Variations on Quantum Ergodic Theorems

Michael Taylor

Michael Taylor Variations on Quantum Ergodic Theorems

Notes available on my website, under Downloadable Lecture Notes

8. Seminar talks and AMS talks

See also

- 4. Spectral theory
- 7. Quantum mechanics connections

Basic quantization: a function on "phase space" is taken to an operator on a Hilbert space H.

Euclidean case. $H = L^2(\mathbb{R}^n)$. Position: $x_j \mapsto Q_j$, $Q_j f = x_j f$. Momentum: $p_j \mapsto P_j$, $P_j f = (1/i)\partial f / \partial x_j$. Laplace operator: $|p|^2 \mapsto -\Delta$.

Quantization of motion in a force field

 $-\Delta + V(x).$

Quantization of free motion on a Riemannian manifold M. $H = L^2(M)$. Use Laplace-Beltrami operator, i.e.,

$$\Delta f = g^{-1/2} \partial_j \Big(g^{1/2} g^{jk} \partial_k f \Big).$$

Classical free motion on M: geodesic flow

٠

$$\frac{dx_j}{dt} = \frac{\partial E}{\partial \xi_j}, \quad \frac{d\xi_j}{dt} = -\frac{\partial E}{\partial x_j}$$
$$E(x,\xi) = g^{jk}\xi_j\xi_k = \text{ symbol of } -\Delta.$$

Get flow on cotangent bundle T^*M , preserving level sets of $E(x,\xi)$. Hence get flow

$$G_t: S^*M \to S^*M$$

The flow G_t preserves a natural Liouville measure dS on S^*M . We normalize this so that $\int_{S^*M} dS = 1$.

Basic problem: relate dynamical properties of the geodesic flow G_t to spectral properties of Δ .

Assume *M* is a compact Riemannian manifold. $L^2(M)$ has an orthonormal basis $\{\varphi_k : k \in \mathbb{N}\}$ of eigenfunctions of Δ :

$$\Delta \varphi_k = -\lambda_k^2 \varphi_k, \quad \lambda_k \nearrow +\infty.$$

Weyl law:

$$\lambda_k \sim (\mathit{Ck})^{1/n}, \hspace{1em} \mathsf{as} \hspace{1em} k
ightarrow \infty,$$

where $n = \dim M$, and $C = \Gamma(n/2 + 1)(4\pi)^{n/2}/\text{Vol }M$. Here and below, normalize the metric on M so that Vol M = 1.

Mean equidistribution of eigenfunctions:

$$\frac{1}{N}\sum_{k=1}^{N}|\varphi_{k}(x)|^{2}\longrightarrow 1,$$

uniformly in $x \in M$, as $N \to \infty$. One tool for these results: heat kernel asymptotics.

Question: when can lots of eigenfunctions concentrate on some subset of M?

Example: Unit sphere S^n in \mathbb{R}^{n+1} .

Theorem (Shnirelman, 1974) Assume the flow G_t on S^*M is ergodic. Then there is a subset $\mathcal{N} \subset \mathbb{N}$, of density 0, such that for all $b \in C(M)$,

$$\lim_{k\to\infty,k\notin\mathcal{N}}\int_M b(x)|\varphi_k(x)|^2 \, dV(x) = \int_M b(x) \, dV(x).$$

Further phase space localization brings in a quantization of $C^{\infty}(S^*M)$,

$$\operatorname{op}: C^{\infty}(S^*M) \longrightarrow OPS^0(M) \subset \mathcal{L}(L^2(M)).$$

Quantizations include

Kohn-Nirenberg quantization,	op _{KN} ,
Weyl quantization,	$op_W,$
Friedrichs quantization,	op _F .

These differ by maps from $C^{\infty}(S^*M)$ to $OPS^{-1}(M)$, a space of compact operators on $L^2(M)$. Special property of op_F :

$$a\in C^\infty(S^*M), \,\, a\geq 0 \Longrightarrow {\operatorname{op}}_F(a)\geq 0.$$

Constructions involve oscillatory integrals. See, e.g., [T1].

Kohn-Nirenberg quantization on \mathbb{R}^n

$$a(x,D)u(x) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} a(x,\xi)\hat{u}(\xi)e^{ix\cdot\xi} d\xi,$$
$$\hat{u}(\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} u(y)e^{-iy\xi} dy.$$

Theorem (Colin de Verdière, 1985) Assume the flow G_t on S^*M is ergodic. Then there is a subset $\mathcal{N} \subset \mathbb{N}$, of density 0, such that for all $a \in C^{\infty}(S^*M)$,

$$\lim_{k\to\infty,k\notin\mathcal{N}}(A\varphi_k,\varphi_k)_{L^2}=\overline{a},$$

where

$$A = \operatorname{op}(a), \quad \overline{a} = \int_{S^*M} a \, dS.$$

Ingredients in the proof.

