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Basic quantization: a function on “phase space” is taken to an
operator on a Hilbert space H.

Euclidean case. H = L2(Rn).
Position: xj 7→ Qj , Qj f = xj f .
Momentum: pj 7→ Pj , Pj f = (1/i)∂f /∂xj .
Laplace operator: |p|2 7→ −∆.

Quantization of motion in a force field

−∆+ V (x).

Quantization of free motion on a Riemannian manifold M.
H = L2(M).
Use Laplace-Beltrami operator, i.e.,

∆f = g−1/2∂j

(
g1/2g jk∂k f

)
.
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Classical free motion on M: geodesic flow

dxj
dt

=
∂E

∂ξj
,

dξj
dt

= −∂E

∂xj

E (x , ξ) = g jkξjξk = symbol of −∆.

Get flow on cotangent bundle T ∗M, preserving level sets of
E (x , ξ). Hence get flow

Gt : S
∗M → S∗M

.

The flow Gt preserves a natural Liouville measure dS on S∗M. We
normalize this so that

∫
S∗M dS = 1.
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Basic problem: relate dynamical properties of the geodesic flow Gt

to spectral properties of ∆.

Assume M is a compact Riemannian manifold. L2(M) has an
orthonormal basis {φk : k ∈ N} of eigenfunctions of ∆:

∆φk = −λ2
kφk , λk ↗ +∞.

Weyl law:
λk ∼ (Ck)1/n, as k → ∞,

where n = dim M, and C = Γ(n/2 + 1)(4π)n/2/VolM. Here and
below, normalize the metric on M so that VolM = 1.

Mean equidistribution of eigenfunctions:

1

N

N∑
k=1

|φk(x)|2 −→ 1,

uniformly in x ∈ M, as N → ∞. One tool for these results: heat
kernel asymptotics.
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Question: when can lots of eigenfunctions concentrate on some
subset of M?

Example: Unit sphere Sn in Rn+1.

Theorem (Shnirelman, 1974) Assume the flow Gt on S∗M is
ergodic. Then there is a subset N ⊂ N, of density 0, such that for
all b ∈ C (M),

lim
k→∞,k /∈N

∫
M

b(x)|φk(x)|2 dV (x) =

∫
M

b(x) dV (x).
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Further phase space localization brings in a quantization of
C∞(S∗M),

op : C∞(S∗M) −→ OPS0(M) ⊂ L(L2(M)).

Quantizations include

Kohn-Nirenberg quantization, opKN ,

Weyl quantization, opW ,

Friedrichs quantization, opF .

These differ by maps from C∞(S∗M) to OPS−1(M), a space of
compact operators on L2(M).
Special property of opF :

a ∈ C∞(S∗M), a ≥ 0 =⇒ opF (a) ≥ 0.

Constructions involve oscillatory integrals. See, e.g., [T1].
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Kohn-Nirenberg quantization on Rn

a(x ,D)u(x) = (2π)−n/2

∫
Rn

a(x , ξ)û(ξ)e ix ·ξ dξ,

û(ξ) = (2π)−n/2

∫
Rn

u(y)e−iyξ dy .
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Theorem (Colin de Verdière, 1985) Assume the flow Gt on S∗M is
ergodic. Then there is a subset N ⊂ N, of density 0, such that for
all a ∈ C∞(S∗M),

lim
k→∞,k /∈N

(Aφk , φk)L2 = a,

where

A = op(a), a =

∫
S∗M

a dS .

Ingredients in the proof.

Weyl law

lim
N→∞

1

N

N∑
k=1

(Aφk , φk)L2 = a.

(Does not require ergodicity of Gt .)
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Egorov theorem

op(a ◦ Gt)− UtAU−t ∈ OPS−1(M),

where Ut = e it
√
−∆.

Mean ergodic theorem

aT −→ Pa in L2(S∗M, dS), as T → ∞,

given

a ∈ L2(S∗M), aT =
1

T

∫ T

0
a ◦ Gt dt,

P = orthogonal projection of L2(S∗M) onto Gt-invariant elements.
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Theorem (Schrader-Taylor 1989, Taylor 2015) Do not assume the
flow Gt on S∗M is ergodic. There is a subset N ⊂ N, of density 0,
such that if a ∈ C (S∗M), A = opF (a), then

Pa = a =⇒ lim
k→∞,k /∈N

(Aφk , φk)L2 = a.

More generally,

Pa ∈ C (S∗M)

=⇒ lim
k→∞,k /∈N

(Aφk , φk)L2 − (opF (Pa)φk , φk)L2 = 0.

