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Reproducing Formula

First order elliptic differential operator
D : C∞(M, E0) → C∞(M, E1).
Ω ⊂ M, UR domain (defined below).
E fundamental solution of D over neighborhood O of Ω.
Leibniz formula:

D(fu) = fDu + (D0f )u, supp f ⊂ O. (1)

Du =
∑

Aj∂ju + Bu, (D0f )u =
∑

Aj(∂j f )u = i−1σD(x , df )u.
Apply E to (1).

fu =

∫
M

E (x , y)D0f (y) u(y) dV (y) +

∫
M

E (x , y)f (y)Du(y) dV (y).

(2)
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Assume Ω has finite perimeter,
so dχΩ = −ν dσ is a finite measure.
Let f = fν → χΩ boundedly, dfν → dχΩ,weak

∗ in measure.
Assume u ∈ C (M), Du ∈ L1(M). Get reproducing formula:

u(x) = i

∫
∂Ω

E (x , y)σD(y , ν(y))u(y) dσ(y)+

∫
Ω

E (x , y)Du(y) dV (y),

(3)
for x ∈ Ω. Last term vanishes if Du = 0 on Ω.
Assume now that Ω is Ahlfors regular, so, with n = dimΩ,
Hn−1(∂Ω \ ∂∗Ω) = 0 and σ(∂Ω ∩ Br (q)) ≈ Crn−1, q ∈ ∂Ω.

Hoffmann-Mitrea-Taylor: (3) holds provided Du ∈ L1(Ω) and

u ∈ C (Ω), Nu ∈ Lp(∂Ω), ∃ nontangential limit u
∣∣
∂Ω

, a.e. (4)

Here, Nu denotes the nontangential maximal function, p > 1.
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Uniformly rectifiable domains

An Ahlfors regular domain Ω is a UR domain provided

∂Ω contains big pieces of Lipschitz surfaces, at all length scales,
satisfying uniform Lipschitz bounds.

That is, ∃ ε, L ∈ (0,∞) such that for each x ∈ ∂Ω, R ∈ (0, 1],
∃ Lipschitz map φ : Bn−1

R → M, with lipschitz constant ≤ L, such
that

Hn−1(∂Ω ∩ BR(x) ∩ φ(Bn−1
R )) ≥ εRn−1. (5)

Here, Bn−1
R is a ball of radius R in Rn−1, n = dimΩ.
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Layer potentials

Bf (x) =
∫
∂Ω

E (x , y)f (y) dσ(y), x ∈ Ω. (6)

Bf (x) = PV

∫
∂Ω

E (x , y)f (y) dσ(y), x ∈ ∂Ω. (7)

G. David: If Ω is a UR domain,

B : Lp(∂Ω) −→ Lp(∂Ω), 1 < p <∞. (8)

Hofmann-Mitrea-Taylor: If Ω is a UR domain,

∥NBf ∥Lp(∂Ω) ≤ Cp∥f ∥Lp(∂Ω), 1 < p <∞, (9)

and there exists a nontangential limit a.e. on ∂Ω,

Bf
∣∣
∂Ω

(x) =
1

2i
σE (x , ν(x))f (x) + Bf (x). (10)
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Cauchy transform

Given f ∈ Lp(∂Ω), set

Cf (x) = iB(ϑf )(x), Cf (x) = iB(ϑf )(x), ϑ(x) = σD(x , ν(x)),
(11)

In particular,

Cf (x) = i

∫
∂Ω

E (x , y)σD(y , ν(y))f (y) dσ(y), x ∈ Ω. (12)

By (10), for a.e. x ∈ ∂Ω,

Cf
∣∣
∂Ω

(x) =
1

2
f (x) + Cf (x). (13)

Note that DCf = 0 on Ω, so C : Lp(∂Ω) → Hp(Ω,D), for
1 < p <∞, where

Hp(Ω,D) = {u ∈ C 1(Ω) : Du = 0, Nu ∈ Lp(∂Ω), u|∂Ω exists}.
(14)
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Calderon projections