Weyl law

$$\lim_{N\to\infty}\frac{1}{N}\sum_{k=1}^{N}(A\varphi_k,\varphi_k)_{L^2}=\overline{a}.$$

(Does not require ergodicity of $G_{t.}$)

Egorov theorem

$${
m op}(a\circ G_t)-U^t A U^{-t}\in OPS^{-1}(M),$$
 where $U^t=e^{it\sqrt{-\Delta}}.$

Mean ergodic theorem

$$a_T \longrightarrow Pa$$
 in $L^2(S^*M, dS)$, as $T \to \infty$,

given

$$a \in L^2(S^*M), \quad a_T = rac{1}{T} \int_0^T a \circ G_t \, dt,$$

P = orthogonal projection of $L^2(S^*M)$ onto G_t -invariant elements.

Theorem (Schrader-Taylor 1989, Taylor 2015) Do not assume the flow G_t on S^*M is ergodic. There is a subset $\mathcal{N} \subset \mathbb{N}$, of density 0, such that if $a \in C(S^*M)$, $A = op_F(a)$, then

$$Pa = \overline{a} \Longrightarrow \lim_{k \to \infty, k \notin \mathcal{N}} (A\varphi_k, \varphi_k)_{L^2} = \overline{a}.$$

More generally,

$$egin{aligned} & Pa \in C(S^*M) \ & \implies \lim_{k o \infty, k \notin \mathcal{N}} (A arphi_k, arphi_k)_{L^2} - (\mathsf{op}_F(Pa) arphi_k, arphi_k)_{L^2} = 0. \end{aligned}$$

First part proved in [ST], for $a \in C^{\infty}(S^*M)$. Rest done in [T2].

Example Take $M = \mathbb{T}^n$, flat torus (so G_t is integrable). Then $Pa = \overline{a}$ for a = a(x), i.e., for

$$Af(x) = a(x)f(x).$$

This theorem uses the fact that, thanks to positivity

$$a \ge 0 \Longrightarrow \operatorname{op}_F(a) \ge 0,$$

 op_F has a unique continuous extension from $C^{\infty}(S^*M)$ to

$$\operatorname{op}_F : C(S^*M) \longrightarrow \mathcal{L}(L^2(M)),$$

still satisfying such positivity.

Example *M* is an "inner tube," a non-flat torus of revolution in \mathbb{R}^3 . As shown in [T2],

$$P: C(S^*M) \longrightarrow C(S^*M),$$

but P does not map $C^{\infty}(S^*M)$ to $C^{\infty}(S^*M)$, or even to the space of Hölder continuous functions on S^*M .

Quantization of discontinuous symbols ([T3]) The map op_F has a unique extension from $C(S^*M)$ to

$$\operatorname{op}_F: L^{\infty}(S^*M) \longrightarrow \mathcal{L}(L^2(M)),$$

satisfying

$$egin{array}{lll} a_
u o a ext{ weak}^st ext{ in } L^\infty(S^st M) \ \Longrightarrow ext{op}_F(a_
u) o ext{op}_F(a) ext{ in the weak operator topology}. \end{array}$$

Special case:

$$\operatorname{op}_F : \mathcal{R}(S^*M) \longrightarrow \mathcal{L}(L^2(M)),$$

where $\mathcal{R}(S^*M)$ is the space of bounded functions on S^*M that are Riemann integrable.

Theorem ([T3]) Assume the flow G_t on S^*M is ergodic. Then there is a subset $\mathcal{N} \subset \mathbb{N}$ of density 0 such that

$$\lim_{k\to\infty,k\notin\mathcal{N}}(A\varphi_k,\varphi_k)_{L^2}=\int_{S^*M}a\,dS,$$

whenever

$$a\in \mathcal{R}(S^*M), \quad A= {\operatorname{op}}_F(a).$$

Elementary special case:

$$\lim_{k\to\infty,k\notin\mathcal{N}}\int_{M}b(x)\,|\varphi_{k}(x)|^{2}\,dV(x)=\int_{M}b(x)\,dV(x),$$

provided $b \in \mathcal{R}(M)$.

Theorem ([T3]) Do not assume the flow G_t on S^*M is ergodic. There is a subset $\mathcal{N} \subset \mathbb{N}$, of density 0, such that

$$\lim_{k\to\infty,k\notin\mathcal{N}}(A\varphi_k,\varphi_k)_{L^2}-(A_p\varphi_k,\varphi_k)_{L^2}=0,$$

whenever $A = op_F(a)$, $A_p = op_F(Pa)$, with

 $a \in C(S^*M), \quad Pa \in \mathcal{R}(S^*M).$

Local (in phase space) equidistribution result. (See also [Riv], [Gal].)

