ Rn,
given by (G.4), then we define

∫
O α by (G.5).

More generally, if M is an n-dimensional manifold with an orientation,
say the image of an open set O ⊂ Rn by ϕ : O → M , carrying the natural
orientation of O, we can set

(G.29)
∫

M

α =
∫

O
ϕ∗α

for an n-form α on M . If it takes several coordinate patches to cover M ,
define

∫
M α by writing α as a sum of forms, each supported on one patch.
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We need to show that this definition of
∫
M α is independent of the choice

of coordinate system on M (as long as the orientation of M is respected).
Thus, suppose ϕ : O → U ⊂ M and ψ : Ω → U ⊂ M are both coordinate
patches, so that F = ψ−1 ◦ ϕ : O → Ω is an orientation-preserving diffeo-
morphism. We need to check that, if α is an n-form on M , supported on U,
then

(G.30)
∫

O
ϕ∗α =

∫

Ω

ψ∗α.

To establish this, we use (G.24). This implies that the left side of (G.30) is
equal to

(G.31)
∫

O
F ∗(ψ∗α),

which is equal to the right side of (G.30), by (G.11) (with slightly altered
notation). Thus the integral of an n-form over an oriented n-dimensional
manifold is well defined.

We turn now to the Gauss-Green-Stokes formula for differential forms,
commonly called simply the Stokes formula. This involves integrating a
k-form over a k-dimensional manifold with boundary. We first define that
concept. Let S be a smooth k-dimensional manifold, and let M be an open
subset of S, such that its closure M (in RN ) is contained in S. Its boundary
is ∂M = M \M . We say M is a smooth surface with boundary if also ∂M
is a smooth (k − 1)-dimensional surface. In such a case, any p ∈ ∂M has a
neighborhood U ⊂ S with a coordinate chart ϕ : O → U , where O is an open
neighborhood of 0 in Rk, such that ϕ(0) = p and ϕ maps {x ∈ O : x1 = 0}
onto U ∩ ∂M .

If S is oriented, then M is oriented, and ∂M inherits an orientation,
uniquely determined by the following requirement: if

(G.32) M = Rk
− = {x ∈ Rk : x1 ≤ 0},

then ∂M = {(x2, . . . , xk)} has the orientation determined by dx2∧· · ·∧dxk.
We can now state the Stokes formula.

Proposition G.2. Given a compactly supported (k−1)-form β of class C1

on an oriented k-dimensional surface M (of class C2) with boundary ∂M,
with its natural orientation,

(G.33)
∫

M

dβ =
∫

∂M

β.
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Proof. Using a partition of unity and invariance of the integral and the
exterior derivative under coordinate transformations, it suffices to prove this
when M has the form (G.32). In that case, we will be able to deduce (G.33)
from the Fundamental Theorem of Calculus. Indeed, if

(G.34) β = bj(x) dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxk,

with bj(x) of bounded support, we have

(G.35) dβ = (−1)j−1 ∂bj

∂xj
dx1 ∧ · · · ∧ dxk.

If j > 1, we have

(G.36)
∫

M

dβ = (−1)j−1

∫ {∫ ∞

−∞

∂bj

∂xj
dxj

}
dx′ = 0,

and also κ∗β = 0, where κ : ∂M → M is the inclusion. On the other hand,
for j = 1, we have

(G.37)

∫

M

dβ =
∫ {∫ 0

−∞

∂b1

∂x1
dx1

}
dx2 · · · dxk

=
∫

b1(0, x′) dx′

=
∫

∂M

β.

This proves Stokes’ formula (G.33).

The reason we required M to be a surface of class C2 in Proposition
G.2 is the following. Due to the formulas (G.6)–(G.7) for a pull-back, if β
is of class Cj and F is of class C`, then F ∗β is generally of class Cµ, with
µ = min(j, ` − 1). Thus, if j = ` = 1, F ∗β might be only of class C0, so
there is not a well-defined notion of a differential form of class C1 on a C1

surface, though such a notion is well defined on a C2 surface. This problem
can be overcome, and one can extend Proposition G.2 to the case where M
is a C1 surface and β is a (k−1)-form with the property that both β and dβ
are continuous. One can go further and formulate (G.33) for a (k− 1)-form
β with the property that

(G.38) β, dβ ∈ L∞(M), ι∗β ∈ L∞(∂M),
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where ι : ∂M → M is the natural inclusion, a class of forms that can be
shown to be invariant under bi-Lipschitz maps. (It can be shown that the
first two conditions in (G.38) imply ι∗β ∈ H1,1(∂M)′.) We will not go into
the details. However, in Appendix I we will present an elementary treatment
of (G.33), stated in a more classical language, when M is an open domain
in Rk whose boundary is locally the graph of a Lipschitz function. A far
reaching extension, due to H. Federer, can be found in [Fed]; see also [EG].

The calculus of differential forms has many applications to differential
equations, differential geometry, and topology. More on this can be found
in [Spi] and also in [T1] (particularly Chapters 1, 5, and 10). To end this
appendix, we make use of the calculus of differential forms to provide simple
proofs of some important topological results of Brouwer. The first two results
concern retractions. If Y is a subset of X, by definition a retraction of X
onto Y is a map ϕ : X → Y such that ϕ(x) = x for all x ∈ Y .

Proposition G.3. There is no smooth retraction ϕ : B → Sn−1 of the
closed unit ball B in Rn onto its boundary Sn−1.

In fact, it is just as easy to prove the following more general result. The
approach we use is adapted from [Kan].

Proposition G.4. If M is a compact oriented n-dimensional manifold with
nonempty boundary ∂M, there is no smooth retraction ϕ : M → ∂M.

Proof. You can pick ω ∈ Λn−1(∂M) to be an (n−1)-form on ∂M such that∫
∂M ω > 0. Now apply Stokes’ Theorem to β = ϕ∗ω. If ϕ is a retraction,

then ϕ ◦ j(x) = x, where j : ∂M ↪→ M is the natural inclusion. Hence
j∗ϕ∗ω = ω, so we have

(G.39)
∫

∂M

ω =
∫

M

dϕ∗ω.

But dϕ∗ω = ϕ∗dω = 0, so the integral (G.39) is zero. This is a contradiction,
so there can be no retraction.

A simple consequence of this is the famous Brouwer Fixed-Point Theo-
rem.

Theorem G.5. If F : B → B is a continuous map on the closed unit ball
in Rn, then F has a fixed point.

Proof. First, an approximation argument shows that if there is a continuous
such F without a fixed point, then there is a smooth one, so assume F :
B → B is smooth. We are claiming that F (x) = x for some x ∈ B. If not,
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then for each x ∈ B define ϕ(x) to be the endpoint of the ray from F (x) to
x, continued until it hits ∂B = Sn−1. It is clear that ϕ would be a smooth
retraction, contradicting Proposition G.3.

Remark. Typical proofs of the Brouwer Fixed-Point Theorem use concepts
of algebraic topology; cf. [Spa]. In fact, the proof of Proposition G.4 contains
a germ of de Rham cohomology. See [T1], Chapter 1, §19 for more on this.

An integral calculus proof of the Brouwer Fixed-Point Theorem that
does not involve differential forms is given in [DS], Vol. 1, pp. 467–470. One
might compare it with the proof given above.