Comparing (12)–(13) and the reproducing formula (3) gives that

Cf
∣∣
∂Ω

= Pf , (15)

where

Pf =
(1
2
I + C

)
f , P : Lp(∂Ω) → Lp(∂Ω), (16)

satisfies
P2 = P. (17)

This is a Calderon-type projection.
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Toeplitz operators

Given a UR domain Ω, Φ ∈ L∞(∂Ω,M(ℓ,C)),
f ∈ Lp(∂Ω, E0 ⊗ Cℓ),

TΦf = PΦPf + (I − P)f . (18)

TΦ : Lp(∂Ω) −→ Lp(∂Ω), 1 < p <∞. (19)

Theorem 1. ([MMT]) If Φ or Ψ ∈ C (∂Ω), then

TΨΦ − TΨTΦ : Lp(∂Ω) −→ Lp(∂Ω) is compact, (20)

for 1 < p <∞. More generally, such compactness holds for

Φ or Ψ ∈ L∞ ∩ vmo(∂Ω). (21)

Idea: difference in (20) is

P[P,Ψ]ΦP = PΨ[Φ,P]P.
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Fredholm properties
If

Φ ∈ C (∂Ω,Gℓ(ℓ,C)), (22)

or more generally if Φ, Φ−1 ∈ L∞ ∩ vmo(∂Ω), then TΦ−1 inverts
TΦ, mod compacts, so

TΦ : Lp(∂Ω) −→ Lp(∂Ω) is Fredholm, (23)

for p ∈ (1,∞). We set

ι(Φ) = IndexTΦ. (24)

The index ι(Φ) is independent of p ∈ (1,∞). ([MMT])
This implies some global regularity results, such as, for
1 < p < q <∞,

f ∈ Lp(∂Ω), TΦf ∈ Lq(∂Ω) =⇒ f ∈ Lq(∂Ω). (25)
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Homotopy properties of index

If Φt ∈ C (∂Ω,Gℓ(ℓ,C)) varies continuously with t, then ι(Φt) is
constant. So we get a group homomorphism (on the group of
homotopy classes)

ι : [∂Ω;Gℓ(ℓ,C)] −→ Z. (26)

Polar decomposition Φ = AU, A = (ΦΦ∗)1/2, U unitary.
ι(Φ) = ι(U). More delicate result:

Theorem 2. ([MMT]) Assume Φt ∈ L∞ ∩ vmo(∂Ω,U(ℓ)) for
t ∈ [0, 1], and

t 7→ Φt continuous from [0, 1] to bmo(∂Ω,M(ℓ,C)). (27)

Then ι(Φt) is independent of t.

Proof involves an extension of the bmo-homotopy theory of maps
of Brezis-Nirenberg.
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Cobordism invariance

Theorem 3. ([MMT]) If Ω is a UR domain and
Φ ∈ C (Ω,Gℓ(ℓ,C)), then

IndexTΦ = 0. (28)

Key application. Ω̃ ⊂⊂ Ω, O = Ω \ Ω̃, ∂O = ∂Ω ∪ ∂Ω̃.

Φ ∈ C (O,Gℓ(ℓ,C)) =⇒ IndexTΦ = IndexT
Ω̃,Φ

. (29)

Sometimes ∂Ω̃ is smooth, and the Atiyah-Singer theorem is
available.
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Calderon-Szego projectors

S =⊥ projection of L2(∂Ω, E0 ⊗ Cℓ) onto R(P).

Key identities: SP = P, PS = S , hence
P = S(I + A), A = P − P∗ = C − C ∗.

A skew adjoint on L2, I + A invertible on L2(∂Ω), hence on
Lp(∂Ω), for a range q0 < p < q1. (Sneiberg)
Hence S = P(I + A)−1, bounded on Lp(∂Ω), for q0 < p < q1.
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Another Toeplitz class

Def. TΦ = SΦS + (I − S).