First part proved in [ST], for a ∈ C∞(S∗M). Rest done in [T2].

Example Take M = Tn, flat torus (so Gt is integrable). Then
Pa = a for a = a(x), i.e., for

Af (x) = a(x)f (x).
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This theorem uses the fact that, thanks to positivity

a ≥ 0 =⇒ opF (a) ≥ 0,

opF has a unique continuous extension from C∞(S∗M) to

opF : C (S∗M) −→ L(L2(M)),

still satisfying such positivity.

Example M is an “inner tube,” a non-flat torus of revolution in
R3. As shown in [T2],

P : C (S∗M) −→ C (S∗M),

but P does not map C∞(S∗M) to C∞(S∗M), or even to the space
of Hölder continuous functions on S∗M.
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Quantization of discontinuous symbols ([T3])
The map opF has a unique extension from C (S∗M) to

opF : L∞(S∗M) −→ L(L2(M)),

satisfying

aν → a weak∗ in L∞(S∗M)

=⇒ opF (aν) → opF (a) in the weak operator topology.

Special case:
opF : R(S∗M) −→ L(L2(M)),

where R(S∗M) is the space of bounded functions on S∗M that are
Riemann integrable.
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Theorem ([T3]) Assume the flow Gt on S∗M is ergodic. Then
there is a subset N ⊂ N of density 0 such that

lim
k→∞,k /∈N

(Aφk , φk)L2 =

∫
S∗M

a dS ,

whenever
a ∈ R(S∗M), A = opF (a).

Elementary special case:

lim
k→∞,k /∈N

∫
M

b(x) |φk(x)|2 dV (x) =

∫
M

b(x) dV (x),

provided b ∈ R(M).
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Theorem ([T3]) Do not assume the flow Gt on S∗M is ergodic.
There is a subset N ⊂ N, of density 0, such that

lim
k→∞,k /∈N

(Aφk , φk)L2 − (Apφk , φk)L2 = 0,

whenever A = opF (a), Ap = opF (Pa), with

a ∈ C (S∗M), Pa ∈ R(S∗M).
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Local (in phase space) equidistribution result.
(See also [Riv], [Gal].)

Theorem ([T3]) Assume Gt acts ergodically on an open set
U ⊂ S∗M. Then there is a subset N ⊂ N, of density 0, such that if

a, b ∈ R(S∗M) are supported on a compact subset of U,

then ∫
U

a dS =

∫
U

b dS

=⇒ lim
k→∞,k /∈N

(Aφk , φk)L2 − (Bφk , φk)L2 = 0,

for A = opF (a), B = opF (b).
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Concentration of eigenfunctions on S2

Gt periodic of period 2π. Take

Λ =
√
−∆+ 1

4 − 1
4 , Spec Λ = {k ∈ Z : k ≥ 0}.

Rotation about x3-axis, R(t) = e itX .
k-eigenspace Vk , dimVk = 2k + 1. Eigenfunctions φkℓ, |ℓ| ≤ k .

Λφkℓ = kφkℓ, Xφkℓ = ℓφkℓ.
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Pa(x , ξ) =
1

2π

∫ 2π

0
a(Gt(x , ξ)) dt.

Take Au(x) = a(x)u(x), a ∈ C∞(S2), rotationally symmetric.

Π(A) =
1

2π

∫ 2π

0
e−itΛAe itΛ dt,

commutes with Λ and X .
(Λ,X ) simple spectrum ⇒ Π(A) = F (Λ,X ).
Task: analyze F .
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Egorov theorem ⇒ Π(A)− opF (Pa) ∈ OPS−1(S2).
Proposition. (Via [T1], Chapter 12.)

opF (Pa) = F0(Λ,X ) mod OPS−1(S2),

for
F0(1, λ) = Pa(x0, (λ,

√
1− λ2)) = g(λ),

x0 on equator of S2. Hence

Π(A)− F0(Λ,X ) ∈ OPS−1(S2).

Corollary. For rotationally symmetric a ∈ C∞(S2),∫
S2

a(x)|φkℓ(x)|2 dS(x) = (Aφkℓ, φkℓ)

= (Π(A)φkℓ, φkℓ)

= g
( ℓ

k

)
+ O(k−1).
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Apply the corollary to a vanishing on |x3| ≤ β, with β ∈ (0, 1).

Conclusion. The orthonormal eigenfunctions φkℓ concentrate on
the strip |x3| ≤ β, for

|ℓ|
k

≥
√
1− β2.
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