Theorem ([T3]) Assume G_t acts ergodically on an open set $U \subset S^*M$. Then there is a subset $\mathcal{N} \subset \mathbb{N}$, of density 0, such that if

 $a, b \in \mathcal{R}(S^*M)$ are supported on a compact subset of U,

then

$$\int_{U} a \, dS = \int_{U} b \, dS$$
$$\implies \lim_{k \to \infty, k \notin \mathcal{N}} (A\varphi_k, \varphi_k)_{L^2} - (B\varphi_k, \varphi_k)_{L^2} = 0,$$

for $A = op_F(a)$, $B = op_F(b)$.

Concentration of eigenfunctions on S^2 G_t periodic of period 2π . Take

$$\Lambda = \sqrt{-\Delta + rac{1}{4} - rac{1}{4}}, \quad \operatorname{Spec} \Lambda = \{k \in \mathbb{Z} : k \ge 0\}.$$

Rotation about x₃-axis, $R(t) = e^{itX}$. k-eigenspace V_k , dim $V_k = 2k + 1$. Eigenfunctions $\varphi_{k\ell}$, $|\ell| \le k$.

$$\Lambda \varphi_{k\ell} = k \varphi_{k\ell}, \quad X \varphi_{k\ell} = \ell \varphi_{k\ell}.$$

$${\it Pa}(x,\xi)=rac{1}{2\pi}\int_0^{2\pi}{\it a}({\it G}_t(x,\xi))\,dt.$$

Take Au(x) = a(x)u(x), $a \in C^{\infty}(S^2)$, rotationally symmetric.

$$\Pi(A) = \frac{1}{2\pi} \int_0^{2\pi} e^{-it\Lambda} A e^{it\Lambda} dt,$$

commutes with Λ and X. (Λ , X) simple spectrum $\Rightarrow \Pi(A) = F(\Lambda, X)$. Task: analyze F. Egorov theorem $\Rightarrow \Pi(A) - \operatorname{op}_F(Pa) \in OPS^{-1}(S^2)$. **Proposition.** (Via [T1], Chapter 12.)

$$\operatorname{op}_F(Pa) = F_0(\Lambda, X) \mod OPS^{-1}(S^2),$$

for

$$F_0(1,\lambda) = Pa(x_0,(\lambda,\sqrt{1-\lambda^2})) = g(\lambda),$$

 x_0 on equator of S^2 . Hence

$$\Pi(A) - F_0(\Lambda, X) \in OPS^{-1}(S^2).$$

Corollary. For rotationally symmetric $a \in C^{\infty}(S^2)$,

$$\int_{S^2} a(x) |\varphi_{k\ell}(x)|^2 \, dS(x) = (A\varphi_{k\ell}, \varphi_{k\ell})$$
$$= (\Pi(A)\varphi_{k\ell}, \varphi_{k\ell})$$
$$= g\left(\frac{\ell}{k}\right) + O(k^{-1}).$$

Apply the corollary to *a* vanishing on $|x_3| \leq \beta$, with $\beta \in (0, 1)$.

Conclusion. The orthonormal eigenfunctions $\varphi_{k\ell}$ concentrate on the strip $|x_3| \leq \beta$, for

$$\frac{|\ell|}{k} \ge \sqrt{1-\beta^2}.$$

[CV] Y. Colin de Verdière, Ergodicité et fonctions propre du laplacian, Comm. Math. Phys. 102 (1985), 497–502.

[Gal] J. Galkowski, Quantum ergodicity for a class of mixed systems, J. of Spectral Theory 4 (2014), 65–85.

[Riv] G. Riviere, Remarks on quantum ergodicity, J. Mod. Dyn. 7 (2013), 119–133.

[ST] R. Schrader and M. Taylor, Semiclassical asymptotics, gauge fields, and quantum chaos, J. Funct. Anal. 83 (1989), 258–316.

[Sn] A. Shnirelman, Ergodic properties of eigenfunctions, Usp. Mat. Nauk. 29 (1974), 181–182.

[T1] M. Taylor, Pseudodifferential Operators, Princeton Univ. Press, 1981.

[T2] M. Taylor, Variations on quantum ergodic theorems, Potential Anal. 43 (2015), 625–651.

[T3] M. Taylor, Quantization of discontinuous symbols and quantum ergodic theorems, Preprint, 2018.

[Ze] S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55 (1987), 919–941.

[ZZ] S. Zelditch and M. Zworski, Ergodicity of eigenfunctions for ergodic billiards, Comm. Math. Phys. 175 (1996), 673–682.