Key identities: Given F ,G ∈ L∞(∂Ω),

TFG − TFTG = S [S ,F ]GS ,

[S ,F ](I + A) = [P,F ]− S [A,F ].

Hence [S ,F ] compact on Lp(∂Ω), p ∈ (q0, q1), if
F ∈ L∞ ∩ vmo(∂Ω).

Theorem 4. ([MMT]) If F ,F−1 ∈ L∞ ∩ vmo(∂Ω), then TF is
Fredholm on Lp(∂Ω), for q0 < p < q1. Also

Index TF = IndexTF .

Idea: Pt = tS + (1− t)P ⇒ P2
t = Pt .

Get Fredholm path from TF to TF .
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More severely discontinuous symbols

Typically, F ,F−1 ∈ L∞(∂Ω,M(ℓ,C)) does not imply that TF is
Fredholm.

Def. Given f ∈ L∞(∂Ω,M(ℓ,C)), we say f is locally sectorial
provided that for each y ∈ ∂Ω, ∃ neighborhood Oy of y in ∂Ω and
Cy ∈ M(ℓ,C) such that

ReCy f (x) ≥ bI > 0, ∀ x ∈ Oy . (30)

Here, ReT = (1/2)(T + T ∗).

Theorem 5. ([T]) If f ∈ L∞(∂Ω,M(ℓ,C)) is locally sectorial, then

Tf is Fredholm on Lp(∂Ω), (31)

for a range p0 < p < p1 about p = 2.

For Ω = disk in C and f scalar, this was proved in [DW] (for
p = 2). Argument there was very one-dimensional.
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Factorization of locally sectorial f ∈ L∞(∂Ω,M(ℓ,C)).

Cover ∂Ω by finitely many open sets Oj = Pyj such that (30)
holds.
Let {ψj} be a continuous partition of unity subordinate to this
cover. Set

Φ(x) =
∑
j

ψj(x)Cyj . (32)

Then Φ ∈ C (∂Ω,M(ℓ,C)) and

ReΦ(x)f (x) ≥ bI > 0, ∀ x ∈ ∂Ω. (33)

Then, with G (x) = Φ(x)f (x), we have the factorization

f (x) = F (x)G (x), ∀ x ∈ ∂Ω, (34)

where G ∈ L∞(∂Ω,M(ℓ,C)), and

F = Φ−1 ∈ C (∂Ω,Gℓ(ℓ,C)), ReG (x) ≥ b > 0, ∀ x ∈ ∂Ω.
(35)
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Proof of Theorem 5

Let f be locally sectorial. Factorization (34) implies

Tf = TFTG , mod compacts.

Also, TF is Fredholm. Next,

Re(TGu, u)L2 = Re(GSu,Su)L2 + ∥(I − S)u∥2L2
≥ C∥u∥2L2 ,

for u ∈ L2(∂Ω). By Lax-Milgram, TG is invertible on
L2(∂Ω, E0 ⊗ Cℓ), hence also on Lp, for p close to 2.
This implies Theorem 5, and yields

Index Tf = Index TF . (36)

Michael Taylor Multidimensional Toeplitz Operators With Discontinuous Symbols



Example. Take Ω = D, open disk in C. Define φ ∈ L∞(∂D) by

φ(θ) = e iθ/2, 0 ≤ θ < 2π.

So range of φ is Γ, upper boundary of D+ = {z ∈ D : ℑz > 0}.
∂D+ = Γ ∪ (−1, 1). Set

φλ = φ− λ, λ ∈ C.

Theorem 5 plus (36) yield:

λ ∈ D+ ⇒ Tφλ
Fredholm, and Index Tφλ

= 1,

λ ∈ C \ D+ ⇒ Tφλ
Fredholm, and Index Tφλ

= 0.

Corollary:
λ ∈ (−1, 1) ⇒ Tφλ

not Fredholm.

Note that

λ ∈ (−1, 1) ⇒ φλ and φ−1
λ ∈ L∞(∂D).
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